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Abstract

In this work, a class of stochastically perturbed differential systems with standard
Brownian motion of ordinary unperturbed differential system is considered and
studied. The necessary conditions for the existence of a unique solution of the
stochastic perturbed semi-linear system of differential equations are suggested and
supported by concluding remarks. Some theoretical results concerning the mean
square exponential stability of the nominal unperturbed deterministic differential
system and its equivalent stochastically perturbed system with the deterministic and
stochastic process as a random noise have been stated and proved. The proofs of the
obtained results are based on using the stochastic quadratic Lyapunov function
method. Form an application point of view of the proposed approach, an illustrative
example is considered and implemented.

Keywords: Brownian motion, Mean square Stability, Stochastic differential
equation, Lyapunov Function.

gl Jlgd aladialy Aphaaall Adabail) uladl) dpd Alialial i alaal) Ay i)

O3 (o1 () Kl putd L
Sl ¢ any ¢ Appatiod) aaladl ¢ psbell RS lanly )l o

adal
gy s ae hias bl Lald aUsd Caia Auhylie¥) gae AV S Gl e B
plai (e caiial atyibiagg Jall agag Gledal Lula¥l dagyill a2l Cylaian je Lialds ol
Jonsgiall Al e luall gltilly iyl sy iy Ciksa 8l il Lol b 4
hadl e galieV) Laaldll dUnll e JSU Adabal bl bl 4l Y aledl agell oY)

iphi ) catial gabdl clalailiplbe yes Al sl ge cyhaaall sl Uil

1. Introduction
The stochastic differential equation is a rich field of applied sciences and mathematics
which has a wide class of real life applications, [1, 2, 3, 4]. The existence of a unique solution
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of stochastic differential equations has been presented in, [5, 6, 7]. Some stochastically
perturbed differential equations appear from stochastic differential equation perturbed by
some structural uncertainty or differential equations perturbed with deterministic random
noise [2, 8]. The existence of a unique solution to some classes of stochastically perturbed
differential equations can be found in [2].

The stability analysis for ordinary differential equations has been discussed in [9, 10, 11,
12]. The generalization of stability concepts of the ordinary systems into stochastic
differential equations including stability in probability, almost sure stability, and moment
stability have been interesting in many research works, [2, 13, 14, 15,16].

The Lyapunov function approach of the first and second types plays a consequential turn in
studying the stability of both deterministic as well as stochastic differential equations. The
stability of stochastic differential equations by using the Lyapunov function approach may be
found in [8,17]. In [10], the quadratic function approach for constructing sufficient condition
has been applied to ensure the mean square stability of linear stochastic differential equation
with application in a damped pendulum problem. While in [8] the mean square stability of the
null solution for a non-linear stochastically perturbed differential equation perturbed with
standard Brownian motion is established using some direct Lyapunov function.

In this paper, the generalization approach of [17] and [8] are adapted to ensure the mean
square exponential stability of a large class of semi-linear stochastically perturbed differential
equations with Brownian motion using the Lyapunov function approach. The sufficient
condition for the mean square exponential stability of the null solution is developed. A step
by step illustration is proposed with the necessary mathematical requirements.

2. Stochastic Differential Equation (SDE)

Let (2, F;, P) be a complete probability space with {F; }, t > 0 is a filtration which is a
family of all increasing sub-algebras of F with conditions (right continuous and increasing
while F, contains all (P-null sets) ) i.e, it satisfies the usual condition. Consider the classical
stochastic differential equation, [2]

dx(t) = f(x(©)dt + g(x(t))dB(¢t) (1)

where B(t) = (B,(t), B,(t),..., B;(t)) is a d-dimensional Brownian motion, such that
E(dB(t)) = E(B,(t) — B,(t)) = E(B,(t)) — E(B1(t)) = 0, where B,(t) > B, (¢), and

x € Cg([0,T],R™),T >0, f : R® > R™, f(x(t)) € L*([0,T]; R™) , g: R™ - R™¢
g(x@®) € L2([0, TT; R™%).
equation (1) can be rewritten as the following integral equation [2]

x(t) = xo + fotf(x(t))dt + fotg(x(t))dB(t), t€[0,T],T >0 (2)

where the first integral is the deterministic integral and the second integral is the
stochastic integral of It type with

