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Abstract 

     In this article, we investigate the peristaltic flow of a Powell-Eyring fluid flowing 

in an asymmetrical channel with an inclining magnetic field through a porous 

medium, and we focus on the impact that varying rotation has on this flow. Long 

wavelength and low Reynolds number are assumed, where the perturbation approach 

is used to solve the nonlinear governing equations in the Cartesian coordinate system 

to produce series solutions. Distributions of velocity and pressure gradients are 

expressed mathematically. The effect of these parameters is discussed and illustrated 

graphically through the set of figures. To get these numerical results, we used the math 

program MATHEMATICA. 

 

Keywords : Peristaltic flow, Powell- Eyring fluid, inclined magnetic felid, porous 

medium, and rotation. 

 

أرينغ التمعجي في قناة غير متماثلة ووسط مسامي تحت تأثير الدوران والمجال نقل سائل باول 
 المغناطيسي المائل. 

 

 , لقاء زكي حمادي  *رنا غازي ابراهيم
 جامعة بغداد, بغداد, العراق  كلية العلوم,  قسم الرياضيات, 

 

 : الخلاصه 
آرينغ الذي يتدفق في قناة غير متناظرة مع مجال  في هذه المقالة ، نبحث في التدفق التمعجي لسائل باول         

مغناطيسي مائل عبر وسط مسامي ، ونركز على تأثير الدوران المتغير على هذا التدفق. يُفترض الطول الموجي  
الطويل وعدد رينولدز المنخفض ، حيث يتم استخدام نهج الاضطراب لحل المعادلات الحاكمة غير الخطية في  

يتم التعبير عن توزيعات تدرجات السرعة والضغط رياضيًا.  .  ديكارتية لإنتاج حلول متسلسلةنظام الإحداثيات ال
لحصول على هذه النتائج العددية  ل  تمت مناقشة تأثير هذه المعلمات وتوضيحها بيانياً من خلال مجموعة الأرقام.

 MATHEMATICA. ، استخدمنا برنامج الرياضيات  
 

1. Introduction 

     Peristaltic pumping is a specific sort of pumping when a wide range of intricate rheological 

fluids can be readily moved from between two locations. This pumping principle is referred to 

as peristaltic. The ducts through which the fluid passes undergo intermittent involuntary 

constriction and then expand. As a result, the pressure gradient rises, causing the fluid to move 
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forward. After Latham's groundbreaking work [1] and because of its use in physiological, 

engineering, and biological systems academics have become increasingly interested in the 

different applications of peristalsis. Because of its use in physiological, engineering, and 

biological systems, peristaltic transport has received significant attention in recent years. 

Generally, the peristaltic wave’s circular contractions and the successive longitudinal 

contractions that occur during peristalsis are generated by the sinuses which propagate along 

the fluid-containing duct. This technique is the basis for several muscular tubes, including the 

gastrointestinal tract, fallopian tubes, bile ducts, ureters, esophageal tubes, and others. 

Moreover, non-Newtonian fluids are better than numerous industrial and physiological 

processes that use Newtonian fluids. Among the models of non-Newtonian fluids (which can 

exhibit various rheological effects), that can be accessed is Powell-Earing fluid. Although this 

model is more difficult mathematically than models of non-Newtonian fluids, it deserves more 

attention because of its distinct benefits. Numerous researchers have been interested in the 

Powell-Eyring fluid's peristaltic flow mechanism since it was studied by Hina and Mustafa and 

Hayat and Alsaedi [2], Hayat and Naseema and Rafiq and Fuad [3], Hayat and Ahmed [4], 

Hussain and Alvi and Latif and Asghar [5], and Ali and Liqaa [6]. The static 

magnetohydrodynamic flow and heat transfer of an Eyring-Powell fluid on an expansion plate 

with viscous dissipation were studied and numerically explained [7]. The exchange of thermal 

energy between different system components is referred to as heat transfer. However, the 

medium's physical characteristics and the separate compartments' temperatures affect the speed. 

In recent years, the authors in  [8], [9] have been conducted about studying the effect of heat 

transport on non-Newtonian fluids. The problem of peristaltic transport of an incompressible 

non-Newtonian fluid in a tapered asymmetric channel is discussed in [10]. The engineering of 

peristaltic pumps, roller pumps, hose pumps, tube pumps, finger pumps, heart-lung machines, 

blood pump machines, and dialysis machines is based on peristalsis. These applications include 

the transportation of aggressive chemicals, high solid slurries, toxic (nuclear industries), and 

other materials. With regard to well-established problems of the stir of semi-conductive 

physiological fluids, such as blood and blood pump machines, magnetic drug forcing, and 

pertinent methods of human digestion, the advantage of applied magnetic field (MHD) on 

peristaltic efficacy is crucial. It is also helpful in treating gastroparesis, chronic constipation, 

and morbid obesity as well as magnetic resonance imaging (MRI), which is used to identify 

brain, vascular diseases, and tumors. A substance that has several tiny holes scattered 

throughout it is referred to as a porous medium. In riverbeds, fluid infiltration and seepage are 

sustained by flows over porous media. Important examples of flows through a porous material 

are those through the ground, water, and oil. Oil is trapped in rock formations like limestone 

and sandstone, which make up the majority of an oil reservoir [11]. Natural porous media can 

be found in many different forms, such as sand, rye bread, wood, filters, bread loaves, human 

lungs, and the gallbladder. Food processing, oxygenation, hemodialysis, tissue condition, heat 

convection for blood flow from tissues' pores, and radiation between the environment and its 

surface all depend on the action of heat transfer in the peristaltic repositioning of fluid [12]–

[15]. The aforementioned processes all benefit from mass transfer; in particular, the mass 

transfer that occurs as nutrients diffuse from the blood into nearby tissues cannot be understated. 

