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Abstract  
     The problem of reconstruction of a timewise dependent coefficient and free 

boundary at once in a nonlocal diffusion equation under Stefan and heat Flux as 

nonlocal overdetermination conditions have been considered. A Crank–Nicolson 

finite difference method (FDM) combined with the trapezoidal rule quadrature is 

used for the direct problem. While the inverse problem is reformulated as a 

nonlinear regularized least-square optimization problem with simple bound and 

solved efficiently by MATLAB subroutine lsqnonlin from the optimization toolbox. 

Since the problem under investigation is generally ill-posed, a small error in the 

input data leads to a huge error in the output, then Tikhonov’s regularization 

technique is applied to obtain regularized stable results. 

 

Keywords: Inverse problem; Free boundary; Nonlocal diffusion equation; Stefan 
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معامل يعتمد على الزمن مع حدود حرة معتمدة في معادلة الانتشار الغير محلية مع شرط إعادة بناء 
 ستيفان و شرط تدفق الحرارة الاضافي

 
 2،محمد صباح حسين،  *1جيهان عدنان قحطان

 1العراق بغداد، الرصافة الثانية، في بغداد، التربية العامة ،وزارة التربية والتعليم
 ، كلية العلوم، جامعة بغداد، بغداد، العراققسم علوم الرياضيات2

 
 :الخلاصة

تم النظر في مشكلة إعادة بناء معامل يعتمد على الزمن مع حدود حرة  بنفس الوقت في معادلة الانتشار       
وشرط تدفق الحرارة كشروط غير محلية. تم استخدام طريقة للفروقات  Stefan المحلية تحت شرط غير

 trapezoidal rule quadrature  جنبًا إلى جنب مع  Nicolson-Crank مع مخطط (FDM) المنتهية
لحل المشكلة المباشرة. بينما ، تم إعادة صياغة المشكلة العكسية كمسألة امثلية غير خطية من نوع اصغر 

لة بشكل عام نظرًا لأن المشكلة هي معت .MATLAB من lsqnonlin  التربيعات  وحلها بكفاءة بواسطة روتين
 ، فان اي  خطأ صغير في بيانات الإدخال يؤدي إلى خطأ كبير في الإخراج ، لذلك تم تطبيق تقنية تنظيم

Tikhonov للحصول على نتائج مستقرة ومنتظمة. 
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1. Introduction 

     The inverse problems in a free domain (so called Stefan problems) arise in a variety of 

physical applications involving diffusion, heat transfer (thawing or freezing), and deformable 

porous medium problems where solid displacement is driven by diffusion. The history of 

Stefan's problems and their traditional solutions are thoroughly described in the monographs 

by [1, 2, 3]. The goal of the inverse Stefan problem is to either infer unknown thermo physical 

parameters or to establish an initial condition or a boundary condition using additional data, 

such as measurements of the temperature distribution at certain time instants or the location of 

the moving boundary interface. Since these inverse Stefan-type problems are typically ill-

posed, regularization techniques are required to produce reliable numerical solutions. By”ill-

posed”, we mean that the solution does not rely on the input data continuously. Numerous 

direct and inverse Stefan problems have been solved using various numerical techniques. Adil 

and Hussein in [4] discussed the numerical solution for the Stefan’s two-sided free boundary 

problem by using (FDM), while Kumar, Singh, et. al, [5] had applied the shifted Chebyshev 

tau method was used to solve Stefan’s problem one-sided. 

 

     The numerical solution of the inverse problem was discussed by several authors just to 

mention only a few; in [6, 7, 8] they used optimization methods (Gauss-Newton, simulated 

annealing, genetic algorithms, Krylov Subspace and Quasi-Newton) to find solutions to 

nonlinear inverse problems. A relaxation factor optimization technique based on Newton 

Raphson’s method to find solutions to one- and the two-dimensional transient nonlinear 

inverse was studied by John Crank [9]. Whilst, regularized Levenberg–Marquardt method was 

used in [10, 11, 12]. Also, in [13, 14] they investigated the application of Haar wavelet 

method to solve some inverse problems and LingDe, and Vasil’ev in [15] studied a new 

conjugate gradient method for two-dimensional space-dependent heat source problem. 

 

    One of the most widely used methods for solving nonlinear inverse problems is the least-

squares minimization method, and it has been used by many authors. In [16, 17, 18] it was 

used to solve the time dependent parabolic heat inverse problem in one- and two-dimensions 

and the same method used to solve the nonlinear one-dimensional diffusion problem involves 

the partial differential equation under various boundary conditions and overdetermination 

conditions in [19, 20, 21, 22] to find the thermal conductivity 𝑎(𝜏) and in [23, 24] to find 

perfusion coefficient 𝑏(𝜏) in addition to 𝑎(𝜏). 
 

    The inverse problem under investigation in this work has already been shown to be 

uniquely solvable by M.I. Ivanchov [25], although, no numerical attempt for identification has 

been made so far; as a result, the main aim of this work is to the numerical realization of such 

problem. The novelty of the current study is the creation of FDM scheme combined with an 

optimization method for solving this nonlinear inverse problem to the nonlocal diffusion 

equation in a free boundary domain. 

The following is the paper’s structure: Section 2 is devoted to the mathematical formalism of 

the inverse problem. In section 3, the finite difference scheme is given to obtain the numerical 

solution for the direct problem with the numerical test example was provided. Whilst, in 

section 4, the numerical approach for solving inverse problems is given which is based on  

Tikhonov’s technique to find a regularized solution. In section 5, numerical results are 

displayed and discussed. In the final section, the conclusions of this paper are given. 

