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Abstract

In this work, we introduce a new generalization of both Rationally extending and
Goldie extending which is Goldie Rationally extending module which is known as
follows: if for any submodule K of an R-module M there is a direct summand U of M
(denoted by U g M) such that K. U. A B, is a relation of KEM and U € M,
which defined as K 8, Uifand only if KNU &, Kand KNU <, U.

Keywords: Rationally Extending Modules, Goldie Rationally Extending Modules,
Goldie Extending Modules.
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1. Introduction
Throughout this work, all modules are unitary left R-module over a commutative ring with
identity.

In [1], a submodule V € M is rational (symbolize by V<. M ). If for any t,h € M and
h # 0 there exists b € R, such that bt € V and bh # 0. A submodule 0 # V; is called an
essential submodule (symbolize by V; €. M), if V, NV, = 0 foreach 0 # V, € M.

In [2], M. S. Abbas and M. A. Ahmad introduced the definition of rationally closed
submodule as a submodule V of M which has no proper rational extension (symbolize by rc-
submodule or V€.. M ). And if every submodule V of M such that V €.. M is a summand,
then M is rationally extending module (symbolize by RCS module ).

In [3], the relation B and a between the submodule V and K of an R-module has been
introduced M by: V3 K if and only if, V.n K is an essential in V and in K. V a K if and only if,
V and K are essential in D € M. And if for any V € M there is U Sg M such that V g U, then
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M is Goldie extending module (symbolize by G-CS). Every extending module is G-CS
module.

In this work we present a new relations which are B, and o, in term of rational
submodule. And a new concept that is UR-closure which is known as follows: a module M is
called an UR-closure if every submodule of M has a unique rat-closure. Also, we introduce a
stronger generalize of G-CS module which is G-RCS module. For more details about the
generalizations of G-CS and RCS module see [2-5].

2. Basic properties of relations a,. , B,

Definition 2.1: let SS€ M and ES M when M an R-module. And o, , B, are relations
between S, E. Then:

1. Sa. Eifandonly if thereis C € MsuchthatS €. Cand E <, C.

2. SB-EifandonlyifSNE S, SandSNE S, E.

Remarks and Examples 2.2: Let M be an R-module:

1. Arrelation a, is reflexive and symmetric, but it is not be transitive.

2. Arelation B, is reflexive, symmetric and now we prove transitive:

Proof: Let E,,E,P € Msuch that E,B,.E and E B.P. Now to proof E,B,P let x,e € E; and
e+ 0,but E; NE S, E;, then there exists r € Rsuch that rx € E; N E and re # 0. Since EN
Pc,.Eand re € Ethere is r; € R such that r;rx e ENnPand ryre # 0. Let t =r;r, this
means there is t € Rsuch that tx e E; NP and te # 0. Then E; NP <. E,. Similarly,
E, NP <, P. Hence, E; B.P, that is B, is a transitive. [

3. A, B Mifandonlyif A; S, M.

4. S B, {0}ifand only if S = 0.

5. IfE;a, Ewhen E;,E € M, then E; B, E.

Proof: Let E; a. Eand E;,E € M. then there is P € M such that E; S, P and E <, P, thus by
[1, p.55, Proposition 2.25], E;NECS,.P. So E;NECS.E; and E;NnE S, E by [1, p.55,
Proposition 2.25]. Hence E; 8, E.[]

6. If W; B.E; and W, B, E, when W; ,W, ,E;,E, € M, then (W; n W, ), (E; NE,).

Proof: Let W; 3.E; and W, B.E, when W;,W,,E;,E, €M, so W, nE; &, W, and
W, NE; €. E;, also W, NE, €. W, and W, NnE, S, E,. Then by [1, p.55, Proposition
225, Wy NE)NW, NEy)S, W, nW, and (W; nE;))N(W, NE,) S, E; NE,.
Hence, (W; N W, )3, (E; NE,).00

7. If Wi Br Ei (1 = 1,2, ...,n) When WilEi c M, then (n?zl Wl) Br (ninzl El) When (l =
1,2,...,n).

8. In Z as Z-module. 4Z a,. 8Z since there is 2Z < Z such that 4Z <. 27 and 8Z <, 2Z. By (5)
47 B, 8Z.

9. LetD,EC M

I.If DB.E, thenD BE.

Proof: let DbEC M and DB.E. ThenDNECS. Dand DNE S, E, so we have DNECS. D
and DNE <, E. Hence, D B E.[
ILIf Do E, thenD a E.