Greater mass transfer participation is typical in the distillation, diffusion of chemical 

contaminants, membrane separation, and combustion processes. It should be observed that 

when heat and mass transfer occur simultaneously, a relationship between fluxes and driving 

potentials exists. However, the temperature gradient is what causes the gradients in mass flux 

and composition (termed soret action). Many problems involving the flow of conductive 

physiological fluids, including blood and saline water, call for the study of the peristaltic 

transport of fluid in the presence of an external magnetic field and rotation [16]. We use a 

variety of values for the rotational parameters, the porous medium, density, amplitude wave, 
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and taper of the channel, as well as a variety of values for the Hartman number and Darcy 

number, to study the effects of varying the velocity and pressure gradient. The goal of this 

article is to investigate the rotation effects of the peristaltic transport of a Powell-Eyring fluid 

in an asymmetric channel through a porous medium subject to the combined actions of inclined 

MHD. 

 

2. Problem Mathematical description 

     Consider how an incompressible Powell-Eyring fluid might move peristaltically in a two-

dimensional, asymmetric conduit with a width of (d'+d). Flow is caused by an infinite sinusoidal 

wave moving with constant forward velocity (c) along the channel walls. 

The geometry of the wall structure is described as: 

     In which  ℎ1
̅̅ ̅(�̅�, 𝑡̅) and  ℎ2

̅̅ ̅(�̅�, 𝑡̅) are the lower and the upper walls, respectively. 
(𝑑, 𝑑′) denotes the channel width, (𝑎1, 𝑎2) are the amplitudes of the wave,(𝜆) is the 

wavelength, (𝑐) is the wave speed, (Φ) varies in the range (0 ≤ Φ ≤ 𝜋), when  Φ = 0 is a 

symmetric channel with out-of-phase waves and Φ = 𝜋 waves are in phase, the rectangular 

coordinate system is chosen so that the �̅� − 𝑎𝑥𝑖𝑠 is in the direction of the wave's motion. and 

the �̅� − 𝑎𝑥𝑖𝑠 perpendicular to �̅�, where  𝑡̅  is the time. 

Further, 𝑎1, 𝑎2 , 𝑑, 𝑑′  and Φ fulfill the following condition;  

 

      The Cauchy stress tensor 𝜏̅  for a fluid that obeys the Powell- Eyring model is given as 

follows:- 

ℎ1
̅̅ ̅(�̅�, 𝑡̅) = 𝑑 − 𝑎1 sin [

2𝜋

𝜆
(�̅� − 𝑐𝑡)̅] 

(1) 

ℎ2
̅̅ ̅(�̅�, 𝑡̅) = −𝑑′ − 𝑎2 sin [

2𝜋

𝜆
(�̅� − 𝑐𝑡̅) + Φ] 

(2) 

  

 𝑎1
2 + 𝑎2

2 + 2𝑎1𝑎2 cos Φ ≤ (𝑑 + 𝑑′)2  (3) 

 τ̅ = −PI + S̅ (4) 

 
Figure 1: Coordinates for Asymmetric Channels in Cartesian Space 
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 Where S̅ is the extra stress tensor, I is the identity tensor, ∇= (𝜕�̅�, 𝜕�̅�, 0) is the gradient vector, 
(𝛽, 𝑐1) are the material parameters of Powell-Eyring fluid, P is the fluid pressure, and 𝜇 the 

dynamic viscosity. The term sinh−1  is approximately equivalent to  

 

     The flow is governed by three coupled nonlinear partial differentials of continuity, 

momentum, and energy, which are expressed in a frame (�̅�, �̅�) as  

 

 𝜌 (
𝜕�̅�

𝜕�̅�
+ �̅�

𝜕�̅�

𝜕�̅�
+ �̅�

𝜕�̅�

𝜕�̅�
) − 𝜌Ω (Ω�̅�  + 2

𝜕�̅�

𝜕�̅�
) =  −

𝜕�̅�

𝜕�̅�
+

𝜕�̅��̅��̅�

𝜕�̅�
+

𝜕�̅��̅��̅�

𝜕�̅�
−

𝜎𝛽0
2 𝑐𝑜𝑠𝛽(�̅�𝑐𝑜𝑠𝛽 − �̅�𝑠𝑖𝑛𝛽) −

𝜇

�̅�
 �̅� 

 (10) 

 

     Where 𝜌 is the fluid density, �̅� = [�̅�, �̅�] is the velocity vector, �̅� is the hydrodynamic 

pressure, 𝑆�̅̅��̅� , 𝑆�̅̅��̅� , 𝑎𝑛𝑑  𝑆�̅̅��̅� are the elements of the extra stress tensor 𝑆̅, 𝜎  is the electrical 

conductivity, 𝛽0  is the constant magnetic field,  𝛽  is the inclination of the magnetic field, Ω is 

the rotation 𝐶𝑃 is specific heat, 𝑘′ is the thermal conductivity, �̅� is a temperature, and 𝜇 refers 

to the  viscosity. 

Listed below are the components of the extra stress tensor of Powell – Eying as defined by 

Eq.(5)   

 

 

 

      Natural peristaltic motion is an erratic occurrence, but by applying the transformation from 

laboratory frame, the stability can be assumed (fixed frame) (�̅�, �̅�)to wave frame (move frame) 

(�̅�, �̅�). The subsequent transformations determine the relationship between coordinates, 

velocities, and pressure in the laboratory frame (�̅�, �̅�)  to the wave frame (�̅�, �̅�)  

Where  �̅� and �̅� represent the velocity factors and  �̅� represents the pressure in the wave frame. 