 

2. Mathematical description 

Consider the one-dimensional nonlocal diffusion equation in one-side free boundary domain: 
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𝑢𝜏(𝑥, 𝜏) = 𝑎 (∫ 𝑢(𝑥, 𝜏)𝑑𝑥

𝑘(𝜏)

0

)𝑢𝑥𝑥(𝑥, 𝜏) + 𝑓(𝑥, 𝜏),     (𝑥, 𝜏) ∈ Ω𝑇 ,                    (1) 

under the initial condition 

𝑢(𝑥, 0) = 𝜑(𝑥),        𝑥 ∈ [0, 𝑘(0)],                                                               (2) 
and the non-homogenous Dirichlet  boundary conditions   

𝑢(0, 𝜏) = 𝜉1(𝜏),      𝑢(𝑘(𝜏), 𝜏) = 𝜉2(𝜏),      𝜏 ∈ [0, 𝑇],                             (3) 
 and the additional  extra information (an integral and heat flux) condition,  

𝑎 (∫ 𝑢(𝑥, 𝜏)𝑑𝑥

𝑘(𝜏)

0

)𝑢𝑥(0, 𝜏) = 𝜉3(𝜏),          𝜏 ∈ [0, 𝑇],                             (4) 

and the Stefan condition   

𝑘′(𝜏) = −𝑢𝑥(𝑘(𝜏), 𝜏) + 𝜉4(𝜏),                     𝜏 ∈ [0, 𝑇],                           (5) 
 

where  Ω𝑇 =  {(𝑥, 𝜏): 0 < 𝑥 < 𝑘(𝜏), 0 < 𝜏 < 𝑇}, 𝑘 = 𝑘(𝜏), is a free boundary and 𝑠 =

∫ 𝑢(𝑥, 𝜏)𝑑𝑥,
𝑘(𝜏)

0
 𝑎(𝑠) > 0, is the thermal conductivity  which should be determined. Also, 

𝑘(0) = 𝑘0 > 0 is given . 
 

Using Landau transformation 𝑦 =
𝑥

𝑘(𝜏)
 the above equations will transform into the following 

equations 

𝑣𝜏 =
1

𝑘2(𝜏)
𝑎 (𝑘(𝜏)∫ 𝑣(𝑦, 𝜏)𝑑𝑦

1

0

)𝑣𝑦𝑦 +
𝑦𝑘′(𝜏)

𝑘(𝜏)
𝑣𝑦 + 𝑓(𝑦𝑘(𝜏), 𝜏),   (𝑦, 𝜏) ∈ 𝑄𝑇 ,        (6) 

𝑣(𝑦, 0) = 𝜑(𝑦𝑘),                                   𝑦 ∈ [0, 1],                                         (7) 

𝑣(0, 𝜏) = 𝜉1(𝜏), 𝑣(1, 𝜏) = 𝜉2(𝜏),       𝜏 ∈ [0, 𝑇],  ,                                 (8) 
and the  nonlocal overdetermination conditions are: 

𝑎 (𝑘(𝜏)∫ 𝑣(𝑦, 𝜏)𝑑𝑦
1

0

)𝑣𝑦(0, 𝜏) = 𝑘(𝜏)𝜉3(𝜏),     𝜏 ∈ [0, 𝑇],                                    (9) 

𝑘′(𝜏) = −
𝑣𝑦(1, 𝜏)

𝑘(𝜏)
+ 𝜉4(𝜏),     𝑘(0) = 𝑘0,            𝜏 ∈ [0, 𝑇].                                (10) 

 

      Where the transformed temperature is 𝑣(𝑦, 𝜏):= 𝑢(𝑦𝑘(𝜏), 𝜏), 𝑠 = 𝑘(𝜏) ∫ 𝑣(𝑦, 𝜏)𝑑𝑦
1

0
 and 

the fixed domain  𝑄𝑇 = {(𝑦, 𝜏): 0 < 𝑦 < 1,  0 < 𝜏 < 𝑇}. 
In equations (1)-(5) or (6)-(10), the functions 𝑓(𝑦𝑘(𝜏), 𝜏), 𝜑(𝑦𝑘0),  𝜉𝑖(𝜏), 𝑖 = 1,2,3,4 are 

given, while  𝑎(𝑠) > 0, 𝑘(𝜏) > 0 and the temperature 𝑢(𝑥, 𝜏 ) are unspecified. 

 

      If the coefficient 𝑎(𝑠) and the free boundary k are known then we have the direct problem 

(1)-(3) or (6)-(8) which can represent a crucial mathematical model. For instance, where u is 

the temperature the measurements are done using a local average rather than a point estimate. 

Another application for the undergoing model is if u represents population density. In this 

case of a population migration, such as that of bacteria in a container, it is obvious that  𝑎 =

𝑎 (∫ 𝑢(𝑥, 𝜏)𝑑𝑥
Ω ̅

) i.e., the migration velocity is determined by the total population in a 

subdomain. Also, if one wants to represent animals that have a proclivity to flee (attracted) 

crowded zones, a sensible assumption would be that an is growing (decreasing) function of its 

argument respectively, [26,27]. The existence and uniqueness of theorems for the solution of 

the inverse problem have been established by [25], and stated as follows; 
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Theorem 1 (Existence of the inverse problem solution)  

     Let the following conditions hold: 

E1) 𝑓 ∈ 𝐶1,0([0,∞) × [0, 𝑇]), φ ∈ 𝐶1[0, 𝑘0], 𝜉𝑖 ∈ 𝐶1[0, 𝑇], 𝑖 = 1,2, 𝜉𝑗 ∈ 𝐶[0, 𝑇], 𝑗 = 3,4.  

