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Abstract  
     In this work, we introduce a new generalization of both Rationally extending and 

Goldie extending which is Goldie Rationally extending module which is known as 

follows: if for any submodule   of an  -module   there is a direct summand   of   

(denoted by      ) such that       . A    is a relation of     and    , 

which defined as         if and only if          and       . 

 

Keywords: Rationally Extending Modules, Goldie Rationally Extending Modules, 

Goldie Extending Modules. 

 

 (Goldie)مقاسات التوسعة الراشدة من النمط 
 

 زهراء عباس فاضل،  *مهدي صالح نايف

 قسم الرياضيات، كلية التربية، الجامعة المستنصرية، بغداد، العراق.
 

 ةخلاصال
( و Goldieجديدا  لمقاسات التوسعة الراشدة و مقاسات التوسعة من النمط ) اعماما  في هذا العمل قدمنا       

من   ( و معرف بالشكل التالي، اذا كان لأي مقاس جزئي Goldieهو مقاسات التوسعة الراشدة من النمط )
  و   المقاسات الجزئية هي علاقة بين     .       بحيث   من  يوجد مركبة جمع مباشر   مقاس 

 .      و         اذا و فقط اذا        ، و معرفة في الشكل الاتي  من المقاس 
 

1. Introduction 

    Throughout this work, all modules are unitary left R-module over a commutative ring with 

identity. 

     In [1], a submodule     is rational (symbolize by      ). If for any       and 

    there exists    , such that      and        A submodule       is called an 

essential submodule (symbolize by      ), if         for each       . 

     In [2], M. S. Abbas and M. A. Ahmad introduced the definition of rationally closed 

submodule as a submodule V of M which has no proper rational extension (symbolize by rc-

submodule or       ). And if every submodule   of   such that       is a summand, 

then   is rationally extending module (symbolize by RCS module ). 

     In [3], the relation     and    between the submodule   and   of an  -module has been 

introduced   by:       if and only if,      is an essential in   and in  .       if and only if,  

  and   are essential in    . And if for any     there is      such that      , then 
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  is Goldie extending module (symbolize by 𝒢-CS). Every extending module is 𝒢-CS 

module. 

 

      In this work we present a new relations which are    and     in term of rational 

submodule. And a new concept that is UR-closure which is known as follows: a module   is 

called an UR-closure if every submodule of   has a unique rat-closure. Also, we introduce a 

stronger generalize of 𝒢-CS module which is 𝒢-RCS module. For more details about the 

generalizations of 𝒢-CS and RCS module see [2-5].  

 

2. Basic properties of relations    ,    

Definition 2.1: let     and     when    an  -module. And    ,    are relations 

between  ,  . Then: 

1.        if and only if there is     such that      and     . 

2.        if and only if        and       . 

 

Remarks and Examples 2.2: Let   be an  -module: 

1.  A relation    is reflexive and symmetric, but it is not be transitive.  

2.  A relation     is reflexive, symmetric and now we prove transitive: 

Proof: Let           such that       and      . Now to proof       let        and 

   , but          , then there exists     such that         and       Since   
     and      there is      such that          and         Let       , this 

means there is     such that         and     . Then         .  Similarly, 

        . Hence,       , that is    is a transitive. ◻ 

3.         if and only if        
4.          if and only if    . 

5. If        when       , then        . 

 

Proof: Let         and        . then there is     such that       and     , thus by 

[1, p.55, Proposition 2.25],         . So          and         by [1, p.55, 

Proposition 2.25]. Hence        .◻ 

6. If           and          when                , then                     . 

 

Proof: Let          and          when                , so             and 

          , also            and           . Then by [1, p.55, Proposition 

2.25],                            and                         . 

Hence,                     .◻ 

7. If                        when         , then (     
 
          

 
     when    

        . 

8. In   as  -module.          since there is      such that        and       . By (5) 

        . 

9. Let       

I.If        , then      . 

 

Proof: let       and       . Then        and       , so we have        

and       . Hence,      .◻ 

II.If        , then      . 

 

Proof: let       and       . Then there is     such that       and     , so we 

have      and     . Hence,      .◻ 
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The opposite direction is satisfied if a module   be a non-singular. 

     Let   be an  -module and      , if          when    , then we called   is 

rational closure (rat-closure) of   [2]. Now, we introduce the following definition:   

Definition 2.3: A module   is called an UR-closure if every submodule of   has a unique rat-

closure. 

    So, an UR-closure definition is a necessarily condition to make    transitive. 

