Nayef and Fadel

Response of the second se

Iraqi Journal of Science, 2023, Vol. 64, No. 11, pp: 5778- 5785 DOI: 10.24996/ijs.2023.64.11.25



ISSN: 0067-2904

# **Goldie Rationally Extending Modules**

#### Mahdi Saleh Nayef<sup>\*</sup>, Zahraa Abbas Fadel

Department of Mathematics, College of Education, Mustansiriyah University, Baghdad, Iraq

Received: 23/10/2022 Accepted: 4/1/2023 Published: 30/11/2023

#### Abstract

In this work, we introduce a new generalization of both Rationally extending and Goldie extending which is Goldie Rationally extending module which is known as follows: if for any submodule K of an R-module M there is a direct summand U of M (denoted by  $U \subseteq_{\bigoplus} M$ ) such that  $K \beta_r U$ . A  $\beta_r$  is a relation of  $K \subseteq M$  and  $U \subseteq M$ , which defined as  $K \beta_r U$  if and only if  $K \cap U \subseteq_r K$  and  $K \cap U \subseteq_r U$ .

**Keywords**: Rationally Extending Modules, Goldie Rationally Extending Modules, Goldie Extending Modules.

مقاسات التوسعة الراشدة من النمط (Goldie)

# مهدي صالح نايف \* ، زهراء عباس فاضل

قسم الرياضيات، كلية التربية، الجامعة المستنصرية، بغداد، العراق.

الخلاصة

في هذا العمل قدمنا اعماماً جديداً لمقاسات التوسعة الراشدة و مقاسات التوسعة من النمط (Goldie) و هو مقاسات التوسعة الراشدة من النمط (Goldie) و معرف بالشكل التالي، اذا كان لأي مقاس جزئي K من مقاس M يوجد مركبة جمع مباشر U منM بحيث β<sub>r</sub> .K β<sub>r</sub> U هي علاقة بين المقاسات الجزئية K و U من المقاس M، و معرفة في الشكل الاتي K β<sub>r</sub> U اذا و فقط اذا K م ⊇ K ∩U و r

#### **1. Introduction**

Throughout this work, all modules are unitary left R-module over a commutative ring with identity.

In [1], a submodule  $V \subseteq M$  is rational (symbolize by  $V \subseteq_r M$ ). If for any  $t, h \in M$  and  $h \neq 0$  there exists  $b \in R$ , such that  $bt \in V$  and  $bh \neq 0$ . A submodule  $0 \neq V_1$  is called an essential submodule (symbolize by  $V_1 \subseteq_e M$ ), if  $V_1 \cap V_2 \neq 0$  for each  $0 \neq V_2 \subseteq M$ .

In [2], M. S. Abbas and M. A. Ahmad introduced the definition of rationally closed submodule as a submodule V of M which has no proper rational extension (symbolize by rc-submodule or  $V \subseteq_{rc} M$ ). And if every submodule V of M such that  $V \subseteq_{rc} M$  is a summand, then M is rationally extending module (symbolize by RCS module).

In [3], the relation  $\beta$  and  $\alpha$  between the submodule V and K of an R-module has been introduced M by: V  $\beta$  K if and only if, V  $\cap$  K is an essential in V and in K. V  $\alpha$  K if and only if, V and K are essential in D  $\subseteq$  M. And if for any V  $\subseteq$  M there is U  $\subseteq_{\bigoplus}$  M such that V  $\beta$  U, then

<sup>\*</sup>Email<sup>:</sup> mahdisaleh773@uomustansiriyah.edu.iq

M is Goldie extending module (symbolize by G-CS). Every extending module is G-CS module.

In this work we present a new relations which are  $\beta_r$  and  $\alpha_r$  in term of rational submodule. And a new concept that is UR-closure which is known as follows: a module M is called an UR-closure if every submodule of M has a unique rat-closure. Also, we introduce a stronger generalize of *G*-CS module which is *G*-RCS module. For more details about the generalizations of *G*-CS and RCS module see [2-5].

## 2. Basic properties of relations $\alpha_r$ , $\beta_r$

**Definition 2.1:** let  $S \subseteq M$  and  $E \subseteq M$  when M an R-module. And  $\alpha_r$ ,  $\beta_r$  are relations between S, E. Then:

1. S  $\alpha_r$  E if and only if there is C  $\subseteq$  M such that S  $\subseteq_r$  C and E  $\subseteq_r$  C.

2.  $S \beta_r E$  if and only if  $S \cap E \subseteq_r S$  and  $S \cap E \subseteq_r E$ .

