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Abstract

In this paper, the oscillatory properties and asymptotic behaviour of a third-order
three-dimensional neutral system are discussed. Some sufficient conditions are
obtained to ensure that all bounded positive solutions of the system are oscillatory or
non-oscillatory. On the other hand, the non-oscillatory solutions either converge or
diverge when t goes to infinity. A special technique is adopted to include all possible
cases. The obtained results include illustrative examples.
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1. Introduction

Differential equations are one of the most important topics in mathematics due to their many
applications, see [1]. The oscillation theory of functional differential equations differs from
that of ordinary differential equations. In fact, the former reveals the oscillation or non-
oscillation of solutions caused by the appearance of deviating arguments in the differential
equation. The paper of A.M. Kareem et al. [2] is the first work on the oscillation of functional
differential equations.
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The oscillation and asymptotic behaviour of the solutions to the delay differential equations
have extensively attracted the attention of many Mathematicians in recent years due to the
realization that many number of applications are in use to delay differential equations. An
important feature of the equations system solutions is the oscillation property as well as the
convergence of non-oscillating solutions.

In recent years, the theory of neutral differential equations has become an independent area
of research. Investigation of the oscillation and non-oscillation of neutral differential equations
had already been initiated in the sixties and became popular in the eighties [3-11]. A few of
them have been investigated in the system of neutral differential equations [12-14]. One of the
researchers studied the oscillating of neutral differential equations system solutions. Ladas et
al. studied the oscillation of solutions of the system of differential equations and neutral
equations of the first order in the form

n n
d
= x®-) Pxe-t) =) axe-o, (1)
i=1 i=1

where the coefficients P; andQ; are real m X m matrices and the delays t;, g;, are non-
negative real numbers. The authors obtained some necessary and sufficient conditions for
oscillating of a linear system and other conditions for converging non-oscillatory solutions to
zero.

Ladde and Zhang [15] discussed the oscillation and non-oscillation for systems of two first-
order linear differential equations with a delay in the form
{x{(t) = ay1%1 + A% (t — 71) @)
x1(t) = az1x1(t — 73) + azx,
Where a,;,a42,a,; and a,, are constant coefficients. Also, Ladde and Zhang have
considered variable coefficients.
Agarwal et al. [16] discussed the systems of delay nonlinear differential equations in the form

{a‘c(t) =a®f(y(t—1) -
y(t) = —b(®)g(x(t — 1))

They obtained sufficient conditions for the existence of a non-oscillatory solution for this
system and established some sufficient conditions to insure the oscillations of the system
solutions.

Mohamad, H.A. and Abdulkareem, N. A.[17] discussed the almost oscillatory solutions of
the system of differential equations of the form:

[ (O ([x(2) + Py (D@1 (D] + @1 (O (y(o2(£))) = 0
[ (DY (O + POy (NN + @2 (O)f: (x(02(5)) = 0

Where « is a quotient of a positive odd integer. They discussed and obtained some necessary
and sufficient conditions to ensure the oscillation for every bounded solution of this system or
that every non-oscillatory solution converges to zero as t — oo.

Akin et al. in[18] considered the system of the form:

x2(t) = a(®)y* (t)
y&(t) = b(t)z%2(t) t=>ty,>0. (5)
z2(t) = —c()x*(t)

They classify the non-oscillatory solutions of the system (7) under the conditions

(4)
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fooa(s) ds = foob(s) ds = oo,
T T

In [19], Spanikova et al. investigated the oscillatory properties of neutral three-dimensional
differential systems of the type

([(0) = ay (Dx(g ()] = pr(Of 0/ (ha(D)
< y'(6) = 0, (0 fo(z(hs () (6)
\ z'(t) = —Ps(t)fl(x(h1(t))

We consider the following system

(G (@) (i (®)*)" = A%(@Yzal (Ul(t))

1 (GO ®)?) =g,0y% (0, ) @ =0 >0 (£)
(G0 (D)™ = 1g5()y™ (03(D)
Where
w1(t) = y1(t) + p4 (t)J’1(T1(t)),
w2 (t) = y,(t) + p2(O)y, (Tz (t)); (7)

w3(t) = y3(t) + p3(t)ys (T3 (t))-
The following hypotheses are assumed to be satisfied for all i = 1,2,3:
(H1) A€ {1,—-1},
(HZ) (i; 9i € C([tOJ OO), R+)' Pi (t) € C([tO' oo), [0'1])
(H3) t;,0; € C([ty, ™), R), g;(t) <t, 7;(t) <t, and th_)rg 7;(t) = P_)r‘cr)lo 0;(t) = oo,

(Hs) a; > 0 is the ratio of two odd integers.
By a solution to the system (E), we mean a vector function Y(t) = [yl(t) v, (), ys (O],

which has the properties, ¢;(t)(wy (t)) RAGICH (t)) RAGICH (t)) € C1([ty, »), R),
and satisfies the system (E). We consider only those solutions to the system (E) which satisfy
conditions sup{|y;(t)|:t =T} > 0.

We also consider only those solutions Y (t) = [y (t), y,(t), y3(®)]T to the system (E) are
positive.

Definition 1.1 [5] A proper solution Y (t) = (y,(t), y,(t), y3(t))T of (E) is said to oscillate if
it is eventually trivial or if at least one component does not have an eventual constant sign.

