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Abstract  

     The research deals with an evolutionary-based mutation with functional annotation 

to identify protein complexes within PPI networks. An important field of research in 

computational biology is the difficult and fundamental challenge of revealing 

complexes in protein interaction networks. The complex detection models that have 

been developed to tackle challenges are mostly dependent on topological properties 

and rarely use the biological properties of PPI networks. This research aims to push 

the evolutionary algorithm to its maximum by employing gene ontology (GO) to 

communicate across proteins based on biological information similarity for direct 

genes. The outcomes show that the suggested method can be utilized to improve the 

predictability of the complexes identified. The GO functional annotation of proteins 

as a heuristic guide is injected into the framework of single-objective evolutionary 

algorithms (EAs), while the complex detection community score (CS) model works 

as a fitness function in EAs. In the experiments, we analyzed the performance of our 

proposed algorithm when applied to the publicly accessible yeast protein networks. 

The results show a considerable improvement in the detection ability of complexes in 

the PPI network. 

 

Keywords: Complex detection, evolutionary algorithm, protein complexes, gene 

ontology, functional annotation. 
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البروتينية التفاعل   
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  الخلاصة 
الطفرة القائمة على الخوارزمية التطورية مع التوصيف الوظيفي لتحديد معقدات البروتين في  يتناول البحث        

(. أحد المجالات المهمة للبحث في علم الأحياء الحسابي هو التحدي الصعب  PPI)   شبكة التفاعل البروتينية 
المتمثل في الكشف عن المجمعات في شبكات تفاعل البروتين. تم تطوير نماذج الكشف المعقدة للتعامل مع  

لكنها تعتمد في الغالب على الخصائص الطوبولوجية ، ونادرًا ما    ، ة  الخصائص البيولوجي  تستعملالتحديات 
علم    استعمال لشبكات تفاعل البروتين. يهدف هذا البحث إلى دفع الخوارزمية التطورية إلى أقصى حد من خلال 
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( للتواصل عبر البروتينات بناءً على تشابه المعلومات البيولوجية للجينات المباشرة. تظهر  GOالوجود الجيني ) 
يمكن أنه  إمكان   استعمال   النتائج  لتحسين  المقترحة  التعليق  الطريقة  إدخال  يتم  المحددة.  بالمجمعات  التنبؤ  ية 

( ذات الهدف الواحد  ،  EAsكدليل إرشادي في إطار خوارزميات تطورية )   GOالتوضيحي الوظيفي للبروتينات 
في التجارب ، نقوم بتحليل    EAs( كوظيفة لياقة في . CSبينما يعمل نموذج درجة مجتمع الاكتشاف المعقد ) 

النتائج تحسينًا كبيرًا في قدرة   ظهرقترحة عند تطبيقها على شبكات بروتين الخميرة المتاحة. ت أداء الخوارزمية الم
 (.PPI)   الكشف عن المجمعات في شبكة

 
1. Introduction 

     One of the subjects that has received a lot of attention recently is biological network analysis, 

which has also provided a lot of valuable and detailed data that defines specific interactions 

among cells' many components. However, this data needs to be formatted correctly to be useful. 

In the field of collaboration between computer scientists and biologists, biological networks of 

protein-protein interactions (PPIs) are one of the current trends that have been accepted. These 

particular forms of biological networks are utilized for modeling and simplification [1], [2], [3], 

and [4]. Recently, several approaches have been used to entirely visualize biological networks. 

They collect pertinent data from these networks to give a thorough understanding of the intricate 

biological processes that take place inside the cell, helping us to comprehend its behavior and 

development on a biological level [5].  

 

     One of the main challenges facing scientific research on biological networks is complex 

detection in PPI networks, and as a result, there is competition to develop effective algorithms 

that accurately predict the structure of these networks. An overview of the key techniques has 

been provided, organized, and debated. The most notable ones that show remarkable 

performance against other competing methods are population-based random search algorithms 

[6]. Complex discovery in PPI networks has been the subject of extensive research [7] and [8]. 

