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Abstract

In this article, we investigate the peristaltic flow of a Powell-Eyring fluid flowing
in an asymmetrical channel with an inclining magnetic field through a porous
medium, and we focus on the impact that varying rotation has on this flow. Long
wavelength and low Reynolds number are assumed, where the perturbation approach
is used to solve the nonlinear governing equations in the Cartesian coordinate system
to produce series solutions. Distributions of velocity and pressure gradients are
expressed mathematically. The effect of these parameters is discussed and illustrated
graphically through the set of figures. To get these numerical results, we used the math
program MATHEMATICA.

Keywords : Peristaltic flow, Powell- Eyring fluid, inclined magnetic felid, porous
medium, and rotation.
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1. Introduction

Peristaltic pumping is a specific sort of pumping when a wide range of intricate rheological
fluids can be readily moved from between two locations. This pumping principle is referred to
as peristaltic. The ducts through which the fluid passes undergo intermittent involuntary
constriction and then expand. As a result, the pressure gradient rises, causing the fluid to move
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forward. After Latham's groundbreaking work [1] and because of its use in physiological,
engineering, and biological systems academics have become increasingly interested in the
different applications of peristalsis. Because of its use in physiological, engineering, and
biological systems, peristaltic transport has received significant attention in recent years.
Generally, the peristaltic wave’s circular contractions and the successive longitudinal
contractions that occur during peristalsis are generated by the sinuses which propagate along
the fluid-containing duct. This technique is the basis for several muscular tubes, including the
gastrointestinal tract, fallopian tubes, bile ducts, ureters, esophageal tubes, and others.
Moreover, non-Newtonian fluids are better than numerous industrial and physiological
processes that use Newtonian fluids. Among the models of non-Newtonian fluids (which can
exhibit various rheological effects), that can be accessed is Powell-Earing fluid. Although this
model is more difficult mathematically than models of non-Newtonian fluids, it deserves more
attention because of its distinct benefits. Numerous researchers have been interested in the
Powell-Eyring fluid's peristaltic flow mechanism since it was studied by Hina and Mustafa and
Hayat and Alsaedi [2], Hayat and Naseema and Rafiq and Fuad [3], Hayat and Ahmed [4],
Hussain and Alvi and Latif and Asghar [5], and Ali and Ligaa [6]. The static
magnetohydrodynamic flow and heat transfer of an Eyring-Powell fluid on an expansion plate
with viscous dissipation were studied and numerically explained [7]. The exchange of thermal
energy between different system components is referred to as heat transfer. However, the
medium'’s physical characteristics and the separate compartments' temperatures affect the speed.
In recent years, the authors in [8], [9] have been conducted about studying the effect of heat
transport on non-Newtonian fluids. The problem of peristaltic transport of an incompressible
non-Newtonian fluid in a tapered asymmetric channel is discussed in [10]. The engineering of
peristaltic pumps, roller pumps, hose pumps, tube pumps, finger pumps, heart-lung machines,
blood pump machines, and dialysis machines is based on peristalsis. These applications include
the transportation of aggressive chemicals, high solid slurries, toxic (nuclear industries), and
other materials. With regard to well-established problems of the stir of semi-conductive
physiological fluids, such as blood and blood pump machines, magnetic drug forcing, and
pertinent methods of human digestion, the advantage of applied magnetic field (MHD) on
peristaltic efficacy is crucial. It is also helpful in treating gastroparesis, chronic constipation,
and morbid obesity as well as magnetic resonance imaging (MRI), which is used to identify
brain, vascular diseases, and tumors. A substance that has several tiny holes scattered
throughout it is referred to as a porous medium. In riverbeds, fluid infiltration and seepage are
sustained by flows over porous media. Important examples of flows through a porous material
are those through the ground, water, and oil. Oil is trapped in rock formations like limestone
and sandstone, which make up the majority of an oil reservoir [11]. Natural porous media can
be found in many different forms, such as sand, rye bread, wood, filters, bread loaves, human
lungs, and the gallbladder. Food processing, oxygenation, hemodialysis, tissue condition, heat
convection for blood flow from tissues' pores, and radiation between the environment and its
surface all depend on the action of heat transfer in the peristaltic repositioning of fluid [12]-
[15]. The aforementioned processes all benefit from mass transfer; in particular, the mass
transfer that occurs as nutrients diffuse from the blood into nearby tissues cannot be understated.
Greater mass transfer participation is typical in the distillation, diffusion of chemical
contaminants, membrane separation, and combustion processes. It should be observed that
when heat and mass transfer occur simultaneously, a relationship between fluxes and driving
potentials exists. However, the temperature gradient is what causes the gradients in mass flux
and composition (termed soret action). Many problems involving the flow of conductive
physiological fluids, including blood and saline water, call for the study of the peristaltic
transport of fluid in the presence of an external magnetic field and rotation [16]. We use a
variety of values for the rotational parameters, the porous medium, density, amplitude wave,
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and taper of the channel, as well as a variety of values for the Hartman number and Darcy
number, to study the effects of varying the velocity and pressure gradient. The goal of this
article is to investigate the rotation effects of the peristaltic transport of a Powell-Eyring fluid
in an asymmetric channel through a porous medium subject to the combined actions of inclined
MHD.