### **Remarks and Examples 2.2: Let M be an R-module:**

1. A relation  $\alpha_r$  is reflexive and symmetric, but it is not be transitive.

2. A relation  $\beta_r$  is reflexive, symmetric and now we prove transitive:

**Proof:** Let  $E_1, E, P \subseteq M$  such that  $E_1\beta_r E$  and  $E\beta_r P$ . Now to proof  $E_1\beta_r P$  let  $x, e \in E_1$  and  $e \neq 0$ , but  $E_1 \cap E \subseteq_r E_1$ , then there exists  $r \in R$  such that  $rx \in E_1 \cap E$  and  $re \neq 0$ . Since  $E \cap P \subseteq_r E$  and  $re \in E$  there is  $r_1 \in R$  such that  $r_1rx \in E \cap P$  and  $r_1re \neq 0$ . Let  $t = r_1r$ , this means there is  $t \in R$  such that  $tx \in E_1 \cap P$  and  $te \neq 0$ . Then  $E_1 \cap P \subseteq_r E_1$ . Similarly,  $E_1 \cap P \subseteq_r P$ . Hence,  $E_1 \beta_r P$ , that is  $\beta_r$  is a transitive.  $\Box$ 

3.  $A_1 \beta_r M$  if and only if  $A_1 \subseteq_r M$ .

4.  $S \beta_r \{0\}$  if and only if S = 0.

5. If  $E_1 \alpha_r E$  when  $E_1, E \subseteq M$ , then  $E_1 \beta_r E$ .

**Proof:** Let  $E_1 \alpha_r E$  and  $E_1, E \subseteq M$ . then there is  $P \subseteq M$  such that  $E_1 \subseteq_r P$  and  $E \subseteq_r P$ , thus by [1, p.55, Proposition 2.25],  $E_1 \cap E \subseteq_r P$ . So  $E_1 \cap E \subseteq_r E_1$  and  $E_1 \cap E \subseteq_r E$  by [1, p.55, Proposition 2.25]. Hence  $E_1 \beta_r E . \Box$ 

6. If  $W_1 \beta_r E_1$  and  $W_2 \beta_r E_2$  when  $W_1$ ,  $W_2$ ,  $E_1$ ,  $E_2 \subseteq M$ , then  $(W_1 \cap W_2)\beta_r (E_1 \cap E_2)$ .

**Proof:** Let  $W_1 \beta_r E_1$  and  $W_2 \beta_r E_2$  when  $W_1, W_2, E_1, E_2 \subseteq M$ , so  $W_1 \cap E_1 \subseteq_r W_1$  and  $W_1 \cap E_1 \subseteq_r E_1$ , also  $W_2 \cap E_2 \subseteq_r W_2$  and  $W_2 \cap E_2 \subseteq_r E_2$ . Then by [1, p.55, Proposition 2.25],  $(W_1 \cap E_1) \cap (W_2 \cap E_2) \subseteq_r W_1 \cap W_2$  and  $(W_1 \cap E_1) \cap (W_2 \cap E_2) \subseteq_r E_1 \cap E_2$ . Hence,  $(W_1 \cap W_2)\beta_r (E_1 \cap E_2)$ .

7. If  $W_i \beta_r E_i$  (i = 1, 2, ..., n) when  $W_i, E_i \subseteq M$ , then  $(\bigcap_{i=1}^n W_i) \beta_r (\bigcap_{i=1}^n E_i)$  when (i = 1, 2, ..., n).

8. In Z as Z-module.  $4Z \alpha_r 8Z$  since there is  $2Z \subseteq Z$  such that  $4Z \subseteq_r 2Z$  and  $8Z \subseteq_r 2Z$ . By (5)  $4Z \beta_r 8Z$ .

9. Let D,  $E \subseteq M$ 

I.If  $D \beta_r E$ , then  $D \beta E$ .

**Proof:** let  $D, E \subseteq M$  and  $D \beta_r E$ . Then  $D \cap E \subseteq_r D$  and  $D \cap E \subseteq_r E$ , so we have  $D \cap E \subseteq_e D$  and  $D \cap E \subseteq_e E$ . Hence,  $D \beta E \subseteq_I$ . II.If  $D \alpha_r E$ , then  $D \alpha E$ .

**Proof:** let  $D, E \subseteq M$  and  $D \alpha_r E$ . Then there is  $P \subseteq M$  such that  $D \subseteq_r P$  and  $E \subseteq_r P$ , so we have  $D \subseteq_e P$  and  $E \subseteq_e P$ . Hence,  $D \alpha E \subseteq_e D$ .

The opposite direction is satisfied if a module M be a non-singular.

Let M be an R-module and  $H \subseteq_{rc} M$ , if  $E \subseteq_r H \subseteq_{rc} M$  when  $E \subseteq M$ , then we called H is rational closure (rat-closure) of E [2]. Now, we introduce the following definition:

Definition 2.3: A module M is called an UR-closure if every submodule of M has a unique ratclosure.

So, an UR-closure definition is a necessarily condition to make  $\alpha_r$  transitive.