Definition 1.2 [5] A solution Y (t) = (y,(t), y,(t), y3(t)T of (E) is said to be bounded if
every of its component is bounded. Otherwise, the solution is called unbounded. That is, a
solution is said unbounded if at least one component is unbounded.

This paper consists of five sections; in the second section, we present two lemmas that we will
rely on to get the main results. In the third and fourth sections, the non-oscillatory solutions
(NOS) to the system (E) are studied with certain conditions. In the fifth section, the system (E)
oscillation is studied with certain conditions, and we give some examples that illustrate the
results.

2. Some basic lemmas
In this section, we present some lemmas that we will rely on to get the main results.

Lemma 2.1. [9]
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Let f € C*(R,R) and fW@®f" V() >0, t>t, t, € (—oo,), then the following
statements hold:

1. If f™() >0 fort >t then fO(t) is increasing for t > t, and lim fOM) = oo
where i=n-1n-2,..,0,
2. If fM(t) <0 for t > t,, then fD(¢) is decreasing for t > ¢, and lim fOt)= -,

where i=n—1,n-2,..,0.

Lemma 2.2 [5] Let w, y, P: [ty,0) —» R and 7 € R be such that,
w() =yt)+P)y(t —1),t = ty, + max{0, t}. (8)
Assume that 0 <P(t) <P, <1, and y(t) >0 for t =t lirtn infy(t) = 0 and that

gim w(t) =L € Rexists. Then L = 0.0

Remark 2.1: It is clear that Lemma 2.2 remains true if the delay is variable, whcih means t —
T is replaced by (t), where 7(t) <t, (t) — o0,ast — oo, also it remains true if the solution
IS negative.

Remark 2.2. For simplicity, we will assume that non-oscillatory solutions satisfy y;, y,, y3 >
0, when they exist.

3. Non-oscillatory Solutions (NOS) of System (E),case A =1

In this section, we study the asymptotic behaviour of NOS with 4 = 1, which we use in
the following sections.

Lemma 3.1 Assume that Y (t) = (v, (t), y,(t), y3(t))T is the positive NOS of the system (E),
and

t—>oo

I jtf@( ! )“_"d d = 1,23 ©)
im su — vds =, i =1,2,3.
Pl). G

Then there are only the following possible classes from K; - Kg:

Table 1: The classes of all possible NOS of the system (E), 4 = 1.

<
<
N
N
N

Wy W3 w3 () ()} w3 w;

+ + + + + + w; = 00

4+ 4t 4+ - - - Ji(wi' ()" -0
+ + + - - + w3 = 00

+ + + - + - Wy > ©

+ + + + - - W, = ©

+ + + + + - 0)1’2 — 00

+ + + - + + w2’3 — 00

+ + + + - + 0)1’3 — 00
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Proof: Suppose that Y (t) = (v,(t), y,(t), y3(t))T be an eventually positive solution of system
(E), forall t > t,, then from (E), it follows

(61O (w1 (1)) 2 0, (& () (w3 (£))*2)" = 0, (G3(1) (w3 (£))*)" = 0

That means ¢; (t) (w1 (t))*, {,(t) (w3 (t))*2, {53(t) (w3 (t))*3, nondecreasing; hence, there
exists t; = t, such that ¢; (t) (w7 ()%, {(t) (w3 (t))*2 and {5(t) (w3 (t))*:, are eventually
positive or eventually negative. So eight cases can be discussed, which are:

Table 2: The eight possible cases can occur in the system (1), y;(t) > 0,i = 1,2, 3.

G1(0) (w7 ()" <0
61 () (w7 ()™ <0
G1(0) (w7 ()" <0

¢1(0) (w1 ()™ > 0
() (w1 (€)™ >0
¢1(0) (w7 ()™ <0
¢, (8) (w1 (€)™ > 0

GO (w2 ()" <0
G () (w7 ()" <0
GO (w2 ()% >0
G () (w7 ()" <0
GO (w2 ()% >0
(1) (w7 ()™ > 0
G (1) (w7 ())*2 < 0

GO (w3 ()% <0
GO (w3 ()% >0
GO (w3 ()% <0
GO (w3 ())* <0
GO (w3 ()% <0
GO (w3 ()% >0
G5 (1) (w3 ()% >0

Now, we discuss the cases in Table 2 successively:
I. Since ¢;(t)(w; (£))* > 0 and ({;(t) (w; ())*) = 0,i = 1,2,3, then ;(t)(w; (t))*, is
positive non-decreasing, then there exists b; > 0,t, > t; such that ¢;(t)(y;'(t))% = b;
1
1

= 1\«
o' (t Zb.“i< ) =t 10
1 ( ) i (l(t) 2 ( )
Integrating (10) from t to §(t) for some continuous function &(t) > t, we obtain
180, 1 \a
wi(6()) —wi(t) > b, ( ) ds, 11
l( ( )) l( ) i . (i(s) ( )

We claim that w;(t) > 0 for t > t; > t,. Otherwise, if w;(t) <0,fort > t; > t,, then (11)
becomes
1 800

1 \a&
wj(t) < —b/" ( ) ds. 12
(t) d) \G® (12)
Integrating (12) from t5 to , we get,

w;i(t) —w;(tz) < —biali J;t J;S(S) (Zi (117))0% dvds

Letting t — oo, then the last inequality leads to gim w;(t) = —oo, a contradiction. Hence, the
claim is verified and w;(t) >0 and w;'(t) >0, by Lemma (2.1); this case leads to
gimwi(t) = oo, Thatis (yq,¥2,¥3) € K;.

ii. Since ¢;(t) (w;' ()% < 0 and (;(t) (w;' (£))*)" = 0,i = 1,2,3.