2. Problem Mathematical description

Consider how an incompressible Powell-Eyring fluid might move peristaltically in a two-
dimensional, asymmetric conduit with a width of (d'+d). Flow is caused by an infinite sinusoidal
wave moving with constant forward velocity (c) along the channel walls.
The geometry of the wall structure is described as:

hy(X,t) =d — a; sin [2771 (x — ct_)] 1)

h_z()?, t) = —d' —a,sin [2771 (x —ct) + Q)] (2)

In which hy(x,t) and h,(x,t)are the lower and the upper walls, respectively.
(d,d") denotes the channel width, (a,,a,) are the amplitudes of the wave,(1) is the
wavelength, (¢) is the wave speed, (®) varies in the range (0 < ® < m), when ® =0 1is a
symmetric channel with out-of-phase waves and ® = m waves are in phase, the rectangular
coordinate system is chosen so that the X — axis is in the direction of the wave's motion. and
the Y — axis perpendicular to X, where t is the time.

Further, a;,a,,d,d’ and @ fulfill the following condition;
a? + a3 + 2a,a, cos ® < (d + d')? (3)

The Cauchy stress tensor T for a fluid that obeys the Powell- Eyring model is given as
follows:-
T=-PI+S (4)

L)'

0

Figure 1: Coordinates for Asymmetric Channels in Cartesian Space
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S= [u + ésinh_1 (é)] Ay (5)
y = Etras(All)z ©)
Ay =VV+ (V)T (7)

Where S is the extra stress tensor, | is the identity tensor, V= (89X, dY, 0) is the gradient vector,
(B, cy) are the material parameters of Powell-Eyring fluid, P is the fluid pressure, and u the
dynamic viscosity. The term sinh™! is approximately equivalent to
. . .3 .
sinh_l(l)=l— s | Y1« (8)

Cq Cq 6C1 6C 1

The flow is governed by three coupled nonlinear partial differentials of continuity,
momentum, and energy, which are expressed in a frame (X,Y) as

v v
ax Tar 0 ~ o ) 9)
9 L goU 4 73U _ i _ 0P , 95%x | O5xy _
p(af-"Uai?-"Va?)_ Pl (QU_-I_Zat) ax T ax T or (1
0,802 cosf(Ucosp — Vsinf) —% U
]

U LU A AT U +22)= 28 %xv % _
p(af"'Ua;?"'Va?) pQ(QU"'z E)_ ar T ax oy (11)

0B, sinB(UcospB — VsinpB) —% 14

Where p is the fluid density, V = [U, V] is the velocity vector, P is the hydrodynamic
pressure, Sgz ,Sgy ,and Syy are the elements of the extra stress tensor S, o is the electrical
conductivity, S, is the constant magnetic field, £ is the inclination of the magnetic field, Q is
the rotation Cp is specific heat, k' is the thermal conductivity, T is a temperature, and u refers
to the viscosity.