Proposition 2.4:   is an UR-closure  -module if and only if     transitive. 

Proof: Assume   be a UR-closure and          such that         and       . Then there 

is        such that       ,      ,      and     . Assume       ,      and 

      when           . By [1, p.55, Proposition 2.25],          and       . 

Hence,             ,            ,           and          . But  

  is UR-closure, then       thus       and     . Therefore,        and hence    is 

transitive. Opposite direction, suppose that    is transitive. Let     and let          

such that      and     . Since      and     , so        and         then       , 

there is     such that      and     . But        , hence      .◻ 

 

Proposition 2.5:   is an UR-closure  -module if and only if       . 

Proof: First direction. Let       , by Remark 2.2 (2) we have    is transitive. And hence    

is transitive. Then by Proposition 2.4,   is an UR-closure. Conversely, suppose   be an UR-

closure. By Remark 2.2 (5), we have every     is     . Now to prove every    is    . For this, 

let        such that         then         and         . Let           such that 

      and       , then           and         . But   is an UR-closure, then 

     . Thus         and hence      .◻ 

 

Proposition 2.6: Let M and W be R-modules, and       be a monomorphism. Then the 

following condition are holds: 

1.   If        , then              where      . 

2.   If        , then            
      where      . 

3.   If        , then              where      . 

4.   If        , then            
      where      . 

 

Proof: (1) and (3) are clear by Lemma 2.10 [5].  

           (2) and (4) are clear by [6]. 

 

Lemma 2.7: [7] Let   be an  -module and      if and only if for any       there is 

     such that      .  

Now, the next proposition is equivalent to definition of RCS module. 

 

Proposition 2.8:   is an RCS   module if and only if, for any     there is       

such that        . 

Proof: Let   a submodule of an RCS module  . Then there is       such that      , 

but       . Hence        . 

 

     Conversely, let     then by hypothesis there is       such that         , this means 

there is     such that      and      . Now we prove that     , since      , 

then        for some    . But           , hence      . Now, let 

       , then     and    . Since       then        , so by Lemma 2.7 there is 

    such that       but     . Hence         which is a contradiction since 

     . So       this means      such that     .◻ 
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3. 𝓖-Rationally extending modules 

Definition 3.1: If any submodule   of an  -module   there is      such that       , 

then    is named by Goldie Rationally extending module (symbolize by 𝒢-RCS module). 

    A ring   is called a 𝒢-RCS module, if   is 𝒢-RCS module  -module. 

 

Proposition 3.2:   is a 𝒢-RCS  -module if and only if for each       there is       

such that        . 

Proof: Assume that   is a 𝒢-RCS and let    , there is       such that      by [2], 

and by hypothesis there is       such that       . Since          and      , 

then       . But a relation    is transitive. So, we have         and hence   is a 𝒢-RCS. 

Conversely, let       and by definition of 𝒢-RCS module, there is        such that 

       .◻ 

 

Proposition 3.3: An  -module   is 𝒢-RCS if and only if for any     there are     and 

     such that      and     . 

Proof: Let     and by definition of 𝒢-RCS module, there is       such that         ( 

        and         ). Take       , so      and      . 

Conversely, let     then by hypothesis there is     and        such that      

and      . Since         , then        . And          , then 

        . Hence   is a 𝒢-RCS. ◻ 

 

Remarks and Examples 3.4: 

1.   Any 𝒢-RCS module is a 𝒢-CS module. The opposite is not necessarily true in general. For 

example, let      as  -module is a 𝒢-CS, since it is extending, but it is not a 𝒢-RCS, since 

  ̅     and the direct summand of   are       and   ̅       but   ̅        

and   ̅     ̅      ̅  .  

2.   Any RCS module is a 𝒢-CS. The opposite is not necessarily true in general. For example, 

let M=    as Z-module is a 𝒢-CS since it is CS, but it is not an RCS module, since   ̅  
     but    ̅   is not summand of  . 

3.   Every RCS module is 𝒢-RCS module.  

4.   Every monoform module is a 𝒢-RCS module, in fact every monoform is an RCS module. 

But the opposite is not necessarily true in general. For example, let       as  -module,   

is a 𝒢-RCS module (since it is RCS), but   is not monoform (Since   ̅     But   ̅  
    since   ̅   is not essential in   . 

5.   Every semisimple module is 𝒢-RCS module (since every semisimple is RCS). The 

opposite is not necessarily true in general. For example,   as  -module. 

