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Abstract: 

     In this research, the effect of the rotation variable on the peristaltic flow of Sutterby 

fluid in an asymmetric channel with heat transfer is investigated. The modeling of 

mathematics is created in the presence of the effect of rotation, using constitutive 

equations following the Sutterby fluid model. In flow analysis, assumptions such as 

long wave length approximation and low Reynolds number are utilized. The resulting 

nonlinear equation is numerically solved using the perturbation method. The effects 

of the Grashof number, the Hartmann number, the Hall parameter, the magnetic field, 

the Sutterby fluid parameter, and heat transfer analysis on the velocity and the pressure 

gradient are analyzed graphically. Utilizing MATHEMATICA software, numerical 

results are computed. It is discovered that velocity varies with parameters, while the 

pressure gradient is directly proportional to most parameters. 
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 تأثير الانتقال الحراري والدوران لسائل ساتيربي في قناة غير متماثلة 
 

 1حمادي ، لقاء زكي  1,2*محمد عبدالحسين اسماء

 قسم الرياضيات ، كلية العلوم، جامعة بغداد، بغداد، العراق 1
 ، جامعة بغداد، بغداد، العراق للبنات  قسم الرياضيات ، كلية العلوم 2

 
 الخلاصه 

في هذا البحث تم دراسة تأثير متغير الدوران على التدفق التمعجي لسائل سوتربي في قناة غير متناظرة         
الرياضية في وجود تأثير الدوران، باستخدام المعادلات التأسيسية التي تتبع  مع انتقال الحرارة. يتم إنشاء النمذجة  

نموذج سائل سوتربي. في تحليل التدفق، يتم استخدام افتراضات مثل تقريب طول الموجة الطويلة وانخفاض عدد  
ثيرات رقم كراشوف،  رينولدز. تم حل المعادلة غير الخطية الناتجة عدديًا باستخدام طريقة الاضطراب. يتم تحليل تأ

المغناطيسي ورقم هارتمان، ومعلمة هال السرعة  ، والمجال  الحرارة على  نقل  وتحليل  ، ومعلمة سائل سوتربي، 
تختلف   السرعة  أن  اكتشاف  تم  العددية.  النتائج  ماثيماتيكا، تم حساب  باستخدام برنامج  بيانياً.  وتدرج الضغط 

 .تناسباً طردياً مع معظم المعلماتغط باختلاف المعلمات. بينما يتناسب تدرج الض
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     A special type of pumping is known as peristaltic pumping, which is a series of contractions 

and diastoles that push fluid along [1]. Some examples of such physiological processes are the 

passage of food, chyme, and urine. Peristalsis is the driving force behind everything from worm 

movement to the transfer of noxious and clean fluids to the operation of finger pumps and the 

heart-lung machine. Damping, dispensability, and tension in the vasculature play a critical part 

in physiological processes involving peristalsis, such as blood flow, [2]. Studies of peristalsis 

were first introduced in [3] and [4]. Since then, researchers have made numerous attempts to 

dissect the peristaltic movement of fluids and its implications in the medical and business 

worlds. In biological systems and industrial fluid transport, heat transfer is a fundamental 

principle. One of the most essential roles of the cardiovascular system is maintaining the body's 

temperature. Air that enters the lungs must also be tempered to the body's temperature. This is 

accomplished through the use of all blood vessels. There are three methods of heat transmission; 

however, convection is the most relevant for fluid circulation in the human body. Human and 

animal bodies use convection heat transfer to release heat generated by metabolic processes 

into the environment, [5]. In recent years, research [6-9] has been conducted on the interaction 

between temperature and mass effects, as well as the influence of variable viscosity and 

temperature. Researchers investigated the effects of initial pressure and rotation on the 

peristaltic motion of an incompressible fluid in [10], [11]. Since Abdulhadi [12], Sadaf [13], 

Abdulla [14] and Akram [15] examined the mechanism of peristaltic transport, which is  

attracted the interest of numerous researchers. Non-Newtonian fluids are more recognized in 

many industrial and physiological processes than viscous liquids.Various types of non-

Newtonian substances can be usually seen in nature such as ketchup, shampoo, paints, 

lubricants and blood among that, Sutterby liquid [16] is one of these materials characterizing 

the ionic high polymer solutions, [17]. Waveform motion of non-Newtonian fluids through 

porous channels is discussed in [18-21], where the effects of rotation and an inclined MHD are 

considered. The effects of radiation and convection in a Sutterby fluid are discussed in [22]. In 

[23], electroosmotic peristaltic transport of Sutterby nanofluids is investigated. The peristaltic 

flow of a Sutterby liquid in an inclined channel was investigated in [24]. In [17], convection 

and Hall current were used to simulate the MHD peristaltic transport of a Sutterby nanofluid. 