Listed below are the components of the extra stress tensor of Powell — Eying as defined by

Eq.(5)

—_ 1 J—

wx=2(1+50)Ux — 5505 [ZUX + (Vg + Up)? + 27, | Ux (12)
_ 1 — 2 —
Ser = 2(u+55) g+ Up) = o [205%” + g + Tp)? + 20" (g + (13
Uy)

Sop = 2 (u + Bcl) Vs — W L [ZUX + (Vg + Up)? + 2V, ]Vy (14)

Natural peristaltic motion is an erratic occurrence, but by applying the transformation from
laboratory frame, the stability can be assumed (fixed frame) (X, Y)to wave frame (move frame)
(%,y). The subsequent transformations determine the relationship between coordinates,
velocities, and pressure in the laboratory frame (X,Y) to the wave frame (%, ¥)

x=X-c¢y=Y,u=U-c,v=V,p(x,y) = P(X,Y,) (15)
Where u and v represent the velocity factors and P represents the pressure in the wave frame.
We now substitute equation (15) in equations (1), (2), and (9-14) and normalize the resulting
equation with the following non-dimensional variables:
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1 _ 1 _ 1— 1 = d? = c— 1— 1—
x—; y—zyu—;U,U—aV,P—lﬂcp,t—it,hl——hl,hz—Ehz,
d po_pcd g g _k o1 o _wicN s_o_ (16)
§=% Re= #,Ha—d\/;BO,Da—dz,W—ﬂﬁcl,A—6(Cld),T—T
T—T = d = d =
To, 0 = =0 Sxx = #CSX)@ Sxy = 1o S&7: Syy = 12 Svw

Where, (§) is the wave number, (h;) and (h,) are non-dimensional lower and upper wall
surfaces, respectively. (Re) is the Reynolds number, (Ha) is the Hartman number, (®) is the
amplitude ratio, (w) is the non-dimensional permeability of the porous medium parameter, (Da)
is the Darcy number, (A) is the Powell-Eyring fluid parameter, (T,) and (T;) are the
temperatures at the upper and lower walls.

Next, we have

hi(x,t) =1 — asin(2mx) a7
h,(x,t) = —d* — b sin 2nx + ®) (18)
We have where a, b,d* and @ satisfy equation (3)

a’ + b? + 2abcos ® < (1 + d*)? (19)
ou  0v _

ax Ty =0 )

a_u ou pd Q Scovy _  dp 2 0 K _

Res (5 +uZi+v3) L2 (qu+ 255 = 24 6225 + -5, -

Ha? cos B (ucosﬁ —6vsm,8)——u
3 (% ov Ov\ _ pd?Qs gcdvy _ 9 52 9
Res® (57 +usl +v3r) - 2% (Q +22 %) =~ Ly 52 25+

ox dy d ot (22)
6 S y + Ha?sin B (Sucosf — 8*vsinB) — SZDL v
2
sxx =21 +w) 224 [252 (2 + (a—“+ 622" 1 262 (ay) B (23)
6v ou ov
Sey = (1+w) (82 [262 g (ay + 52 x) + ”
20 ()| (6252 + ZL‘)
_ ov _ 2 (Ow)? | (0u 20v 2 v
Syy =201+ w)s 2 2A5[25 (Z) + (0 x) +262(2) ]ay (25)

In previous equations, Pr is the Prandtl number, Ec is the Eckert number and 6 is the
dimensionless temperature.