6.   Each integral domain is a 𝒢-RCS module. 

Proof: Let     be an ideal of an integral domain  . Let       and       for any 

      ,      and     , also      (since if      with   has no zero divisor 

elements, then     is contradiction as    ). So, we have     , then   is a monoform 

and by (4)   is a 𝒢-RCS module. ◻ 

Rationally extending                Extending 

                                                              

𝒢-Rationally extending           𝒢-extending  

 

Proposition 3.5: If   is a 𝒢-RCS module and UR-closure, then   is RCS. 

Proof: Suppose that   be a 𝒢-RCS. And let     then there is       such that 

       . But   is UR-closure then by Proposition 2.5      . So, for any     then there 

is       such that        . Then by Proposition 2.8 we have   is an RCS a module. ◻ 
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Proposition 3.6: If an indecomposable  -module   be a 𝒢-RCS, then   is a monoform 

module. 

Proof: Assume that   is a 𝒢-RCS, and let       then there is       such that 

       . That’s mean         and         , but   is an indecomposable then 

either      or     . If      , then        is a contradiction. So,      and 

     (                ). Hence,   is a monoform module. ◻ 

 

Corollary 3.7: In an indecomposable  -module  , the following statement are equivalent: 

1. An  -module   is an RCS module; 

2.     -module  is a 𝒢-RCS module; 

3.     -module   is a monoform module. 

The following condition is necessarily to make a submodule of 𝒢-RCS module is a 𝒢-RCS: 

     (1#): Let    , if         for each         . Then we say that   has condition (1#). 

 

Proposition 3.8: Let      and   be a 𝒢-RCS  -module. If    satisfies the condition (1#), 

then    is 𝒢-RCS module. 

Proof: Let      and   is 𝒢 RCS, then there is       such that       . So, we have 

      ,        and by condition (1#) we have          . Then by [1] we 

obtain                          , and                
        . Then            and hence    is 𝒢-RCS module. ◻ 

    (2#): Let   be a summand of  , if          for each       . Then we say that   has 

condition (2#). 

 

Corollary 3.9: Let         be 𝒢-RCS module where         and   has a 

condition (2#), then    is 𝒢-RCS module. 

It is well known where   be an  -module and     , then W is called fully invariant if 

       for each endomorphism   of   [8]. Moreover, a module   is called duo, if any 

    is fully invariant [9]. Furthermore,      is a distributive submodule, if for any 

      ,                      . And if all submodule is distributive, then   

is called a distributive module [10]. 

 

Proposition 3.10: Let   be a fully invariant submodule of an  -module  . If   is a 𝒢-RCS 

module, then   is 𝒢-RCS module. 

Proof: Let   be a 𝒢-RCS and       , then there is   ,       such that        . 

Then the projection map       ,        . For each     ,       where     

and     , so         and        . Since   is a fully invariant and               
hence                              , that is          , where         is 

an inclusion map. And by the same way of          ,we have          . 

Therefore,                          , and hence             
  . Since        , then with the same few steps of Proposition 3.8 we have             

and        . Hence   is a 𝒢-RCS module. ◻ 

 

Proposition 3.11: Let   be a distributive submodule of an  -module  . If   is a 𝒢-RCS 

module, then   is a 𝒢-RCS module. 

Proof: Assume that   is 𝒢-RCS module and let      . Then there is      such that 

       and for some     ,       . But   is a distributive then         
      . Hence   satisfy (condition 1#). So, we have           , (        
            , and                      ). Then   is a 𝒢-RCS-

module. 
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Corollary 3.12: If an  -module   is distributive (or duo) and 𝒢-RCS, then any     is a 

𝒢-RCS module. 

    Recall that, in an  -module  . If for any     there is an ideal   of   such that   
  , then   is called a multiplication, [11]. 

 

Corollary 3.13: If an  -module   is a multiplication and 𝒢-RCS, then any     is a 𝒢-

RCS module. 

    The that result that showing the class of 𝒢-RCS module is an isomorphic property has been 

proved in the following proposition:  

 

Proposition 3.14: Let      and a module   is 𝒢-RCS, then    is a 𝒢-RCS module. 

     

     Recall that,               ; for some essential ideal   of  } is singular 

submodule of a module  . If       , then   is a singular module and if          then 

  is non-singular module, [12]. 

 

Theorem 3.15: Let   be a non-singular  -module. Then the following statements are 

equivalent: 

1.   is a 𝒢-CS module; 

2.   is a 𝒢-RCS module; 

3.   is an RCS module;  

4.   is an extending module. 

     

      An  -module   has a rat-closed property, if           when          . 