E(f, g(x(t)) dB(t)) = 0 and E(J, g(x()) dB(t))? = E([, g*(x(t))dt), where the Ito
integration cannot be defined and calculated in the ordinary way [2],
with x, € CFtO([O, T],R™), where CFtO([O, T],R™) is the family of F, - measurable

valued random variable with E foTllxollzdt < 0. Let f and g be assumed such that the local
Lipchitz condition [18].
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For every x and y belong to R™ with ||x]|| v ||y|| < n for every n =1, where
x|l v |ly||] represent the maximum value between ||x|land ||y|| ,there exists a constant
(positive) 14, such that for every t belongs to the interval [0,T],

IF (x(®) = FGO* v lg(x(®) = g @) < Vallx = yII2 ©)
and the monotone condition, [19].
For every x € R™ and x belongs to the interval [0,T] , we have

x"f(x(®)) +%I|g(ﬂf(t))ll2 <a@+I[xlI*) , a>0 (4)

From (3) and (4), the system of the stochastic differential equations (1) or the integral
equation (2) has a unique global solution, [2].

Remarks (2.1)

1- The Lyapunov direct method for deterministic stability without solving the differential
equation is used to find a Lyapunov function V (x, t).

2- The function V(x,t)is called the Lyapunov function for the deterministic system if
V(x,t) is a positive definite and V(x,t) < 0 i.e (the zero solution is stable), and if V(x, t) is
positive definite decrescent function and V (x, t) is negative definite i.e (the zero solution is
asymptotically stable). where V(x,t) is said to be a positive definite if V(0,t) = 0 and
V(x,t) = p (llx|]) ,.where p € u, uisthe family of every nondecreasing continues function
and |[|x|| denotes the Euclidean vector norm, V(x,t) is decrescent if V(x,t) < p(|lx]|) ,and
V(x,t) is negative definite if =V (x, t) is positive definite, [2, 17].

3. The Mean Square Exponential Stability in the Sense of the Lyapunov Function

In the topic of stochastic differential equations, the stability concept of stochastic
differential equations can be generalized by using a Lyapunov function approach as follows:
Consider the stochastic differential equations (1) and V(x,t) is the Lyapunov function, by
using the chain rule of stochastic function (Ité formulation) with (dB(t))? = dt , which is

satisfied when B(t) is a Brownian motion with E(B(t)) = 0and dB(t) is linearly
dB(t)

increment, (it is also true that = E(t), where E(t) represents the white noise, for almost

every w the sample path t— B(t w) is differentiable for no time t > 0, thus —= dB(t) = E(t)

does not really exit. Settlng the dlfferentlal operator

L-—+ e 1ﬁ(x(t)) Yhoalg(x(®g” k(O] —— o , along the solution
then

LV(x,t) = Vi(x,t) + V. (x, t) f(x(t)) +% trace[gT(x(t))Vxx(x, t)g(x(t))]

if (x,t) <0,V >0, then we get the stochastic stability assertions for equation (1). The zero
solution of equation (1) is stochastically stable (stochastically asymptotically stable)
if LV(x,t) <0 where V(x,t) € sy, X [tg,©)and s, = {x € R™:||x|]| <m} (LV(x,t) is a
negative-definite with V(x,t) is a decrescent function), it is also called stochastically
asymptotically stable in the large if LV (x,t) is a negative-definite where V(x, t) decrescent
radially unbounded function, [2].

