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Abstract  

     Community detection is one of the most interesting issues nowadays, especially 

for complex networks. The main problem is to divide these networks into partitions 

called communities, which are characterized by dense connections inside each part 

but sparse connections between them. Most networks in the real world display a 

community structure that must be detected and recovered. There are many 

approaches (techniques) for detecting communities, which may be arranged in 

classes according to various bases, like the operational method or the adopted 

definition of community. However, just a few desired algorithms are applied and 

adopted for identifying communities, like optimization of quality functions. This 

review highlights the existing modularity-based community detection methods. 

These methods are computational approaches based on optimization since they 

maximize the objective function modularity for each possible partitioning. Also, 

more attention was paid to demonstrating the quality functions that measure the 

goodness of these partitions, including the modularity function and its various 

expressions for different types of networks, which currently appear to be the most 

promising. In this review, computations are made for partitioning and detecting 

communities of different networks using the convexified modularity maximization 

algorithm (CMM), and then these partitions are measured using various quality 

functions. In addition, a derivation of an augmenting Lagrange multiplier is 

introduced to optimize the solution, which is implemented by the alternating 

direction multipliers method (ADMM) algorithm. So, such performance will help 

researchers find the best methods and choose a suitable quality function relevant to 

future work. 
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  الخلاصة 
. , خاصة بالنسبة للشبكات المعقدةإثارة للاهتمام في الوقت الحالي القضاياأحد أكثر  كشف المجتمعاتعد ي     

اتصال كثيف وجود التي تتميز بو  ,مجتمعاتاجزاء تسمى إلى  هذه الشبكاتتكمن المشكلة الرئيسية في تقسيم 
ياا مجتمع هيكلاا معظم الشبكات في العالم الحقيقي  وغالبا ما تظهربينها.  اتصالات نادرةولكن  ,داخل كل جزء

هناك العديد من الأساليب )التقنيات( للكشف عن المجتمعات التي يمكن ترتيبها في يجب اكتشافه واستعادته. 
يتم تطبيق  المعتمد للمجتمع. ومع ذلك, عادة ما تعريفو ال, أالتشغيليةلطريقة ا مختلفة, مثلا سسفئات وفقاا لأ
. في هذه يد المجتمعات مثل امثلية دوال الجودةمطلوبة والمعتمدة لتحدمن الخوارزميات الجدا عدد قليل 

 هي هذه الاساليب .كشف المجتمعات القائمة على الوحدات النمطيةأساليب  الضوء علىتم تسليط ي المراجعة
. لكل تقسيم ممكن modularityدالة الهدف من  حيث يتم تحقيق اقصى قدر تستند الى الامثلية ةنهج حسابي

صيغها و  modularityدالة  بما في ذلك التقسيماتالتي تقيس مدى جودة هذه  لدوالايضا تم اعطاء تفصيل ل
في هذه المراجعة يتم اجراء حسابات لتقسيم . عداا التي تبدو حالياا أكثر و  ,المختلفة لأنواع مختلفة من الشبكات

 عمالثم يتم قياس هذه التقسيمات باست (CMM)خوارزمية  تعمالفي شبكات مختلفة باسوكشف المجتمعات 
تم يالذي و  مضاعف لاكرانج لجعل الحل امثللتم تقديم اشتقاق الى ذلك, ي بالإضافة. المطروحةدوال الجودة 

بهذا الطرح سوف نساعد الباحثين (. ADMM)بالاتجاه المتناوب للمضاعفات المتعددة طريقة ال عمالاستتنفيذه ب
 واختيار دالة جودة مناسبة للعمل المستقبلي.على ايجاد افضل الطرق 

 
1. Introduction 

     The employment of social networks has greatly increased in the last few years, where 

people are more likely to form groups based on their similarities in specific things like 

common interests, backgrounds, hobbies, etc. The partition of a network is needed to identify 

these groups. This partition is called clustering or community detection, and these groups are 

called communities or clusters, with the property that each community, which is represented 

as a subgraph, has elements that are more likely to be similar than other elements in the rest of 

the communities. In other words, the main problem is to divide a community into partitions 

(communities), which are characterized by dense connections inside each part but a sparse 

connection between them. Many community detection methods in social networks and other 

types of networks are presented; some of them are traditional methods like graph partitioning 

[1] [2], hierarchical clustering [3] [4], fuzzy clustering [5], partitional clustering such as k-

means clustering with its extensions [6] [7], and spectral clustering [8] [9]. whereas other 

methods involve the optimization of some quality function, like the modularity function [10] 

[11], and another technique based on statistical inference that aims to deduce a data set's 

properties, like techniques based on Bayesian inference [12], block modeling [13], model 

selection [14], and information theory. So this review focuses on demonstrating and 

illustrating the quality functions, especially the modularity function and its usage as a function 

that wants to be optimized. The remaining part of this study is organized as follows: Section 2 

gives a brief review of existing community detection methods and their classification. The 

most common quality functions and their implementation on given data sets are introduced in 

Section 3, along with a comparative study of different forms of the modularity function for 

different types of graphs. Section 4 poses the problem of optimizing the modularity function 

with recently used approaches. Section 5 takes the convex optimization of the problem and its 

implementation given in Section 6. Finally, Section 7 summarizes and concludes the article. 