Following are the relations between the stream function () and velocity components:
_ov o
u=g,,v="75 (26)
Substituting equation (26) into equations (21) to (25), noting that the mass balance displayed
by equation (20) is similarly satisfied, this produces the consequence that equation (26) is

satisfied.
Re 6( n P>y a3W)_deQ(Qaw 22 62_‘1’):_6_p+

dtdy = 0xdy2  0xdy? uw ay d O0tdx 0x 27
62 = Sex + aS Hazcosﬁ(aq’ cosﬁ+56wsinﬁ) L o¥ @0
XX xy dy ox Da 0y
Re63 (_ o’y 2w a3W)_pd295(Qa_w_ 8¢ 62‘1—')__8_p
dtdx  0x20y  9x2dy U dx d atox) ~  ay
d d . o v . 1 0¥ 28)
20 9 Ha? ( o 2 0¥ ) 2 (
in in
56xSxy+56ySyy+ asinf (Saycosﬁ+5 5 S B 6Da6x
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_ 2v o (02w | (2w, 02w)? 5 (02w\?
Sex = 2(1 +w) axdy 24 [26 (axay) + (a_y2 6 W) +26 (6x6y) (29)

5o = o (55 + 59— (52 (0752

0x2 ay? dx2 (30)
2 9% )? 2 (_ 029 \|(_g2 22, 02¥
6 6y2) +26 ( 6x6y) ]( 6 dx? + ayz)
_ 22w 5 (02WN\2  (orw ., 0%w\?
Syy = =2(1 + W)§ 5= — 248 [25 (—axay) + (W -82230) + o

24 \ 2 2
26 (555) | (=5

Now, the equations from (27) to (31) become the form when (Re and § « 1) are present:

_parto¥ _ op 0 _ (po2.os2p 4 L)%
= Ty Sy (Ha cos“ f + Da) 3y (32)
dp
-2 (33)
While the component of the extra stress tensor becomes the form of
22w 22w\? 92w
Sex = 201+ w) 5==— 24 (ayzz = (34)
%y %y
Sy = (1 +w) (W) —4 (W) (3%)
Syy =0 (36)

Also, if equation (35) is entered into equation (32) as well as the derivative regards to y and by
(w+1) is taken, then the following equation is obtained:

oty 22 (a2w\> 9%y
S~ M5 (52) 5 =0 (37)
Where
_ Ha? cos? ﬁ+D1—a—pdiQZ 1
B w+1 _' _ w+1 .
In the wave frame, the dimensionless volume flow rate and boundary condition are as follows:
F 0w
‘P=E,E=—1,9=O at y=h1 (38)
F oW
‘Pz—E,E:—l,H:O at y:hz (39)

F represents the dimensionless temporal average flow in the wave frame.

3. Problem’s Resolution
The perturbation method is used to obtain the solution of a non-linear partial differential

equation system by increasing flow amounts in a power series of A.

¥ =Y, + A¥; + 0(A?) (40)

P =P, + AP, + 0(A?) (41)
Now, by substituting Equations (40) - (41) into Equations (32) - (37) and boundary conditions
(38) - (39) and comparing the coefficients of the same A power up to the first order yields the
two system solutions listed below:

3.1. Zeroth order system
When the terms of order (A) in a zeroth-order system are negligible, we obtain

Poyyyy = (Woyy =0 (42)
Such is the case
F, W
lI’O=7°,a—y°=—1 at y=hy (43)
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and
Fo 0¥
Yo=—% .5 =71 aty=h (44)

3.2. First order system

Yiyyyy =1 % (lpOyy)3 — W1y, =0 (45)
Yiyyyy = Wiy =1 % (LpOyy)3 (46)
lp1=‘;—1,aa—“;1=0at y=hy (27)
and

W =—2, aa“;:o at y=h, (48)

Solving associated zeroth and first-order systems vyields the final equation for the stream
function.