There are three types of stochastic stability, namely stability in probability, moment
stability, and Almost sure stability,[20].
In this work, we use the candidate a quadratic Lyapunov function to guarantee the moment
exponential stability of some perturbed stochastic process.
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The zero solution of equation (1) is called pt"*moment exponentially stable when there is a
positive pair (/,C) where J represents the exponential rate and C represents the constant
value, which is obtained from equation (1), such that

Ellx(®)|IP < Cllxo||P e/t Forevery x, € R™ ,t, =0 (5)

In this work, for stability purposes, it is enough to consider the initial condition
Xo € R™ (constant) instead of the random variable x, € CFtO([O, T],R™), [2].

Equation (5) means that the pt*moment of the zero solution tends to zero exponentially fast.
Letting p =2 in equation (5) then the zero solution is called exponentially stable in the mean
square,[2].

Problem Formulation (1)
Consider a stochastic differential equation of the form
dx(t) = [Ax + f(x(@®)] dt + g(x(©))dB() , t € [0,T], VT >0 (6)
With
1. (2, F, P) be a complete probability apace with the filtration {F.},t = o .
2. x0 € Cp, ([0,T],R™)
3. f:R" = R™
4. g:R™ - R™4,
5. A € R™™" is a constant matrix.
6. f, g satisfies the local Lipchitz condition (3).

(Ax +f (x(t))) is a drift part and g(x(t)) is a stochastic part that satisfies the stochastic

property where B is a Brownian motion such that B(0) = 0 andB(t) — B(s) is X(0,t — s)
which means that B has a normal distribution with mean equal to zero and variance equal to
(t —s)forall t = s > 0and dB(t) is independent increment Brownian motion ,[13].

~

The following lemma is proposed to ensure the existence of a monotone condition which is
standing for solvability requirement of problem formulation (1) as follows:

Lemma (3.1)
Consider the problem formulation (1) and let

dx(t) = [Ax + f(x(0))]dt + g(x(©)) dB(¢) .
If

- (x f(x())eo +§ (g(x(@®), g(x()))g < K[1 +|Ix[IP] , f(0) =0, g(0) =0
2- lAxll = Mllx|l , and || f (x(O)Il < Myllx]l and llg(x(@) Il < M, |Ix]l

where A € R™™ and x, € CFtO([O, T],R™). The constants M ,M;, and M, are upper
positive bounds for 4, f and g , respectively with V(x) = xTQx,Q = QT > 0, then
(x,Ax)q + (x,f(x(t)))Q +% (g(x(t)),g(x(t)))Q < a1+ ||x]|?] with
a=M+KandK = (M +5M2)\[Anax (QTQ)
Proof

Set a quadratic 1td function V(x) = x7Qx,Q = QT > 0, where ||Q|l = \/Anax(QTQ)

where A4, is the maximum eigenvalue for matrix (Q7Q) , with I1té6 formulation
dV(x) = LV(x)dt + Vi (x)g(x(t))dB(t) which is equivalent to
dV(x) = V(x + dx) — V(x), where x along the solution of (1)
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dV(x) = xTQx + xTQAxdt + xTQf (x () )dt + xTQg(x())dB(t) + (Ax)TQx dt +
(A)TQf (x())(dt)* + (Ax)"Qg(x(t))dt dB(¢t) + f(x(t)"Qx dt +
fFE(®)TQAx(dD)? + f(x()TQf (x(D)(dt)? + £ (x ()T Qg(x(t))dtdB(t) +
gx(®)TQxdB(t) + g(x())TQAx dtdB(t) + g(x(0))TQf (x())dt dB(¢t) +
gx(®)"Qg(x())(dB(t))* — x"Qx (7

Where dB(t) has a normal distribution with mean equal to zero with respect the
filtration F;.
So by taking the expectation to (7) with E(dB(t)) = 0 and using condition (2) with
multiplication Itd formulation (dB(t))? = dt, (dt)?> = dt X dB(t) = dB(t) xdt =0 we
have that

E(dV(x)) = 2(x, Ax)qdt + 2{x, f(x(£)))q + (g(x(®)), g(x(t)))q (8)