Thatis ¢;(t)(w;i (t))% is negative non-decreasing. So there are 4; < 0,i = 1,2,3, such that
gim{i(t)(wg’(t))“i = 4; <0, hence {;(t)(w; ()% < 4b;t=t, andso

1

1

() < 1&‘”( ! )a_i t>t (13)
w; <bH '\—=<]| ,t=¢t,.

' LG 2

Integrating (13) from t to §(t), this yields
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1800 1

. 1 \a
WI(8(8)) — wi(D) < 67 <<- (S)) ds

We claim that w;(t) > 0, t = t3 = t,,i = 1,2,3. Otherwise, w;(t) <0, t=>t3=>t,
and w;'(t) < 0 this implies to w;(t) < 0 and tli_)rga)i(t) = —oo, a contradiction. Hence,
w;(t) > 0,w;(t) > 0, and w;'(t) < 0, which means (y;,y,,¥y3) € K.
iii. Since, () (w7 ()% <0, () (w5 ()% <0 and (§;(t)(wi (t)%)" =0, that is
{i(O)(w;'(£))% are negative non-decreasing, j = 1,2, there exists 4; < 0, such that,
glrg(j(t)(w;’(t))“f = 4; < 0. Then {;(t)(w;' ()" < &;, t = t, thus

1

1

1\
W' <Y (—=)"t=2t, j=12 (14)
g 7\ (@)

Integrating (14) from t to 6(t) for some continuous function §(t) > t, we obtain
1

, , & (FO0 1\
w; (6(t)) w;j(t) < 1?] J; <Cj(5)> ds
We claim that w;(t) >0, t > t3 > t,, j = 1,2. Otherwisg, if w;(t) <0, t>t;>t,
and w;'(t) < 0 this implies to w;(t) <0 and tlggwf(t) = —oo, a contradiction. Hence,
w;j(t) > 0, w;(t) > 0,and w;'(t) < 0. Now, {53(t) (w3 (t))* > 0and ({3(t) (w3 (t))**)" = 0.
So ;(t) (w35 (t))*s is positive non-decreasing, then there exists b; > 0 and t, > t; such that
1 1

1) 2 b (— ) e > 15
w3 (t) = b, (m) t =1, (15)

Integrating (15) from t to §(t), we obtain

1

= (P71 \&
w3(6(t)) — wi(t) = b3 ( )ds
3( ( )) 3( ) 3 . {3(5)
We claim that w3(t) > 0 for t > t; > t, Otherwise, if w3(t) <0 fort > t; > t,, then the

last inequality becomes

1 .50

— 1 \az
2(t) < —b2? ( ) ds. 16
(1)3( ) 3 . 53(5) S ( )
Integrating (16) from t; to t
1 it ~8(s) 1 a%
w3(t) — w3(t3) < —b, £3£ (53(17)) dvds. (17)

Letting t — oo, then inequality (17) leads to tlim w3 (t) = —oo, a contradiction. Hence,
w3(t) > 0and w3 (t) > 0, this case leads to tlimw3(t) = 00,and so (y1,Y2,¥3) € K;.

Analogously from the subcases (iv-viii), one can get(y,,v,,y3) € K,, n =45, ...,8,
respectively.

4. Non-oscillatory Solutions of System (E), case 4 = —1
In this section, we study the asymptotic behaviour of NOS with 4 = —1, which we use in
the following sections.

Lemma4.1 Assume thatY = (y,(t), y,(t), y3(t)) is eventually positive NOS of (E), with A =
—1, if (9) holds. Then there are only the following possible classes L, - Lg:
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Table 3: The classes of all non-oscillatory solutions of (E),A = —1,y;(t) > 0,i=1,2,3.

[Ctees=s |
B o o e el e e ais12s
+ + + + + + w; > ©

L
w; = 00

i
w; = ,j =1,2,and
{5(®) (w5 (¥)*2 - 0.

w; = ,j =1,3,and
() (w3 (£)*2 - 0

yj = %,j =2,3,and
AOICHO)

w3 > ©

(1z(t)(w 2(8)*2 =0

wl—)OO

{2 3() (w3 5(1)*?2 - 0

0)2—)00

1,3(0) (wy'3(t))*3 > 0

Proof: Suppose that Y (t) = (y,(t),y.(t),y3(t))T be an eventually positive solution of (1)
then, (;()(w (£))*)' <0,i =123, t = t; = t,.

This means that ¢;(¢t)(w;' (t))* are non-increasing, so from Table 2, eight subcases can be
discussed successively:

i C1(O)(wf ()™ > 0,8 (0) (w7 ()% > 0,33(0) (w3 (1))* > 0,t = ty.