E2) 𝑓(𝑥, 𝜏) ≥ 0 𝑓𝑜𝑟  (𝑥, 𝜏) ∈  ([0,∞) × [0, 𝑇]), φ′(𝑥) > 0, 𝑓𝑜𝑟 𝑥 ∈ [0, 𝑘0], 𝜉2(𝜏) < 0, 
𝜉3(𝜏) > 0, 𝜉2(𝜏)𝜉4(𝜏) − 𝜉3(𝜏) > 0, 𝑓𝑜𝑟   𝜏 ∈ (0, 𝑇]; 

E3) (Compatibility conditions), φ(0) = 𝜉1(0), φ(𝑘0) = 𝜉2(0).  
Then there exists a number 𝑇0 ∈ [0, 𝑇] such that the triplet (𝑘, 𝑎, 𝑣) ∈ 𝐶1[0, 𝑇0] × 𝐶[0, 𝑆] ×

𝐶2,1( 𝑄𝑇0
) ∩ 𝐶1,0(�̅�𝑇0

), satisfied the equations (6)-(10) exist and 𝑎(𝑠) > 0, 𝑘(𝜏) > 0, where 

𝜏 ∈ [0, 𝑇0], 𝑠 ∈ [0, 𝑆] and S, 𝑇0 determined by input data.  

 

Theorem 2 (Uniqueness of the inverse problem solution)  

Suppose 

𝑓 ∈ 𝐶1,0([0,∞) × [0, 𝑇]), φ ∈ 𝐶2[0, 𝑘0] 𝑎𝑛𝑑 𝜉3 ≠ 0, 𝑓𝑜𝑟 𝜏 ∈ (0, 𝑇], 
then the equations (6)-(10) have a unique solution. 

 

3. FDM scheme for direct (forward) problem  

In this section, we are going to solve the direct problem, i.e. when unknown 𝑘(𝜏) and  𝑎(𝑠) 
are assumed to be given. In order to solve this problem, FDM is used for finding the solutions 

of the nonlocal problem given by equations (6)-(10). We divide the domain  𝑄𝑇  into  M × N 

mesh with a spatial step size of ∆y =
1

M
, and the time step size of   ∆𝜏 =

T

𝑁
 , where M and N 

are given positive integers. The grid points are given by 

𝑦𝑖 = 𝑖∆𝑦,         𝑖 = 0,𝑀̅̅ ̅̅ ̅̅ ,    
  𝜏𝑗 =  𝑗∆𝜏 , 𝑗 =  0, 𝑁̅̅ ̅̅ ̅,   

we denote the discretized form of the quantities as follows;  𝑣(𝑦𝑖, 𝜏𝑗): = 𝑣𝑖,𝑗, 

𝑎 (𝑘(𝜏𝑗)∫ 𝑣(𝑦𝑖, 𝜏𝑗)𝑑𝑦
1

0

) ≔ 𝑎(𝑠𝑗),  

  𝑓(𝑦𝑖, 𝜏𝑗): = 𝑓𝑖,𝑗  and 𝜑(𝑥𝑖): = 𝜑𝑖 for  𝑖 = 0,𝑀̅̅ ̅̅ ̅̅ , and 𝑗 =  0, 𝑁̅̅ ̅̅ ̅. Then, by developing the Crank– 

 

      Nicolson FDM and using the trapezoidal rule quadrature for approximation of the 

integration part, the discretizes nonlocal diffusion equation (6) which can be obtained as; 
𝑣𝑖,𝑗+1 − 𝑣𝑖,𝑗

∆𝜏
=

1

2
(𝐺𝑖,𝑗 + 𝐺𝑖,𝑗+1),         𝑖 = 0,𝑀̅̅ ̅̅ ̅̅ , 𝑗 =  0, 𝑁̅̅ ̅̅ ̅,                  (11) 

where, 

𝐺𝑖,𝑗 =
𝑎(𝐼𝑗)

(𝑘𝑗)
2 (

𝑣𝑖+1,𝑗 − 2𝑣𝑖,𝑗 + 𝑣𝑖−1,𝑗

(∆𝑦)2
) +

𝑦𝑖𝑘
′
𝑗

𝑘𝑗
[
𝑣𝑖+1,𝑗 − 𝑣𝑖−1,𝑗

2∆𝑦
] + 𝑓𝑖,𝑗,

𝑖 = 1,𝑀 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑗 = 0,𝑁 .̅̅ ̅̅ ̅̅ ̅  
We simplify the equation (11), so we get 

− [𝑎(𝐼𝑗+1)
∆𝜏

2(∆𝑦𝑘𝑗+1)
2 −

𝑦𝑖∆𝜏𝑘𝑗+1
′

4∆𝑦𝑘𝑗+1
] 𝑣𝑖−1,𝑗+1 + [1 + 2𝑎(𝐼𝑗+1)

∆𝜏

2(∆𝑦𝑘𝑗+1)
2] 𝑣𝑖,𝑗+1 

−[𝑎(𝐼𝑗+1)
∆𝜏

2(∆𝑦𝑘𝑗+1)
2 +

𝑦𝑖∆𝜏𝑘𝑗+1
′

4∆𝑦𝑘𝑗+1
] 𝑣𝑖+1,𝑗+1 = [𝑎(𝐼𝑗)

∆𝜏

2(∆𝑦𝑘𝑗)
2 −

𝑦𝑖∆𝜏𝑘𝑗
′

4∆𝑦𝑘𝑗
] 𝑣𝑖−1,𝑗 

[1 − 2𝑎(𝐼𝑗)
∆𝜏

2(∆𝑦𝑘𝑗)
2] 𝑣𝑖,𝑗 + [𝑎(𝐼𝑗  )