Proteins can collaborate with one another to carry out the same biological function, or they can 

be involved in specific biological functions [9].  

 

     In general, a set of genes, whose number varies depending on the protein, make up each 

protein. In a protein network, functionally similar genes are tightly associated with one another, 

and in the case of a disruption, these interacting proteins may cause the same process or disease 

phenotype [10] and [11]. Gene ontology (GO) is a structured method for classifying genes based 

on their various properties, such as their functions; each gene is given a specific code in this 

system. According to their biological characteristics, the information regarding gene function 

is separated into three groups in the GO structure [12]. 

 

     A new method for complex discovery in PPI networks based on evolutionary algorithms 

(EAs) is put forth in this paper. This suggested approach uses EA with a topology-based fitness 

function to extract complexes along with heuristically based mutations, where functional 

annotation acquired from GO to indicate connections between proteins based on their biological 

information similarity is the key guide for evolving useful solutions. An experimental 

evaluation has been offered based on some well-known validation metrics. Additionally, 

comparisons between the main EA's results and those returned by the EA with heuristically 

based mutations have been made. 

 

2. Previous work to determine the complexes in PPI networks 

     For the objective of extracting complexes from PPINs, various clustering techniques have 

been tested, analyzed, and developed in the literature (such as population-based stochastic 

search (PS), cost-based local search (CL), etc.). In the typical form of PPI networks, edges are 
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used to describe the interactions between proteins, i.e., connecting the appropriate nodes, 

whereas nodes are used to represent the proteins. According to this illustration, protein 

complexes resemble dense protein clusters in which proteins interact with each other more than 

the rest of the network. Finding dense regions in PPINs has been thought to be possible through 

the detection of protein clusters. In [6], certain early methods were discussed and classified into 

five distinct classes according to various topology-based fitness functions. Population-based 

stochastic search (PS) is the most promising class with an exceptional result, in which the 

genetic algorithm (GA) is the base method for most developed algorithms that have been 

applied to PPINs.  

 

     In another study, [13] proposed the genetic algorithm GA-PPI-Net and then compared it 

with three clustering methods for population discovery (MCL, RNSC, and Cluster). In 

computational tests, the GA-PPI-Net genetic algorithm achieved excellent results for 

discovering complexes from the PPI network. Recently, [14] has also proposed a new heuristic 

approach named "locally assisted heuristic," considering the topology, which is premised on 

actual protein interaction and the concept of protein pairing to characterize the search space. 

The main idea is to classify each pair of proteins with respect to their topological similarities 

into two classes: intra-delineation pairs and inter-delineation pairs. Two proteins with high 

sequence similarities are likely to form an intra-delineation structure; otherwise, they can form 

an inter-delineation pair. The influence of this approach on improving the ability of multiple 

existing optimization models in single and multi-objective EAs has thoroughly been studied to 

detect complexes in PPI networks. 

 

3. Individual representation and phenotype 

     The individual is represented in the form of an array with a length equal to the number of 

proteins in the network. The protein number is an index of the array, and the content represents 

the protein number to which this protein is connected. Figure 1 shows that the first place of the 

array (individual) includes the number 3, indicating that the first protein is linked to the third, 

and that the second position contains the number 6, indicating that the second protein is linked 

to the sixth. We can save information about a protein's location in any existing cluster 

(phenotype). This information is represented as an array with a length equal to the number of 

proteins in the network. Figure 2 shows that the third place of the array includes the number 1, 

indicating that the third protein is inside the first cluster, and that the fourth place of the array 

includes the number 3, indicating that the fourth protein is inside the third cluster. 