Since, ¢;(t) (w;'(t))% is positive non-increasing, there are 4; > 0,i = 1,2,3. such that
tli_)rg(i(t)(wg’(t))“i = 4; > 0, then there exists t, > t; such that {;(¢t)(w; (t))* = 6;, t >

t, . Therefore,

1 1

" a1\
w; (t) = 5’1- l(m) , t=1,. (18)
i
Integrating (18) from t to &(t) for some continuous function §(t) > t, we obtain
= (97 1 \u
wl(8(D) — wi(t) = 67 ( ) ds, 19
l( ( )) l( ) i . (i(S) ( )

We have two cases for w;(t): a. w;(t) < 0,b. w;(t) >0 for t > t; > t,.
a. If wi(t) <0,fort > t; > t,,inthat case, we claim that 4; = 0 . Otherwise, 4; > 0, then
(19) becomes
@ (P 1\
w!(t) < —4" ( ) ds. 20
==, @ 0

Integrating (20) from t; to t
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w;(t) —w;(tz3) < —lhaii J;t J:S(S) ((i(v)>a—i dvds.

As t — oo it follows that gim w;(t) = —oo, acontradiction, hence &; = 0.

b. If w;(t) > 0,and w; (t) > 0, then it follows that tlim w;(t) = oco. Thus (y4,¥2,V3) € L;.
il (O (' (1)) <0, GO(w; (1) <0, G(O(wz (1) <0, t=t.
then w;'(t) < 0,i = 1,2,3. Since p;(t) (w; (t))% is negative non-increasing. Then there exists
b; < 0,and t, > t; such that p;(t)(w; (t))* < b; for t > t, . Therefore,
1
1

" a; 1 a_l
w;'(t) < b, (Cl(t)> ,t =t 21D
integrating (21) from t to §(t), we obtain
150, 1 \m
wi(6(1)) — wi(t) < b t <€i (S)) ds, (22)

We claim that w;(t) > 0 for t > t; > t,. Otherwise, if w;(t) <0 fort=>t;>t, and
yi'(t) < 0 implies that tlim w;(t) = —oo, a contradiction, thus w;(t) > 0
then (22) becomes

, @ (P9 1 &
Wi = =" | (Q(s)) ds. (23)

Integrating (23) from t; to t

00— wi(t) > 7 f fsm o

Ast — oo it follows that tlim w;(t) = . Thus (y4,V,,¥3) € L,.

i, £4 (0 (07 ()™ <0, LOOZ ) <0, GO E)® >0, t2 1.

then y;'(t) <0,j =12 and w3(t) > 0. Since {;(t)(w; (t))* are negative and non-
increasing. Then there exists b; < 0, and t, > t; such that {;(t)(w; (t))* < b; for t > ¢t, .
Therefore,

a;
) dvds.

1

very < b (L V7
wj'(t) < b ; ({](t)> Jt >t (24)
Integrating (24) from t to &(t), we obtain
o (PO 1 \%
wj(8(t)) — wj(t) < b’ ft ({j@) ds, (25)

We claim that w;(t) > 0 for t >t; > t,. Otherwise, if w;(t) <0 fort=>t; >t, and
w;'(t) < 0 implies that tlim w;(t) = —oo, a contradiction, thus w;(t) > 0

then (25) becomes
5(t) ai]
wi(t) = b J <Z (s)) ds.
J

Integrating the last inequality from t; to t ylelds

8(s) aci
w;(t) — wj(t;) = b ff (C](V)) dvds

As t — oo it follows that thm wi(t) =,j =1, 2
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Concerning {3(t) (w3 (t))** > 0 and nonincreasing, so there exists &5 > 0, such that
tlim€3 () (w3 ()% = 65 = 0, then {5(t) (w3 ()% = b4, t =t, =ty . Therefore,

1 1

—( 1 \a3
w3 (t) = 6,° ((3@)) ,t=>t,.

Integrating the last inequality from t to &§(t) leads to

1

: : & (01 &
Wi(60) - w0 2 47 | (53(5)) ds, (26)

We have two cases for w3 (t): a. w3(t) > 0;b. w3(t) <0 fort >t; > ¢,
a. If wi(t) >0fort >t; > t,, and wy (t) > 0, it follows that tlim w3 (t) = oo,

b. If w3(t) <O0fort > t; > t,, weclaimthat 65 = 0, otherwise 65 > 0, then (26) is reduced
to

1 80, 1 \a
wi(t) < —65° ({3(5)) ds. (27)

t

Integrating (27) from t; to t

1ot 8, \ag
w3 (1) — wy(ts) < —6 L j ((3(1])) dvds.

As t — oo it follows that tlim y3(t) = —oo, which is a contradiction; hence, (yy,V,, V3) € Ls.

Analogously from the subcases (iv-viii), one can get (yy,Vy, V3) € L,, n =4,5,...,8,
respectively.

5. Oscillation conditions

In this section, some theorems and corollaries are established, which ensure that all bounded
solutions to system (E) are either oscillatory or non-oscillatory and converge to zero, and all
unbounded solutions to (E) are either oscillatory or diverge as t — co. Moreover, we discussed
the asymptotic behaviour of (E).

