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Abstract

The research deals with an evolutionary-based mutation with functional annotation
to identify protein complexes within PPI networks. An important field of research in
computational biology is the difficult and fundamental challenge of revealing
complexes in protein interaction networks. The complex detection models that have
been developed to tackle challenges are mostly dependent on topological properties
and rarely use the biological properties of PPI networks. This research aims to push
the evolutionary algorithm to its maximum by employing gene ontology (GO) to
communicate across proteins based on biological information similarity for direct
genes. The outcomes show that the suggested method can be utilized to improve the
predictability of the complexes identified. The GO functional annotation of proteins
as a heuristic guide is injected into the framework of single-objective evolutionary
algorithms (EAs), while the complex detection community score (CS) model works
as a fitness function in EAs. In the experiments, we analyzed the performance of our
proposed algorithm when applied to the publicly accessible yeast protein networks.
The results show a considerable improvement in the detection ability of complexes in
the PPI network.

Keywords: Complex detection, evolutionary algorithm, protein complexes, gene
ontology, functional annotation.
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1. Introduction

One of the subjects that has received a lot of attention recently is biological network analysis,
which has also provided a lot of valuable and detailed data that defines specific interactions
among cells’ many components. However, this data needs to be formatted correctly to be useful.
In the field of collaboration between computer scientists and biologists, biological networks of
protein-protein interactions (PPIs) are one of the current trends that have been accepted. These
particular forms of biological networks are utilized for modeling and simplification [1], [2], [3],
and [4]. Recently, several approaches have been used to entirely visualize biological networks.
They collect pertinent data from these networks to give a thorough understanding of the intricate
biological processes that take place inside the cell, helping us to comprehend its behavior and
development on a biological level [5].

One of the main challenges facing scientific research on biological networks is complex
detection in PPI networks, and as a result, there is competition to develop effective algorithms
that accurately predict the structure of these networks. An overview of the key techniques has
been provided, organized, and debated. The most notable ones that show remarkable
performance against other competing methods are population-based random search algorithms
[6]. Complex discovery in PPI networks has been the subject of extensive research [7] and [8].
Proteins can collaborate with one another to carry out the same biological function, or they can
be involved in specific biological functions [9].

In general, a set of genes, whose number varies depending on the protein, make up each
protein. In a protein network, functionally similar genes are tightly associated with one another,
and in the case of a disruption, these interacting proteins may cause the same process or disease
phenotype [10] and [11]. Gene ontology (GO) is a structured method for classifying genes based
on their various properties, such as their functions; each gene is given a specific code in this
system. According to their biological characteristics, the information regarding gene function
is separated into three groups in the GO structure [12].

A new method for complex discovery in PPI networks based on evolutionary algorithms
(EASs) is put forth in this paper. This suggested approach uses EA with a topology-based fitness
function to extract complexes along with heuristically based mutations, where functional
annotation acquired from GO to indicate connections between proteins based on their biological
information similarity is the key guide for evolving useful solutions. An experimental
evaluation has been offered based on some well-known validation metrics. Additionally,
comparisons between the main EA's results and those returned by the EA with heuristically
based mutations have been made.

2. Previous work to determine the complexes in PPI networks

For the objective of extracting complexes from PPINSs, various clustering techniques have
been tested, analyzed, and developed in the literature (such as population-based stochastic
search (PS), cost-based local search (CL), etc.). In the typical form of PPI networks, edges are
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used to describe the interactions between proteins, i.e., connecting the appropriate nodes,
whereas nodes are used to represent the proteins. According to this illustration, protein
complexes resemble dense protein clusters in which proteins interact with each other more than
the rest of the network. Finding dense regions in PPINs has been thought to be possible through
the detection of protein clusters. In [6], certain early methods were discussed and classified into
five distinct classes according to various topology-based fitness functions. Population-based
stochastic search (PS) is the most promising class with an exceptional result, in which the
genetic algorithm (GA) is the base method for most developed algorithms that have been
applied to PPINs.