2. Community Detection 

     The main task in network community detection is to identify the communities of these 

networks. This identification is important for many reasons. It helps us understand network 

functionality. In the social network, for instance, community detection helps to discover 
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people with a common interest and keeps them tightly connected [15]. Despite the substantial 

interest of the scientific community over the last few years, no commonly accepted solution 

for detecting communities exists yet. Thus far, several techniques for the optimization of 

community detection have been introduced in the scientific literature. They may be arranged 

in various classes based on many bases, like the operational method [16], the specific 

definition of community by covering the meta-definition of community [17], etc. This section 

provides an overview of various techniques for the identification of communities that are 

categorized according to their mathematical topics. For more knowledge, read [18] and [19]. 

The community detection methods in graphs that represent static networks (Figure 1) can be 

classified into four broad categories as follows [20]:  

1- Spectral methods: an approach that uses the spectral properties of the graph to detect 

clusters [21]. These methods are not reliable in very sparse networks because of the shapeless 

eigenvalue separation and the expensive computations. 

2- Statistical inference methods: They adopt a normal approach to fitting data to a generative 

network model based on statistical inference. Stochastic block models (SBMs) are considered 

the most familiar generative model for working with communities and networks. [22][23]. 

3- Methods based on optimization: The idea behind these methods is to try to maximize or 

minimize some quality functions that give the community structure. 

4- Dynamic clustering: these methods use the running dynamics of the networks, like a 

random walk, diffusion, and spin dynamics, to detect community structure in networks. They 

seek to hit spin configurations that return the optimum Hamiltonian distance. Currently, there 

is a lot of effort being put into enhancing the methods for analyzing temporal networks 

because of the growing availability of time-stamped data from networks [24]. In particular, 

much attention is given to the problem of detecting dynamic communities, and clustering 

algorithms that are involved in static networks may be implemented for dynamic networks 

[25] [26]. 

5-  

 
Figure 1: Categories of community detection methods in static network 

 

3. Quality Functions 
     Quality functions are functions that assign a number to each partition, so they are needed 

to indicate the quality of clustering (overall possible clustering) to gain good clusters 

(partitions). In other words, quality functions are measuring functions that can express the 

goodness of a partition, keeping in mind that the best partitions depend on the used definition 

of community and the utilized quality function. There are many quality functions, but the 

most commonly used are mentioned below: 

Community 
Detection 
Methods 

Spectral 
Methods 

Methods based 
on statistical 

inference 

Methods based 
on optimization 

Dynamic 
clustering 
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Given a graph G with V vertices, the partition of G divides V into K sets Vk, k=1, …, K, such 

that             and |Vk| gives the size of the set Vk. Let   [   ] be the adjacency 

matrix of G, the definitions of the most commonly used quality functions are listed below: 

- Modularity: Given its details and development in subsection B. 

- Local Density: Given by Eq. 1:  
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- Global Density: Given by Eq. 2: 
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- Local Weighted Density: Given by Eq. 3: 

    
 ∑

|  |

 | |
 [

∑ ∑            

|  |
 

   
∑ ∑              

|  | |    |
] 

                        (3) 

- Distance Based Quality Function: Given by Eq. 4: 

    
 

| |  
 ‖    ‖                                                  (4) 

where ‖ ‖ is a matrix norm and AV  Eqal 1 or 0 refers to whether i and j belong to the same 

community or not. 

- Node Membership Quality Function: Given by Eq. 5: 

     
 

 | |
 ∑ [                       ]                                 (5) 

where the node membership is defined as subscript        
 

| |
 ∑        and      indicates 

the community that the node i belongs to. Table 1 gives the implementation of these functions 

on different data sets. 

 

     Unfortunately, quality functions are practical to discuss partitioning for networks with the 

same number of clusters, whereas the comparison of partitions of networks with different 

numbers of clusters is not explicit and can lead to vagueness, as discussed separately by [27], 

and the partitions in clusters of roughly equal size are most likely modularity values, as shown 

by [28]. Moreover, the problem of determining which clusters are best for a specific 

partitioning is still open. It is worth noting that many efforts were made to deal with such a 

problem, for instance, by building a quality function starting with the quality expression of a 

single community [29] and gaining the best partition in a confirmed number of clusters. 

Although, for the general case, using optimization of quality functions for identifying 

communities is still adopted [30–32]. 