 

     In this paper, we will look at the effects of rotation on heat transfer for peristaltic transport 

in an asymmetric channel. We will do this by using different values of the parameters of 

rotation, amplitude wave, and channel taper, as well as different values of the Grashof number, 

the Hartmann number, and the Hall parameter, based on the changes in velocity, pressure 

gradient, and heat transfer. 

  

2. A mathematical formulation for asymmetric flow  

    Consider the peristaltic transport of an incompressible Sutterby fluid through a two-

dimensional asymmetric conduit that has a width of (𝑑′ + 𝑑). whereas the motion is steady 

inside a coordinate system flowing there at wave speed (c) in the wave framer (𝑋̅, 𝑌̅). 

  

     The geometry of a wall's structure is described as:  

 ℎ1
̅̅ ̅(𝑋̅, 𝑡̅) = 𝑑 −  𝑎1 sin [

2𝜋

𝜆
(𝑥̅ − 𝑐𝑡̅)]   (1) 

 ℎ2
̅̅ ̅(𝑋̅, 𝑡̅) = −𝑑′ − 𝑎2 sin [

2𝜋

𝜆
(𝑥̅ − 𝑐𝑡)̅ + Φ]   (2) 

 

     In which  ℎ1
̅̅ ̅(𝑋̅, 𝑡̅), ℎ2

̅̅ ̅(𝑋̅, 𝑡̅) are the lower and upper wall respectively, (𝑑, 𝑑′) indicates the 

channel width, (𝑎1, 𝑎2) are the wave's amplitudes, (𝜆) represents the wavelength, (𝑐) is the 

speed of wave, (Φ) varies in the range (0 ≤ Φ ≤ 𝜋), when the value of Φ = 0 the channel is 

symmetric with waves out of phase and Φ = 𝜋 waves are in phase the rectangular coordinates 
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is designed in such a method that 𝑋̅ − 𝑎𝑥𝑖𝑠 is along the path that waves use for propagation and 

𝑌̅ − 𝑎𝑥𝑖𝑠 perpendicular to 𝑋̅, 𝑡̅  represents the time. 

Further, 𝑎1, 𝑎2, 𝑑, 𝑑′  and Φ satisfy the following condition  

 𝑎1
2 + 𝑎2

2 + 2a1a2 cos Φ ≤ (𝑑 + 𝑑′)2   (3) 

 
Figure 1: Asymmetric channel coordinates in the Cartesian and Dimensional Systems 

 

3. Basic equation 

The additional stress tensor for the Sutterby model is determined by [23]: 

 S̅ =
μ

2
[

sinh−1(nγ̇)

nγ̇
]

𝑚∗

A1  (4) 

 γ̇ = √
1

2
tras(A1)2  (5) 

 A1 = ∇V̅ + (∇V̅)T  (6) 

 

      Where 𝑆̅ expresses the extra tensor's stress, n and 𝑚∗ representing the material constants of 

the Sutterby fluid, 𝛻 = (𝜕𝑋̅, 𝜕𝑌̅, 0) is the gradient vector, 𝜇 represents the dynamic viscosity 

and A1 represents the first Rivilin–Ericksen tensor. The phrase sinh−1  is approximately 

equivalent to 

 sinh−1 (
γ̇

𝑛
) =

γ̇

n
−

γ̇3

6n3 , |
γ̇5

6n5| ≪ 1  (7) 

 

     The constituents of the extra stress tensor of Sutterby that are defined by Eq.(4) are listed as 

follows: 

 𝑆𝑋̅̅𝑋̅ =
𝜇

2
[1 −

𝑚𝑛2

6
(2𝑈̅𝑋̅

2
+ (𝑉̅𝑋̅ + 𝑈̅𝑌̅)2 + 2𝑉̅𝑌

2
)]2𝑈̅𝑋̅  (8) 

  𝑆𝑋̅̅𝑌̅ =
𝜇

2
[1 −

𝑚𝑛2

6
(2𝑈̅𝑋̅

2
+ (𝑉̅𝑋̅ + 𝑈̅𝑌̅)2 + 2𝑉̅𝑌

2
)] (𝑈̅𝑋̅ +  𝑉̅𝑌̅)  (9) 