Y=Y, +AY, (49)
- (293 c14c2
AL — ) 4 63+ yeatA[(e-F (301402 Z (R0 + h1 — h2)3¢%y

eVI(FO + h1 — h2)3¢3n + 6eM1+h2+4)VI(FQ 4 h1 — h2)3 (=5 + 2y,/0) {3y +
6e2M1+h2+9)VI(RQ 4 h1 — h2)3(5 + 2y,/0) (3 + 8e BN+ (—2 4+ h1,/7 -

h2,/7)3A1 + 24eM1+202+40V8 (2 + h1,/7 — h2,/0)(2 + h1,/{ — h2,/7)?A1 -
8eBGN2HYT (2 — h1,/7 + h2,/7)3A1 + 24e@h1+h2+40)VE (2 4 11, /7 —

h2,/7)(2 — h1,/ + h2,/7)2A1 + 8eBM1+29V¢(—2 4 h1,/7 — h2,/7)3A2 +
24eM1+202+M)V0 (2 4 h1,/7 — h2/T)(2 + h1/T — h2/7)?A2 — (50)
8eBN2+2YT(—2 — h1,/7 + h2,/7)3A2 + 24e@h1+h2+20V¢(2 4 11, /7 —

h2y2)(2 ~ h1y +h2y)2A2))/ B (-2 + 11T~ h2yfD) + "R (2 +
h1,/7 —h2,/0))%¢) + A3 + yAd]

Within the fixed frame, the axial velocity component is expressed as follows:
u(x,y,t) =¥y
It is possible to rewrite (37) as
Z_Z = YWoyyy — (Woy + AW¥1yyy — 1A aa_y (lpOyy)3 — AQWyy,
4. Results and discussions
This section consists of two subsections. In the first one, the velocity distribution is

discussed, while in the second subsection, the pressure gradient is illustrated using the
MATHEMATICA software.

I. Velocity distribution u:

The axial velocity across the channel is varied as it is indicated by the case variation of u.
The effect of different values (Ha, Da, w, A, a, b, and d) on the axial velocity u is shown in
Figures. (2) — (11), where the behavior of the velocity distribution is parabolic as shown in the
following figures:

1- Figures (2) and (8) demonstrate that axial velocity falls with increasing Hartman number
(Ha) and material fluid parameter (A) in the channel's central region, while it increases at the
channel's wall.

2- Figures (3),(4),(5),(6), and (11) demonstrated that the axial velocity increases as the Darcy
number (Da), inclination of magnetic field (), rotation (€2), porous medium parameter (w), and
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width of the channel (d) increase within the middle of the channel, but decreases at the channel
wall boundary.

3- Figure (7) demonstrates that for approximately 0.05<y<0.9, the axial velocity decreases as
the amplitude ratio (¢) increases, whereas otherwise, it increases.

4- Figure (9) demonstrates that for -0.4<y<0.55, the axial velocity increases as the wave
amplitude increases (a) and decreases with increasing wave amplitude (a) for all other values
of y.

5- Figure (10) demonstrates that for -0.05<y<0.85, the axial velocity increases as the wave
amplitude increases (b), but decreases with decreasing wave amplitude (b).

Il. Pressure gradient dp/dx:
The effect of relevant parameters on the pressure gradient dp/dx is graphically illustrated in

Figures. (12)-(21)

1- In Figures (12), (18), and (19), the increase in the values of Hartman number (Ha), material
fluid parameter (A), and amplitude of the wave (a) give rise to the axial pressure gradient
decreases as the vertex of the curve is twisted to the right but there is no effect on axial pressure
gradient near the right or left wall of the channel.

2-In Figures (13),(14), and (16), the increase in the values of Darcy number (Da), the inclination
of magnetic field (B), and the porous medium parameter (w) lead to the axial pressure gradient
increases as the vertex of the curve is twisted to the right but there is no effect on the axial
pressure gradient near the channel's right or left walls.

3-Figure (20) increases in the amplitude of the wave (b) decreases the axial pressure gradient
as the curve's vertex is twisted to the left, but there is no effect on the axial pressure gradient
near the channel's right or left walls.