 

     The following subsection will give more detailed computations and various mathematical 

expressions to the first quality function given by Newman and Girvan since it gives the 

partitioning quality of networks into communities, so it solves the community detection 

problem [10]. For more details about the other quality functions and their calculations, see 

[33] and [34]. 

 

3.1 Network Representation 

     Networks describe interactions between entities. Basically, any mathematical object 

involving points and connections between them may be called a graph. Based on this concept, 

a network that has n entities with m interactions can be mapped to the graph G(V, E) with n 

vertices and m edges. An edge (u, v) joins the vertices u and v, and it is usually abbreviated to 

uv. The set of vertices (V) and the set of edges (E) in complex networks have formed a graph 

with non-trivial topological features [35]. A subgraph of a graph G is already a graph where 

its vertices and edges are subsets of V and E respectively. The maximum number of edges in 



Ibraheem and Al-Sarray                            Iraqi Journal of Science, 2024, Vol. 65, No.5, pp: 2775-2793 

 

2779 

the simple graph equals n(n−1)/2, where in this case G is called a complete graph. A graph is 

usually represented using matrices such that the graph G with n vertices (G of order n) has an 

n × n adjacency matrix A, whose entries are in formula 6: 

    {
                    
                 

                                                       (6) 

 

     In directed graphs, one distinguishes between two edges, (u, v) and (v, u), i.e.,      , 

whereas in weighted graphs, a positive number is given to each edge uv, which is denoted by 

Wuv. The degree of vi   V is the number of edges indicated on vi; it is denoted by dvi or simply 

di, equivalently, it represents the cardinality of vertices that are adjacent to vi, i.e.    
∑    

 
   . For a graph G with m edges, there are 2m half-edges, in total, it equals the sum of all 

vertices’ degrees, so    ∑   
 
    . The sequence of degrees is the list of the vertices’ 

degrees, {           }. In directed graphs, for each vertex, there are two types of degrees: 

in-degree and out-degree, denoted by di(in) and di(out), respectively. The strength is the 

analogue of degree on weighted graphs. In many real networks, the graphs that represent them 

are weighted, in both cases of oriented edges [36] and [37]. 

 

3.2 Modularity as a Quality Function  

     Depending on the representation of the network, the modularity function, which is denoted 

by Q, can be defined as follows: It is a function that measures the strength of the division of a 

network into communities (subgraphs) by taking into account the degree of distribution, such 

that networks with a high score of modularity have dense connections among the nodes within 

a cluster but sparse connections between nodes in different clusters. 

 

     To construct modularity, Neman et al. proposed to find the fraction of edges that exist 

between vertices within the same subgraph, and then subtract from it the fraction of such 

expected edges that would exist if edges were randomly positioned regardless of vertex 

subgraph. In mathematical terms, the total number of edges that run between vertices of the 

same cluster defined by Kronecker delta ( (     ) is a function that yields 0 or 1 if vertices i 

and j are in the same community or not) is given in eq. (7):  

 

∑  (     )  
 

 
∑     (     )                                                  (7) 

 

where    denotes the community of vertex i. The expected number of edges between vertices 

if edges are placed at random, in null term model     , is as formula (8): 

 
 

 
∑     (     )                                                          (8) 

 

     Taking the difference between the two numbers gives an expression for the difference 

between the actual and expected number of connections in the network. The fraction of the 

resulting expression, after being divided by a number of edges m, gives the modularity Q. 

Many expressions describe modularity Q according to the type of network (graph), but they 

all have the same idea that a large value of Q indicates a good community structure. Below 

are the most common forms.  

• The general expression: The sum covers all pairs of vertices. Here, the null model term (Pij) 

is a random graph that was introduced in [38], then independently by Erdos and Renyi [39], 

that has a degree distribution of Poisson, which is a mismatch of the distributions that had 

been found in real networks, expression 1 (Table 1). 
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• The classic expression: Here, the null model was taken with a similar degree distribution to 

the original graph to be more compatible with the function and structure of real networks [40], 

so the term Pij is computed as follows: Set the degree of vi so that the number of half edges 

starts at vi. So to make an edge in the graph, two half edges need to be connected. If that 

connection can be made by picking half edges uniformly, the probability of randomly picked 

edges being between the two vertices will be equal to eq. (9):  
  

  
 
  

  
 

  

  
 
  

  
 

    

                                                        (9) 

Because the probability of picking a half edge of node vi is 
  

  
, where the denominator is all 

half edges in the graph. Now, since there are m edges, each of which has an expected value of 
     

   
, then the expected number of edges between vi and vj is given in (10): 

     
     

    
    

  
                                                       (10) 

Hence, the difference between the actual number of edges between vertices vi and vj and the 

expected number of edges between them is     
    

  
 so expression 1 becomes expression 2 

(Table 1). 