 
Figure 1: individual representation 
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Figure 2: Proteins' locations (phenotype) 

 

4. EA with functional annotation based on mutations 

     EAs are strategies for dealing with NP-hard issues, which are those that cannot be resolved 

quickly or require a long time to resolve. EAs have historically been utilized to resolve 

challenging engineering optimization issues since their primary technique is analogous to 

natural selection in that it constantly keeps the strong organs while eliminating the unfit ones 

from subsequent generations. EAs basically partition the search space of an optimization 

problem ℱ(𝑋) into a collection of solutions, which is indicated Ω and denoted as the search 

space size, while |Ω|∈ ℕ denotes the number of candidate solutions. The evolution job is often 

applied to a population of individuals, or ₱𝑝𝑧, with a size of 𝑝𝑧, where 𝑝𝑧 ∈  ℕ and 

₱𝑝𝑧 =(𝑃1, 𝑃2, … , 𝑃𝑝𝑧), that is randomly generated. Each individual P is the genotype 

representation of its matching phenotype 𝑋 Figure 2; the individual representation is shown in 

Figure 1, and these phenotypes are assessed using a fitness (objective) function that yields 

values used to explore various regions of the search space. 

 

     In this study, the community score (CS), an optimization problem, is utilized as a metric to 

assess each cluster's edge density in relation to its size. In other words, CS offers a method of 

partitioning that considers the edge density of each cluster in relation to its size. CS is described 

in Equation (1) as a maximizing problem, 𝑚𝑎𝑥 ℱ(𝑋) to assess a candidate solution 𝑃, where 𝑃 

is a collection of 𝑐1, 𝑐2, …, 𝑐𝑙  clusters, and l is the number of clusters in 𝑃. 

 

𝑚𝑎𝑥  𝐶𝑆(𝑋) =  ∑ (
2∗𝑣𝑖

𝐶𝑖
)

2
𝑙
𝑖=1                                                       (1) 

     Where 𝐶𝑖  is the cluster's cardinality and 𝑣𝑖 is the number of internal edges for the cluster 𝑐𝑖. 

The purpose of the CS model in EA is to measure the effectiveness of solutions in order to get 

results that gauge how robust these solutions are at resolving challenging detection problems. 

Based on these outcomes, EA behavior is geared towards improving the likelihood that good 

individuals will be present in upcoming generations. As a result, population ₱𝑔 is subjected to 

a set of procedures collectively referred to as population transformation to produce a new 

population ₱𝑔+1, where g is the generation index. The existing population is first filtered using 

tournament selection (𝑆), which transfers the good solutions into a mating pool while 
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maintaining the same population size. Then, uniform crossover (𝐶) with 𝑃𝑐 probability is used 

to maintain the diversity of the solutions. Lastly, to boost gene variation and to make sure that 

the population won't settle into a local optimum, the mutation (𝑀) operator is applied with 𝑃𝑚 

probability. All nominee solutions in ₱𝑔 are passed through these consecutive operators. Lastly, 

populations continue to alter throughout each generation up to the maximum number of 

generations, and ₱∗ should have the near-optimal solution 𝑃∗ = [𝑝1
∗, 𝑝2

∗, … , 𝑝𝑁
∗ ] [15]. 

 

5. EA mutation-based GO 

     In this study, we modified the population genes (proteins) using the GO functional 

annotation of proteins as a heuristic guide. So, we gave it the name “mutation-based GO.” In 

order to improve the individual's quality, as indicated in Algorithm 1, our suggested complex 

detection technique combines the entire EA procedure with the protein functional annotation 

interfered with in the mutation operation. Traditionally, a direct set of genes is used to 

functionally represent each protein. As shown in Figure 3, these genes are divided into three 

groups by the gene ontology: molecular function (MF), cellular component (CC), and biological 

process (BP). Then, using this protein's characteristics, a symmetric matrix 𝕄 of dimension 

𝑁 ×  𝑁 has been created, with the entries of the matrix being values derived from the functional 

biological data of GO, which provides the intensity (ratio) of proteins' interactions. 