Proof: let D,E € M and D «, E. Then there is P € M such that D €, P and E &, P, so we
have D €. Pand E S, P. Hence, D a E.[}
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The opposite direction is satisfied if a module M be a non-singular.

Let M be an R-module and H &, M, if ES,. H &.. M when E € M, then we called H is
rational closure (rat-closure) of E [2]. Now, we introduce the following definition:
Definition 2.3: A module M is called an UR-closure if every submodule of M has a unique rat-
closure.

So, an UR-closure definition is a necessarily condition to make o, transitive.
Proposition 2.4: M is an UR-closure R-module if and only if «, transitive.
Proof: Assume M be a UR-closure and S;, E,P € M such that S; a, E and E a, P. Then there
isE;,,VEMsuchthatS; €, E;, ES.E;,ES. Vand P S, V. Assume S; €. ], E S, D and
P<.B when ],D,B <. M. By [1, p.55, Proposition 2.25], S;NECS. E;, and ENP &, V.
Hence, SSNECS. S S, ], SiNEC.ES. D, ENPS.ES,. Dand ENP S, P S, B. But
M is UR-closure, then ] = D = B thus S; €. J and P <, ]J. Therefore, S;a, P and hence a, is
transitive. Opposite direction, suppose that o, is transitive. Let HS M and let E,P &.. M
suchthat HS, Eand HS, P. Since EC. Eand P <. P, so Ea. H and H a, P then E a, P,
thereisVE Msuchthat ECS,. Vand P <. V.ButE,P €,.. M, hence E=P = V.[J

Proposition 2.5: M is an UR-closure R-module if and only if o, = B, .

Proof: First direction. Let o, = 3, , by Remark 2.2 (2) we have (. is transitive. And hence o
is transitive. Then by Proposition 2.4, M is an UR-closure. Conversely, suppose M be an UR-
closure. By Remark 2.2 (5), we have every a, is [, . Now to prove every 3, is «a,. For this,
let F,F; € Msuchthat FB3.F;thenFNnF, . Fand FNnF; €, F;. Let V;,V, €. M such that
Fc,.V,and F, €. V,, then FNF, €.V, and FNF; €. V,. But M is an UR-closure, then
V, =V,. Thus F a, F; and hence a, = ;.

Proposition 2.6: Let M and W be R-modules, and 6: M — W be a monomorphism. Then the
following condition are holds:

1. IfPB.E,then 8(P) B, 6(E) where P,E € M.

2. IfPB.E,then 0 1(P)B.0 (E) where P,E S W.

3. IfPa.E,then 6(P) a. 6(E) where P,E € M.

4. IfPa, E,then 871(P) a, 67 1(E) where P,E € W.

Proof: (1) and (3) are clear by Lemma 2.10 [5].
(2) and (4) are clear by [6].

Lemma 2.7: [7] Let M be an R-module and V €. M if and only if for any 0 # c € M there is
c; € Rsuchthatc;c € V.
Now, the next proposition is equivalent to definition of RCS module.

Proposition 2.8: M is an RCS R —module if and only if, for any S € M there is S; S5 M
suchthat S a,. S;.

Proof: Let S a submodule of an RCS module M. Then there is S; Sg M such that S &, S,
butS; €. S,. Hence S a, S;.

Conversely, let S © M then by hypothesis there is S; Sg M such that S a,.S; , this means
there is V. € M such that S €. V and S; . V. Now we prove that V €4 M, since S; Sg M,
then S; + E=M for some EC M. But M=S; + EC V+E, hence V+E = M. Now, let
0O#+a€eVnE,thenaeVanda€E. SinceS; S, Vthen S; S, V, so by Lemma 2.7 there is
r € R such that ra€S; but ra€ E. Hence ra € S; nE which is a contradiction since
S1 €@ M. SoVNE = 0thismeans V €4 M such that S &, V.[
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3. g-Rationally extending modules

Definition 3.1: If any submodule W of an R-module M there is D €4 M such that W 3. D,

then M is named by Goldie Rationally extending module (symbolize by G-RCS module).
Aring R is called a G-RCS module, if R is G-RCS module R-module.

Proposition 3.2: M is a G-RCS R-module if and only if for each W .. M there is W; S5 M
such that W 3, W;.