In another study, [13] proposed the genetic algorithm GA-PPI-Net and then compared it
with three clustering methods for population discovery (MCL, RNSC, and Cluster). In
computational tests, the GA-PPI-Net genetic algorithm achieved excellent results for
discovering complexes from the PPI network. Recently, [14] has also proposed a new heuristic
approach named "locally assisted heuristic," considering the topology, which is premised on
actual protein interaction and the concept of protein pairing to characterize the search space.
The main idea is to classify each pair of proteins with respect to their topological similarities
into two classes: intra-delineation pairs and inter-delineation pairs. Two proteins with high
sequence similarities are likely to form an intra-delineation structure; otherwise, they can form
an inter-delineation pair. The influence of this approach on improving the ability of multiple
existing optimization models in single and multi-objective EAs has thoroughly been studied to
detect complexes in PPI networks.

3. Individual representation and phenotype

The individual is represented in the form of an array with a length equal to the number of
proteins in the network. The protein number is an index of the array, and the content represents
the protein number to which this protein is connected. Figure 1 shows that the first place of the
array (individual) includes the number 3, indicating that the first protein is linked to the third,
and that the second position contains the number 6, indicating that the second protein is linked
to the sixth. We can save information about a protein's location in any existing cluster
(phenotype). This information is represented as an array with a length equal to the number of
proteins in the network. Figure 2 shows that the third place of the array includes the number 1,
indicating that the third protein is inside the first cluster, and that the fourth place of the array
includes the number 3, indicating that the fourth protein is inside the third cluster.

individual
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Figure 1: individual representation
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Figure 2: Proteins' locations (phenotype)

4. EA with functional annotation based on mutations

EAs are strategies for dealing with NP-hard issues, which are those that cannot be resolved
quickly or require a long time to resolve. EAs have historically been utilized to resolve
challenging engineering optimization issues since their primary technique is analogous to
natural selection in that it constantly keeps the strong organs while eliminating the unfit ones
from subsequent generations. EAs basically partition the search space of an optimization
problem F(X) into a collection of solutions, which is indicated Q and denoted as the search
space size, while |Q2|€ N denotes the number of candidate solutions. The evolution job is often
applied to a population of individuals, or P?#, with a size of pz, where pz € N and
PP? =(Py, P,, ..., By;), that is randomly generated. Each individual P is the genotype
representation of its matching phenotype X Figure 2; the individual representation is shown in
Figure 1, and these phenotypes are assessed using a fitness (objective) function that yields
values used to explore various regions of the search space.

In this study, the community score (CS), an optimization problem, is utilized as a metric to
assess each cluster's edge density in relation to its size. In other words, CS offers a method of
partitioning that considers the edge density of each cluster in relation to its size. CS is described
in Equation (1) as a maximizing problem, max F (X) to assess a candidate solution P, where P
is a collection of ¢y, c5, ..., ¢; clusters, and | is the number of clusters in P.

max CS(X) = ﬁzl (2*vi)2 1)

Ci

Where C; is the cluster's cardinality and v; is the number of internal edges for the cluster c;.
The purpose of the CS model in EA is to measure the effectiveness of solutions in order to get
results that gauge how robust these solutions are at resolving challenging detection problems.
Based on these outcomes, EA behavior is geared towards improving the likelihood that good
individuals will be present in upcoming generations. As a result, population #; is subjected to
a set of procedures collectively referred to as population transformation to produce a new
population P, ;, where g is the generation index. The existing population is first filtered using
tournament selection (S), which transfers the good solutions into a mating pool while
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maintaining the same population size. Then, uniform crossover (C) with P. probability is used
to maintain the diversity of the solutions. Lastly, to boost gene variation and to make sure that
the population won't settle into a local optimum, the mutation (M) operator is applied with B,
probability. All nominee solutions in 2, are passed through these consecutive operators. Lastly,
populations continue to alter throughout each generation up to the maximum number of
generations, and * should have the near-optimal solution P* = [p3,p3, ..., pn] [15].

5. EA mutation-based GO

In this study, we modified the population genes (proteins) using the GO functional
annotation of proteins as a heuristic guide. So, we gave it the name “mutation-based GO.” In
order to improve the individual's quality, as indicated in Algorithm 1, our suggested complex
detection technique combines the entire EA procedure with the protein functional annotation
interfered with in the mutation operation. Traditionally, a direct set of genes is used to
functionally represent each protein. As shown in Figure 3, these genes are divided into three
groups by the gene ontology: molecular function (MF), cellular component (CC), and biological
process (BP). Then, using this protein's characteristics, a symmetric matrix M of dimension
N X N has been created, with the entries of the matrix being values derived from the functional
biological data of GO, which provides the intensity (ratio) of proteins' interactions.