Theorem 5.1 Suppose that 2 = 1 and (9) holds in addition to

1

o ~5(s) €3) o o
ft fs (GTls)LSE 41(0) (1—;72(0'1(9))) dg) déds = o

1

_I:o fS(S) <(215) J:(f) q,(0) (1 — 273(0'2(9)))a2 d@)a_z déds = o (28)

1

]too ja(S) (cgis) j:(f) a3(6) (1 —P1 (0'3(9)))0(3 d9>a_3 déds = o

Then every bounded solution of the system (E’) oscillates.
Proof: Suppose that (E) has a non-oscillatory solution Y (t) = (y,(t),y,(t), y3(t))T so by
Lemma 3.1, there is only the class K, in Table 1, that can occur for t > t; > t,, that is:

w;(t) > 0,w;(t) >0,w;'(t) <0, i=123.

Since

w;(®) = y:(®) + pi(Oy1(7: (D),
wi(®) =y (8), t=t, >ty
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y1(01(0) = (1= p1(0:(0)) 01 (12(03(0)) (@
¥2(01(0) 2 (1= 22(61(D) ) w3 (22(0:(®)) () (29)

y3(02(0) 2 (1= 23(02(0) ) w3 (22(02(0)) (@)

Integrating the first equation of system (E), from t to §(t), we get
8(t)

L) ()" —a@(w!®)" = | i)y (a1(s))ds,  (30)

Using (29b) in (30), we get t
8(t) a
@) 2| 41() (1= 22(01(5))) 05 (r2(02())) ds

5 t)
(1(15)((0 (t)) < - f 41(5) 1 - #72(01(5))) (T2(01(5))) ds,
(1(0(00 (t)) < _(Uzl (T2(01(t)) j 91 (5) 1 - 592(01(5)))a1 ds,

1

1 (9® @, \@
wf(t)g—wz(rz(al(t)))(m f 3:(5) (1 = 22(0:()) ds) ,

Integrating the last inequality from t to §(t), we get:
1

56/ 1 66 @
wi(5(t)) —wi(t) = w, (T2(01 (t))) f (m 31(s)(1 — p, (01 (f)))al df) ds.
t 1 s

Integrating the last inequality from t, to t we get:
w1 (t) — w1 (t3)

= Wy (72(01 (tz)) j JMS) <51 ) Ja(f)%ﬂe)(l

- 592(01(9)))0‘1 d9> dé ds,

As t - o, w,(t) » . This implies y,(t) —» o a contradiction. Similarly, it can be
shown that tlim y2(t) = oo, gim y3(t) = oo, a contradiction.

This leads to the solution Y (t) = (y1(t), y,(t), y3(t))T oscillates.

Corollary 5.1 Suppose that 2 = 1, and (2), (21) are hold. Then every solution of the system
(E) is either oscillatory or tlim yi(t) =00, i=123.

Proof. Suppose that system (E) has a non-oscillatory solution Y (t) = (v, (t), y,(t), ys(t)T
so by Lemma 3.2, table 1, there are only the possible classes K; — Kg to consider fort > t; >
to- If Y (¢t) is bounded, then by Theorem 3.1, it follows that Y (t) is oscillatory. Otherwise, Y (t)
is unbounded. There are the following cases to consider:

Case 1. Suppose that Y(t) € K,. By Lemma 3.1, it follows tlgg y;(t) = oo, i =1,2,3.Case 2.

Suppose that Y(t) € K,. By Theorem 3.1, tlim yi(t) =00, i =1,2,3.
Case 3. Suppose that Y(t) € K5. By Lemma 3.1, it follows tlim y3(t) = oo.
Integrating the first equation of system (E), from t to §(t), we get:
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a a 0 a
LSO (@ B))™ - 4O (@l (D)™ = ] 41 ()y™ (01 (s)) ds,
5(t)
4@/ ®)* = | gy (01(s)) ds, (31)

Using (29b) in (31), we get
8(t)

_51(0((01’(15))“1 = 41(s) (1 — P2 (01(5)))a1 wgl (Tz (01(5))) ds,
5(t)

51(15)(@;’(0)0{1 < - . 41(s) (1 - #72(01(5)))‘11 wgl (Tz(al(s))) ds,

ACICHO)EET CACAG)) f e (1-22(01(s)) " s,
1 5(t) a1 ail
HOERPHACAG)) ( 5 f 3:(5) (1 = p2(01(5))) ds) ,

Integrating the last inequality from t to §(t), we get:

1
aq

6(t) 1 6(s)
a)i(S(t)) —wi(t) = w, (T2(0'1(t)))f (mf a1 (&)1 - #72(0'1(5)))0(1 df) ds.
t 1 s

Integrating the last inequality from t, to t we get:
w1(t) — w(t;)

> 02 (r(en(®)) [ t | " ( 6 L RO
21 S

a
- #72(01 (9)))a1 d‘9> 1 dé¢ ds,
Ast — oo, w,(t) » oo. This implies y;(t) — oo. Similarly, it can be shown that gim y2(t) =
co.this leads to tlim y1(t) = 0 = tlim y2(t) = 0 = tlim y3(t) = 00 = 0. The proof of the

cases when Y (t) € K,, K5 is similar to the proof the case 3.
Case 4. Suppose that Y (t) € K. By Lemma 3.1, it follows thm Y12(t) = oo.