Proof: Assume that M is a G-RCS and let C € M, there is W €., M such that C <. W by [2],
and by hypothesis there is W; Sg M such that W ,W;. Since C=CnW &, Wand C &, C,
then C B W. But a relation 3, is transitive. So, we have C 3, W; and hence M is a G-RCS.
Conversely, let W €. M and by definition of G-RCS module, there is W; €4 M such that
W, W,.0[

Proposition 3.3: An R-module M is G-RCS if and only if forany W € M thereare Y € M and
VEg MsuchthatY &, WandY &, V.

Proof: Let W € M and by definition of G-RCS module, there is Y; Sg M such that W 3, Y; (
WnY, S, WandWnyY, €. Y;) TakeWnNnY, =Y, so0YS, WandY S, Y;.

Conversely, let W € M then by hypothesis there is Y € M and Y; g M such that Y &, W
and YS,.Y;. Since YEWNY, €W, then WNnY, €. W. And YEWNY; €Y, then
WnY; € Y;. Hence M is a G-RCS. [J

Remarks and Examples 3.4:
1. Any G-RCS module is a G-CS module. The opposite is not necessarily true in general. For
example, let M = Z, as Z-module is a G-CS, since it is extending, but it is not a G-RCS, since
< 2 >c M and the direct summand of Mare M g, Mand < 0 >Sqg M but<2>nM ¢, M
and <2 >nN<0>%,.<2>.
2. Any RCS module is a G-CS. The opposite is not necessarily true in general. For example,
let M=Z,s as Z-module is a G-CS since it is CS, but it is not an RCS module, since < 5 >
C,c Mbut <5 > is not summand of M.
3. Every RCS module is G-RCS module.
4. Every monoform module is a G-RCS module, in fact every monoform is an RCS module.
But the opposite is not necessarily true in general. For example, let M = Z5, as Z-module, M
is a G-RCS module (since it is RCS), but M is not monoform (Since < 2 >SS M But < 2 >
&, M since < 2 > is not essential in M .
5. Every semisimple module is G-RCS module (since every semisimple is RCS). The
opposite is not necessarily true in general. For example, Z as Z-module.
6. Each integral domain is a G-RCS module.
Proof: Let 0 # I be an ideal of an integral domain R. Let 0 # c € R and 0 # b € R for any
O#a€l,cael and cb # 0, also ba# 0 (since if ba= 0 with R has no zero divisor
elements, then a = 0 is contradiction as 0 # a). So, we have I S, R, then R is a monoform
and by (4) Ris a G-RCS module. [
Rationally extending =  Extending

U U
G-Rationally extending =  G-extending

Proposition 3.5: If M is a G-RCS module and UR-closure, then M is RCS.

Proof: Suppose that M be a G-RCS. And let W & M then there is W; &g M such that
W B, W;. But M is UR-closure then by Proposition 2.5 8, = a,. So, for any W € M then there
iIs W; Eg M such that W a. W;. Then by Proposition 2.8 we have M is an RCS a module. [
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Proposition 3.6: If an indecomposable R-module M be a G-RCS, then M is a monoform
module.

Proof: Assume that M is a G-RCS, and let 0 # W € M then there is W; &g M such that
W B, W;. That’s mean WNW,; €. Wand WnNW,; €. W,, but M is an indecomposable then
either W, =0 or W, =M. If W; =0, then < 0 ><,. W is a contradiction. So, W; = M and
WS, MW=WnW, =WnM S, W, =M). Hence, M is a monoform module. [

Corollary 3.7: In an indecomposable R-module M, the following statement are equivalent:

1. An R-module M is an RCS module;

2. An R-moduleM is a G-RCS module;

3. An R-module M is a monoform module.

The following condition is necessarily to make a submodule of G-RCS module is a G-RCS:
(1#): Let] € M, if]n]; Eg ] for each J; Sg M. Then we say that M has condition (1#).

Proposition 3.8: Let W; € M and M be a G-RCS R-module. If W; satisfies the condition (1#),
then W; is G-RCS module.
Proof: Let B € W, and M is G—RCS, then there is W &g M such that B 3, W. So, we have
BNWc, B, BNW &, W and by condition (1#) we have WN W, Sg W;. Then by [1] we
obtain BN(WnNW,))=BnNnW)NnW, S.BNnW, =B, and BNn(WnW;)=(BnW)n
W; S, Wn W;. Then B B.(W n W,) and hence W; is G-RCS module. [

(2#): Let ] be a summand of M, if Jn]; Sg ] for each J; &g M. Then we say that M has
condition (2#).