E(dV(x)) < 2(x, Ax)qdt + [(2M; [|x]1? + MZ|x]*)y/ Amax (QTQ)]dt
E(dV(x)) < 2(x, Ax)qdt + 2[(M; + 5 MP)\ Zmax (QTQ)]lIx]|2dt

E(dV(x)) < 2(x, Ax)odt + 2[K||x||?] dt ,where K = (M, + %M%)./Amax(QTQ)
E(dV(x)) < 2(x, Ax)odt + 2[K[1 + ||Ix||*] d¢ 9)
from (8) and (9) we obtained
(x, f(x()))q +§ (9(x(®), g(x()))o < K[1 + [Ix]1?]
From condition (1) and (2) of lemma (3.1) yields that
(x, f(x()))g + %(g(x(t)),g(x(t)))q < K[1 + [|x]1?] and {x, Ax)q < M||x||?
E[dV(x)] <2 (M [1+]|x[1*] + 2K[1 + [[x[I*]) dt
E[dV(x)] < 2(a[1+]||x||?]) dt,wherea =M + K ,So
(x,Ax)q + (x, f(x(0)))q + %(g(x(t)),g(x(t)))q < a [1+IxI%]
Then the monotone condition is satisfied.

Theorem (3.2)

Consider the problem formulation (I) with

dx(t) = [Ax + f(x(©))]dt + g(x(t))dB(t) ,and f(0) =0, g(0) =0

That satisfying the following conditions

1- xo € Cp, ([0,T],R™)

2- L+ A4 #0,Vi#j,,€6)={1€e C: |[AI-A]=0}

3- V =xTQx,where Q= QT is the unique positive solution of

ATQ+ QA= —-p ,p>0 with A, (p) > 2M; + M2)\/2,,..(QTQ) , where
Amin(p) and A,,;,(Q) are the smallest eigenvalues of p and Q, respectively and A,,,.(p),

Amax(Q) are the largest eigenvalues of p and Q, respectively and Set the positive constant y
such that
— (Amin(p)‘F(_ZMl_MzZ)\/ Amax(QTQ)
Amin(Q)
where ||[f(x(O)]l; < My||x|| and ||g(x(1:))||2 < M, ||x||

and ”Q” = Amax(QTQ)

Then the zero solution of system (6) is exponentially stable in the mean square.
Proof

By Lemma (3.1) and since the system (6) satisfies the local Lipchitz condition (1) then it
is solvable and has a unique global solution.

)where M; and M, are positive upper bounds of f and g
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Set nominate Lyapunov function
V(x) = xTQx with Q = QT > 0, with V(0) = 0, then
dV(x) =V(x +dx) —V(x) , along the solution of (6)

dv(x) = (xT + ([Ax + F(x@®)PTdt + g(x(@)TdB())Q(x + [Ax + f(x(¢t)) +]dt
+g(x(®)dB(t)) — xTQx
condition (3) of Theorem (3.2) leads to
dv(X) <
—xTpx dt + 2||x|l1QII||f (x(®)]|at + 2lixlllQll||g(x(®))||dB () +
lgCx@)[Qll]|g(x(®)]|at
Since Anin @x]1? < xTpx < Anax(@)1x]1? , we have that
av(x) < _Amin(p)”xllz dt +2M+/ Ainax(QTQ) ||x||2dt + Mzz\/ Amax(QTQ) ||x||2dt +
2(x, g(x(t)))q dB(t)
v (x) < (—Amin(p)+m (2My+M3

lmin(Q)
Sety = (Amin(p)"’(_zfl._l\Zéz\/lmax(QTQ)
x € Cr([0,T],R™) aﬁlg by taking the expectation operator to (10) with Brownian motion
property and since E(dB(t)) = 0 one gets the following differential inequality
E(dV(x)) < —y E(V(x))dt
By integration with E(dV (x)) = E(V (x + dx) — E(V(x))) = d(E(V (x)), we obtain that
EV(x()) < E(V(x(0)) e~ ¥t | if x, is constant (for stability purpose) ,then

EV(x(®)) < V(x(0))e™"" < Amax(Q)llxolle™
So the zero solution of system (6) is exponentially stable in the mean square.