∆𝜏

2(∆𝑦𝑘𝑗)
2 +

𝑦𝑖∆𝜏𝑘𝑗
′

4∆𝑦𝑘𝑗
] 𝑣𝑖+1,𝑗 +

∆𝜏

2
(𝑓𝑖,𝑗 + 𝑓𝑖,𝑗+1) ,  

suppose that,  
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𝐴𝑖,𝑗 = 𝑎(𝐼𝑗)
∆𝜏

2(∆𝑦𝑘𝑗)
2 −

𝑦𝑖∆𝜏𝑘𝑗
′

4∆𝑦𝑘𝑗
, 

𝐵𝑗 = 𝑎(𝐼𝑗)
∆𝜏

2(∆𝑦𝑘𝑗)
2,                

𝐶𝑖,𝑗 = 𝑎(𝐼𝑗)
∆𝜏

2(∆𝑦𝑘𝑗)
2 +

𝑦𝑖∆𝜏𝑘𝑗
′

4∆𝑦𝑘𝑗
, 

and,  

𝐼𝑗 =
𝑘𝑗

2𝑁
 (𝑣0,𝑗 + 𝑣𝑀,𝑗 + 2 ∑ 𝑣𝑖,𝑗

𝑀−1

𝑖=1

). 

Then  equation (6) can be written in difference equation form as follows 

      −𝐴𝑖,𝑗+1𝑣𝑖−1,𝑗+1 + [1 + 2𝐵𝑗+1]𝑣𝑖,𝑗+1 − 𝐶𝑖,𝑗+1𝑣𝑖+1,𝑗+1  

= 𝐴𝑖,𝑗𝑣𝑖−1,𝑗 + [1 − 2𝐵𝑗]𝑣𝑖,𝑗 + 𝐶𝑖,𝑗𝑣𝑖+1,𝑗 +
∆𝜏

2
(𝑓𝑖,𝑗 + 𝑓𝑖,𝑗+1).    (12) 

The FDM discretizes equations (7)-(10) as,  

𝑣(𝑦𝑖, 0) = 𝑣𝑖,0 = 𝜑(𝑦𝑖𝑘0),       𝑖 = 0,𝑀̅̅ ̅̅ ̅̅                                                         (13) 

𝑣(0, 𝜏𝑗) = 𝑣0,𝑗 = 𝜉1(𝜏𝑗), 𝑣(1, 𝜏𝑗) = 𝑣𝑀,𝑗 = 𝜉2(𝜏𝑗)   , 𝑗 = 0,𝑁 ̅̅ ̅̅ ̅̅           (14) 

the discrete form of overdetermination conditions are given  by;  

𝜉3(𝜏𝑗) =
𝑎(𝐼𝑗)(4𝑣1,𝑗 − 𝑣2,𝑗 − 3𝑣0,𝑗)

2∆𝑦𝑘𝑗
 ,                    𝑗 = 0,𝑁 ̅̅ ̅̅ ̅̅ ,            (15) 

𝜉4(𝜏𝑗) = 𝑘𝑗
′ +

(4𝑣𝑀−1,𝑗 − 𝑣𝑀−2,𝑗 − 3𝑣𝑀,𝑗)

2∆𝑦 𝑘𝑗
,            𝑗 = 0,𝑁,̅̅ ̅̅ ̅̅           (16) 

for each time step  𝜏𝑗, equations (12), (13) and (14) can be written in matrix form as 

 𝐿(𝑀−1)×(𝑀−1)𝑉𝑗+1 = 𝑃, where  

L=

[
 
 
 
 
 
 
 
   1 + 2𝐵𝑗+1         − 𝐶1,𝑗+1               0                  0              ⋯                                                            0

−𝐴2,𝑗+1               1 + 2𝐵𝑗+1          − 𝐶2,𝑗+1        0                0         ⋯                                               0

       0                 − 𝐴3,𝑗+1           1 + 2𝐵𝑗+1    − 𝐶3,𝑗+1        0           0  ⋯                                        0
      

       ⋮                        ⋮                     ⋱                          ⋱                                                                             ⋮     
                                                                                                                                                                  0   
      0                       0         …                                       0     − 𝐴𝑀−2,𝑗+1        1 + 2𝐵𝑗+1      −𝐶𝑀−2,𝑗+1

      0                       0        …                                                                 0     − 𝐴𝑀−1,𝑗+1       1 + 2𝐵𝑗+1  
 

]
 
 
 
 
 
 
 

, 

𝑉𝑗+1 = [𝑣1,𝑗+1, 𝑣2,𝑗+1, … , 𝑣𝑀−2,𝑗+1, 𝑣𝑀−1,𝑗+1]
𝑇

, 

𝑃

=

[
 
 
 
 
 
 
 
 𝐴1,𝑗+1𝜉1(𝜏𝑗+1) + 𝐴1,𝑗𝜉1(𝜏𝑗) + [1 − 2𝐵𝑗]𝑣1,𝑗 + 𝐶1,𝑗𝑣2,𝑗 +

∆𝜏

2
(𝑓1,𝑗 + 𝑓1,𝑗+1)  

𝐴2,𝑗𝑣1,𝑗 + [1 − 2𝐵𝑗]𝑣2,𝑗 + 𝐶2,𝑗𝑣3,𝑗 +
∆𝜏

2
(𝑓2,𝑗 + 𝑓2,𝑗+1)  