Individual
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G0:0008541 | GO:0043248 G0:0060090 | GO:0005634

Figure 3: Proteins’ direct genes GO data

The proteins' index is used to label the rows and columns of the matrix M, which contains
values between 0 and 1. Both entries (i,j) and (j, i) are given the same value if the proteins i
and j interact topologically with one another. The power of the similarity scale among proteins
with regard to the three gene ontology classes is therefore the foundation of our novel
methodology. We used the well-known Jaccard similarity (JS), as shown in Eg. (2)., to
determine the degree of similarity between proteins i and j.

JSGi)) = g @

Where GD; and GD; represent the set of genes (direct) of proteins i and j, respectively. As a
result, when any of the proteins involved in an individual P, (k € {1, ..., ps} undergo a
mutation, algorithm 1 determines whether to move the protein p;, (i € {1, ..., N}) from its
current complex to one of the other complexes or keep it in the current complex. Eq. (3) is the
sum of the values in M conforming to the intersection of the protein p; , with the proteins that
are topologically linked to it in the candidate complex.
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Smy, = z M@k » Pink) 3)
in={inco}
Where inco are the proteins' indexes, which are situated in the candidate complex and have
a direct connection to the protein p; ;. Calculate the sum of the values in M conforming to the
intersection of the protein p;;, with the proteins that are topologically linked to it in the
candidate complex using Eq. (4).

SMmoy = z M(pi,k 'po,k)

o={outco}

(4)

Where outco are the proteins' indexes, which are directly related to proteins and are situated
outside of the candidate complex.
Algorithm 1 :mutation
Input: P, pp,, M
Output: new individual P*
1 for i = 1 to length individual P

2 if (rand < p,,)

3 Compute Sm;,, & Sm,,,; for current complex that has pi; // used Eq.
(3) & Eq. (4)

4 If Smy, <Smyy:

5 compute dif froig = Smin - SMoyt ;

6 new complex = current complex;

7 For each other complexes ¢ in P

8 Compute dif fryew = SMip - SMyys;

9 If diffrnew > diffrold

10 dif froia = dif frnew;

11 new complex = complex c;

12 end

13 end

14 end

15 new_complex(p;) = new complex;

16 for each protein directly connected with pi and placed in new
complex

17 ’ Protein Number that connected with p; = Protein Number

that has Max M(pi,protein number connected with pi );

18 end

19 end

20 end

21 return P*;

6. Results and Discussion

In order to enhance the quality of solutions and the overall efficiency of EA for resolving
the complex detection problem in PPI networks, a mutation-based heuristic guide that considers
the biological information in GO has been proposed in this study. As a result, we focused on
the CS model using the yeast network PP1_YD dataset [16] and [17]. This PPI network now
has 990 proteins and 4687 interactions. Our findings were compared with those of the 81
complexes that serve as the gold standard. Additionally, a comparison has been made between
the effectiveness of the standard EA and the effectiveness of our suggested approach.

Figure-4 findings (a), (b), (c), (d), (e), and (f) illustrate how the suggested technique
performs when compared to the EA for the PPI_YD network when the overlapping score (OS)
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threshold is changed from 0.1 to 0.8. This figure (Figure-4) makes it obvious that the suggested
EA's detection reliability is greater than that of the traditional EA in terms of recall, precision,
F-measure, RecN, PrecN, and Fn-measure. Because of our strategy of selecting the proper
complex at the time of the mutation, the protein is always positioned in a complex with other
proteins that are connected and have functions that are more similar to its own. While canonical
EA selects the complex at random, if the protein is linked to it, it is transferred to a random
complex. In the Figures (a, b, and c), the results of the recall, precision, and F-measure are in
close proximity to the canonical at the threshold of 0.1 and then begin to increase greatly with
the increase of the threshold, which means that the ratio of complexes matching between the
golden standard complexes and our results is greater than the canonical. In the Figures (d, e,
and f), the results of the RecN, PreN, and Fn-measure in our algorithm are better than the
Canonical, which means that the ratio of proteins matched between the golden standard
complexes and our results is greater than the Canonical.
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Figure 4. Comparison between the performance of Canonical and GO-mutation in CS model
in terms of (a) recall, (b) precision, (c) F-measure, (d) RecN, (e) PrecN and (f) Fn-measure)