 
Figure 3: Proteins’ direct genes GO data 

 

     The proteins' index is used to label the rows and columns of the matrix 𝕄, which contains 

values between 0 and 1. Both entries (𝑖, 𝑗) and (𝑗, 𝑖) are given the same value if the proteins 𝑖 
and 𝑗 interact topologically with one another. The power of the similarity scale among proteins 

with regard to the three gene ontology classes is therefore the foundation of our novel 

methodology. We used the well-known Jaccard similarity (JS), as shown in Eq. (2)., to 

determine the degree of similarity between proteins 𝑖 and 𝑗. 

                                            𝐽𝑆(𝑖𝑖, 𝑗) =  
|𝐺𝐷𝑖∩𝐺𝐷𝑗|

|𝐺𝐷𝑖∪𝐺𝐷𝑗|
                                                            (2) 

     Where 𝐺𝐷𝑖 and 𝐺𝐷𝑗  represent the set of genes (direct) of proteins 𝑖 and 𝑗, respectively. As a 

result, when any of the proteins involved in an individual 𝑃𝑘(𝑘 ∈ {1, … , 𝑝𝑠} undergo a 

mutation, algorithm 1 determines whether to move the protein 𝑝𝑖,𝑘 (𝑖 ∈ {1, … , 𝑁}) from its 

current complex to one of the other complexes or keep it in the current complex. Eq. (3) is the 

sum of the values in 𝕄 conforming to the intersection of the protein 𝑝𝑖,𝑘 with the proteins that 

are topologically linked to it in  the candidate complex. 
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𝑆𝑚𝑖𝑛 = ∑ 𝕄(𝑝𝑖,𝑘 , 𝑝𝑖𝑛,𝑘) 

𝑖𝑛={𝑖𝑛𝑐𝑜}

                    (3) 

     Where 𝑖𝑛𝑐𝑜 are the proteins' indexes, which are situated in the candidate complex and have 

a direct connection to the protein 𝑝𝑖,𝑘. Calculate the sum of the values in 𝕄 conforming  to the 

intersection of the protein 𝑝𝑖,𝑘  with the proteins that are topologically linked to it in the 

candidate complex using Eq. (4).  

                                     𝑆𝑚𝑜𝑢𝑡 = ∑ 𝕄(𝑝𝑖,𝑘 , 𝑝𝑜,𝑘) 

𝑜={𝑜𝑢𝑡𝑐𝑜}

 
(4)  

      Where 𝑜𝑢𝑡𝑐𝑜 are the proteins' indexes, which are directly related to proteins and are situated 

outside of the candidate complex. 

Algorithm 1 :𝒎𝒖𝒕𝒂𝒕𝒊𝒐𝒏  
Input: 𝑃, 𝒑𝒎,  𝕄   

Output:   new individual 𝑃∗ 

1 for 𝒊 = 𝟏 to length individual  𝑃 

2  if ( 𝒓𝒂𝒏𝒅 ≤ 𝒑𝒎) 

3   
Compute 𝑆𝑚𝑖𝑛 & 𝑆𝑚𝑜𝑢𝑡  for current complex that has  𝒑𝒊; // used  Eq. 

(3) & Eq. (4) 

4   If  𝑆𝑚𝑖𝑛 < 𝑆𝑚𝑜𝑢𝑡   

5    compute 𝑑𝑖𝑓𝑓𝑟𝑜𝑙𝑑 = 𝑆𝑚𝑖𝑛 - 𝑆𝑚𝑜𝑢𝑡 ;  

6    new complex =  current complex; 

7    For each other complexes   𝒄   in  𝑃 

8       Compute 𝑑𝑖𝑓𝑓𝑟𝑛𝑒𝑤 = 𝑆𝑚𝑖𝑛 - 𝑆𝑚𝑜𝑢𝑡; 

9     If  𝑑𝑖𝑓𝑓𝑟𝑛𝑒𝑤 > 𝑑𝑖𝑓𝑓𝑟𝑜𝑙𝑑 

10      𝑑𝑖𝑓𝑓𝑟𝑜𝑙𝑑 = 𝑑𝑖𝑓𝑓𝑟𝑛𝑒𝑤; 