Ly y(yde + 2(x, g(x(£)))q dB(t) (10)

) , since we are in the setting space

The following Lemma shows that the nominal part of the stochastic differential equation
(6) (without perturbation) is exponentially stable (in the ordinary sense) about zero under
suitable conditions. This result is needed later on studying the exponential stability of the
stochastic differential systems.

Lemma (3.3)
Consider =2 = [Ax + f(x(1))] (11)
where the system is solvable [9], f: R™ — R™, f(0) = 0 ,with
1- A+ #0,Viz+j, li €A ={1€eC:[AI-A=0}
2- V = xTQx , where Q is the unique positive solution of ATQ+ QA= —p ,p >0,

St Amin(P) > 2M14/ A14,QTQ and set the positive constant

. — T
y = ‘min®) ;M.“(g’)”“"w D \vhere M, is positive upper bound of £ such that [|f(x(t))]| <
M ||x]|

Then the zero solution of system (11) is exponentially stable about zero.

Proof

Set (x) = xTQx with Q =QT >0,V(0) =0

V(x) = xT[AQ + AT Q]x + 2(x, f (x(t))), , From condition (2), one gets
V(x) < —xTpx dt + ||f(x@®)][| IQIIIxIl dt + llxllIQI||f (x(®)]| at
V() € =Amin@)Ixl12dt + 2M; [|x]12y Aax (QTQ) dt
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< (_Amin (p)+2Mq4/ Amax(QTQ)

- Amin(Q)
AV(x) < —yVx)dt, y = Amin(@)
D < —yde, by integration V(x(£)) < V(x(0)) e < Amax(Q)llxolI%e

vix) —
Then the zero solution of system (11) is exponentially stable about zero.

) xTQx dt
Anin(®)=2M1y Amax(QT Q)

Theorem (3.4)
Consider the perturbed stochastic differential equation

dx(D)=[Ax + f(x(6)) + F(x(®))]dt + g(x())dB(t) (12)
which satisfies the following conditions
1- Ai+A #0,Vi#j, i €(A)={1€C:|AI-A|=0}
2- V = xTQx , where Q is the unique positive solution of ATQ + QA= —p ,p >0,

St Apin(P) > 2K + 2M;+/ Anax QT Q , set the positive constant

Amin (@) Jmax@T o : .
= 2min(®) (2/’1(”"(4(21) max? @ \where K is positive constant and M, is the positive upper
min

bound of F such that ||F(x(t))|| < M,|x]|
3- (x, f(x()))q +§ (g(x(®), g(x(©)))g < K[1 + ||x|?]

Then the zero solution of system (12) is exponentially stable in the mean square.
Proof:
dV(x) = V(x + dx) — V(x), where x along the solution

= (xT + ([Ax + f(x@®) + F(x@)PTdt + gx()T)Q(x[Ax + f(x(®)) +
F(x(0)]dt + g(x(©))dB(t)) — xTQx

dV(x) <
xT[ATQ + QA]x dt + 2(x, f (x(t)))odt + (g(x(£)), g(x(D)))odt +
2|l IQI|F (x(®)[|dt + 2¢x, g(x()))odB(t)

by conditions (2) and (3) and some multiplication which is discussed earlier, one gets the
following:

dV(x) < —y(V(x))dt + 2Kdt + 2(x, g(x(1)))odB(t),y = (
By taking the expectation with E(dB(t)) = 0, this yields
E(dV(x)) < —yE(V(x)) dt +2Kdt which is equivalent to
E(V(x(®) < E(V(x(0)) + 2K)e " + =

EWV(x(t) < (V(x(0)) + 2K)e 7+ % , Where % is the rate of convergence

So the zero solution of the stochastic perturbed differential equation is exponentially
stable in the mean square.