4-Figures (15) and (21) demonstrate that the axial pressure gradient does not change as the
rotation () and channel width (d) values increase.

5- Figure (17) for approximately -2.75<x<-4 , the axial velocity increases as the amplitude ratio
increases (¢) , for approximately -1.75<x<-2.75, the axial pressure gradient increases slightly,
and for 0<x<-1.75, the axial pressure gradient increases. However, for x>0, the axial
pressure gr.‘adie‘nt d‘oes not.

Figure 2: Variation of velocity with Figure 3: Variation of velocity with
respect to (Da) values when $=0.1, Da = | respect to (Ha) values when Ha=4, § =
6,0 =01,d=050=03u=3,w= 0.1, Da=6,p=0.1,d =050 =

0.3, =0.5,a=0.2, 03,u=3,w=0.3,¢=0.5,

b=024d;,=05F0=04F1=0A=5| a=025b=024d, =05F0
=04,F1=0,A=5

6438



Ibraheem and Hummady

Iragi Journal of Science, 2023, Vol. 64, No. 12, pp: 6431- 6444

Figure 4: Variation of velocity with
respect to( B ) values when Ha=4,Da =
6,p=0.1,d =05
M2 =03,u=3,w=03,¢=05a=
0.2,
b=02d,=.5F0=04F1=0A4=5

Figure 5: Variation of velocity with
respect to( Q ) values when Ha=
48 = 0.1,Da=6,p =0.1,
d=05u=3,w=03,¢ =05,a
=0.2,
b=02d, =05F0=04F1=0,

A=5

Figure 6: Variation of velocity with
respect to(w) values when Ha= 4, f =
0.1,Da=6,p =0.1,

d=05 02=03u=3,¢=05a=
0.2,

b=0.2 d; =05F0=04F1=0 A=
5

Figure 7: Variation of velocity with
respect to( ¢) valueswhen Ha=4, 8 =
0.1,Da = 6,p = 0.1,

d=0.5, N=03u=3,,w=
0.3,a =0.2,

b=0.2, d,=05F0=04F1=0,
A=5
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Figure 8: Variation of velocity with Figure 9: Variation of velocity with
respect to(A) values when Ha=4, f = | respect to(a) values when Ha=4, § =
0.1,Da=6,p =0.1, 0.1, Da=6, p=0.1, d=0.5, Q=0.3, w=0.3,
d=05020=03,w=03,¢=05a ¢=0.5, u=3, b=0.2, F0=0.4, F1=0, A=5
=0.2,
M=3,b=02F0=04F1=0

0F

Figure 10: Variation of velocity with Figure 11: Variation of velocity with
respect to (b) values when Ha=4, 3 = 0.1, respect to (d) values when Ha=4, B =
Da=6, p=0.1, d=0.5, Q=0.3, w=0.3, 0.1, Da=6, p=0.1, Q=0.3, w=0.3, ¢$=0.5,
$=0.5, a=0.2, u=3, F0=0.4, F1=0, A=5 a=0.2, u=3, b=0.2, F0=0.4, F1=0, A=5

0, T
s | R 7
) \‘\ 'l
(10000 | A\ K 1 .
15000 | \ \ I:
1= Vil —ws
120000 | “‘ ) :' e 35
25000 [ “ N ==s 45 ‘
A} ] 0 0 0 1
130000 £ \ ‘ X
K A
04 03 02 01 0 1
X
Figure 13: Variation in pressure gradient

Figurel2: Variation in pressure gradient

for various values of (Ha) when g = 0.1, | for various values of (Da) when Ha =

Da=02,p=01d=0502=02,u=|25p8 = 01,p=01d=05.0=02

3w=03, ¢=0.2 a=02b=|,u=3,w=03,¢=02,a=020>b=
0.2,d; =05F0=04F1=0,A=0.3

0.2,d; =05F0=04F1=0,4A=0.3
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o