• Equivalent form: Considering that the graph (community) was partitioned into k subgraphs 

(communities), the last form can be written in a different equivalent way. In fact, the inputs to 

the sum are taken from vertex pairs (vi, vj ) that belong to the same subgraph, so these inputs 

can be grouped with each other and the sum over the pairs of vertices rewritten as a sum over 

the subgraphs. So modularity Q becomes expression 3 (Table 1). Here, the first term of each 

summation represents the edges’ fraction of the graph within community C, while the other 

term gives the fraction of edges that would be expected to be found within community C if 

edges were inserted at random in the network, keeping in mind that the degree sequence 

matches the original graph. 

• Matrix form: define the modularity matrix B as eq. (11): 

        
    

  
                                                              (11) 

 

then the classical form can be expressed as expression 4 (Table 1). since if the graph is 

partitioned into two clusters C1 and C2, then the vector s (column vector) will be represented 

as         or         if vertex i belongs to C1 or C2 respectively, so Kronecker delta will 

equal to                [41]. 

• For undirected weighted networks, two modularity expressions were introduced, expressions 

5 and 6 (Table 1). The first is expressed in terms of vertex degree over all vertices in the 

graph besides Kronecker delta, while the second takes the computations over each subgraph, 

i.e., in terms of the total degree of C. In both forms, W is the total weight of all of the edges in 

the graph. Wij is the actual weight of the edges existing between vertices i and j in the original 

graph, si and sj are the strengths of vertex i and j respectively (the weight sum of the edges 

that incident on i and j); hence,  
    

  
 is the expected weight of the edge (i, j) in the null model. 

In the second form, sc is the total strength of the community’s vertices, and Wc is the total 

weight of the internal edges of c. These computations run over all k communities.  

• For directed graphs, modularity Q was defined with entries di (out) and di (in) in the second 

expression’s term of expression 2, where di(in) and di(out) indicate the number of edges that 

begin and end at i respectively, so modularity Q becomes expression 7 (Table 1). 

• For weighted directed graphs, modularity Q is defined with an expression similar to the 

previous one but with weighted edges, i.e., aij is replaced by the actual weight Wij and m is 

replaced by the total weight W; see expression 8 (Table 1).  
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• In the overlapping communities case (subgroups can be joined), for unweighted and 

undirected groups, modularity Q is extended using the numbers Oi and Oj, which are the 

numbers of subgroups containing nodes i and j, respectively [16], which gives expression 9 

(Table 1). 

 

Table 1: Various modularity expressions for different types of graphs 

No. Expression Directed Weighted Overlapping Ref. 
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3.3 Modularity Range 

     Modularity can be either positive or negative, where positive values refer to the possible 

existence of community structure [41]. So, one can seek community structure totally by 

studying the partitions of  networks that take positive, and best to be maximum, values of 

modularity. Modularity is basically dependent on the distribution of the edges and their 

number rather than on the number of vertices; also, isolated nodes have no impact on 

modularity [46], and this can be obviously seen in the third expression by Newman. For more 

details, this will be illustrated in three cases below, including the upper and lower bounds of 

modularity. Note that mc is the number of edges within subgroup C, dc is the degree of 

subgroup C,         and         are the internal and external degrees (respectively) of 

vertices within C, then each subgroup will contribute to Q by formula (12): 
  

 
 (

  

  
)
 

                                                               (12) 

Now, since                                the above contribution can be 

rewritten as (13): 

  

 
 (

           

  
)
 

 
  

 
 (

  

 
 

       

  
)
 

                                      (13) 

Case 1: The trivial partition where all vertices belong to only one subgraph, i.e., k = 1, which 

is the graph itself. In this partitioning, there is a guarantee that there are zero external edges. 

So this partition has a value of zero for modularity, since      and       which yields 

Q = 0 [45]. 

Case 2: Suppose one has two subgraphs. The contribution of a subgraph is minimized when 

mc is zero and         is as large as possible i.e.,          . In this case, each subgraph 
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will distribute by −1/4 which yields Q = −1/2 where modularity reaches its lower bound, as 

Brandes et al. mentioned in their theorem [46].  

Case 3: Suppose a partition with k subgraphs. The first term in (12) corresponds to the 

internal density of edges in the subgraph, while the second corresponds to the expected 

density of edges in the random graph null model, as mentioned earlier. The difference in the 

sum would indicate the amount of non-randomness in subgraph C. The higher the difference, 

the better the partition, and high values of Q give confidence in the non-random location of 

edges within C. In this case, by definition, C is considered a community if it satisfies the 

inequality (14). 