Anin(0)—2K—2M1+y/ Ainax(QT Q) >

/‘lmin (Q)

Remark (3.5)

From Lemma (3.3) and Theorem (3.4), one can conclude that if the nominal deterministic
system d’;—(tt) = [Ax + f(x(t))] is exponential stable about zero, and F(0) = 0, ||F(x(t)|| <
Myllx|l and gdB(t) satisfy the Brownian motion probability with (dB(t)) =0 , then the
system (12) remains exponential stable for small variation dt and random noise.

Example (3.6)
Consider the system

dx(t)= [Ax + f(x(t)) + F(x(t))]dt + g(x(t))dB(t) (13)
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Where f, F, g and x(0) are given in Table.1

Table 1: Summary of drift £, perturbation F, stochastic part g and the initial condition
f

f1=x1sinx, F, = B1xq sinx; g1 = X sinx; x,(0) =2

f2 =x;,cosx, F, = B,x, cos x, g> = X, COS X, x,(0) =3

witha=["¢ )]
Suchthat, A = R¥? ,6(A) = {Anin(A), Amax (D)} ={-8,-4} & 4, + 1 #0,i=j=12

IF ()l = /(Byxy sinxy)? + (Byx, sinx,)? |, Since cos?6 < 1 and sin?0 < 1

IF eIl < (Bixi + BEx3)z < 2 max(By, B2) llx|l
Where M; = 2 max(f;,82) and B, B2 is constant , yields ||F (x(¢)|| < M ||x]|.
For example B; = 0.2 and 8, = 0.1,S0 M; = 0.2 then ||F (x(t))|| < 0.2 ||x||
Now

-4 O _ P11 P12
A—[O —8] and p = ]

—_ T . . . . .
P12 D22l P p' > 0is a symmetric positive definite matrix

Q= [ZE Chz] with Amm(Q) + Amax(Q) # 0

Since ATQ + QA = —P and Let p;, = p,; = 0, we obtain tgat
-4  07[911 Y12 —4 071911 C112 P11
[ 0 —8” ] [ —8” [ pzz] . Therefore,

qdi2 422 qd12 QZz
q11 =—= and q;; = q1; = 0and p,, = Py, = 1)1_262
Where pll = pzz = 16 SO = [O 16] , It S Clear pllpZZ > p12 and Amm(p) = 16 )
Amax(p) = 16.

011 =2,q2=1,q;,=0 and Q = [(2) (1)] is positive definite symmetric matrix with

Amin(Q) = 1, 410, (Q) = 2 with ||Q|| = vV Amax(QQT) = 2.

from the monotone condition

(x, f(x(©)))g + l(g(x(t)),g(x(t)))Q < K[1 + [|x]|*], we have
207 (1) (heoors) * Casinnr macose) (5 1) (FLoonns)
< 2(2x%sinx; + x2cosxy) + (2xZsin’x; + x2cos?x,)

since < 1 and cos8 < 1, sin*6 < 1 and con?6 < 1, we obtain that
2(2x7+ x5) + (2xf+ x5) < 2(3lIx]1?) + 3lIx[1? < 9llx]I* < 9(1 + [|x]1?)
So 2K =9, with V(x(0)) = lIx(0)I3 = 17

Amin (@) —2K=2M1+ Amax(QTQ) _ 16—9-2%0.2x2
= =62 >0
Amin(Q) 1

E(V(x(t)) <26 e%2t + 1.5 so the zero solution of the system (13) is exponentially stable
in the mean square.

then y =

4. Conclusions

A class of stochastic perturbed differential systems with Brownian motion uncertainty has
been considered. The necessary mathematical result for the existence, uniqueness and
stability in some sense have been discussed. The mean square exponential stability of
stochastically perturbed (unperturbed) differential equation is developed under suitable
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conditions on the linear nominal parts (deterministic part) of a system with illustrated
example.
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