Integrating the third equation of system (E), from ¢t to §(t), we get:
8(t)

56 (05 ())” = W (wiy®)® = | gs()y(o5(s)) ds,
t
6(t)
—®(i®)® 2| g3y (o35(s)) ds, (32)

Using (29a) in (32), we get
8() s
@@ ) 2 | 456) (1= p1(03())  wi (1a(o3(5)) ) ds
s td(t) s
G005 () < - f 3:(5) (1= p1(03())) @i (za(05(5)) ) ds,
as ta' 8(®) a3
GO 0)" < —of (r1(0s () f 4:(5) (1= 21(05())) " ds,

1

1 () as as
w3 () < —w; (T1(03(t))) <@f a3(s) (1 - 5’91(0'3(5))) dS) )

Integrating the last inequality from t to §(t), we get:
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&(t) 1 5(s) =

Integrating the last inequality from ¢, to t we get:
w3(t) — ws(t;)

= W (T1(03(t2)) f .['8(5) <(3(€)f6(§)%3(9)(1

- #91(01(9)))0‘3 d9> dé ds,

Ast — o, w5(t) = oo. Thisimplies y;(t) — oo. This leads to gim y1(t) = 0 = gim yo(t) =

1
ws(6(1)) — wi(D) = wy (Tl(ag(t)))f

© = tlim y3(t) = oo = 0. The proof of the cases when Y (t) € K, Kg, are similar to the proof
of case 4; hence, the proof is completed.

Theorem 5.3 Assume that 0 < p;,3(t) < 1. Let y;,3(t) be a NOS of (E), With 4 = —
and suppose the correspondlng w1 23(t) belongs to L. If

“1

ftj G2 (u )f %1(s)ds du dv = oo,

1

Te2

ft fv 2 zu) J:oc;z(s) ds| dudv = oo, (33)

1

A

(Z

—];.[ (3()f g3(s)ds| dudv =

Then either llm V123(t) = hm w12, 3(t) = oo, Or hm V123(t) = hm w1,3(t) = 0.

Proof. Suppose that y,,y,,y; are the positive solution of (E), with 2 = —1. Where the
corresponding functions w, , 3(t) belong to L,. Then there are two cases to consider:

Case I. If w;(t) > 0and w;'(t) > 0. From Lemma 4.1, we have
tll_)fglo Y1,23(t) = th_)n(}o w1,2,3(t) = oo.

Case Il If w],5(t) < 0and wy',3(t) > 0.since w,(t) > 0 and w,(t) < 0, then there exists
a finite 4, such that

tllm (1)2 (t) == /ﬁzz.
We shall prove that 4, = 0. Assume that 4, > 0. Then for any € > 0, we have

fy, < w,(t) < A, + €, eventually. Choose 0 < € < %. It is easy to verify that
2

y2(t) = wy(t) — WZJ’Z(TZ(t)) > Ny — pr(hy + &) = ky(hy + ) > kaw,(t),
Where k, = hompa(hate) o Using the above inequality, we obtain from (E),

fpte
GO/ ®)™) < —k“g, (D0 (0,()  (a)
(L@ 1)) < —kZg,(Ow?(0,(®))  (b) (34)

(GO () (©)™) < -kBg;Ow™(0(0)  (©)

Integrating the first inequality of (34a) from t to oo, we get
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ACICHO) TS f 31 (Dw; " (01(D) ds

Using w (a1 (t)) = #£,, we see that

rn 1 ® a_ll
w? (t) = kyh, [—(1 (t)ft ql(s)dsl , (35)
Integrating (35) from ¢ to oo, we obtain
/ > ko ) —1 ) d a_lld 36
WO 2 kahy | | | aa(odds| d 36)

Integrating (36) from t; to t, we obtain

t oo 1 o] a1
—w4(t) + w1(t1) = kyhy tlj; lQ(H)L ql(s)dsl dudv

Ast — oo, tli_)ngo w4 (t) = —oo, this is in contradiction with the positivity of w,(t). Therefore,
#, = 0. That leads to tli_)n;) w,(t) = 0. Inequality 0 < y,(t) < w,(t) implies tli_)rrc}o y,(t) = 0.
In the same way, we can prove that tli_,nio y3(t) = 0 and tlergo y1(t) = 0 . Hence, the proof is
completed.

Corollary 5.2 Suppose that A = —1 and (9), (33) holds. Then every unbounded solution to
the system (E) is either oscillatory or tlim y;(t) = oo.

Proof. Suppose that system (E) has a non-oscillatory solution Y (t) = (v, (t), y,(t), y3(t)T
so by Lemma 4.1 and Table 3, there are only the possible cases L, — Lg to consider for t >
t; = to. If Y(t) is bounded, then by Theorem 5.2, it follows that Y (t) is either oscillatory or
Y(t) - 0as t - oo. If Y(t) is unbounded, then from Table 3, there are the following cases to
consider:
Case 1. Suppose that Y(t) € L,,L,. By Lemma 4.1, it follows tILr?O yi(t) =, i =1,2,3.
Case 2. Suppose that Y(t) € L. Then there are two subcases to consider:
Subcase I. If w;(t) > 0, then from Lemma 4.1, we have
tll_)rg Y1,23(t) = th_)rg w12,:3(t) = oo.
Subcase Il. If w3 ,(t) > 0 and w3(t) < 0. By Lemma 4.1, it follows
tll_)rg Y1,2(t) = th_)rg w12(t) = co.
since w3 (t) > 0 and w3(t) < 0, then there exists a finite /44 such that
tli_,r%o w3(t) = As.
We shall prove that £; = 0. Assume that #; > 0. Then for any € > 0, we have

f3 < w3(t) < Az + ¢, eventually. Choose 0 < € < £:023) s easy to verify that

#3
y3(t) = w3 (t) — #93Y3(T2(t)) > hy — p3(hs + ) = k3(hz + &) > kzws(t),
Where k5 = %ﬁrﬁ:m > 0. Using the above inequality, we obtain from (E)
3
Integrating the second inequality of (34) from t to oo, we get