**Proposition 2.4:** M is an UR-closure R-module if and only if  $\alpha_r$  transitive.

**Proof:** Assume M be a UR-closure and  $S_1, E, P \subseteq M$  such that  $S_1 \alpha_r E$  and  $E \alpha_r P$ . Then there is  $E_1, V \subseteq M$  such that  $S_1 \subseteq_r E_1$ ,  $E \subseteq_r E_1$ ,  $E \subseteq_r V$  and  $P \subseteq_r V$ . Assume  $S_1 \subseteq_r J$ ,  $E \subseteq_r D$  and  $P \subseteq_r B$  when J, D, B  $\subseteq_{rc} M$ . By [1, p.55, Proposition 2.25],  $S_1 \cap E \subseteq_r E_1$  and  $E \cap P \subseteq_r V$ . Hence,  $S_1 \cap E \subseteq_r S_1 \subseteq_r J$ ,  $S_1 \cap E \subseteq_r E \subseteq_r D$ ,  $E \cap P \subseteq_r E \subseteq_r D$  and  $E \cap P \subseteq_r P \subseteq_r B$ . But M is UR-closure, then J = D = B thus  $S_1 \subseteq_r J$  and  $P \subseteq_r J$ . Therefore,  $S_1 \alpha_r P$  and hence  $\alpha_r$  is transitive. Opposite direction, suppose that  $\alpha_r$  is transitive. Let  $H \subseteq M$  and let  $E, P \subseteq_{rc} M$  such that  $H \subseteq_r P$ . Since  $E \subseteq_r E$  and  $P \subseteq_r P$ , so  $E \alpha_r H$  and  $H \alpha_r P$  then  $E \alpha_r P$ , there is  $V \subseteq M$  such that  $E \subseteq_r V$  and  $P \subseteq_r V$ . But  $E, P \subseteq_{rc} M$ , hence E = P = V.

### **Proposition 2.5:** M is an UR-closure R-module if and only if $\alpha_r = \beta_r$ .

**Proof:** First direction. Let  $\alpha_r = \beta_r$ , by Remark 2.2 (2) we have  $\beta_r$  is transitive. And hence  $\alpha_r$  is transitive. Then by Proposition 2.4, M is an UR-closure. Conversely, suppose M be an UR-closure. By Remark 2.2 (5), we have every  $\alpha_r$  is  $\beta_r$ . Now to prove every  $\beta_r$  is  $\alpha_r$ . For this, let F,  $F_1 \subseteq M$  such that F  $\beta_r F_1$  then  $F \cap F_1 \subseteq_r F$  and  $F \cap F_1 \subseteq_r F_1$ . Let  $V_1, V_2 \subseteq_{rc} M$  such that  $F \subseteq_r V_1$  and  $F_1 \subseteq_r V_2$ , then  $F \cap F_1 \subseteq_r V_1$  and  $F \cap F_1 \subseteq_r V_2$ . But M is an UR-closure, then  $V_1 = V_2$ . Thus F  $\alpha_r F_1$  and hence  $\alpha_r = \beta_r$ .

**Proposition 2.6:** Let M and W be R-modules, and  $\theta: M \to W$  be a monomorphism. Then the following condition are holds:

- 1. If P  $\beta_r E$ , then  $\theta(P) \beta_r \theta(E)$  where P, E  $\subseteq$  M.
- 2. If P  $\beta_r E$ , then  $\theta^{-1}(P) \beta_r \theta^{-1}(E)$  where P,  $E \subseteq W$ .
- 3. If  $P \alpha_r E$ , then  $\theta(P) \alpha_r \theta(E)$  where  $P, E \subseteq M$ .
- 4. If P  $\alpha_r E$ , then  $\theta^{-1}(P) \alpha_r \theta^{-1}(E)$  where P, E  $\subseteq$  W.

**Proof:** (1) and (3) are clear by Lemma 2.10 [5]. (2) and (4) are clear by [6].

**Lemma 2.7:** [7] Let M be an R-module and  $V \subseteq_e M$  if and only if for any  $0 \neq c \in M$  there is  $c_1 \in R$  such that  $c_1 c \in V$ .

Now, the next proposition is equivalent to definition of RCS module.

**Proposition 2.8:** M is an RCS R –module if and only if, for any  $S \subseteq M$  there is  $S_1 \subseteq_{\bigoplus} M$  such that  $S \alpha_r S_1$ .

**Proof:** Let S a submodule of an RCS module M. Then there is  $S_1 \subseteq_{\bigoplus} M$  such that  $S \subseteq_r S_1$ , but  $S_1 \subseteq_r S_1$ . Hence S  $\alpha_r S_1$ .

Conversely, let  $S \subseteq M$  then by hypothesis there is  $S_1 \subseteq_{\bigoplus} M$  such that  $S \alpha_r S_1$ , this means there is  $V \subseteq M$  such that  $S \subseteq_r V$  and  $S_1 \subseteq_r V$ . Now we prove that  $V \subseteq_{\bigoplus} M$ , since  $S_1 \subseteq_{\bigoplus} M$ , then  $S_1 + E = M$  for some  $E \subseteq M$ . But  $M = S_1 + E \subseteq V + E$ , hence V + E = M. Now, let  $0 \neq a \in V \cap E$ , then  $a \in V$  and  $a \in E$ . Since  $S_1 \subseteq_r V$  then  $S_1 \subseteq_e V$ , so by Lemma 2.7 there is  $r \in R$  such that  $ra \in S_1$  but  $ra \in E$ . Hence  $ra \in S_1 \cap E$  which is a contradiction since  $S_1 \subseteq_{\bigoplus} M$ . So  $V \cap E = 0$  this means  $V \subseteq_{\bigoplus} M$  such that  $S \subseteq_r V$ .