[
  

 
 (

  

  
)
 

]                                                          (14) 

Based on this principle, if all subgraphs (C) of the partition are communities, i.e., satisfy (14), 

the value of Q due to this partition is positive. Besides, each summand can’t exceed the first 

term 
  

 
 , which makes modularity a bounded function. So the inequality (15) is deduced: 

∑ [
  

 
 (

  

  
)
 

] 
    ∑
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                                        (15) 

Now that the maximum value of mc does not exceed           when all edges of the graph 

are internal edges for the subgraphs with zero external edges), the last term will not exceed 1 

[29]. Mathematically, it is represented as an inequality (16): 
 

 
∑   

 
                                                              (16) 

Table 2 shows data sets of some common real networks with their modularity values that 

agree with the given range [47]. Note that, for the trivial case where all vertices are in a single 

subgroup (the group without partitioning), for instance, 100% of edges go between the same 

subgroup vertices, and that result is expected. There is no other place for edges to be located. 

The difference between the two terms is then equal to zero, which informs us that the only 

existing partition is trivial partitioning. In addition to that, when the fraction of edges among 

vertices of the same community is notably greater than what was expected by chance, the 

measure of Q will give a score greater than zero. Briefly, modularity is strictly less than 1 (in 

fact, it belongs to [-1/2, 1]) and takes a negative number if a network has fewer edges 

connecting vertices of the same type than what would be expected by chance and a positive if 

there are more. Normally, in the real world, modularity does not fulfill the value Q = 1, even 

for an ideally mixed network, if every vertex of the same type is connected only. So it is 

considered a dimensionless quantity between 0 and 1 for networks [48] and [49]. 

 

Table 2: Standard Newman-Girvan modularity value for data sets of some of the common 

networks [47] 

Network Vertices No. Edges No. 
Newman 

Modularity 

Karate 34 78 0.0962 

Dolphin 62 158 0.3458 

American Football College 115 613 0.5290 

Facebook 3958 84241 0.0224 

Political Blogs 1107 9537 0.0019 

Protein Protein 2284 6644 0.0111 

AS-Level Internet 6444 11284 0.0336 

Chesapeaka Synthetic 39 170 -0.1188 

Delaunay Synthetic 1024 3056 -0.2246 

Twitter 2623 21000 0.0092 
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4. Modularity Maximization 

     Modularity is oftentimes used in optimization methods for detecting community structure 

in networks; see Table 3. Modularity maximization is considered NP-hard [46] [50] [51]; in 

spite of that, indeed, modularity becomes the best-known and most studied topic for 

clustering networks [52] [53]. It is in light of the idea that there is no expectation that a 

random graph will have a community structure, so the possible existing communities are 

gained by balancing between the actual density of edges and the expected density that would 

appear in the communities if the vertices were connected regardless of community structure. 

As mentioned earlier, this expected edge density is subject to the selected null model. In other 

words, the choices of the null model term allow us to symbolize specific different network 

structure’s features, like correlations [54], bi-partiteness [55] [56], space embeddedness [57], 

signed edges [58], etc.  

 

Table 3:  Modularity optimization based method algorithms 

Algorithm/Author Author’s strategy Ref. 

Greedy techniques: It is a method for agglomerative hierarchical clustering. Groups of vertices are collected 

to establish communities of larger size, in which modularity increases with each process of merging. 

Girvan–Newman(GN) 

algorithm (2002) 

Detecting communities by thoughtfully deleting edges that have high edge 

betweenness, with O(n)
3
 as computational complexity in sparse networks 

[59] 

Newman 

(2004) 

Finding communities in large-scale networks by combining communities in 

pairs, aiming to optimize modularity, is fun. It runs in a time O(n
2
 ) on 

sparse networks, which is fast. 

[60] 

Clauset, Newman and 

Moore (2004) 

Exploiting some shortcuts in optimization regarding Newman’s idea [58] 

and earning communities with  greedy algorithms in more complicated 

networks is also performed much more quickly in running time O(n log
2
 n). 

[32] 

Blondel, Guillaume & 

Lambiotte (Louvain 

algorithm) (2008) 

Developing the function of modularity to multi-level modularity 

optimization that is better than modularity-based algorithms in time 

complexity per square of the network’s size. Its computational complexity is 

O(nlogn), but the optimal solutions are local with respect to community 

merging. 

[61] 

Schuetz and Caflisch 

(2008) 

Each iteration allows for the merger of more than one community pair, 

which reduces the danger of having local optima trapped in modularity and 

results in more reasonable partitions. 

[62] 

Ye, Hu and Yu (2008) 

The initial partition is the movement of vertices between the communities, 

which is not allowed without decreasing Q, so modules that were found 

show stronger association among members than what was found by other 

methods. 

[63] 

Xiang, Chen and 

Zhou(2009) 

Optimization was significantly improved by starting the hierarchical 

agglomeration from an arrangement obtained by combining the original 

isolated vertices into communities with larger sizes rather than from the 

individual vertices. 

[64] 

Noack and Rotta 

(2009) 

Achieving higher-quality modularity by applying refinement strategies 

based on greedy agglomeration with local search at many steps. 
[53] 

Waltman and Nees Eck 

(2013) 

The modular optimization process is achieved twice. So each individual 

community reaches a local optimal value. This algorithm works well for 

medium- and small-sized networks. 