⋮

𝐴𝑀−2,𝑗𝑣𝑀−3,𝑗 + [1 − 2𝐵𝑗]𝑣𝑀−2,𝑗 + 𝐶𝑀−2,𝑗𝑣𝑀−1,𝑗 +
∆𝜏

2
(𝑓𝑀−2,𝑗 + 𝑓𝑀−2,𝑗+1)

𝐶𝑀−1,𝑗+1𝜉2(𝜏𝑗) + 𝐴𝑀−1,𝑗𝑣𝑀−2,𝑗 + [1 − 2𝐵𝑗]𝑣𝑀−1,𝑗 + 𝐶𝑀−1,𝑗𝜉2(𝜏𝑗) +
∆𝜏

2
(𝑓𝑀−1,𝑗 + 𝑓𝑀−1,𝑗+1)]

 
 
 
 
 
 
 
 

 

  

      In order to test the accuracy and stability of the direct problem, let us consider the case 

where the parameters 𝑎(𝑠), 𝑘(𝜏), 𝜑(𝑥) 𝑎𝑛𝑑 𝑓(𝑦, 𝜏) are given. So we have a problem (1)-(3) 

and the input data are taken as follows: 
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Assume  𝑙 = 𝑇 = 1, for simplicity;  

 𝑘(𝜏) = 1 + 𝜏, 𝜏 ∈ [0,1], 
 𝑎(𝑠) = 𝑠 = 1 + 𝑒𝜏(1 + 𝜏) − 𝑐𝑜𝑠(1 + 𝜏) ,   𝜏 ∈ [0,1],  
𝜑(𝑥) = 1 + sin(𝑥) , 𝑥 ∈ [0,1 + 𝜏]  
 𝑓(𝑥, 𝜏) = 𝑒𝜏 + (1 + 𝑒𝜏(1 + 𝜏) − 𝑐𝑜𝑠(1 + 𝜏)) 𝑠𝑖𝑛(𝑥) ,   𝑥 ∈ [0,1 + 𝜏],  𝜏 ∈ [0,1],   

and the true solution is 

                      𝑢(𝑥, 𝜏) = 𝑒𝜏 + 𝑠𝑖𝑛(𝑥),                                                        (17) 
using Landau transformation 

𝑦 =
𝑥

𝑘(𝜏)
=

𝑥

1 + 𝜏
 

the transformed quantities will be as follows; 

        𝑣(𝑦, 𝜏) = 𝑒𝜏 + 𝑠𝑖𝑛((1 + 𝜏)𝑦),          (𝑦, 𝜏) ∈ 𝑄𝑇 ,                             (18) 

𝑓(𝑦, 𝜏) = 𝑒𝜏 + (1 + 𝑒𝜏(1 + 𝜏) − 𝑐𝑜𝑠(1 + 𝜏)) 𝑠𝑖𝑛((1 + 𝜏)𝑦),      (𝑦, 𝜏) ∈ 𝑄𝑇 . 
Therefore, the input data will be as follows; 

𝜑(𝑦) = 𝑣(𝑦, 0) = 1 + sin (𝑦),         𝑦 ∈ [0,1], 
𝜉1(𝜏) = 𝑣(0, 𝜏) = 𝑒𝜏,                  𝜏 ∈ [0,1], 

𝜉2(𝜏) = 𝑣(1, 𝜏) = 𝑒𝜏 + 𝑠𝑖𝑛(1 + 𝜏),    𝜏 ∈ [0,1].   
The desired outputs are 

                      𝜉3(𝜏) = 1 + 𝑒𝜏(1 + 𝜏) − 𝑐𝑜 𝑠(1 + 𝜏) ,      𝜏 ∈ [0,1],                     (19)  

                       𝜉4(𝜏) = 1 + 𝑐𝑜 𝑠(1 + 𝜏) ,               𝜏 ∈ [0,1],                                     (20) 
 

 
Figure 1: The graphs showing absolute errors for heat distribution for the direct problem (1)-

(3), when mesh sizes 𝑀 = 𝑁 ∈ {20, 40,80}. 
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Figure 2: The exact and numerical values for desired output (a) 𝜉3(𝜏 ), and (b) 𝜉4(𝜏 ), with 

various mesh sizes 𝑀 = 𝑁 ∈ {20, 40,80}. 
 

    Figure 1 presents the absolute error diagrams of interior domain points of heat distribution 

when sizes of mesh are taken as 𝑀 =  𝑁 ∈  {20, 40, 80}. Mesh independence has been 

attained, as well as numerical solution convergence toward exact ones and high agreement 

can be noticed. Figure 2, it is clear that as the number of discretization rises, the findings for 

𝜉3(𝜏 ) and 𝜉4(𝜏 ) become more accurate showing a clear convergence. 

 

4. Inverse Problem 

      For the nonlinear inverse problem (6)-(10), we aim to find numerical solutions 

for 𝑎(𝑠) and 𝑘(𝜏) simultaneously with transformed temperature distribution 𝑣(𝑦, 𝜏) satisfying 

the problem that is given by equations (6)-(10). At the initial time; i.e., at 𝜏 = 0, we can use 

the input data to obtain initial values for a and k which will be described in the next 

subsection. Through the iterative process of solving the inverse problem, these numbers will 

be considered constant starting guesses. In order to tackle this challenge; the inverse problem 

is viewed as a nonlinear minimization problem. In other words, we want to keep the gap 

between observed data and numerically computed values as small as possible. We use the 

Tikhonov regularization approach to gain a stable and possible. We use the Tikhonov 

(a) 

 