Corollary 3.9: Let M =N; @ N, be G-RCS module where N;,N, €M and M has a
condition (2#), then N; is G-RCS module.

It is well known where M be an R-module and W € M , then W is called fully invariant if
f(W) € W for each endomorphism f of M [8]. Moreover, a module M is called duo, if any
L € M is fully invariant [9]. Furthermore, H € M is a distributive submodule, if for any
V,VEM, HN(V; +V) = (HNV,) + (HnV). And if all submodule is distributive, then M
is called a distributive module [10].

Proposition 3.10: Let W be a fully invariant submodule of an R-module M. If M is a G-RCS
module, then W is G-RCS module.

Proof: Let M be a G-RCS and V; € W € M, then there is A, A; &g M such that V; B, A.
Then the projection map m:M - A, m,:M - A;. Foreachye W,y =a+b where a€ A
and b € A;, so i;(y) = a and m,(y) = b. Since W is a fully invariant and t;, m; € End(M)
hence a = 1 (y) = T1o M (Y) € T1o (M) N W, that is a € m; (M) N W, where t;:A—> M s
an inclusion map. And by the same way of a € m;(M) n W,we have b € m,(M) N W.
Therefore, y=a+b € (m;(M) N W) @ (m,(M) n W), and hence W= ANW)D (A; N
W). Since V; B, A, then with the same few steps of Proposition 3.8 we have V; B, (AN W)
and AN'W Sg W. Hence W is a G-RCS module. [

Proposition 3.11: Let W be a distributive submodule of an R-module M. If M is a G-RCS
module, then W is a G-RCS module.

Proof: Assume that M is G-RCS module and let E € W € M. Then there is B S, M such that
E BB and for some B; € M, M =B @ B;. But W is a distributive then W= (BNnW) @
(B NnW). Hence W satisfy (condition 1#). So, we have EB.(BNnW), (EN(BNW) =
(ENB)NWCS, ENnW,andEN(BNW)=(ENB)NWC<S.BnNnW). Then W is a G-RCS-
module.
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Corollary 3.12: If an R-module M is distributive (or duo) and G-RCS, then any W € M is a
G-RCS module.

Recall that, in an R-module M. If for any W € M there is an ideal U of R such that W =
UM, then M is called a multiplication, [11].

Corollary 3.13: If an R-module M is a multiplication and G-RCS, then any W< M is a G-
RCS module.

The that result that showing the class of G-RCS module is an isomorphic property has been
proved in the following proposition:

Proposition 3.14: Let M = M, and a module M is G-RCS, then M, is a G-RCS module.

Recall that, Z(M) = {a € M|La = 0; for some essential ideal L of R} is singular
submodule of a module M. If Z(M) = M, then M is a singular module and if Z(M) = 0, then
M is non-singular module, [12].

Theorem 3.15: Let M be a non-singular R-module. Then the following statements are
equivalent:

1. Mis a G-CS module;

2. M isa G-RCS module;

3. Misan RCS module;

4. M is an extending module.

An R-module M has a rat-closed property, if V, NV, €.. Mwhen V;,V, S.. M.

Proposition 3.16: Let an R-module M be a G-RCS. If M is an UR-closure module, then M has
the rat-closed property also has condition 2#.

Proof: Suppose that M is an UR-closure module, then by Proposition 3.5, M is an RCS. Let
Wand V; Eg M, so by [2], we have W and V; are RCS modules. Since W n'V; € W, there is
VEg W such that WnV; €. V. And WnV; &. B for some BESg V;. Then Wn
Ve, Ve, . WandWnV; €. BCS,.V;, soVand B are rat-closures of WnN V;, but M is an
UR-closure then V = B. Then we have V=B € WnV,, and hence V=B =W nV,. But
V,B Eg M, then M has a condition 2#. And by (every direct summand is rat-closed), then we
have W,V, €..Mand V,B S.. M. So, V=B =WnV, is arat-closed of M. Hence, M has a
rat-closed property. [

4. The direct sum of G -RCS module
In this section, we will study the direct sum of G-RCS module.
The direct sum of G-RCS module need not be a G-RCS, by the following example below:

Example 4.1: We know that Z is an integral domain, then Z[x] is an integral domain. By
Remarks 3.4, (6), Z[x] is G-RCS. But M = Z[x] @ Z[x] as Z[x] is not a G-RCS, since is not a
G-Cs, [3].