# 3. *G*-Rationally extending modules

**Definition 3.1:** If any submodule W of an R-module M there is  $D \subseteq_{\bigoplus} M$  such that W  $\beta_r D$ , then M is named by Goldie Rationally extending module (symbolize by *G*-RCS module).

A ring R is called a *G*-RCS module, if R is *G*-RCS module R-module.

**Proposition 3.2:** M is a *G*-RCS R-module if and only if for each  $W \subseteq_{rc} M$  there is  $W_1 \subseteq_{\bigoplus} M$  such that  $W \beta_r W_1$ .

**Proof:** Assume that M is a *G*-RCS and let  $C \subseteq M$ , there is  $W \subseteq_{rc} M$  such that  $C \subseteq_r W$  by [2], and by hypothesis there is  $W_1 \subseteq_{\oplus} M$  such that  $W \beta_r W_1$ . Since  $C = C \cap W \subseteq_r W$  and  $C \subseteq_r C$ , then  $C \beta_r W$ . But a relation  $\beta_r$  is transitive. So, we have  $C \beta_r W_1$  and hence M is a *G*-RCS. Conversely, let  $W \subseteq_{rc} M$  and by definition of *G*-RCS module, there is  $W_1 \subseteq_{\oplus} M$  such that  $W \beta_r W_1$ .

**Proposition 3.3:** An R-module M is *G*-RCS if and only if for any  $W \subseteq M$  there are  $Y \subseteq M$  and  $V \subseteq_{\bigoplus} M$  such that  $Y \subseteq_r W$  and  $Y \subseteq_r V$ .

**Proof:** Let  $W \subseteq M$  and by definition of *G*-RCS module, there is  $Y_1 \subseteq_{\bigoplus} M$  such that  $W \beta_r Y_1$  ( $W \cap Y_1 \subseteq_r W$  and  $W \cap Y_1 \subseteq_r Y_1$ ). Take  $W \cap Y_1 = Y$ , so  $Y \subseteq_r W$  and  $Y \subseteq_r Y_1$ .

Conversely, let  $W \subseteq M$  then by hypothesis there is  $Y \subseteq M$  and  $Y_1 \subseteq_{\bigoplus} M$  such that  $Y \subseteq_r W$ and  $Y \subseteq_r Y_1$ . Since  $Y \subseteq W \cap Y_1 \subseteq W$ , then  $W \cap Y_1 \subseteq_r W$ . And  $Y \subseteq W \cap Y_1 \subseteq Y_1$ , then  $W \cap Y_1 \subseteq_r Y_1$ . Hence M is a *G*-RCS.  $\Box$ 

### **Remarks and Examples 3.4:**

1. Any *G*-RCS module is a *G*-CS module. The opposite is not necessarily true in general. For example, let  $M = Z_4$  as Z-module is a *G*-CS, since it is extending, but it is not a *G*-RCS, since  $\langle \overline{2} \rangle \subseteq M$  and the direct summand of M are  $M \subseteq_{\bigoplus} M$  and  $\langle \overline{0} \rangle \subseteq_{\bigoplus} M$  but  $\langle \overline{2} \rangle \cap M \not\subseteq_r M$  and  $\langle \overline{2} \rangle \cap \langle \overline{0} \rangle \not\subseteq_r \langle \overline{2} \rangle$ .

2. Any RCS module is a *G*-CS. The opposite is not necessarily true in general. For example, let  $M=Z_{25}$  as Z-module is a *G*-CS since it is CS, but it is not an RCS module, since  $\langle \bar{5} \rangle \subseteq_{rc} M$  but  $\langle \bar{5} \rangle$  is not summand of M.

3. Every RCS module is *G*-RCS module.

4. Every monoform module is a *G*-RCS module, in fact every monoform is an RCS module. But the opposite is not necessarily true in general. For example, let  $M = Z_{30}$  as Z-module, M is a *G*-RCS module (since it is RCS), but M is not monoform (Since  $\langle \overline{2} \rangle \subseteq M$  But  $\langle \overline{2} \rangle \not\subseteq_r M$  since  $\langle \overline{2} \rangle$  is not essential in M.

5. Every semisimple module is G-RCS module (since every semisimple is RCS). The opposite is not necessarily true in general. For example, Z as Z-module.