11      new complex =  complex   𝒄; 

12     end 

13    end 

14   end 

15    𝐧𝐞𝐰_𝐜𝐨𝐦𝐩𝐥𝐞𝐱(𝒑𝒊)  =   new complex; 

16   
for 𝒆𝒂𝒄𝒉 𝒑𝒓𝒐𝒕𝒆𝒊𝒏 𝐝𝐢𝐫𝐞𝐜𝐭𝐥𝐲 𝐜𝐨𝐧𝐧𝐞𝐜𝐭𝐞𝐝  𝒘𝒊𝒕𝒉 𝒑𝒊 and placed in  new 

complex 

17    
Protein  Number   that connected with 𝒑𝒊  =   Protein  Number 

that has Max  𝕄(𝒑𝒊,protein number connected  𝒘𝒊𝒕𝒉 𝒑𝒊 ); 

18   end 

19  end 

20 end 

21 return 𝑃∗; 

 

6. Results and Discussion  

     In order to enhance the quality of solutions and the overall efficiency of EA for resolving 

the complex detection problem in PPI networks, a mutation-based heuristic guide that considers 

the biological information in GO has been proposed in this study. As a result, we focused on 

the CS model using the yeast network PPI_YD dataset [16] and [17]. This PPI network now 

has 990 proteins and 4687 interactions. Our findings were compared with those of the 81 

complexes that serve as the gold standard. Additionally, a comparison has been made between 

the effectiveness of the standard EA and the effectiveness of our suggested approach. 

     Figure-4 findings (a), (b), (c), (d), (e), and (f) illustrate how the suggested technique 

performs when compared to the EA for the PPI_YD network when the overlapping score (OS) 
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threshold is changed from 0.1 to 0.8. This figure (Figure-4) makes it obvious that the suggested 

EA's detection reliability is greater than that of the traditional EA in terms of recall, precision, 

F-measure, RecN, PrecN, and Fn-measure. Because of our strategy of selecting the proper 

complex at the time of the mutation, the protein is always positioned in a complex with other 

proteins that are connected and have functions that are more similar to its own. While canonical 

EA selects the complex at random, if the protein is linked to it, it is transferred to a random 

complex. In the Figures (a, b, and c), the results of the recall, precision, and F-measure are in 

close proximity to the canonical at the threshold of 0.1 and then begin to increase greatly with 

the increase of the threshold, which means that the ratio of complexes matching between the 

golden standard complexes and our results is greater than the canonical. In the Figures (d, e, 

and f), the results of the RecN, PreN, and Fn-measure in our algorithm are better than the 

Canonical, which means that the ratio of proteins matched between the golden standard 

complexes and our results is greater than the Canonical. 

.  

(a)                                                              (b) 

 
                                       (c)                                                                    (d) 

 
(e)                                                                       (f) 

Figure 4: Comparison between the performance of Canonical and GO-mutation in CS model 

in terms of (a) recall, (b) precision, (c) F-measure, (d) RecN, (e) PrecN and (f) Fn-measure) 

 

     In Figure-5 (a, d, e, and f), the results of Recall, RecN, PreN, and Fn-measure in our 

algorithm are very close when Pm increases from 0.2 to 0.5. In Figures 2(b) and (c), the results 
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of precision and F-measure in our algorithm are better when Pm increases from 0.2 to 0.5 than 

the threshold of 0.1 to 0.55 and then begin to very nearly match with the increase of the 

threshold. 