In Figure-5 (a, d, e, and f), the results of Recall, RecN, PreN, and Fn-measure in our
algorithm are very close when Pm increases from 0.2 to 0.5. In Figures 2(b) and (c), the results
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of precision and F-measure in our algorithm are better when Pm increases from 0.2 to 0.5 than
the threshold of 0.1 to 0.55 and then begin to very nearly match with the increase of the
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Figure 5: Comparison between the performance of GO- mutation with Pm = 0.2 and GO-Based
with Pm = 0.5 in CS model in terms of (a) recall, (b) precision, (c) F-measure, (d) RecN, (e)
PrecN and (f) Fn-measure)

In Table 1, when Pm = 0.5 and the overlapping score (OS) is equal to 0.2, the research

results are compared with the findings of Abduljabbar et al. [18] using our proposed algorithm.
The findings show that our suggested algorithm works better than that of [18] in terms of recall,
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precision, and F-measure, which means that our system is better at figuring out the complexities
of PPI-YD networks.

Table 1: The performance comparison for the community score model on PP1_YD (in terms of
recall, precision, and F measure ) at OS = 0.2
Term PGO =0.5[18] Our proposed solution (Pm = 0.5)

Recall

Precision

F-measure

*PGO: the probability of the heuristic biological operator.

To explain the main idea of the intra- and inter-delineation pairs, in the following example
shown in Figure 6, the complex has eight proteins (blue circles) and three other proteins (red
circles) that are located outside of the complex. (a) A correct golden complex structure with 25
intraconnections (blue links) among 8 proteins and 5 interconnections (red links), with 3
external proteins that belong to other complexes. (b) A correct complex structure with only
intra-connections Protein names are shown as the protein's number in the complex structure. In
this research, Figure 7 (a) represents the original network, which contained 4687 interactions
(intra-delineation and inter-delineation pairs), whereas Figure 7(b) represents the network After
using the GO mutation algorithm for model CS on PPI D1, it was found to have 3725 intra-
complex interactions.

Figure 6: Intra-delineation and inter-delineation protein pairs and their role in defining the intra
and inter structure of a protein complex. (a) A correct golden complex structure. (b) A correct
complex structure.
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(@) (b)
Figure 7: (a) the original network and contained 4687 interactions, (b) After using the GO
mutation algorithm for model CS on PPl D1, it was found to have 3725 intra-complex
interactions.

For example, when comparing the canonical technique to our algorithm for detecting the
complexes and for the model (CS), we note that in the GO-mutation algorithm, it was able to
determine exactly Figure 8(a), the complexes No. 20, No. 33, No. 48, and No. 61. In the
canonical algorithm shown in Figure 8(b), Complex No. 20 is mixed with proteins in cluster
11, Complex No. 33 is mixed with proteins in cluster 22, Complex No. 48 is mixed with proteins
in cluster 3, and Complex No. 61 has been divided into two groups, the first in cluster 74 and
the second in cluster 75.

Note: In Figure 8 (a) and (b), we'll use a comment with two integers separated by a negative
sign. The number on the right is the original complex, while the cluster number for the GO
mutation or canonical is shown on the left.
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Figure 8: (a) PPl D1 and some complexes that are precisely detected using the GO-Based
algorithm for model CS, (b) PPI D1 and some overlapping or spread complexes using the
canonical algorithm for model CS.
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9. Conclusions

Complex discovery in protein interaction networks is a crucial research area in
computational biology because it enables us to better understand the typical and abnormal
molecular activities that take place in the complexes. We use topological information combined
with biological function to solve the complex detection problem. Based on similarities in bio-
functional informatics, the main contribution of this study is the introduction of biological data
about proteins into the evolutionary algorithm that used the CS model. As a result, the
functional annotation of proteins drawn from the gene ontology was used in this study to
investigate how to discover protein complexes by adding them into the mutation operation. EA
with GO-based mutations is the suggested technique for complex detection. Our algorithm has
proven efficient in optimizing better solutions than the traditional EA for the PP1_YD network
in the metrics of recall, precision, F-measure, RecN, PrecN, and Fn-measure.
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