& (0 (w5 ()™ < kS f 4> (Dw;? (0, (1)) ds

Using wz(a,(t)) = 43, we see that

1

1 *© az
wy (t) < k3fig Im[ 42(5)615] ) (37)
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Integrating (37) from ¢ to oo, we obtain
1
23

(o] 1 (o]
—w5y(t) < kzhzf wa qz(s)dsl du, (38)
t u

Integrating (38) from t; to t, we obtain

—w,(t) + wy(t;) < k3h3f f l(z( 3], qz(s)dsl dudv

Ast — oo, thm w,(t) = —oo, this is in contradiction W|th the positivity of w,(t). Therefore,
#5 = 0. That leads to tlim w5 (t) = 0. inequality 0 < y;(t) < w3(t) implies tlim y3(t) = 0.

The proof of the cases when Y (t) € K, — Kg is similar to the proof of case 2.
We will give some examples of the result of the three-dimensional half-linear systems (TDHLS)
of third-order of neutral type.

Example 5.1 Consider a TDHLS of third-order of neutral type:

( 1 , " 1 1, .
3’1(t)+53’1(t_ ) __(ﬁ-l-Z)e y2(t—1)

A

<yz(t) + %yz(t - 1)) = — (1—3 + 12) ety (t—2), (39)

1 nr _ 1 1
k<y3(t) +3ys(t - 1)) =— (—3 4—) y1(t—3)

/1=—1,a1=0(2=a1=1,

() =4 =40 =1,
() =t—=2,1,(t)=t—1,13(t) =t —1,
o.(t) = t 1,o,(t) =t—2,03(t) =t —3,

P1(0) = 3,22(0) = 3,;193(0 -5

Since

w,(t) = y,(t) +1y1(t —2)>0,wi(t) <0,w{() >0,
w,(t) = y,(t) + iyz(t —1) > 0,w5(t) <0,wy(t) >0,

1
w3(t) = y3(t) +—J’3(t —1) > 0,wi(t) <0,wi(t) >0,

5(5) ;L £ 50s) t
Hmj j Zl(s‘) dé ds = hmJ L d¢ ds = ggng (8(s) = s)ds = ¢; lim (¢~ T)

=o00o,i = 1,2,3.
And 5(s) 5(8)
}L‘?JT f Q(E)L 3:1(8) (1= 22(0,(6)) ) d6 déds = oo
Jim jT ] " 5225) L " 42(0) (1 = p5(0,(6)) ) db déds = oo
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i f; fa(s) 53&) f:m 4(60) (1 — p1(03(8))) d6 déds = oo

Then (e7t,2e7 %, e7t) € Ly, from Lemma 4.1 and Theorem 5.2, we get,
gim y1(t) = gim y2(t) = tlim y3(t) = 0.

Example 5.2 Consider a TDHLS of third-order of neutral type:

f 1 1y 3 ! 1 3
et ([3’1(0 + E)ﬁ(t - 1)] ) = 2e° (1 + %> e tyi(t-1)
ot 1 AN ot
< <e 2 [yz(t) +3y2(t - 2)] ) = 2e°(6e” + 2e7")%e " 2y;3(t = 3) (40)
2 ! 3
3 "\° 3 3 _\§ 2
@ +zne-3] ) | =5 (1+5e7) v -9
\
3
A=1a,=3,a,=1,a; = g}

L) =e 58 =e580) =1,
1) =t—11,{t)=t—2,13(t) =t -3,
O-l(t) =t— 1,02(t) =t— 3,0'3(1:) =t— 5,

t—1 t—1 t—3
371()_2'372()_3;373()_51

1 t
g,(t) = 2e° (1 + %) e, g,(t) = 2e®(6e3 + 2e71)3e72,

3

® =0 (1+3 =)
B =550 75 )

1

w,(t) = y,(t) +§y1(t —1) > 0,wi(t) >0,w](t) > 0.
1

w,(t) = y,(t) + §yz(t —2)>0,w5(t) > 0,w;(t) > 0.
3

w3 (t) = y5(t) + §y3(t —3)>0,wi(t) >0,wy(t) >0.

Then (et, 2e?t, et) € K, from lemma 3.1 and corollary 5.1, we get,
}im yi(t) = }im y2(t) = gim y3(t) = co.