We now substitute equation (15) in equations (1), (2), and (9-14) and normalize the resulting 

equation with the following non-dimensional variables: 

 

  

 S̅ = [μ +
1

βγ
sinh−1 (

γ̇

c1
)] A11 (5) 

 

  γ̇ = √
1

2
tras(A11)2 

(6) 

 

 A11 = ∇V̅ + (∇V̅)T (7) 

  sinh−1 (
γ̇

c1
) =

γ̇

c1
−

γ̇3

6c1
3     , |

γ̇5

6c1
5| ≪ 1              (8) 

 
𝜕�̅�

𝜕�̅�
+

𝜕�̅�

𝜕�̅�
= 0             (9) 

 𝜌 (
𝜕�̅�

𝜕�̅�
+ �̅�

𝜕�̅�

𝜕�̅�
+ �̅�

𝜕�̅�

𝜕�̅�
) − 𝜌Ω (Ω�̅�  + 2

𝜕�̅�

𝜕�̅�
) =  −

𝜕�̅�

𝜕�̅�
+

𝜕�̅��̅��̅�

𝜕�̅�
+

𝜕�̅��̅��̅�

𝜕�̅�
−

𝜎𝛽0
2 𝑠𝑖𝑛𝛽(�̅�𝑐𝑜𝑠𝛽 − �̅�𝑠𝑖𝑛𝛽) −

𝜇

�̅�
 �̅�  

(11) 

 

 𝑆�̅̅��̅� = 2 (𝜇 +
1

𝛽𝐶1
) �̅��̅� −

1

3𝛽𝐶1
3 [2�̅��̅�

2
+ (�̅��̅� + �̅��̅�)2 + 2�̅�𝑌

2
] �̅��̅� (12) 

 𝑆�̅̅��̅� = 2 (𝜇 +
1

𝛽𝐶1
) (�̅��̅� + �̅��̅�) −

1

6𝛽𝐶1
3 [2�̅��̅�

2
+ (�̅��̅� + �̅��̅�)2 + 2�̅�𝑌

2
] (�̅��̅� +

�̅��̅�) 
(13) 

 𝑆�̅̅��̅� = 2 (𝜇 +
1

𝛽𝐶1
) �̅��̅� −

1

3𝛽𝐶1
3 [2�̅��̅�

2
+ (�̅��̅� + �̅��̅�)2 + 2�̅�𝑌

2
] �̅��̅� (14) 

 �̅� = �̅� − 𝑐, �̅� = �̅�, �̅� = �̅� − 𝑐, �̅� = �̅�, �̅�(�̅�, �̅�) = �̅�(�̅�, �̅�, 𝑡̅) (15) 
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Where, (𝛿) is the wave number, (ℎ1) 𝑎𝑛𝑑 (ℎ2) are non-dimensional lower and upper wall 

surfaces, respectively.  (Re) is the Reynolds number, (Ha) is the Hartman number, (Φ) is the 

amplitude ratio, (w) is the non-dimensional permeability of the porous medium parameter, (Da) 

is the Darcy number, (A) is the Powell-Eyring fluid parameter, (𝑇0) 𝑎𝑛𝑑 (𝑇1)  are the 

temperatures at the upper  and lower walls. 

Next, we have  

We have where 𝑎, 𝑏, 𝑑∗   and   Φ satisfy equation (3)  

 

 

     In previous equations, Pr is the Prandtl number, Ec is the Eckert number and  𝜃 is the 

dimensionless temperature. 

Following are the relations between the stream function (ψ) and velocity components: 

Substituting equation (26) into equations (21) to (25), noting that the mass balance displayed 

by equation (20) is similarly satisfied, this produces the consequence that equation (26) is 

satisfied. 

 𝑥 =
1

𝜆
�̅�, 𝑦 =

1

𝑑
�̅� 𝑢 =

1

𝑐
�̅�, 𝑣 =

1

𝛿𝑐
�̅�, 𝑃 =

𝑑2

𝜆 𝜇 𝑐
�̅�, 𝑡 =

𝑐

𝜆
𝑡̅, ℎ1 =

1

𝑑
ℎ1
̅̅ ̅,  ℎ2 =

1

𝑑
ℎ2
̅̅ ̅, 

𝛿 =
𝑑

𝜆
,  𝑅𝑒 =

𝜌 𝑐 𝑑

𝜇
, 𝐻𝑎 = 𝑑√

𝜎

𝜇
𝛽0, 𝐷𝑎 =

�̅�

𝑑2, 𝑤 =
1

𝜇 𝛽 𝐶1
, 𝐴 =

𝑤

6
(

𝐶

𝐶1 𝑑
)

2

, �̅� = 𝑇 −

𝑇0, 𝜃 =
𝑇−𝑇0

𝑇1−𝑇0
, 𝑆𝑥𝑥 =

𝜆

𝜇 𝑐
𝑆�̅̅��̅�, 𝑆𝑥𝑦 =

𝑑

𝜇 𝑐
𝑆�̅̅��̅�, 𝑆𝑦𝑦 =

𝑑

𝜇 𝑐
𝑆�̅̅��̅� 

(16) 

 

 ℎ1(𝑥, 𝑡) = 1 − 𝑎 sin(2𝜋𝑥) (17) 

 ℎ2(𝑥, 𝑡) = −𝑑∗ − 𝑏 𝑠𝑖𝑛 (2𝜋𝑥 + Φ) (18) 

 𝑎2 + 𝑏2 + 2𝑎𝑏 cos Φ ≤ (1 + 𝑑∗)2  (19) 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 (20) 

 𝑅𝑒𝛿 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) −

𝜌𝑑2Ω

𝜇
(Ω𝑢 + 2

𝛿𝑐

𝑑

𝜕𝑣

𝜕𝑡
) = −

𝜕𝑝

𝜕𝑥
+ 𝛿2 𝜕

𝜕𝑥
𝑆𝑥𝑥 +

𝜕

𝜕𝑦
𝑆𝑥𝑦 −

𝐻𝑎2 cos 𝛽  (𝑢 cos 𝛽 − 𝛿𝑣 sin 𝛽) −
1

𝐷𝑎
𝑢 

(21) 