((b)
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regularization approach to gain a stable and smooth solution because the problem under 

consideration is ill-posed. Overdetermination conditions (9) and (10) can be imposed to create 

the Tikhonov regularization functional as follows: 

 

𝐹(𝑘, 𝑎) = ‖
𝑎 (𝑘(𝜏) ∫ 𝑣(𝑦, 𝜏)𝑑𝑦

1

0
)𝑣𝑦(0, 𝜏)

𝑘(𝜏)
− 𝜉3(𝜏)‖

2

+ ‖𝑘′(𝜏) +
𝑣𝑦(1, 𝜏)

𝑘( 𝜏)
− 𝜉4(𝜏)‖

2

 

+𝛽1‖𝑘(𝜏)‖2 + 𝛽2‖𝑎(𝜏)‖2,   (21) 
 

     where  𝛽𝑖 ≥ 0, 𝑖 = 1,2, are a regularization parameters and the norm is usually the 𝐿2[0, 𝑇]. 
The discretization of (21) is 

𝐹(𝑘, 𝑎) = ∑[
𝑎(𝑠𝑗)𝑣𝑦(0, 𝜏𝑗)

𝑘𝑗
− 𝜉3(𝜏𝑗)]

2𝑁

𝑗=0

+ ∑[𝑘′
𝑗 +

𝑣𝑦(1, 𝜏𝑗)

𝑘𝑗
− 𝜉4(𝜏𝑗)]

2𝑁

𝑗=0

+ 𝛽1 ∑𝑘𝑗
2

𝑁

𝑗=1

+ 𝛽2 ∑𝑎𝑗
2.

𝑁

𝑗=1

                                                                                                               (22) 

     

       The unregularized case, i.e., 𝛽1 = 𝛽2 = 0, produces the regular nonlinear least-squares 

functional, which is inherently unstable when dealing with noisy data. The MATLAB toolbox 

function lsqnonlin is used to minimize 𝐹 under the physically required constraints 𝑘 > 0, 𝑎 >
0 and does not need the user to provide the gradient of the objective functional (22), see [28] 

for more details. The subroutine lsqnonlin seeks to determine the minimum of a scalar 

function of many variables; this is known as  constrained nonlinear optimization. We take the 

parameters of the subroutine as follows: 

• The maximum number of iterations (MaxIter) = 104 × N.  

• Solution tolerance (SolTOL) and objective function tolerance (FunTOL) = 10−10.  

 The inverse problem (1)-(5) was solved subject to both exact and noisy measurements (4) and 

(5). The noisy data is numerically simulated by adding random errors to model the reality 

situation as follows: 

 

𝜉𝑖
𝜖𝑖(𝜏𝑗) = 𝜉𝑖(𝜏𝑗) + 𝜖𝑖,                    𝑖 = 1,2,         𝑗 = 0,𝑁 ̅̅ ̅̅ ̅̅                      (23) 

 

      where 𝜖𝑖,𝑖 = 1,2 are random  Gaussian normal distribution vectors with mean zero and 

standard deviations 𝜎1and 𝜎2 that are given by  

 

𝜎𝑖 =  𝑝 × max𝜏∈[0,𝑇]|𝜉𝑖(𝜏)| ;       𝑖 = 1,2,                                                    (24) 

 

     where 𝑝 is the percentage of noise. We use the MATLAB bulletin function normrnd to 

generate the random variables 𝜖𝑖 = (𝜖𝑖,𝑗) and 𝑖 = 1,2, 𝑗 = 0,𝑁 ̅̅ ̅̅ ̅̅  as follows: 

 

 𝜖𝑖  =  𝑛𝑜𝑟𝑚𝑟𝑛𝑑(0, 𝜎𝑖, 𝑁),      𝑖 = 1,2                                             (25) 

4.1 Initial guess  

      As mentioned above, during the iterative process of solving the inverse problem, we need 

an initial guess to start with. These values for 𝑎(0) and 𝑘(0) can be computed from input data 

as follows; 

       Consider the nonlinear inverse problem (1)-(5) with unknown coefficient 𝑎(𝑠), the 

nonlocal overdetermination   condition at 𝜏 = 0 we have : 
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𝑎 (∫ 𝑢(𝑥, 0)𝑑𝑥
𝑘0

0

)𝑢𝑥(0,0) = 𝑎 (∫ 𝜑(𝑥)𝑑𝑥
𝑘0

0

)𝜑′(0) = 𝜉3(0).             (26) 

Therefore, the initial guess   

𝑎(0) = 𝑎 (∫ 𝜑(𝑥)𝑑𝑥
𝑘0

0

) =
𝜉3(0)

𝜑′(0)
,                                                                 (27) 

 

𝑘(0) = 𝑘0,                                                                                        (28)  
 

provided that 𝜑′(0) did not vanish. 

 

5. Results and discussion 

       We examine and evaluate the numerical calculation results using the FDM in connection 

with the Tikhonov regularization approach, as described in the previous section. The root 

mean squares errors (rmse) were utilized  

𝑟𝑚𝑠𝑒(𝑘) = √
1

𝑁
∑(𝑘𝑖

𝑒𝑥𝑎𝑐𝑡 − 𝑘𝑖
𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙)

2
𝑁

𝑖=1

.                        (29) 

     They were calculated in order to estimate the accuracy of the identified coefficient and 

similar expression for a can be used. 