Example 5.3 Consider a TDHLS of third-order of neutral type:

nr

( 1 1
<}’1(t) + 53’1@ - ﬂ)) =52 (t - %)

A

1 nr 1
(yz(w oyt - Zn)) =Syse—m (41)

3 nr 1
k<yg(t) + Zyg(t - n)) = Zyl(t — 2m)

ﬂ=1,a1=a2=a3=1,

L) =GO =40 =1,
() =t—m, 7,(t) =t — 2m, 3(t) =t —m,

s
o (t) =t — 5 o,(t) =t—m, o3(t) =t — 2m,
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1 1 3
p1(t) = E'Wz(t) = E;#?3(t) =7
g,(t) = %;%z(t) = %»4)3(0 = !
Since
w1 (t), w,(t) and w4 (t) are bounded. By Theorem 5.1, every bounded solution to system (41)
oscillates. So the solution (sint,sint, cost) oscillates.

Z.

6. Conclusions

Knowing and calculating all possible cases of positive solutions to the third-order three-
dimensional half-linear system with neutral type.
Oscillation: This trend revolves around studying and obtaining sufficient conditions for
obtaining the oscillation of positive solutions for the three-dimensional half-linear system with
the neutral type of the third order.
Asymptotic behavior : The required sufficient conditions are drawn in this direction to obtain
the convergence to zero or divergence of all non-oscillatory solutions of a half linear system of
neutral differential equations of third order when t — co. All obtained results are included with
illustrative examples.

References

[1] W. B. Fite, "Properties of the solutions of certain functional-differential equations,” Transactions
of the American Mathematical Society, vol. 22, no. 3, pp. 311-319, 1921.

[2] A.M. Kareem and S.N.Al-Azzawi, "A stochastic differential equations model for the spread of
coronavirus (COVID-19): the case of Iraqg,". Iragi Journal of Science, pp.1025-1035, 2021.

[3] D. D. Bajnov and A. I. Zahariev, "Oscillating and asymptotic properties of a class of functional
differential equations with maxima," Czechoslovak Mathematical Journal, vol. 34, no. 2, pp. 247-
251, 1984.

[4] G. E. Chatzarakis, J. Dzurina, and 1. Jadlovska, "Oscillatory properties of third-order neutral delay
differential equations with noncanonical operators,” Mathematics, vol. 7, no. 12, p. 1177, 20109.

[5] I. Gyoéri and G. Ladas, "Oscillation theory of delay differential equations with applications,
Clarendon," ed: Oxford, 1991.

[6] B. Karpuz and S. S. Santra, "Oscillation theorems for second-order nonlinear delay differential
equations of neutral type," Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 3, pp. 633-
643, 2019.

[7] T. Li and Y. V. Rogovchenko, "Oscillation of second-order neutral differential equations,"
Mathematische Nachrichten, vol. 288, no. 10, pp. 1150-1162, 2015.

[8] Y. Liu, H. Zhao, and J. Yan, "Existence of non-oscillatory solutions for system of higher-order
neutral differential equations with distributed delays," Applied Mathematics Letters, vol. 67, pp.
67-74, 2017.

[9] H. A. Mohamad and L. M. Shehab, "Oscillations of Third Order Half Linear Neutral Differential
Equations,” Baghdad Science Journal, vol. 12, no. 3, 2015.

[10] E. Yankson and S. E. Assabil, "Positive periodic solutions for neutral functional differential
systems," Proyecciones (Antofagasta), vol. 36, no. 3, pp. 423-434, 2017.

[11] A. Zahariev and D. Bainov, "Oscillating properties of the solutions of a class of neutral type
functional differential equations,” Bulletin of the australian mathematical society, vol. 22, no. 3,
pp. 365-372, 1980.

[12] Z. Szafranski and B. Szmanda, Oscilatory Properties of solutions of Some Difference Systems.
1991.

[13] E. Thandapani and B. Ponnammal, "Oscillatory and asymptotic behavior of solutions of nonlinear
two-dimensional difference systems," Math. Sci. Res. Hot-Line, vol. 4, no. 1, pp. 1-18, 2000.

[14] E. Thandapani and B. Ponnammal, "On the oscillation of a nonlinear two-dimensional difference
systems," Tamkang Journal of Mathematics, vol. 32, no. 3, pp. 201-209, 2001.

295



Naeif and Mohamad Iragi Journal of Science, 2024, Vol. 65, No.1, pp: 280- 296

[15] G. Ladde and B. Zhang, "Oscillation and nonoscillation for systems of two first-order linear
differential equations with delay," Journal of mathematical analysis and applications, vol. 115, no.
1, pp. 57-75, 1986.

[16] R. P. Agarwal, L. Berezansky, E. Braverman, and A. Domoshnitsky, Nonoscillation theory of
functional differential equations with applications. Springer Science & Business Media, 2012,

[17] H. A. Mohamad and N. A. Abdulkareem, "Almost Oscillatory Solutions of Couple System of
Differential Equations of Neutral Type," Ibn AL-Haitham Journal For Pure and Applied Science,
vol. 34, no. 1, 2021.

[18] E. Akin-Bohner, Z. Dosla, and B. Lawrence, "Oscillatory properties for three-dimensional dynamic
systems," Nonlinear Analysis: Theory, Methods & Applications, vol. 69, no. 2, pp. 483-494, 2008.

[19] E. Spanikova, "Oscillatory properties of solutions of three-dimensional differential systems of
neutral type," Czechoslovak mathematical journal, vol. 50, no. 4, pp. 879-887, 2000.

296