Q| x

B 8 & B

alx

Figureld: Variation in pressure gradient
for various values of (f) when Ha =2.5,
Da=10.2,p=0.1

,d=050=02 u=3,w=03, ¢ =
2,

a=0.2,b=0.2,d; =05F0 =
04,F1=0

,A=0.3

Figurel5: Variation in pressure gradient
for various values of (2) when Ha= 2.5,
B = 0.1,Da=0.2,
p=01a=0.2,
0.3,

¢ =02 b=02d, =05F0 =
04,F1=0,A=0.3

d=05 u=3,w=

0F
15000
ol 10000
15000 |

20000

12000 -

114000 -
ofx

[16000

118000 -

Figurel6: Variation in pressure gradient
for various values of (w) when Ha= 2.5,
B = 0.1,Da=0.2,
p=01,d=0502=02u=3¢=
0.5,

a=0.2,b=0.2,d, =05F0 =
04,F1=0,A=0.3

Figurel7: Variation in pressure gradient
for various values of (¢) when Ha= 2.5,
g = 0.1,Da=0.2,

p=01 d=050=02,u=3,w=
0.3,

a=0.2,b=0.2,d, =0.5F0 =
04,F1=0,A=0.3
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Figurel8: Variation in pressure gradient
various values of (A) when Ha= 2.5,
B = 0.1,Da=0.2,
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Figurel9: Variation in pressure
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Figure 20: Variation in pressure gradient
various values of (b) when Ha= 2.5,
B = 0.1,Da=0.2,
p=01d=050=02,u=3w
= 0.3,
¢ =05a=0.2,d, =05F0=04F1

=0.4
,A=10.3

Figure 21: Variation in pressure
gradient various values of (d)
when Ha=25,8 = 0.1,Da =

0.2,
p=010=02u=3w=03,
¢ =0.5,
a=02b=024d, =0.5,F0

=0.4,F1 = 0.4
,A=0.3
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5. Conclusion

In this study, the rotational effects of peristaltic transport of a Powell-Eyring fluid in an
asymmetric channel through a porous material susceptible to the combined acts of inclined
MHD are investigated. The asymmetric channel is formed by selecting peristaltic waves with
varying amplitudes and phases on the non-uniform walls and a low Reynolds number. Using
the perturbation approach, the formulas for the axial velocity and pressure gradient are
produced. Multiple graphs are utilized for parameter analysis.

I) With increasing Hartman number (Ha) and material fluid parameter (A), in the middle of the
channel, the axial velocity falls, while the axial velocity increases at the channel wall boundary.
However, the opposite occurs for increasing the Darcy number (Da), the inclination of the
magnetic field (B), the rotation (Q2), the porous medium parameter (w), and the width of the
channel (d). The axial velocity decreases at the channel wall boundary, while for about
0.05<y<0.9 of the axial velocity decreases as the amplitude ratio (¢) increases, and it increases
otherwise, for approximately -0.4<y<0.55, the axial velocity increases as the wave amplitude
increases (a) and decreases when the amplitude of the wave (a) increases, and for approximately
-0.05<y<0.85, the axial velocity increases as the wave amplitude increases (b), but it decreases
when the amplitude of the wave (b) increases.

I1) When the values of Hartman number (Ha), material fluid parameter (A), and amplitude of
the wave (a) increase, the axial pressure gradient decreases as the vertex of the curve is twisted
to the right. However, there is no effect on the axial pressure gradient near the channel's right
or left walls. However, the opposite occurs when the values of Darcy number (Da), the
inclination of magnetic field (), and porous medium parameter (w) increase Whereas increases
in the amplitude of the wave (b) cause the axial pressure gradient to decrease as the vertex of
the curve is twisted to the left, neither there is no effect on the axial pressure gradient near the
channel's right or left walls, nor it does the axial pressure gradient change as the value of the
rotation (£2) increases.
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