 
 

(a)                                                                (b) 

 
(c)                                                                                 (d) 

 

 
 (e)                                                                     (f)   

Figure 5: Comparison between the performance of GO- mutation with Pm = 0.2 and GO-Based 

with Pm = 0.5 in CS model in terms of (a) recall, (b) precision, (c) F-measure, (d) RecN, (e) 

PrecN and (f) Fn-measure) 

 

     In Table 1, when Pm = 0.5 and the overlapping score (OS) is equal to 0.2,  the research 

results are compared with the findings of Abduljabbar et al. [18] using our proposed algorithm. 

The findings show that our suggested algorithm works better than that of [18] in terms of recall, 
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precision, and F-measure, which means that our system is better at figuring out the complexities 

of PPI-YD networks. 

 

Table 1: The performance comparison for the community score model on PPI_YD (in terms of 

recall, precision, and F measure ) at OS = 0.2 

Term PGO = 0.5 [18] Our proposed solution (Pm = 0.5) 

Recall 0.9026 0.92.5 

Precision 0.746 0.7612 

F-measure 0.8168 0.8332 

 

*PGO: the probability of the heuristic biological operator. 

     To explain the main idea of the intra- and inter-delineation pairs, in the following example 

shown in Figure 6, the complex has eight proteins (blue circles) and three other proteins (red 

circles) that are located outside of the complex. (a) A correct golden complex structure with 25 

intraconnections (blue links) among 8 proteins and 5 interconnections (red links), with 3 

external proteins that belong to other complexes. (b) A correct complex structure with only 

intra-connections Protein names are shown as the protein's number in the complex structure. In 

this research, Figure 7 (a) represents the original network, which contained 4687 interactions 

(intra-delineation and inter-delineation pairs), whereas Figure 7(b) represents the network After 

using the GO mutation algorithm for model CS on PPI D1, it was found to have 3725 intra-

complex interactions.  

 

 
(a)                                         (b) 

Figure 6: Intra-delineation and inter-delineation protein pairs and their role in defining the intra 

and inter structure of a protein complex. (a) A correct golden complex structure. (b) A correct 

complex structure. 
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(a)                                     (b) 

Figure 7: (a) the original network and contained 4687 interactions, (b) After using the GO 

mutation algorithm for model CS on PPI D1, it was found to have 3725 intra-complex 

interactions. 

 

     For example, when comparing the canonical technique to our algorithm for detecting the 

complexes and for the model (CS), we note that in the GO-mutation algorithm, it was able to 

determine exactly Figure 8(a), the complexes No. 20, No. 33, No. 48, and No. 61. In the 

canonical algorithm shown in Figure 8(b), Complex No. 20 is mixed with proteins in cluster 

11, Complex No. 33 is mixed with proteins in cluster 22, Complex No. 48 is mixed with proteins 

in cluster 3, and Complex No. 61 has been divided into two groups, the first in cluster 74 and 

the second in cluster 75. 

 

     Note: In Figure 8 (a) and (b), we'll use a comment with two integers separated by a negative 

sign. The number on the right is the original complex, while the cluster number for the GO 

mutation or canonical is shown on the left. 

 

 
(a)                                                        (b) 

Figure 8: (a) PPI D1 and some complexes that are precisely detected using the GO-Based 

algorithm for model CS, (b) PPI D1 and some overlapping or spread complexes using the 

canonical algorithm for model CS. 
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9. Conclusions 

     Complex discovery in protein interaction networks is a crucial research area in 

computational biology because it enables us to better understand the typical and abnormal 

molecular activities that take place in the complexes. We use topological information combined 

with biological function to solve the complex detection problem. Based on similarities in bio-

functional informatics, the main contribution of this study is the introduction of biological data 

about proteins into the evolutionary algorithm that used the CS model. As a result, the 

functional annotation of proteins drawn from the gene ontology was used in this study to 

investigate how to discover protein complexes by adding them into the mutation operation. EA 

with GO-based mutations is the suggested technique for complex detection. Our algorithm has 

proven efficient in optimizing better solutions than the traditional EA for the PPI_YD network 

in the metrics of recall, precision, F-measure, RecN, PrecN, and Fn-measure. 
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