[65] 

Simulated annealing: a global search optimization algorithm that makes use of randomness within the search 

to seek the global optimum of a function 

Guimer`a and Amaral 

(2005) 

This technique uses two types of moves: local moves done by randomly 

shifting a single vertex from one cluster to another, and global moves 

consisting of mergers and splits of communities. Although it gives a very 

close value to the true modularity maximum, it is slow. 

[66] 

A. F. Yaqoob and B. 

Al-Sarray (2020) 

Using the Tabu Search method with fuzzy c-mean (FCM) in different 

settings to detect communities in many types of networks by maximizing the 

objective functions. 

[67] 
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Extremal optimization techniques: It is based on local variable optimization, expressing the contribution of 

each unit of the system to the global function. 

Boettcher and Percus 

(2001) 

Using probabilistic selection, in which vertices are graded based on their 

fitness values, is based on the optimization of local variables. 
[68] 

Duch and Arenas 

(2005) 

Modularity is represented as a sum that runs over all vertices such that the 

local modularity of any vertex equals that of the corresponding term in this 

sum. In a time of O(n
2
 log n), the algorithm finds a good approximation of 

the modularity maximum. 

[69] 

Spectral optimization: uses the eigenvalues and eigenvectors of the modularity matrix to optimize modularity. 

Ruan and Zhang (2007) 

This method is a developed form of the K-cut method for community 

detection in large networks. The method is implemented for all clusters of 

the first partition for a small range of k.  It can automatically detect different 

types of tumors without any prior knowledge. 

[70] 

Wang, Shen and 

Ouyang (2008) 

Community vectors were used to obtain high modularity partitions. The 

algorithm works very well when the networks are split into groups, but no 

more than four groups 

[71] 

Richardson and Mucha 

(2009) 

Obtaining graph tripartitions with large modularity using the modularity 

matrix and its leading pair of eigenvectors. 
[72] 

  

5. Clustering Optimization for Community Detection 

     Mathematical optimization plays a great role in finding the optimal solution to practical 

problems in many fields like economics, medicine, engineering, data science, and artificial 

intelligence, so this article focuses on applying this methodology in data mining, especially 

clustering and therefore community detection. Recently, modularity maximization techniques 

have taken a different turn in an attempt to relax the modularity function by adding tuning 

parameters or using convex programming relaxation and semi-definite relaxation methods. 

For instance, [30] presents the convex modularity function for DCSBM, whereas [73] 

presents the semidefinite relaxation for block models. In the future, one may take advantage 

of these relaxations to obtain better results. For further reading, see [74]. 

However, two types of clustering methods that are based on optimization methods are 

introduced. The first is the classic method, the K-means method, followed by the more 

recently used method, convex clustering for community detection. 

 

5.1 Center Based Clustering 

     The idea behind center-based clustering is to collect the given data (samples) in groups in 

such a way that, after choosing a number of centers belonging to the data, each point in the 

data is assigned to its closest center [75]. This way, the total distance of the samples from 

their nearest centers is minimal. Several distance measure types can be considered for 

different types of data, for instance, the Manhattan distance, the Bregman distance, the 

Mahalanobis distance, and the Euclidean distance as a special case of the elliptic norm. 

The most classical center-based clustering method is K-means clustering, which assigns each 

point xi in the data to the corresponding cluster aj such that every point in each cluster has a 

minimal squared Euclidean distance from its center. According to that, each point xi located 

on its jth cluster is represented by a z vector of n elements zi=k  k=1,…,K, eq. (17):  

                 ‖     ‖
 
                                             (17) 

This problem is considered an optimization problem applied to the total distance of sample xi 

as eq. (18): 

                 ∑         ‖     ‖
  

                                   (18) 

In general, the minimum of convex functions is not convex, so the K-means method, given in 

algorithm 1 [75], is also a non-convex problem in general. 

 

Algorithm1: K-means method 
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Input: an n by d matrix of data x, no. of clusters (k) 

Output: a k by d matrix A, labelling vector Z of n elements 

Step1: Select a matrix of K Rows as centers from X randomly 

Step 2: calculate the distance from each center aj to each input xi. Set assignment matrix Sij 

i=1, …, n and j=1, ..., k 

Step 3: assign each xi to the cluster j that has min sij in i-th row zi=j 

Step 4: Update the Center for each cluster by the mean of its points so: 

   
∑  

|  |
                

Step 5: Repeat steps three and four until convergence. 

 

     In fact, K-means the method is good as an initial method since it is easy to use with a 

given K (known). Although it is suffering from that, there is no guarantee of an optimal 

solution; besides, it is sensitive to the initialization of centers in clusters, where it may stick in 

the local optimum and not converge to the global optimum. So to alleviate this case, many 

different initializations of centers may be used. Also, the performance of K-means on 

spherical data with equal radii  is more stable than working on other types. 