Now, consider the test example for the inverse problem (1)-(5) where the coefficients 𝑎(𝑠) 

and 𝑘(𝜏) are unknowns with the following input data and let 𝑇 =  1 for simplicity: 

 𝜉1(𝜏) = 𝑢(0, 𝜏) =
𝜏

6
− 1,     𝜉2(𝜏) = 𝑢(𝑘(𝜏), 𝜏) =

(2−
𝜏

6
)+𝜏

6
+ 𝑐𝑜𝑠 ((3 −

𝜏

6
) 𝜋), 

𝜉3(𝜏) = 𝑎(𝑠)𝑢𝑥(0, 𝜏) =
1

60
(
−11𝜏2

432
+

5𝜏

18
+

𝑠𝑖𝑛 (
𝜋𝜏
6 )

𝜋
+ 0.533333), 

𝜉4(𝜏) = 𝑘′(𝜏) + 𝑢𝑥(𝑘(𝜏), 𝜏) =
−1

6
+ 𝜋𝑠𝑖𝑛 ((

𝜏

6
− 3)𝜋) 

𝑓(𝑥, 𝜏) =
𝜋2

60
(
−11𝜏2

432
+

5𝜏

18
+

𝑠𝑖𝑛 (
𝜋𝜏
6 )

𝜋
+ 0.533333) 𝑐𝑜𝑠((1 + 𝑥)𝜋) +

1

6
, 

𝜑(𝑥) = 𝑢(𝑥, 0) =
𝑥

6
+ 𝑐𝑜𝑠((1 + 𝑥)𝜋) 

   

      Since 𝑎 is a positive coefficient, this leads to 𝜉3(𝜏) > 0, and  𝜉2(𝜏) < 0. Also, one can 

check that the compatibility conditions φ(0) = 𝜉1(0), φ(𝑘0) = 𝜉2(0) and φ′(𝑥) > 0  are 

satisfied too. If we select 𝑎(𝑠) =
𝑠+0.2

10
, 𝑠 ∈ [0, 𝑆],  

 

       where 𝑆 = 𝑚𝑎𝑥𝜏∈[0,𝑇] |𝑎 (𝑘(𝜏) ∫ 𝑣(𝑦, 𝜏)𝑑𝑦
1

0
)|,  then it will satisfy the condition 

𝜉2(𝜏)𝜉4(𝜏) − 𝜉3(𝜏) > 0, In addition,  𝜉3 is non-vanishing function over the time interval. 

Therefore, the inverse problem (1)-(5) with the above input data has a unique solution. The 

exact solution for the inverse problem can be concluded as 

 

𝑢(𝑥, 𝜏) =
𝑥 + 𝜏

6
+ cos((1 + 𝑥)𝜋),    (𝑥, 𝜏) ∈ 𝑄𝑇 ,                        (30) 

𝑘(𝜏) = (2 −
𝜏

6
) ,    𝜏 ∈ (0,1).                                                        (31) 
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      The initial guess was 𝑎0 = 0.0533 and 𝑘0 = 2 given by equations (27) and (28), 

respectively. 

The numerical investigation begins with the situation of no noise included, i.e., 𝑝 =  0 in 

(24). The inverse problem was executed with various FDM mesh values, namely, 𝑀 =  𝑁 ∈
 {10, 20, 40}, to study the convergence of the numerical solutions for a(s) and k(𝜏), and the 

numerical findings were compared with the precise ones using root mean squares errors from 

equation (29), presented in Table 1 and Figure 3. 

 

Table 1: The rmse(k) and rmse(a), without noise and regularization. 

N=M 10 20 40 

𝒓𝒎𝒔𝒆(𝒌) 0.0097 0.0026 0.0014 

𝒓𝒎𝒔𝒆(𝒂) 0.0064 0.0022 0.0012 

 

      When there was no regularization, i.e. 𝛽𝑖 =  0, 𝑖 = 1,2 in (22). As seen in Figure 3 and 

more clearly in Table 1, the numerical outputs converge to precise values as N = M increases. 

The errors are calculated using the 𝑟𝑚𝑠𝑒(𝑘) and  𝑟𝑚𝑠𝑒(𝑎) functions in equation (29). Also, 

as 𝑁 =  𝑀 rises, the number of iterations necessary to get the objective functional (22) below 

a very low value around 𝑂(10−13) also increases, as illustrated in Figure 3(c) and Table 1 

reveals that mesh independence obtained with high precision even with a coarse grid. As a 

result, we choose 𝑁 =  𝑀 =  20 as a suitably fine mesh in the rest of this section to ensure 

that additional refining has no substantial impact on the numerical findings’ accuracy. 

Furthermore, the minimal number of variables results in a suitable amount of iterations and 

computing time for the objective function (22) to reach the minimum value. 

 

     Next, we perturb the measured data with 𝑝 ∈  {1, 3,5,10}% noise as in equation (23). In 

the absence of regularization, the associated numerical results are presented in Figure 4(a)-(b). 

From this figure, it can be observed that the free boundary 𝑘(𝜏) did not affect by the inclusion 

of the noise. Whilst, the reconstructions of an unknown coefficient 𝑎(𝑠) becomes oscillatory 

and unstable as the noise level increases from 1% to 10%. This behavior is expected since the 

problem under investigation is ill-posed. Therefore, a sort of stabilization should be applied. 

Figure 4(c) shows the convergence of the unregularized objective function (22) which is 

plotted, versus the number of iterations, for various amounts of noise where the minimization 

achieved at each selection of noise at it takes about 20 iterations to reach minimum value 

around 𝑂(10−18). Table 2 illustrates the rmse values for reconstructed functions 𝑘(𝜏) and 

𝑎(𝑠) for various noise levels. From this table, it can be easily concluded that as the noise level 

increases the rmse values increases slightly. 