6. Each integral domain is a *G*-RCS module.

Proof: Let  $0 \neq I$  be an ideal of an integral domain R. Let  $0 \neq c \in R$  and  $0 \neq b \in R$  for any  $0 \neq a \in I$ ,  $ca \in I$  and  $cb \neq 0$ , also  $ba \neq 0$  (since if ba = 0 with R has no zero divisor elements, then a = 0 is contradiction as  $0 \neq a$ ). So, we have  $I \subseteq_r R$ , then R is a monoform and by (4) R is a *G*-RCS module.  $\Box$ 

Rationally extending  $\implies$  Extending  $\Downarrow$   $\Downarrow$   $\Downarrow$ *G*-Rationally extending  $\implies$  *G*-extending

Proposition 3.5: If M is a *G*-RCS module and UR-closure, then M is RCS.

**Proof**: Suppose that M be a *G*-RCS. And let  $W \subseteq M$  then there is  $W_1 \subseteq_{\bigoplus} M$  such that  $W \beta_r W_1$ . But M is UR-closure then by Proposition 2.5  $\beta_r = \alpha_r$ . So, for any  $W \subseteq M$  then there is  $W_1 \subseteq_{\bigoplus} M$  such that  $W \alpha_r W_1$ . Then by Proposition 2.8 we have M is an RCS a module.  $\Box$ 

**Proposition 3.6:** If an indecomposable R-module M be a G-RCS, then M is a monoform module.

**Proof:** Assume that M is a *G*-RCS, and let  $0 \neq W \subseteq M$  then there is  $W_1 \subseteq_{\bigoplus} M$  such that  $W \beta_r W_1$ . That's mean  $W \cap W_1 \subseteq_r W$  and  $W \cap W_1 \subseteq_r W_1$ , but M is an indecomposable then either  $W_1 = 0$  or  $W_1 = M$ . If  $W_1 = 0$ , then  $< 0 > \subseteq_r W$  is a contradiction. So,  $W_1 = M$  and  $W \subseteq_r M$  ( $W = W \cap W_1 = W \cap M \subseteq_r W_1 = M$ ). Hence, M is a monoform module.  $\Box$ 

Corollary 3.7: In an indecomposable R-module M, the following statement are equivalent:

- 1. An R-module M is an RCS module;
- 2. An R-moduleM is a *G*-RCS module;
- 3. An R-module M is a monoform module.

The following condition is necessarily to make a submodule of *G*-RCS module is a *G*-RCS:

(1#): Let  $J \subseteq M$ , if  $J \cap J_1 \subseteq_{\bigoplus} J$  for each  $J_1 \subseteq_{\bigoplus} M$ . Then we say that M has condition (1#).

**Proposition 3.8:** Let  $W_1 \subseteq M$  and M be a *G*-RCS R-module. If  $W_1$  satisfies the condition (1#), then  $W_1$  is *G*-RCS module.

**Proof:** Let  $B \subseteq W_1$  and M is  $\mathcal{G}$ -RCS, then there is  $W \subseteq_{\bigoplus} M$  such that  $B \beta_r W$ . So, we have  $B \cap W \subseteq_r B$ ,  $B \cap W \subseteq_r W$  and by condition (1#) we have  $W \cap W_1 \subseteq_{\bigoplus} W_1$ . Then by [1] we obtain  $B \cap (W \cap W_1) = (B \cap W) \cap W_1 \subseteq_r B \cap W_1 = B$ , and  $B \cap (W \cap W_1) = (B \cap W) \cap W_1 \subseteq_r W \cap W_1$ . Then  $B \beta_r (W \cap W_1)$  and hence  $W_1$  is  $\mathcal{G}$ -RCS module.  $\Box$ 

(2#): Let J be a summand of M, if  $J \cap J_1 \subseteq_{\bigoplus} J$  for each  $J_1 \subseteq_{\bigoplus} M$ . Then we say that M has condition (2#).

**Corollary 3.9:** Let  $M = N_1 \bigoplus N_2$  be *G*-RCS module where  $N_1, N_2 \subseteq M$  and M has a condition (2#), then  $N_1$  is *G*-RCS module.

It is well known where M be an R-module and  $W \subseteq M$ , then W is called fully invariant if  $f(W) \subseteq W$  for each endomorphism f of M [8]. Moreover, a module M is called duo, if any  $L \subseteq M$  is fully invariant [9]. Furthermore,  $H \subseteq M$  is a distributive submodule, if for any  $V_1, V \subseteq M, H \cap (V_1 + V) = (H \cap V_1) + (H \cap V)$ . And if all submodule is distributive, then M is called a distributive module [10].

**Proposition 3.10:** Let W be a fully invariant submodule of an R-module M. If M is a *G*-RCS module, then W is *G*-RCS module.