 

5.2 Convex Optimization 

     Convex optimization is at the heart of mathematical optimization since it provides the 

global maximum or minimum of a convex function defined over convex sets; i.e., in convex 

optimization, any locally optimal point is a globally optimal point, so one avoids the non-

convex case, which has multiple feasible and multiple local minima within the given region. 

Moreover, the set of optimal points in the convex problem is itself a convex set. Convex 

relaxation has a great role since it has the robustness and computational power to enhance 

computationally and statistically the solutions to community detection problems [74–77]. So 

recent work has turned to the use of semidefinite programming in convex optimization to give 

a convex relaxation to these problems and therefore an efficient solution. 

 

     Convex relaxation can be derived in different ways. Usually, for community detection, 

these derivations give rise to convex programming of similar forms. This section focuses on 

the convexified modularity maximization proposed by [30] that applies under the SBMs as 

follows: 

Given the observed network data represented by its adjacency matrix A, the central issue is to 

derive the modularity function of community structure under the (p-q) planted partition model 

(SBM) of partition matrix X. In this model, X is an n by n symmetric matrix where Xij=1 when 

c(i)=c(j) (i.e vertex i and j belong to the same community) and Xij=0 otherwise, hence Xii=1 

for i=1, …, n. Moreover, dealing with a special case of this model, suppose 1>p>q>0 where 

p=Pr(Aij=1) when I and j belong to the same partition and q= Pr(Aij=1) otherwise. Note that, 

this formed a K by K probability matrix B=Pr(Aij) with p in the diagonal and q in the off 

diagonal elements of B. The standard form of the modularity function represented by X is 

defined as eq. (19): 

   ∑ (    
    

  
)                                                        (19) 

     The main goal is maximizing    by finding the optimal X that achieves that goal, where X 

is one of all possible partition matrices subscripts for      for a network of n nodes that are 

partitioned into K communities. The form (19) as known is generalized by adding the tuning 

parameter λ because of the resolution limit [78], so (19) can be rewritten in generalized matrix 

form as formula (20): 
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    ⟨        ⟩

             ⋃      
                                                  (20) 

     The optimization problem (20) was convexified [30] since the partition matrix X is positive 

semidefinite and its elements lie between 0 and 1, with 1 in its diagonal. Therefore, the 

convexified modularity maximization problem is given as problem (21). 

    ⟨        ⟩

                                    
                              (21) 

where J is a matrix with all entries equal to one. 

The last problem is a semi-definite program, so it can be penalized by adding an additional 

term in the objective function to convert it to a minimization problem and then solve it; thus, 

it becomes (22): 

     〈            〉

sub ect to                            
                            (22) 

which is equivalent to problem (23): 
     〈   〉

sub ect to    
   

                             
                                              (23) 

where               and  is a tuning parameter that amounts to the trace 

penalization of X. Practically, it can be a small constant or zero [76], and it is usually used to 

recover a low-rank matrix structure in the SDP relaxation literature (see [77-80]). Therefore, 

the only need is to tune the parameter λ, which has a statistical meaning since it depends on p 

and q that relate to the specific SBM model. 

To solve the problem, one needs to use one of the optimization methods for solving SDP, 

which is the alternating direction method of multipliers (ADMM), introduced in [81] and used 

in [30]. 

Now define the function f:AR
+
 as formula (24) 

       {
            
           

                                              (24) 

Notice that, f is convex as long as A is a convex set, so (23) can be written as Eq. 25: 
                        〈   〉

sub ect to    
                                   (25) 

Note: The set of positive semidefinite matrices is a convex set. 

Define the augmented LaGrange of this optimization problem as Eq. 26: 

                           〈   〉  
 

 
‖     ‖ 

              (26) 

So there are two steps: The first is minimizing (26) with respect to X ( and Z are fixed), 

hence the gradient of    with respect to X is given by Eq. 27: 

                                                        (27) 

Setting the gradient eq. (27) to zero gives Eq. 28: 

     
  

 
        with                                       (28) 

So (26) will have a solution in the form of Eq. 29: 

     (      
 

 
)
 

                                            (29) 

where      indicates positive semidefinite of the Eigen value decomposition of X, i.e., 

       ∑   
 . 

 

     The second step is to minimize (26) with respect to Z ( and X are fixed), hence the 

gradient of    with respect to Z is given by Eq. 30: 

                                                             (30) 
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Setting the gradient in (30) to zero gives Eq. 31: 

             with                                             (31) 

which has a solution of a closed form, Eq. 32: 

                                                                  (32) 

which keeps Z between zero and one. Also,  is updated to               using the 

iteration method to solve the problem with Z0 =0 and 0 =0 as initial values, and simply =1 

may be chosen for (29). Therefore, ADMM solves (25) and is described in algorithm 2. 