 

Table 2: The rmse(k) and rmse(a) for different level noise and without regularization. 
Noise level 𝒑 = 𝟏% 𝒑 = 𝟑% 𝒑 = 𝟓% 𝒑 = 𝟏𝟎% 

𝒓𝒎𝒔𝒆(𝒌) 0.0032 0.0044 0.0058 0.0094 

𝒓𝒎𝒔𝒆(𝒂) 0.0023 0.0027 0.0035 0.0056 
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Table 3: The rmse(k) and rmse(a) for the inverse problem when 𝑝 ∈  {5%, 10%} noise 

contaminated in the input data and various regularization parameter values selected. 

Noise levels 𝜷𝟏=𝜷𝟐 𝟏𝟎−𝟔 𝟏𝟎−𝟓 𝟏𝟎−𝟒 𝟏𝟎−𝟑 𝟏𝟎−𝟐 𝟏𝟎−𝟏 

 

5% 

𝑟𝑚𝑠𝑒(𝑘) 

𝑟𝑚𝑠𝑒(𝑎) 

0.0058 

0.0035 

0.0057 

0.0035 

0.0048 

0.0045 

0.0186 

0.0470 

0.0797 

0.0375 

0.0797 

0.0375 

 

10% 

𝑟𝑚𝑠𝑒(𝑘) 

𝑟𝑚𝑠𝑒(𝑎) 

0.0094 

0.0056 

0.0093 

0.0057 

0.0084 

0.0065 

0.0198 

0.0483 

0.0801 

0.0375 

0.0811 

0.0391 

      

        As mentioned before, to restore  stability some regularization should be applied. We 

applyTikhonov type regularization method by adding Tikhonov penalty term (𝛽1‖𝑘(𝜏)‖2 +
𝛽2‖𝑎(𝜏)‖2). The identified outputs are presented in Figure 6 (a)-(b). This figure and Figure 

5(a)-(b) exhibit that the unregularized case, for unknown 𝑘 is much more stable than  𝑎. Since 

this behavior is seen in [19, 24] due to the explicit appearance of a free boundary in (22). We 

apply equal values for β1 = β2 to the rest of our computations because the problem under 

investigation seems to be ill-posed solely in 𝑎. A variety of regularization parameters 𝛽1 =
𝛽2  ∈ {10−6 , 10−5, … , 10−1} is used to get a stable solution, for various noise level such as 

𝑝 ∈  {5, 10}%. Figure 6(c) displays the convergent minimization of (22), for 𝑝 =  5%, the 

decreasing process was terminated because the allowed accuracy 10−10 has been reached. 

The associated numerical reconstructions plotted in Figure 6(a)-(b) and very good retrievals 

have been obtain for 𝛽1 = 𝛽2  ∈  [10−5 , 10−4   ], and 𝑝 ∈ {5, 10}% noise. To justify the 

selections of regularization parameters, there are several methods such as the L-curve method 

by P. Hansen [29], Morozov’s discrepancy principle [30], trial and error as suggested in [31]. 

We adopted the last technique which is based on selecting small values for the regularization 

parameter and gradually increasing it until the instabilities start to disappear. 
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Figure 3: The functions(a) 𝑘(𝜏), (b) a(s) and (c) objective function (22), with noise 

free  and without regularization, 

(a) 

(c) 

(b) 
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Figure 5: The reconstructions of (a) 𝑘(𝜏), (b) a(s) and (c) The objective function (22), 

for different noise level  𝑝 ∈  {1, 3,5,10}% and no regularization. 

(c) 

(b) 

(a) 



 Qahtan
 
and Hussein                                 Iraqi Journal of Science, 2023, Vol. 64, No. 5, pp: 2449-2465 

 

2462 

 

 

 
Figure 6: (a) 𝑘(𝜏), (b) a(s) and (c) The objective function (22), for 𝑝 = 5% noise and 𝛽1 =
𝛽2 ∈ {10−1 , 10−2, … , 10−6}. 
 

      In Figures 7, the transformed temperature 𝑣(𝑦, 𝜏 ) reconstructions are shown. In general, 

the addition of noise has no major effect on the temperature in terms of stability. 

(a)

(c) 

(b) 
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(a) 

 
(b)

 
Figure 8: The exact and numerical temperatures 𝑣(𝑦, 𝜏), with (a)  𝛽1 = 10−6, 𝛽2 = 10−6 , 

with 𝑝 =  5% noise, (b) 𝛽1 = 10−5, 𝛽2 = 10−2 , with 𝑝 =  10% noise and the absolute error 

between them also calculated 

 

6. Conclusions 

   In the nonlocal diffusion equation, with Stefan and heat flux acting as nonlocal additional 

conditions, the nonlinear inverse problem of reconstruction of the time-dependent thermal 

conductivity 𝑎(𝑠) and free boundary 𝑘(𝜏) have been studied numerically. The FDM scheme 

that is based on Crank-Nicolson has been developed to solve the forward (direct) problems 

and the trapezoidal quadrature rule is used to approximate the integral term. Whilst, the 

inverse problem was addressed iteratively using the MATLAB optimization toolbox routine 

lsqnonlin. The computational findings produced for both noisy and exact data have been 

analyzed and indicating that they are accurate and stable for various noise levels in presence 

of regularization with appropriate choice. Moreover, the results reveal that even with the 

inclusion of a high level of noise such as 10%, the free boundary and the temperature 

distributions do not affect by noise whilst the thermal coefficient part needs to be regularized 

via the Tikhonov penalty term added to the misfit functional. This technique can be 

extended/applied to more complicated inverse problems involving free/moving boundaries 

and will be a matter of future work. 
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