 𝑅𝑒𝛿3 (
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) −

𝜌𝑑2Ωδ

𝜇
(Ω𝑢 + 2

𝛿𝑐

𝑑

𝜕𝑣

𝜕𝑡
) = −

𝜕𝑝

𝜕𝑥
+ 𝛿2  

𝜕

𝜕𝑥
𝑆𝑥𝑦 +

𝛿
𝜕

𝜕𝑦
𝑆𝑦𝑦 + 𝐻𝑎2 sin 𝛽  (𝛿𝑢 cos 𝛽 − 𝛿2𝑣 sin 𝛽) − 𝛿2 1

𝐷𝑎
 𝑣 

(22) 

 𝑆𝑥𝑥 = 2(1 + 𝑤)
𝜕𝑢

𝜕𝑥
− 2𝐴 [2𝛿2 (

𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕𝑢

𝜕𝑦
+ 𝛿2 𝜕𝑣

𝜕𝑥
)

2

+ 2𝛿2 (
𝜕𝑣

𝜕𝑦
)

2

]
𝜕𝑢

𝜕𝑥
 (23) 

 𝑆𝑥𝑦 = (1 + 𝑤) (𝛿2 𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
) − 𝐴 [2𝛿2 (

𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕𝑢

𝜕𝑦
+ 𝛿2 𝜕𝑣

𝜕𝑥
)

2

+

2𝛿2 (
𝜕𝑣

𝜕𝑦
)

2

] (𝛿2 𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
) 

(24) 

 𝑆𝑦𝑦 = 2(1 + 𝑤)𝛿
𝜕𝑣

𝜕𝑦
− 2𝐴𝛿 [2𝛿2 (

𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕𝑢

𝜕𝑦
+ 𝛿2 𝜕𝑣

𝜕𝑥
)

2

+ 2𝛿2 (
𝜕𝑣

𝜕𝑦
)

2

]
𝜕𝑣

𝜕𝑦
 (25) 

 𝑢 =
𝜕Ψ

𝜕𝑦
, 𝑣 = −

𝜕Ψ

𝜕𝑥
 (26) 

 𝑅𝑒 𝛿 (
𝜕2Ψ

𝜕𝑡𝜕𝑦
+

𝜕3Ψ

𝜕𝑥𝜕𝑦2 −
𝜕3Ψ

𝜕𝑥𝜕𝑦2) −
𝜌𝑑2Ω

𝜇
(Ω

𝜕Ψ

𝜕𝑦
− 2

𝛿𝑐

𝑑
  

𝜕2Ψ

𝜕𝑡𝜕𝑥
) = −

𝜕p

𝜕𝑥
+

𝛿2 𝜕

𝜕𝑥
 𝑆𝑥𝑥 +  

𝜕

𝜕𝑦
𝑆𝑥𝑦 − 𝐻𝑎2 cos 𝛽 (

𝜕Ψ

𝜕𝑦
 cos 𝛽 + 𝛿

𝜕Ψ

𝜕𝑥
sin 𝛽) −

1 

𝐷𝑎

𝜕Ψ

𝜕𝑦
 

(27) 

 𝑅𝑒 𝛿3 (−
𝜕2Ψ

𝜕𝑡𝜕𝑥
−

𝜕3Ψ

𝜕𝑥2𝜕𝑦
−

𝜕3Ψ

𝜕𝑥2𝜕𝑦
) −

𝜌𝑑2Ωδ

𝜇
(Ω

𝜕Ψ

𝜕𝑥
− 2

𝛿𝑐

𝑑
  

𝜕2Ψ

𝜕𝑡𝜕𝑥
) = −

𝜕p

𝜕𝑦
+

𝛿2 𝜕

𝜕𝑥
 𝑆𝑥𝑦 + 𝛿

𝜕

𝜕𝑦
𝑆𝑦𝑦 + 𝐻𝑎2 sin 𝛽 (𝛿

𝜕Ψ

𝜕𝑦
 cos 𝛽 + 𝛿2 𝜕Ψ

𝜕𝑥
sin 𝛽) + 𝛿2 1 

𝐷𝑎

𝜕Ψ

𝜕𝑥
 (28) 
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 Now, the equations from (27) to (31) become the form when (𝑅𝑒 𝑎𝑛𝑑  𝛿 ≪ 1) are present: 

While the component of the extra stress tensor becomes the form of 

Also, if equation (35) is entered into equation (32) as well as the derivative regards to y and by 

(w+1) is taken, then the following equation is obtained: 

 Where  

In the wave frame, the dimensionless volume flow rate and boundary condition are as follows: 

F represents the dimensionless temporal average flow in the wave frame. 

 

3. Problem's Resolution 

     The perturbation method is used to obtain the solution of a non-linear partial differential 

equation system by increasing flow amounts in a power series of A. 