  𝑆𝑌̅̅𝑌̅ =
𝜇

2
[1 −

𝑚𝑛2

6
(2𝑈̅𝑋̅

2
+ (𝑉̅𝑋̅ + 𝑈̅𝑌̅)2 + 2𝑉̅𝑌

2
)] 2𝑉̅𝑌̅  (10) 

 

4. governing equation 

     The flow is controlled by three coupled nonlinear partial differentials of continuity, 

momentum, and energy, the governing equations in frame (𝑋̅, 𝑌̅) can be written as follows:  

 
𝜕𝑈̅

𝜕𝑋̅
+

𝜕𝑉̅

𝜕𝑌̅
= 0  (11) 
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 𝜌 (
𝜕𝑈̅

𝜕𝑡̅
+ 𝑈̅

𝜕𝑈̅

𝜕𝑋̅
+ 𝑉̅

𝜕𝑈̅

𝜕𝑌̅
) − 𝜌Ω (Ω𝑈̅  + 2

𝜕𝑉̅

𝜕𝑡̅
) = −

𝜕𝑃̅

𝜕𝑋̅
+

𝜕𝑆̅𝑋̅𝑋̅

𝜕𝑋̅
+

𝜕𝑆̅𝑋̅𝑌̅

𝜕𝑌̅
−

𝜎𝐵0
2  

(1+𝑚2)
(𝑈̅ −

𝑚𝑉̅)+g 𝜌𝛽𝑇(𝑇 − 𝑇0)  

 

(12) 

  𝜌 (
𝜕𝑉̅

𝜕𝑡̅
+ 𝑈̅

𝜕𝑉̅

𝜕𝑋̅
+ 𝑉̅

𝜕𝑉̅

𝜕𝑌̅
) − 𝜌Ω (Ω𝑈̅ − 2

𝜕𝑈̅

𝜕𝑡̅
) = −

𝜕𝑃̅

𝜕𝑌̅
+

𝜕𝑆̅𝑋̅𝑌̅

𝜕𝑋̅
+

𝜕𝑆̅𝑌̅𝑌̅

𝜕𝑌̅
−

𝜎𝐵0
2  

(1+𝑚2)
(𝑉̅ +

𝑚𝑈̅)  

 

(13) 

                                                             𝜌𝐶𝑃 (
𝜕

𝜕𝑡̅
+ 𝑈̅

𝜕

𝜕𝑋̅
+ 𝑉̅

𝜕

𝜕𝑌̅
) 𝑇̅ = 𝑘 (

𝜕2

𝜕𝑡̅2 +
𝜕2

𝜕𝑋̅2 +
𝜕2

𝜕𝑌̅2) 𝑇̅ + 𝜑0  (14) 

 

     Where 𝜌 is the fluid density, (𝑈̅, 𝑉̅)  are the velocity components, 𝑃̅ represents the 

hydrodynamic pressure, 𝑆𝑋̅̅𝑋̅ , 𝑆𝑋̅̅𝑌̅ , 𝑎𝑛𝑑  𝑆𝑌̅̅𝑌̅ are the constituents of the extra stress tensor 𝑆̅. 𝜎 

is the electrical conductivity, 𝜑0 is the steady heat addition/absorption, 𝐵0 is an applied 

magnetic field, 𝛽𝑇 is the thermal expansion coefficient, g is the gravitational acceleration and 

Ω represents the rotation. The specific heat, thermal conductivity and  temperature are denoted 

by 𝐶𝑃, 𝑘 and 𝑇̅, respectively. Peristaltic movement in reality is an unstable behavior, but it can 

be considered to be steady via the change from the experimental frame (fixed frame) (𝑋̅, 𝑌̅) to 

the wave frame (moved frame) (𝑥̅, 𝑦̅). The following transformations establish the link between 

coordinates, velocities, and pressure in laboratory frame (𝑋̅, 𝑌̅) to wave frame (𝑥̅, 𝑦̅): 

 𝑋̅ = 𝑥̅ − 𝑐𝑡̅, 𝑌̅ = 𝑦̅, 𝑈̅ = 𝑢̅ − 𝑐, 𝑉̅ = 𝑣̅, 𝑃̅(𝑋̅, 𝑌̅ , 𝑡̅) = 𝑝̅(𝑥̅, 𝑦̅)  (15) 

 