Now we take a condition to make the direct sum of a G-RCS to be G-RCS. Firstly, we need
to define a new concept which named an Rat-direct sum.

Definition 4.2: Let M be an R-module and {X,},{Y, } be collections of submodules of M. If for
any p, X, S, Y,and @ X, S, Y, then M is called an Rat-direct sum.
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Lemma 4.3: If X,B,Y, of M, for any p € A where {M,: p € A} be a family of an Rat-direct
sum modules, then (& X,)B(D Y)),

Proof: Assume that X, f,Y, of module M, for anyp € A. Then (X, N Y,) & X, and
X, N Y,) S, Y, for any p € A. But M,, is an Rat-direct sum, then & (X, N Y,) @D X,
and @ X, N Y,) S DY, then (B X,) N (D Y,) S B X, and (B X,) N (D Y,) &P
Y,. Hence (D X, )B-(D Yp).U

Proposition 4.4: Let W;and W, be modules such that M = W; @ W, be a duo Rat-direct
sum R-module. Then W; and W, are G-RCS if and only if M is a G-RCS.

Proof: Let M be a G-RCS, so by Corollary 3.12 W; and W, are G-RCS. Conversely, assume
that W; and W, are G-RCS and P € M. But M =W, @ W, is a duo module so by [9], we
have P = (PN W,;) @ (P NnW,). Since W; is G-RCS for (i = 1,2), and PnW; € W, , then
there is V; Sg W; such that (P n'W;) B, V; . Then by Lemma 4.3, we obtain P = (P Nn'W,;) @
(P N W,)B.(V; @ V,). Since M is an Rat-direct sum, therefore, V; @ V, Sg M. Hence M is a
G-RCS. [J

Proposition 4.5: Let W;and W, be modules such that M = W; @ W, be a distributive Rat-
direct sum R-module. Then M is a G-RCS if and only if W; and W, are G-RCS.

Proof: Let M be a G-RCS, then by Corollary 3.12 W, and W, are G-RCS. Conversely, assume
that W; and W, are G-RCS and P € Mjthen P=PNnM=Pn (W, @& W,), since M is a
disteibutive module. By a similar steps of Proposition 4.4, we have M is a G-RCS module. ]

Proposition 4.6: Let W;and W, be modules such that M = W; @ W, be a Rat-direct sum R-
module and ann(W;) + ann(W,) = R. If W,and W, are G-RCS, then M is a -RCS module.
Proof: Let 0 # P € M, since ann(W;) + ann(W,) = R, then by [13], we obtain P =X P Y,
where X € W, and Y € W,. But P # 0 then we have three cases:

Case 1,if X=0and Y # 0, then P =Y S W,. But W, is G-RCS module, then there is V Sg
W, such that PB,.V. So, V €4 M.

Case 2, if X = 0 and Y = 0, then we get by same way of Case 1, that ] &4 W, such that P B, ]
,then] €4 M.

Case 3, if X+ 0 and Y # 0, then there is S Sq W, and F &g W, , such that X3, S and
Y B, F. But M is a Rat-direct sum, then by Lemma 4.3 we have P = (X @ Y)B, (S @ F) and
(S F) Eg M such that P B, (S @ F).

Then by Cases 1,2 and 3 Misa -RCS module.’

Proposition 4.7: Let M =;¢; W; and every Rat-closed submodule is fully invariant. If W; is
a G-RCS module for any j € J, then M is a G-RCS module.

Proof: Let P <.. M, then P is a fully invariant of M. So, by [9], we have P =@ (P n W)
since (P N W) <. P, so by [6], we obtain (P NW;) <. M then (P N W;) <. W;. But W; for
any j €] is G-RCS module, then there is V; Sg W; such that (P nW;)B,V; , (PnW;)n
VS, (PnW) and (PNW;))NV; S, V; ). Take V=@V, S M. But by Lemma 4.3,
® (P nW,)B, (@ V). Then M is a G-RCS module. ]

5. Conclusions
Through this paper, we reached to the following conclusions: any RCS module is a G-RCS
module. And any G-RCS is a G-CS. So, we have any RCS module is a G-CS. And a summand
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of G-RCS need not be a G-RCS . And a direct sum of G-RCS need not be a G-RCS, and we
add a condition to make a direct sum of G-RCS is -RCS.
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