 Now, by substituting Equations (40) - (41) into Equations (32) - (37) and boundary conditions 

(38) - (39) and comparing the coefficients of the same A power up to the first order yields the 

two system solutions listed below: 

 

3.1. Zeroth order system 

     When the terms of order (A) in a zeroth-order system are negligible, we obtain  

Such is the case 

𝑆𝑥𝑥 = 2(1 + 𝑤)
𝜕2Ψ

𝜕𝑥𝜕𝑦
− 2𝐴 [2𝛿2 (

𝜕2Ψ

𝜕𝑥𝜕𝑦
)

2

+ (
𝜕2Ψ

𝜕𝑦2 − 𝛿2 𝜕2Ψ

𝜕𝑥2 )
2

+ 2𝛿2 (
𝜕2Ψ

𝜕𝑥𝜕𝑦
)

2

]  
(29) 

  𝑆𝑥𝑦 = (1 + 𝑤) (−𝛿2 𝜕2Ψ

𝜕𝑥2 +
𝜕2Ψ

𝜕𝑦2 ) − 𝐴 [2𝛿2 (
𝜕2Ψ

𝜕𝑥𝜕𝑦
)

2

+ (−𝛿2 𝜕2Ψ

𝜕𝑥2 +

𝛿2 𝜕𝛹

𝜕𝑦2)
2

+ 2𝛿2 (−
𝜕2Ψ

𝜕𝑥𝜕𝑦
)

2

] (−𝛿2 𝜕2Ψ

𝜕𝑥2 +
𝜕2Ψ

𝜕𝑦2 ) 
(30) 

 𝑆𝑦𝑦 = −2(1 + 𝑤)𝛿
𝜕2Ψ

𝜕𝑥𝜕𝑦
− 2𝐴𝛿 [2𝛿2 (

𝜕2Ψ

𝜕𝑥𝜕𝑦
)

2

+ (
𝜕2Ψ

𝜕𝑦2 − 𝛿2 𝜕2Ψ

𝜕𝑥2 )
2

+

2𝛿2 (
𝜕2Ψ

𝜕𝑥𝜕𝑦
)

2

] (−
𝜕2Ψ

𝜕𝑥𝜕𝑦
) 

(31) 

 −
𝜌𝑑2Ω2

𝜇
 
𝜕Ψ

𝜕𝑦
= −

𝜕p

𝜕𝑥
+

𝜕

𝜕𝑦
𝑆𝑥𝑦 − (𝐻𝑎2 cos2 𝛽 +

1 

𝐷𝑎
)

𝜕Ψ

𝜕𝑦
 (32) 

 −
𝜕p

𝜕𝑦
= 0 (33) 

 𝑆𝑥𝑥 = 2(1 + 𝑤)
𝜕2Ψ

𝜕𝑥𝜕𝑦
− 2𝐴 (

𝜕2Ψ

𝜕𝑦2 )
2

𝜕2Ψ

𝜕𝑥𝜕𝑦
 (34) 

 𝑆𝑥𝑦 = (1 + 𝑤) (
𝜕2Ψ

𝜕𝑦2 ) − 𝐴 (
𝜕2Ψ

𝜕𝑦2 )
3

 (35) 

 𝑆𝑦𝑦 = 0 (36) 

 
𝜕4Ψ

𝜕𝑦4 − 𝜂𝐴
𝜕2

𝜕𝑦2 (
𝜕2Ψ

𝜕𝑦2 )
3

− 𝜁
𝜕2Ψ

𝜕𝑦2 = 0 (37) 

 𝜁 =
𝐻𝑎2 cos2 𝛽+

1 

𝐷𝑎
−

𝜌𝑑2Ω2

𝜇

𝑤+1
, 𝜂 =

1

𝑤+1
     

 Ψ =
𝐹

2
  ,

𝜕Ψ

𝜕𝑦
= −1 , 𝜃 = 0     𝑎𝑡     𝑦 = ℎ1 (38) 

 Ψ = −
𝐹

2
  ,

𝜕Ψ

𝜕𝑦
= −1 , 𝜃 = 0    𝑎𝑡   𝑦 = ℎ2 (39) 

 Ψ = Ψ0 + AΨ1 + O(A2)                                                                                       (40) 

 P = P0 + AP1 + O(A2) (41) 

 Ψ0𝑦𝑦𝑦𝑦 − 𝜁Ψ0𝑦𝑦 = 0                                                                                                (42) 

 Ψ0 =
F0

2
 ,

𝜕Ψ0

𝜕𝑦
= −1     𝑎𝑡   𝑦 = ℎ1 (43) 
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 and 

 

 3.2. First order system 

  and  

Solving associated zeroth and first-order systems yields the final equation for the stream 

function. 

Ψ =
ⅇ−𝑦√𝜁(ⅇ2𝑦√𝜁c1+c2)

𝜁
+ c3 + 𝑦c4+A[(𝑒−3𝑦√𝜁(𝑒3(h1+h2)√𝜁(F0 + h1 − h2)3𝜁3𝜂 −

𝑒6𝑦√𝜁(F0 + h1 − h2)3𝜁3𝜂 + 6𝑒(h1+h2+4𝑦)√𝜁(F0 + h1 − h2)3(−5 + 2𝑦√𝜁)𝜁3𝜂 +

6𝑒2(h1+h2+𝑦)√𝜁(F0 + h1 − h2)3(5 + 2𝑦√𝜁)𝜁3𝜂 + 8𝑒(3h1+4𝑦)√𝜁(−2 + h1√𝜁 −

h2√𝜁)3A1 + 24𝑒(h1+2h2+4𝑦)√𝜁(−2 + h1√𝜁 − h2√𝜁)(2 + h1√𝜁 − h2√𝜁)2A1 −

8𝑒(3h2+4𝑦)√𝜁(−2 − h1√𝜁 + h2√𝜁)3A1 + 24𝑒(2h1+h2+4𝑦)√𝜁(2 + h1√𝜁 −

h2√𝜁)(2 − h1√𝜁 + h2√𝜁)2A1 + 8𝑒(3h1+2𝑦)√𝜁(−2 + h1√𝜁 − h2√𝜁)3A2 +

24𝑒(h1+2(h2+𝑦))√𝜁(−2 + h1√𝜁 − h2√𝜁)(2 + h1√𝜁 − h2√𝜁)2A2 −

8𝑒(3h2+2𝑦)√𝜁(−2 − h1√𝜁 + h2√𝜁)3A2 + 24𝑒(2h1+h2+2𝑦)√𝜁(2 + h1√𝜁 −

h2√𝜁)(2 − h1√𝜁 + h2√𝜁)2A2))/(8(𝑒h1√𝜁(−2 + h1√𝜁 − h2√𝜁) + 𝑒h2√𝜁(2 +

h1√𝜁 − h2√𝜁))3𝜁) + A3 + 𝑦A4] 