     Where  𝑢̅ and 𝑣̅ represent the components of velocity, and  𝑝̅ denotes the pressure in the 

wave frame. Now, we will substitute Eq.(15) into Eqs.(1), (2), and (11)-(10) and then normalize 

the equation that is produced by doing so by utilizing the non-dimensional quantities that are 

listed below: 

 
𝑥 =

1

𝜆
𝑥̅, 𝑦 =

1

𝑑
𝑦̅, 𝑢 =

1

𝑐
𝑈̅, 𝑣 =

1

𝑐
𝑉̅, 𝑃 =

𝑑2

𝜆 𝜇 𝑐
𝑃̅, 𝑡 =

𝑐

𝜆
𝑡,̅ ℎ1 =

1

𝑑
ℎ1
̅̅ ̅, ℎ2 =

1

𝑑
ℎ2
̅̅ ̅, 𝛿 =

𝑑

𝜆
,  𝑅𝑒 =

𝜌 𝑐 𝑑

𝜇
,  𝑇̅ = 𝑇 − 𝑇0, 𝜃 =

𝑇−𝑇0

𝑇1−𝑇0
, 𝑆𝑖𝑗 =

𝑑

𝜇 𝑐
𝑆𝐼̅ ̅𝐽̅, 𝐺𝑟 =

𝑔𝛽𝑇(𝑇−𝑇0)𝑑2

𝜇𝑐
 , 𝑃𝑟 =

𝜇𝑐𝑝

𝑘
  

(16) 

 

     Where, (𝛿) represents the wave number, (ℎ1) 𝑎𝑛𝑑 (ℎ2) are the non-dimensional upper and 

lower wall surface, respectively. (Re) is the Reynolds number, (Pr) is the dimensionless Prandtl 

number, (Gr) is the dimensionless Grashof number, (M) is the Hartman number, (Φ) is the face 

difference, (δ) is the wave number, and θ is the temperature, (A) is the Sutterby liquid 

parameter, and (𝑇0) 𝑎𝑛𝑑 (𝑇1) are the wall temperatures at the top and bottom, respectively.  

Then, in view of Eq.(16), Eqs.(1), (2), and (11)-(14) take the form : 

ℎ1(𝑥)  =  1 + 𝑎 𝑠𝑖𝑛 𝑥 (17)    

ℎ2(𝑥) = −𝑑1 − 𝑏  𝑠𝑖𝑛 (𝑥 + Ф) 
 

  (18)        

 𝛿
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0  (19) 

 

 

  

𝑅𝑒 (𝛿
𝜕𝑢

𝜕𝑡
+ 𝛿𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) −

𝜌𝑑2

𝜇
𝛺 (𝛺𝑢 + 2𝛿

𝜕𝑣

𝜕𝑡
) = −

𝜕𝑝

𝜕𝑥
+ 𝛿

𝜕𝑠𝑥𝑥

𝜕𝑥
+

𝜕𝑆̅𝑋̅𝑌̅

𝜕𝑦
−

𝜎𝐵0
2  

(1+𝑚2)
(𝑢 − 𝑚𝑣)+ Gr 𝜃  

(20) 

  

     
𝑅𝑒𝛿 (𝛿

𝜕𝑣

𝜕𝑡
+ 𝛿𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) − 𝑅𝑒

𝑑

𝑐
𝛺 (𝛺𝛿𝑢 − 2𝛿2 𝜕𝑢

𝜕𝑡
) = −

𝜕𝑝

𝜕𝑦
+ 𝛿2 𝜕𝑠𝑥𝑦

𝜕𝑥
+ 𝛿

𝜕𝑠𝑦𝑦

𝜕𝑦
−

𝜎𝐵0
2  

(1+𝑚2)

𝑑2

𝜇
𝛿(𝑣 + 𝑚𝑢)  

(21) 

 𝑅𝑒𝑃𝑟𝛿 (
𝜕

𝜕𝑡
+ 𝑢

𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
) 𝜃 = (𝛿2 𝑐2𝜕2

𝜕𝑡2 + 𝛿2 𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2) 𝜃 + 𝐵  (22) 

Introduction to fluid flow (𝜓) through a relationship:  

𝑢 = 𝜓𝑦 , 𝑣 = −𝛿𝜓𝑥 (23) 

Substituted Eqs.(23) in Eq.(19) to Eq.(22) respectively, 
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 𝛿
𝜕𝜓𝑦