 

Algorithm 2: ADMM for convexified modularity maximization method 

Input: initial values Z0 =0 and 0 =0, #iteration=l 

output: X 

step1: For k=1 to l 

step2:      (      
 

 
)
 

 

step3:                              

step4:                   
end 

 

     In the field of convex optimization for community detection approaches, many studies are 

given to achieve the optimal solution, especially under planted partition models. Recently, 

various theoretical properties of convex optimization methods, given in Table 4, have been 

studied in depth, particularly when dealing with statistical models for community detection. 

 

Table 4: Theoretical properties of some convex optimization methods 

Properties Ref. 

strong consistency with a growing K (number of communities) [79], [82] 

strong consistency: sharp threshold under sparse networks [83], [84], [85] 

weak consistency [86], [87] 

non-trivial recovery [88], [89], [90] 

robustness against outlier nodes [79], [91], [92] 

consistency under degree-corrected models [31] 

consistency under weak assortativity [93], [94] 

 

6.  Experimental part 

     Many different algorithms have been proposed for network community detection, as 

mentioned in previous sections. Each of these has its own properties depending on the nature 

of the network as well as the domain of the problem. This section introduces an 

implementation of two different methods: the first is one of the most commonly used 

computational methods, the fast algorithm given by [60], while the second is the convexified 

modularity maximization algorithm (CMM), which uses semidefinite programming. 

The fast algorithm for community detection is implemented as follows: Beginning by 

determining the partition of some different networks with the data set in Table 2, then 

measuring the goodness of that partition using quality functions defined in Section 3, the 

results are listed in Table 5. 
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Table 5: Results of quality function for fast partitioning algorithm  

Network modularity Local density Global density Distance based Node membership 

Karate 0.3807 0.6206 0.6096 0.3062 0.2668 

Dolphin 0.4923 0.6015 0.5947 0.2706 0.2179 

American Football College 0.5682 0.7218 0.6920 0.1542 0.4587 

Facebook 0.7856 0.5670 0.5371 0.1301 0.1344 

Political Blogs 0.4407 0.5232 0.5154 0.4197 0.0484 

Protein Protein 0.5709 0.5244 0.5077 0.1279 0.0516 

AS-Level Internet 0.6285 0.5062 0.5022 0.0937 0.0139 

Chesapeaka Synthetic 0.249 0.6323 0.6249 0.2978 0.3191 

Delaunay Synthetic 0.732 0.5170 0.5143 0.2011 0.0349 

Twitter 0.5820 0.5520 0.5170 0.1478 0.1111 

 

     The results of implementing CMM using the ADMM algorithm are listed in Table 6 

below. It computes the modularity function to plant partitions on various networks, real and 

synthetic, given in Table 2, with K=2 using algorithm 2. Also, arbitrarily, l=200 iterations 

were chosen with =1. 

 

Table 6: Result modularity for partitioning using ADMM algorithm 

Network modularity 

Karate 0.3715 

Dolphin 0.3848 

American Football College 0.2077 

Facebook 0.3059 

Political Blogs 0.4351 

Protein Protein 0.1440 

AS-Level Internet 0.1458 

Chesapeaka Synthetic 0.1959 

Delaunay Synthetic 0.3946 

Twitter 0.2185 

 

7. Conclusion 

     Modularity was utilized in the community detection problem on two levels. First of all, it 

quantified the goodness of a given network partition by giving the value of quantity Q even 

without any information about the actual communities of the network, and this is appropriate 

for very large networks. The second level of modularity usage in the graph splitting task was 

shown by algorithms for detecting communities that were based on the maximization of 

modularity. Although it suffered from some problems and limitations, modularity 

maximization was a very creative field to research. This paper summarized many community 

detection approaches based on modularity, as given in Table 3. Besides being explained in 

detail, the most fundamental topics concern the modularity function and other quality 

functions and their application, as given in Table 5. In this table, the values of the quality 

function were computed for the case of using the fast algorithm introduced by Newman, and 

in the case of using other methods of community detection, the same quality functions may be 

used. So this review was considered a good starting point for researchers to be able to find the 

best methods and choose a suitable quality function to delve deeper into this interesting 

subject. 
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     The focus of researcher communities on dynamic approaches has been started once 

the concept of time and order integrated networks attributes as important characteristics of 

nodes (vertices) and links (edges). Meanwhile, dynamic approaches still under 

exploration and promise good performances,  taking into consideration changes of 

characteristics of real-world complex network. In fact, most real-world complex networks  

in nature are by default dynamic, which makes sense  to develop more efficient dynamic 

approaches, through handling dynamic communitydetection problem. As features of this 

work, an important challenge taking place for the dynamic approaches and attracting 

attention of researchers either in combining existing methods or in exploring limits of 

others. We focus on the next work on adaptation of existing methods to achieve 

community detection challenge for dynamic evolving networks.  
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