 

 It is possible to rewrite (37) as 
 

Within the fixed frame, the axial velocity component is expressed as follows: 

 𝑢(𝑥, 𝑦, 𝑡) = Ψy 
(51) 

 
𝜕𝑝

𝜕𝑥
= Ψ0𝑦𝑦𝑦 − 𝜁Ψ0𝑦 + 𝐴Ψ1𝑦𝑦𝑦 − 𝜂𝐴

𝜕

𝜕𝑦
(Ψ0𝑦𝑦)

3
− 𝐴ζΨ1𝑦 (52) 

(50) 

 

4. Results and discussions 

        This section consists of two subsections. In the first one, the velocity distribution is 

discussed, while in the second subsection, the pressure gradient is illustrated using the 

MATHEMATICA software. 

 

I.  Velocity distribution u: 

     The axial velocity across the channel is varied as it is indicated by the case variation of u. 

The effect of different values (Ha, Da, w, A, a, b, and d) on the axial velocity u is shown in 

Figures. (2) – (11), where the behavior of the velocity distribution is parabolic as shown in the 

following figures: 

1- Figures (2) and (8) demonstrate that axial velocity falls with increasing Hartman number 

(Ha) and material fluid parameter (A) in the channel's central region, while it increases at the 

channel's wall. 

2- Figures (3),(4),(5),(6), and (11) demonstrated that the axial velocity increases as the Darcy 

number (Da), inclination of magnetic field (β), rotation (Ω), porous medium parameter (w), and 

 Ψ0 = −
F0

2
 ,

𝜕Ψ0

𝜕𝑦
= −1     𝑎𝑡   𝑦 = ℎ2 (44) 

 Ψ1𝑦𝑦𝑦𝑦 − 𝜂
𝜕2

𝜕𝑦2 (Ψ0𝑦𝑦)
3

− 𝜁Ψ1𝑦𝑦 = 0 (45) 

 Ψ1𝑦𝑦𝑦𝑦 − 𝜁Ψ1𝑦𝑦 = 𝜂
𝜕2

𝜕𝑦2 (Ψ0𝑦𝑦)
3
 (46) 

 Ψ1 =
F1

2
,

𝜕Ψ1

𝜕𝑦
= 0  𝑎𝑡   𝑦 = ℎ1 (27) 

 Ψ1 = −
F1

2
,

𝜕Ψ1

𝜕𝑦
= 0  𝑎𝑡   𝑦 = ℎ2 (48) 

 Ψ = Ψ0 + AΨ1 (49) 
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width of the channel (d) increase within the middle of the channel, but decreases at the channel 

wall boundary. 

3- Figure (7) demonstrates that for approximately 0.05<y<0.9, the axial velocity decreases as 

the amplitude ratio (ϕ) increases, whereas otherwise, it increases. 

4- Figure (9) demonstrates that for -0.4<y<0.55, the axial velocity increases as the wave 

amplitude increases (a) and decreases with increasing wave amplitude (a) for all other values 

of y.  

5- Figure (10) demonstrates that for -0.05<y<0.85, the axial velocity increases as the wave 

amplitude increases (b), but decreases with decreasing wave amplitude (b). 

 

II.  Pressure gradient dp/dx: 

     The effect of relevant parameters on the pressure gradient dp/dx is graphically illustrated in 

Figures.          (12)-(21) 

1- In Figures (12), (18), and (19), the increase in the values of Hartman number (Ha), material 

fluid parameter (A), and amplitude of the wave (a) give rise to the axial pressure gradient 

decreases as the vertex of the curve is twisted to the right but there is no effect on axial pressure 

gradient near the right or left wall of the channel. 

2-In Figures (13),(14), and (16), the increase in the values of Darcy number (Da), the inclination 

of magnetic field (β), and the porous medium parameter (w) lead to the axial pressure gradient 

increases as the vertex of the curve is twisted to the right but there is no effect on the axial 

pressure gradient near the channel's right or left walls. 

3-Figure (20) increases in the amplitude of the wave (b) decreases the axial pressure gradient 

as the curve's vertex is twisted to the left, but there is no effect on the axial pressure gradient 

near the channel's right or left walls. 

4-Figures (15) and (21) demonstrate that the axial pressure gradient does not change as the 

rotation (Ω) and channel width (d) values increase. 

5- Figure (17) for approximately -2.75<x<-4 , the axial velocity increases as the amplitude ratio 

increases (ϕ) , for approximately -1.75<x<-2.75, the axial pressure gradient increases slightly, 

and for                 0<x<-1.75, the axial pressure gradient increases. However, for x>0, the axial 

pressure gradient does not. 