𝜕𝑥
− 𝛿

𝜕𝜓𝑥

𝜕𝑦
= 0 (24) 

 
𝑅𝑒 (𝛿

𝜕𝜓𝑦

𝜕𝑡
+ 𝛿𝜓𝑦

𝜕𝜓𝑦

𝜕𝑥
− 𝛿𝜓𝑥

𝜕𝜓𝑦

𝜕𝑦
) −

𝜌d2

𝜇
𝛺 (𝛺𝜓𝑦  + 2𝛿

𝜕𝑣

𝜕𝑡
) = −

𝜕𝑝

𝜕𝑥
+ 𝛿

𝜕𝑠𝑥𝑥

𝜕𝑥
+

𝜕𝑠𝑥𝑦

𝜕𝑦
−

𝜎𝐵0
2  

(1+𝑚2)
(𝜓𝑦 + 𝑚𝛿𝜓𝑥) +  Gr 𝜃  

(25) 

 
𝑅𝑒𝛿 (𝛿

𝜕𝑣

𝜕𝑡
+ 𝛿𝜓𝑦

𝜕𝑣

𝜕𝑥
+ 𝛿2𝜓𝑥

𝜕𝜓𝑥

𝜕𝑦
) − 𝑅𝑒

𝑑

𝑐
𝛺 (𝛺𝛿𝜓𝑦 − 2𝛿2 𝜕𝜓𝑦

𝜕𝑡
) = −

𝜕𝑝

𝜕𝑦
+ 𝛿2 𝜕𝑠𝑥𝑦

𝜕𝑥
+

𝛿
𝜕𝑠𝑦𝑦

𝜕𝑦
+

𝜎𝐵0
2  

(1+𝑚2)

𝑑2

𝜇
𝛿2(𝜓𝑥 + 𝑚𝜓𝑦)  

(26) 

 𝑅𝑒𝑃𝑟𝛿 (
𝜕

𝜕𝑡
+ 𝜓𝑦

𝜕

𝜕𝑥
− 𝛿𝜓𝑥

𝜕

𝜕𝑦
) 𝜃 = (𝛿2 𝑐2𝜕2

𝜕𝑡2 + 𝛿2 𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2) 𝜃 + 𝐵  (27) 

When (Re and 𝛿 <<1), Eqs.(25)-(27) become in the form: 

 −
𝜌d2

𝜇
𝛺2𝜓𝑦 = −

𝜕𝑝

𝜕𝑥
+

𝜕𝑠𝑥𝑦

𝜕𝑦
−

𝑀2  

(1+𝑚2)
𝜓𝑦 +  𝐺𝑟 𝜃   (28) 

  −
𝜕𝑝

𝜕𝑦
= 0  (29) 

 
𝜕2𝜃

𝜕𝑦2 + B = 0  (30) 

While an additional stress tensor component takes the following form: 

  𝑠𝑥𝑦 =
1

2

𝜕2𝜓

𝜕𝑦2 −
𝐴

2
(

𝜕2𝜓

𝜕𝑦2)
3

, 𝑠𝑥𝑥 = 0, 𝑠𝑦𝑦 = 0   (31) 

Where 𝑀 = √
𝜎  

μ
𝐵0𝑑 the Hartman number, 𝐴 =

𝒎𝒃𝟐𝒄𝟐

𝟔𝒅𝟐   the Sutterby liquid parameter and 

B=
𝑑2𝜃

𝑘(𝑇1−𝑇0)
   the constant heat radiation 

 

     If we substitute equation Eqs.(31) into Eq.(28), then to eliminate the pressure take derivation 

of Eq.(28) with respect to y, we obtain the following equation: 

 
1

2

𝜕4𝜓

𝜕𝑦4 [1 − 3𝐴 (
𝜕2𝜓

𝜕𝑦2)
2

] − 3𝐴
𝜕2𝜓

𝜕𝑦2 (
𝜕3𝜓

𝜕𝑦3)
2

− (
𝑀2

𝑚2+1
−

𝜌d2

𝜇
Ω2)

𝜕2𝜓

𝜕𝑦2 + 𝐺𝑟
𝜕𝜃

𝜕𝑦
= 0  (32) 

 
𝜕2𝜃

𝜕𝑦2 + 𝐵 = 0  (33) 

In wave frames, the dimensionless boundary conditions are: 

 𝜓 =
𝐹

2
,

𝜕𝜓

𝜕𝑦
= −1 𝑎𝑡 𝑦 = ℎ1  (34) 