 

Proposition 3.16: Let an  -module   be a 𝒢-RCS. If   is an UR-closure module, then   has 

the rat-closed property also has condition 2#. 

Proof: Suppose that   is an UR-closure module, then by Proposition 3.5,   is an RCS. Let 

  and      , so by [2], we have   and    are RCS modules. Since       , there is 

      such that        . And         for some      . Then   
          and             , so   and   are rat-closures of     , but   is an 

UR-closure then    . Then we have         , and hence         . But 

       , then   has a condition 2#. And by (every direct summand is rat-closed), then we 

have          and        . So,          is a rat-closed of  . Hence,   has a 

rat-closed property. ◻ 

 

4. The direct sum of 𝒢 -RCS module 

    In this section, we will study the direct sum of 𝒢-RCS module.  

The direct sum of 𝒢-RCS module need not be a 𝒢-RCS, by the following example below: 

 

Example 4.1: We know that   is an integral domain, then      is an integral domain. By 

Remarks 3.4, (6),      is 𝒢-RCS. But             as      is not a 𝒢-RCS, since is not a 

𝒢-CS, [3]. 

 

     Now we take a condition to make the direct sum of a 𝒢-RCS to be 𝒢-RCS. Firstly, we need 

to define a new concept which named an Rat-direct sum. 

 

Definition 4.2: Let   be an  -module and {  },{  } be collections of submodules of  . If for 

any   ,        and         , then   is called an Rat-direct sum. 
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Lemma 4.3: If        of    for any     where           be a family of an Rat-direct 

sum modules, then              , 

Proof: Assume that          of module    for any    . Then (              and 

              for any    . But    is an Rat-direct sum, then                  

and                , then                    and                 

  . Hence               .◻ 

 

Proposition 4.4: Let   and    be   modules such that         be a duo Rat-direct 

sum  -module. Then           are 𝒢-RCS if and only if   is a 𝒢-RCS. 

Proof: Let   be a 𝒢-RCS, so by Corollary 3.12           are 𝒢-RCS. Conversely, assume 

that    and    are 𝒢-RCS and    . But          is a duo module so by [9], we 

have                . Since    is 𝒢-RCS for (      , and         , then 

there is         such that              . Then by Lemma 4.3, we obtain          
               . Since   is an Rat-direct sum, therefore,         . Hence   is a 

𝒢-RCS. ◻ 

 

Proposition 4.5: Let   and    be  modules such that         be a distributive Rat-

direct sum  -module. Then   is a 𝒢-RCS if and only if           are 𝒢-RCS. 

Proof: Let   be a 𝒢-RCS, then by Corollary 3.12           are 𝒢-RCS. Conversely, assume 

that    and    are 𝒢-RCS and    ,then                , since   is a 

disteibutive module. By a similar steps of Proposition 4.4, we have   is a 𝒢-RCS module.◻ 

 

Proposition 4.6: Let   and    be   modules such that         be a Rat-direct sum  -

module and                  . If   and    are 𝒢-RCS, then   is a  -RCS module. 

Proof: Let      , since                  , then by [13], we obtain      , 

where      and     . But     then we have three cases: 

Case 1, if     and    , then       . But    is 𝒢-RCS module, then there is     

   such that     . So,     . 

Case 2, if     and    , then we get by same way of Case 1, that       such that        
, then      . 

Case 3, if     and    , then there is       and       , such that        and 

      . But   is a Rat-direct sum, then by Lemma 4.3 we have                 and 

          such that           . 
Then by Cases 1, 2 and 3    is a  -RCS module.◻ 

 

Proposition 4.7: Let          and every Rat-closed submodule is fully invariant. If     is  

a 𝒢-RCS module for any    , then   is a 𝒢-RCS module. 

Proof: Let      , then   is a fully invariant of  . So, by [9], we have           

since (         , so by [6], we obtain             then            . But    for 

any     is 𝒢-RCS module, then there is          such that (    )     , ((    )  

    (    ) and (    )         ). Take          . But by Lemma 4.3,   

 (    )        . Then   is a 𝒢-RCS module.◻ 

 

5. Conclusions 

    Through this paper, we reached to the following conclusions: any RCS module is a 𝒢-RCS 

module. And any 𝒢-RCS is a 𝒢-CS. So, we have any RCS module is a 𝒢-CS. And a summand 
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of 𝒢-RCS need not be a 𝒢-RCS . And a direct sum of 𝒢-RCS need not be a 𝒢-RCS, and we 

add a condition to make a direct sum of 𝒢-RCS is  -RCS. 
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