**Proof:** Let M be a *G*-RCS and  $V_1 \subseteq W \subseteq M$ , then there is A,  $A_1 \subseteq_{\bigoplus} M$  such that  $V_1 \beta_r A$ . Then the projection map  $\pi_1: M \to A$ ,  $\pi_2: M \to A_1$ . For each  $y \in W$ , y = a + b where  $a \in A$  and  $b \in A_1$ , so  $\pi_1(y) = a$  and  $\pi_2(y) = b$ . Since W is a fully invariant and  $\tau_{1o} \pi_1 \in End(M)$  hence  $a = \pi_1(y) = \tau_{1o} \pi_1(y) \in \tau_{1o} \pi_1(M) \cap W$ , that is  $a \in \pi_1(M) \cap W$ , where  $\tau_1: A \to M$  is an inclusion map. And by the same way of  $a \in \pi_1(M) \cap W$ , we have  $b \in \pi_2(M) \cap W$ . Therefore,  $y = a + b \in (\pi_1(M) \cap W) \oplus (\pi_2(M) \cap W)$ , and hence  $W = (A \cap W) \oplus (A_1 \cap W)$ . Since  $V_1 \beta_r A$ , then with the same few steps of Proposition 3.8 we have  $V_1 \beta_r (A \cap W)$  and  $A \cap W \subseteq_{\bigoplus} W$ . Hence W is a *G*-RCS module.  $\Box$ 

**Proposition 3.11:** Let W be a distributive submodule of an R-module M. If M is a *G*-RCS module, then W is a *G*-RCS module.

**Proof:** Assume that M is *G*-RCS module and let  $E \subseteq W \subseteq M$ . Then there is  $B \subseteq_{\bigoplus} M$  such that  $E \beta_r B$  and for some  $B_1 \subseteq M$ ,  $M = B \bigoplus B_1$ . But *W* is a distributive then  $W = (B \cap W) \bigoplus (B_1 \cap W)$ . Hence W satisfy (condition 1#). So, we have  $E \beta_r (B \cap W)$ ,  $(E \cap (B \cap W) = (E \cap B) \cap W \subseteq_r E \cap W$ , and  $E \cap (B \cap W) = (E \cap B) \cap W \subseteq_r B \cap W$ ). Then W is a *G*-RCS-module.

**Corollary 3.12:** If an R-module M is distributive (or duo) and  $\mathcal{G}$ -RCS, then any W  $\subseteq$  M is a  $\mathcal{G}$ -RCS module.

Recall that, in an R-module M. If for any  $W \subseteq M$  there is an ideal U of R such that W = UM, then M is called a multiplication, [11].

**Corollary 3.13:** If an R-module M is a multiplication and  $\mathcal{G}$ -RCS, then any W  $\subseteq$  M is a  $\mathcal{G}$ -RCS module.

The that result that showing the class of G-RCS module is an isomorphic property has been proved in the following proposition:

**Proposition 3.14:** Let  $M \cong M_1$  and a module M is *G*-RCS, then  $M_1$  is a *G*-RCS module.

Recall that,  $Z(M) = \{a \in M | La = 0; \text{ for some essential ideal } L \text{ of } R\}$  is singular submodule of a module M. If Z(M) = M, then M is a singular module and if Z(M) = 0, then M is non-singular module, [12].

**Theorem 3.15:** Let M be a non-singular R-module. Then the following statements are equivalent:

- 1. M is a *G*-CS module;
- 2. M is a *G*-RCS module;
- 3. M is an RCS module;
- 4. M is an extending module.

An R-module M has a rat-closed property, if  $V_1 \cap V_2 \subseteq_{rc} M$  when  $V_1, V_2 \subseteq_{rc} M$ .

**Proposition 3.16:** Let an R-module M be a *G*-RCS. If M is an UR-closure module, then M has the rat-closed property also has condition 2#.

**Proof:** Suppose that M is an UR-closure module, then by Proposition 3.5, M is an RCS. Let W and  $V_1 \subseteq_{\bigoplus} M$ , so by [2], we have W and  $V_1$  are RCS modules. Since  $W \cap V_1 \subseteq W$ , there is  $V \subseteq_{\bigoplus} W$  such that  $W \cap V_1 \subseteq_r V$ . And  $W \cap V_1 \subseteq_r B$  for some  $B \subseteq_{\bigoplus} V_1$ . Then  $W \cap V_1 \subseteq_r V \subseteq_{rc} W$  and  $W \cap V_1 \subseteq_r B \subseteq_{rc} V_1$ , so V and B are rat-closures of  $W \cap V_1$ , but M is an UR-closure then V = B. Then we have  $V = B \subseteq W \cap V_1$ , and hence  $V = B = W \cap V_1$ . But V,  $B \subseteq_{\bigoplus} M$ , then M has a condition 2#. And by (every direct summand is rat-closed), then we have  $W, V_1 \subseteq_{rc} M$  and  $V, B \subseteq_{rc} M$ . So,  $V = B = W \cap V_1$  is a rat-closed of M. Hence, M has a rat-closed property.  $\Box$ 

#### 4. The direct sum of *G* -RCS module

In this section, we will study the direct sum of  $\mathcal{G}$ -RCS module.

The direct sum of *G*-RCS module need not be a *G*-RCS, by the following example below:

**Example 4.1:** We know that Z is an integral domain, then Z[x] is an integral domain. By **Remarks 3.4,** (6), Z[x] is *G*-RCS. But  $M = Z[x] \oplus Z[x]$  as Z[x] is not a *G*-RCS, since is not a *G*-CS, [3].