 
 

 

 

 

 

 

 

Figure 2: Variation of velocity with 

respect to (Da) values when 𝛽=0.1, Da =
6, 𝜌 = 0.1, 𝑑 = 0.5, 𝛺 = 0.3, 𝜇 = 3, 𝑤 =

0.3, 𝜙 = 0.5, 𝑎 = 0.2, 
𝑏 = 0.2, 𝑑1 = 0.5, F0 = 0.4, F1 = 0, 𝐴 = 5 

 

Figure 3: Variation of velocity with 

respect to (Ha) values when Ha= 4, 𝛽 = 

0.1, Da = 6, 𝜌 = 0.1, 𝑑 = 0.5𝛺 =
0.3, 𝜇 = 3, 𝑤 = 0.3, 𝜙 = 0.5, 

𝑎 = 0.2, 𝑏 = 0.2, 𝑑1 = 0.5, F0
= 0.4, F1 = 0, 𝐴 = 5 

Da 0.1

Da 1

Da 6

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0

10

0

10

20

y

u

Ha 3

Ha 3.5

Ha 4

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0

15

10

5

0

5

10

15

20

y

u



Ibraheem and Hummady                         Iraqi Journal of Science, 2023, Vol. 64, No. 12, pp: 6431- 6444 

 
 

6439 

0.1

0.5

1

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0

15

10

5

0

5

10

15

20

y

u

w 0.3

w 0.6

w 0.9

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0

15

10

5

0

5

10

15

20

y

u

0.3

20.3

40.3

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0

15

10

5

0

5

10

15

20

y

u

0.5

1.3

1.7

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0

10

0

10

20

y

u

  

 

 

 

 

 

  

 

 

 

 

Figure 4: Variation of velocity with 

respect to( β ) values when Ha=4,Da =
6, 𝜌 = 0.1, 𝑑 = 0.5 

, 𝛺 = 0.3, 𝜇 = 3 , 𝑤 = 0.3, 𝜙 = 0.5, 𝑎 =
0.2, 

𝑏 = 0.2, 𝑑1 = .5, F0 = 0.4, F1 = 0, 𝐴 = 5 

 

Figure 5: Variation of velocity with 

respect to( Ω  ) values when Ha= 

4,𝛽 =  0.1, Da = 6, 𝜌 = 0.1, 
𝑑 = 0.5, 𝜇 = 3, 𝑤 = 0.3, 𝜙 = 0.5, 𝑎

= 0.2, 
𝑏 = 0.2, 𝑑1 = 0.5, F0 = 0.4, F1 = 0, 

𝐴 = 5 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 6: Variation of velocity with 

respect to(w)   values when Ha= 4, 𝛽 =
 0.1, Da = 6, 𝜌 = 0.1,  
 𝑑 = 0.5, 𝛺 = 0.3, 𝜇 = 3, , 𝜙 = 0.5, 𝑎 =
0.2, 
 𝑏 = 0.2, 𝑑1 = 0.5, F0 = 0.4, F1 = 0, 𝐴 =
5 

Figure 7: Variation of velocity with 

respect to( ϕ)   values when Ha= 4, 𝛽 =
 0.1, Da = 6, 𝜌 = 0.1,  
 𝑑 = 0.5, 𝛺 = 0.3, 𝜇 = 3, , 𝑤 =
0.3, 𝑎 = 0.2,  
𝑏 = 0.2, 𝑑1 = 0.5, F0 = 0.4, F1 = 0, 
𝐴 = 5 
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Figure 8: Variation of velocity with 

respect to(A)   values when Ha= 4, 𝛽 =
 0.1, Da = 6, 𝜌 = 0.1, 

𝑑 = 0.5, 𝛺 = 0.3, 𝑤 = 0.3, 𝜙 = 0.5, 𝑎
= 0.2, 

, 𝜇 = 3, 𝑏 = 0.2, F0 = 0.4, F1 = 0 

Figure 9: Variation of velocity with 

respect to(a)   values when Ha= 4, β = 

0.1, Da=6, ρ=0.1, d=0.5, Ω=0.3, w=0.3, 

ϕ=0.5, μ=3, b=0.2, F0=0.4, F1=0, A=5 

 

 

 

 

 
 

Figure 10: Variation of velocity with 

respect to (b) values when Ha= 4, β = 0.1, 

Da=6, ρ=0.1, d=0.5, Ω=0.3, w=0.3, 

ϕ=0.5, a=0.2, μ=3, F0=0.4, F1=0, A=5 

Figure 11: Variation of velocity with 

respect to (d) values when Ha= 4, β = 

0.1, Da=6, ρ=0.1,  Ω =0.3, w=0.3, ϕ=0.5, 

a=0.2, μ=3,  b=0.2, F0=0.4, F1=0, A=5 

 

 

 

 

Figure12: Variation in pressure gradient 

for various values of (Ha) when 𝛽 = 0.1, 

Da = 0.2, 𝜌 = 0.1, 𝑑 = 0.5, 𝛺 = 0.2, 𝜇 =
3, 𝑤 = 0.3, 𝜙 = 0.2, 𝑎 = 0.2, 𝑏 =
0.2, 𝑑1 = 0.5, F0 = 0.4, F1 = 0, 𝐴 = 0.3 

Figure 13: Variation in pressure gradient 

for various values of (Da) when Ha =
2.5, 𝛽 = 0.1, 𝜌 = 0.1, 𝑑 = 0.5, 𝛺 = 0.2 

, 𝜇 = 3, 𝑤 = 0.3, 𝜙 = 0.2, 𝑎 = 0.2, 𝑏 =
0.2, 𝑑1 = 0.5, F0 = 0.4, F1 = 0, 𝐴 = 0.3 
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Figure14: Variation in pressure gradient 

for various values of (β)  when 𝐻𝑎 =2.5, 

Da = 0.2, 𝜌 = 0.1 

 , 𝑑 = 0.5, 𝛺 = 0.2, 𝜇 = 3, 𝑤 = 0.3, 𝜙 =
.2, 
 𝑎 = 0.2, 𝑏 = 0.2, 𝑑1 = 0.5, F0 =
0.4, F1 = 0 

 , 𝐴 = 0.3 

 