Now we take a condition to make the direct sum of a G-RCS to be G-RCS. Firstly, we need to define a new concept which named an Rat-direct sum.

**Definition 4.2:** Let M be an R-module and  $\{X_{\rho}\}, \{Y_{\rho}\}$  be collections of submodules of M. If for any  $\rho$ ,  $X_{\rho} \subseteq_{r} Y_{\rho}$  and  $\bigoplus X_{\rho} \subseteq_{r} \bigoplus Y_{\rho}$ , then M is called an Rat-direct sum.

**Lemma 4.3:** If  $X_{\rho}\beta_{r}Y_{\rho}$  of  $M_{\rho}$  for any  $\rho \in \Lambda$  where  $\{M_{\rho}: \rho \in \Lambda\}$  be a family of an Rat-direct sum modules, then  $(\bigoplus X_{\rho})\beta_{r}(\bigoplus Y_{\rho})$ ,

**Proof:** Assume that  $X_{\rho} \beta_r Y_{\rho}$  of module  $M_{\rho}$  for any  $\rho \in \Lambda$ . Then  $(X_{\rho} \cap Y_{\rho}) \subseteq_r X_{\rho}$  and  $(X_{\rho} \cap Y_{\rho}) \subseteq_r Y_{\rho}$  for any  $\rho \in \Lambda$ . But  $M_{\rho}$  is an Rat-direct sum, then  $\bigoplus (X_{\rho} \cap Y_{\rho}) \subseteq_r \bigoplus X_{\rho}$  and  $\bigoplus (X_{\rho} \cap Y_{\rho}) \subseteq_r \bigoplus Y_{\rho}$ , then  $(\bigoplus X_{\rho}) \cap (\bigoplus Y_{\rho}) \subseteq_r \bigoplus X_{\rho}$  and  $(\bigoplus X_{\rho}) \cap (\bigoplus Y_{\rho}) \subseteq_r \bigoplus Y_{\rho}$ . Hence  $(\bigoplus X_{\rho})\beta_r(\bigoplus Y_{\rho})$ .

**Proposition 4.4:** Let  $W_1$  and  $W_2$  be modules such that  $M = W_1 \bigoplus W_2$  be a duo Rat-direct sum R-module. Then  $W_1$  and  $W_2$  are *G*-RCS if and only if M is a *G*-RCS.

**Proof:** Let M be a *G*-RCS, so by Corollary 3.12  $W_1$  and  $W_2$  are *G*-RCS. Conversely, assume that  $W_1$  and  $W_2$  are *G*-RCS and  $P \subseteq M$ . But  $M = W_1 \bigoplus W_2$  is a duo module so by [9], we have  $P = (P \cap W_1) \bigoplus (P \cap W_2)$ . Since  $W_i$  is *G*-RCS for (i = 1,2), and  $P \cap W_i \subseteq W_i$ , then there is  $V_i \subseteq_{\bigoplus} W_i$  such that  $(P \cap W_i) \beta_r V_i$ . Then by Lemma 4.3, we obtain  $P = (P \cap W_1) \bigoplus (P \cap W_2)\beta_r(V_1 \bigoplus V_2)$ . Since M is an Rat-direct sum, therefore,  $V_1 \bigoplus V_2 \subseteq_{\bigoplus} M$ . Hence M is a *G*-RCS.  $\Box$ 

**Proposition 4.5:** Let  $W_1$  and  $W_2$  be modules such that  $M = W_1 \bigoplus W_2$  be a distributive Ratdirect sum R-module. Then M is a *G*-RCS if and only if  $W_1$  and  $W_2$  are *G*-RCS.

**Proof**: Let M be a *G*-RCS, then by Corollary 3.12  $W_1$  and  $W_2$  are *G*-RCS. Conversely, assume that  $W_1$  and  $W_2$  are *G*-RCS and  $P \subseteq M$ , then  $P = P \cap M = P \cap (W_1 \bigoplus W_2)$ , since M is a disteibutive module. By a similar steps of Proposition 4.4, we have M is a *G*-RCS module.

**Proposition 4.6:** Let  $W_1$  and  $W_2$  be modules such that  $M = W_1 \bigoplus W_2$  be a Rat-direct sum Rmodule and  $\operatorname{ann}(W_1) + \operatorname{ann}(W_2) = R$ . If  $W_1$  and  $W_2$  are *G*-RCS, then M is a -RCS module. **Proof:** Let  $0 \neq P \subseteq M$ , since  $\operatorname{ann}(W_1) + \operatorname{ann}(W_2) = R$ , then by [13], we obtain  $P = X \bigoplus Y$ , where  $X \subseteq W_1$  and  $Y \subseteq W_2$ . But  $P \neq 0$  then we have three cases:

Case 1, if X = 0 and  $Y \neq \overline{0}$ , then  $P = Y \subseteq W_2$ . But  $W_2$  is *G*-RCS module, then there is  $V \subseteq_{\bigoplus} W_2$  such that  $P\beta_r V$ . So,  $V \subseteq_{\bigoplus} M$ .

Case 2, if  $X \neq 0$  and Y = 0, then we get by same way of Case 1, that  $J \subseteq_{\bigoplus} W_1$  such that  $P \beta_r J$ , then  $J \subseteq_{\bigoplus} M$ .

Case 3, if  $X \neq 0$  and  $Y \neq 0$ , then there is  $S \subseteq_{\bigoplus} W_1$  and  $F \subseteq_{\bigoplus} W_2$ , such that  $X \beta_r S$  and  $Y \beta_r F$ . But M is a Rat-direct sum, then by Lemma 4.3 we have  $P = (X \bigoplus Y)\beta_r (S \bigoplus F)$  and  $(S \bigoplus F) \subseteq_{\bigoplus} M$  such that  $P \beta_r (S \bigoplus F)$ .

Then by Cases 1, 2 and 3 M is a -RCS module.

**Proposition 4.7:** Let  $M = \bigoplus_{j \in J} W_j$  and every Rat-closed submodule is fully invariant. If  $W_j$  is a *G*-RCS module for any  $j \in J$ , then M is a *G*-RCS module.

**Proof:** Let  $P \subseteq_{rc} M$ , then P is a fully invariant of M. So, by [9], we have  $P = \bigoplus (P \cap W_j)$ since  $(P \cap W_j) \subseteq_{rc} P$ , so by [6], we obtain  $(P \cap W_j) \subseteq_{rc} M$  then  $(P \cap W_j) \subseteq_{rc} W_j$ . But  $W_j$  for any  $j \in J$  is *G*-RCS module, then there is  $V_j \subseteq_{\bigoplus} W_j$  such that  $(P \cap W_j)\beta_r V_j$ ,  $((P \cap W_j) \cap$  $V_j \subseteq_r (P \cap W_j)$  and  $(P \cap W_j) \cap V_j \subseteq_r V_j$ ). Take  $V = \bigoplus V_j \subseteq_{\bigoplus} M$ . But by Lemma 4.3,  $\bigoplus (P \cap W_j)\beta_r (\bigoplus V_j)$ . Then M is a *G*-RCS module.  $\Box$ 

## **5.** Conclusions

Through this paper, we reached to the following conclusions: any RCS module is a G-RCS module. And any G-RCS is a G-CS. So, we have any RCS module is a G-CS. And a summand

of G-RCS need not be a G-RCS. And a direct sum of G-RCS need not be a G-RCS, and we add a condition to make a direct sum of G-RCS is -RCS.

#### 6. Acknowledgement

The authors would like to thank Al- Mustansiriyah University (www.uomustansiriyah.edu.iq), Baghdad- Iraq for its support in the present work.

### References

- [1] K. R. Goodearl, "*Ring Theory: Non-Singular Rings And Modules*", Marcel Dekker, INC. New York and Basel, 1976.
- [2] M. S. Abbas and M. A. Ahmed, "Rationally Extending Modules and Strongly Quasi-Monoform Modules" *Al-Mustansiriyah J. Sci.*, vol. 22, no. 3, pp. 31-38, 2011.
- [3] E. Akalan, G. F. Birkenmeier and A. Tercan, "*G*-extending Modules" *Communications in Algebra*, vol. 37, pp. 663-683, 2009.
- [4] Zahraa M. Abd Al-Majeed and Mahdi Saleh Nayef, "On Supplement Rationally-Extending Modules" (ICAPAST(2021), published Online in *AIP Conf. Proc.* 2398,pp.060073-1—060073-8 (2022); https://doi.org/10.1063/5.0093715.
- [5] Z. A. Fadel and Mahdi Saleh Nayef, "On WS-Rationally Extending Modules" (IICEAT, *AIP Conference proceedings*, ISSN:0094-243X, 1551-7616) (to appear).
- [6] Mahdi Saleh Nayef ,"Rational Extensions And Injectivity " Ph. D. University of Mustansiriya, 2015.
- [7] F. Kasch, Modules and Rings, Acad. Press INC, London ,1982.
- [8] R, Wisbauer, "Foundations of Modules and Rings Theory", reading, Gordon and Breach, 1991.
- [9] Ozcan, A.C., Harmanci, A. and Smith, P.F., "Duo Modules", *Glasgow math. J*, pp. 533-545, 2006.
- [10] Y. Zhou and M. Ziembowski, "Distributive Modules and Armendariz Modules", J. Math. Soc. Japan, vol. 67, no. 2, pp. 789-796. 2015.
- [11] Barnard, A, "Multiplication Modules", J. Algebra, vol. 71, pp. 174-178, 1981.
- [12] N. V. Dung, D.V. Huynh, P. F. Smith and R. Wisbauer, "*Extending Modules*", *Pitman Research Notes in Math. Series*, 313, 1994.
- [13] M. S. Abbas "On fully Stable Modules" Ph. D. Thesis, College of science, University of Baghdad, 1991.