Figure15: Variation in pressure gradient 

for various values of (Ω)   when Ha= 2.5, 

𝛽 =  0.1, Da = 0.2, 
 𝜌 = 0.1, 𝑎 = 0.2, 𝑑 = 0.5, 𝜇 = 3, 𝑤 =
0.3, 
 𝜙 = 0.2, 𝑏 = 0.2, 𝑑1 = 0.5, F0 =
0.4, F1 = 0, 𝐴 = 0.3 

 

  

Figure16: Variation in pressure gradient 

for various values of (w) when  Ha= 2.5, 

𝛽 =  0.1, Da = 0.2, 
 𝜌 = 0.1, 𝑑 = 0.5,𝛺 = 0.2, 𝜇 = 3, 𝜙 =
0.5, 
𝑎 = 0.2, 𝑏 = 0.2, 𝑑1 = 0.5, F0 =
0.4, F1 = 0, 𝐴 = 0.3 

 

Figure17: Variation in pressure gradient 

for various values of (ϕ)   when  Ha= 2.5, 

𝛽 =  0.1, Da = 0.2, 
 𝜌 = 0.1,   𝑑 = 0.5, 𝛺 = 0.2, 𝜇 = 3, 𝑤 =
0.3, 
 𝑎 = 0.2, 𝑏 = 0.2, 𝑑1 = 0.5, F0 =
0.4, F1 = 0, 𝐴 = 0.3 

 

 

w 0.1

w 0.2

w 0.3

4 3 2 1 0 1

20000

15000

10000

5000

0

x

p x



Ibraheem and Hummady                         Iraqi Journal of Science, 2023, Vol. 64, No. 12, pp: 6431- 6444 

 
 

6442 

A 0.3

A 0.35

A 0.4

4 3 2 1 0 1

35000

30000

25000

20000

15000

10000

5000

0

x

p x a 0.2

a 0.23

a 0.26

4 3 2 1 0 1

20000

15000

10000

5000

0

x

p x

d 0.5

d 0.4

d 0.3

4 3 2 1 0 1

8000

6000

4000

2000

0

x

p x

  

Figure18: Variation in pressure gradient 

various values of (A)   when  Ha= 2.5, 

𝛽 =  0.1, Da = 0.2, 
𝜌 = 0.1, 𝑑 = 0.5, 𝛺 = 0.2, 𝜇 = 3, 𝑤

= 0.3, 
𝜙 = 0.5,𝑎 = 0.2, 𝑏 = 0.2, 𝑑1 = 0.5, F0 =

0.4, 
F1 = 0 

Figure19: Variation in pressure 

gradient various values of (a)   

when  Ha= 2.5, 𝛽 =  0.1, Da =
0.2, 

𝜌 = 0.1, 𝑑 = 0.5, 𝛺 = 0.2, 𝜇
= 3, 𝑤 = 0.3, 

𝜙 = 0.5, 𝑏 = 0.2, 𝑑1 = 0.5, F0
= 0.4, F1 = 0.4 

, 𝐴 = 0.3 

 

 

Figure 20: Variation in pressure gradient 

various values of (b)   when  Ha= 2.5, 

𝛽 =  0.1, Da = 0.2, 
𝜌 = 0.1, 𝑑 = 0.5, 𝛺 = 0.2, 𝜇 = 3, 𝑤

= 0.3, 
𝜙 = 0.5, 𝑎 = 0.2, 𝑑1 = 0.5, F0 = 0.4, F1

= 0.4 

, 𝐴 = 0.3 

Figure 21: Variation in pressure 

gradient various values of (d)   

when  Ha= 2.5, 𝛽 =  0.1, Da =
0.2, 

𝜌 = 0.1, 𝛺 = 0.2, 𝜇 = 3, 𝑤 = 0.3, 
𝜙 = 0.5, 

𝑎 = 0.2, 𝑏 = 0.2, 𝑑1 = 0.5, F0
= 0.4, F1 = 0.4 

, 𝐴 = 0.3 
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5. Conclusion 

     In this study, the rotational effects of peristaltic transport of a Powell-Eyring fluid in an 

asymmetric channel through a porous material susceptible to the combined acts of inclined 

MHD are investigated. The asymmetric channel is formed by selecting peristaltic waves with 

varying amplitudes and phases on the non-uniform walls and a low Reynolds number. Using 

the perturbation approach, the formulas for the axial velocity and pressure gradient are 

produced. Multiple graphs are utilized for parameter analysis. 

 

I) With increasing Hartman number (Ha) and material fluid parameter (A), in the middle of the 

channel, the axial velocity falls, while the axial velocity increases at the channel wall boundary. 

However, the opposite occurs for increasing the Darcy number (Da), the inclination of the 

magnetic field (β), the rotation (Ω), the porous medium parameter (w), and the width of the 

channel (d). The axial velocity decreases at the channel wall boundary, while for about 

0.05<y<0.9 of the axial velocity decreases as the amplitude ratio (ϕ) increases, and it increases 

otherwise, for approximately -0.4<y<0.55, the axial velocity increases as the wave amplitude 

increases (a) and decreases when the amplitude of the wave (a) increases, and for approximately 

-0.05<y<0.85, the axial velocity increases as the wave amplitude increases (b), but it decreases 

when the amplitude of the wave (b) increases. 

 

II) When the values of Hartman number (Ha), material fluid parameter (A), and amplitude of 

the wave (a) increase, the axial pressure gradient decreases as the vertex of the curve is twisted 

to the right. However, there is no effect on the axial pressure gradient near the channel's right 

or left walls. However, the opposite occurs when the values of Darcy number (Da), the 

inclination of magnetic field (β), and porous medium parameter (w) increase whereas increases 

in the amplitude of the wave (b) cause the axial pressure gradient to decrease as the vertex of 

the curve is twisted to the left, neither there is no effect on the axial pressure gradient near the 

channel's right or left walls, nor it does the axial pressure gradient change as the value of the 

rotation (Ω) increases. 
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