 𝜓 =
−𝐹

2
,

𝜕𝜓

𝜕𝑦
= −1 𝑎𝑡 𝑦 = ℎ2  (35) 

 𝜃 = 0  𝑎𝑡 𝑦 = ℎ1 , 𝜃 = 1   𝑎𝑡 𝑦 = ℎ2  (36) 

 

     Where F is just the flow rate, which is dimensionless in time in the frame of the wave. It is 

associated with the form that has no dimensions temporal flow rate 𝑄1 in the experimental 

frame via the expression: 

 𝑄1 = 𝐹 + 1 + 𝑑  (37) 

as 𝑎 , 𝑏, Ф and d achieve Eq.(3): 

 𝑎2 + 𝑏2 + 2𝑎𝑏𝑐𝑜𝑠(Φ) ≤ (1 + 𝑑1)2  (38) 

 

     Initially, we solve the nonlinear equation Eq.(33) by integral and substituting the boundary 

conditions Eqs.(36), and then we obtain: 

 𝜃 = −
−2h1+h1

2h2𝐵−h1h2
2𝐵

2(ℎ1−h2)
−

(2−h1
2𝐵+h2

2𝐵)𝑦

2(h1−h2)
−

𝐵𝑦2

2
  (39) 

 

     Now, we can get the following nonlinear equation by differentiating the equation Eq.(39) 

with respect to y and substituting it in Eq.(32), we get high nonlinear equation: 
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𝜕4𝜓

𝜕𝑦4
[1 − 3𝐴 (

𝜕2𝜓

𝜕𝑦2
)

2

] − 6𝐴
𝜕2𝜓

𝜕𝑦2
(

𝜕3𝜓

𝜕𝑦3
)

2

− 2(
𝑀2

𝑚2+1
−

𝜌𝑑2

𝜇
𝛺2)

𝜕2𝜓

𝜕𝑦2
+

2𝐺𝑟(−
(2−h1

2𝐵+h2
2𝐵)

2(h1−h2)
− By) = 0    

(40) 

 

5. Solution of the problem 

      It is not possible to construct a solution in closed form for each and every one of the arbitrary 

parameters involved in Eq.(40), as it is highly non-linear and convoluted. Therefore, we use the 

perturbation approach to get the answer. We expand the solution to include perturbation: [14] 

 𝜓 = 𝜓0 + 𝐴𝜓1 + 𝑜(𝐴2)  (41) 

     And by substituting the boundary conditions Eq.(34) and Eq.(35) into Eq.(28)-(33) and 

equating the coefficients of similar powers of A, we obtain the following system of equations: 

 

3.1 Zeroth order system 

      When such terms of order (A) in a zero-order system are negligible, we obtain 

    𝜓0𝑦𝑦𝑦𝑦 − 𝜁𝜓0𝑦𝑦 − 𝛾y + η = 0  (42) 

Where 𝜁 = 2(
𝑀2

𝑚2+1
−

𝜌𝑑2

𝜇
Ω2) 

  𝛾 = 2𝐺𝑟𝐵 

And 𝜂 = 2𝐺𝑟(−
(2−h1

2𝐵+h2
2𝐵)

2(h1−h2)
− By) 

Such that 

   𝜓0 =
F0

2
 ,

𝜕𝜓0

𝜕𝑦
= −1 𝑎𝑡 𝑦 = ℎ1  (43) 

and  

 𝜓0 =
−𝐹0

2
 ,

𝜕𝜓0

𝜕𝑦
= −1 𝑎𝑡 𝑦 = ℎ2  (44) 

3.2  First order system 

 𝜓1𝑦𝑦𝑦𝑦 − 𝜁𝜓1𝑦𝑦 = 3𝜓0𝑦𝑦𝑦𝑦(𝜓0𝑦𝑦)
2

+ 6𝜓0𝑦𝑦(𝜓0𝑦𝑦𝑦)
2
  (45) 

  𝜓1 =
F1

2
,

𝜕𝜓1

𝜕𝑦
= −1 a𝑡 𝑦 = ℎ1  (46) 

and  

 𝜓1 =
−F1

2
,

𝜕𝜓1

𝜕𝑦
= −1 𝑎𝑡 𝑦 = ℎ2  (47) 

Solving the relevant zeroth-order and first-order systems yields the final stream function 

equation. 

 𝜓 = 𝜓0 + A𝜓1  (48) 

6.  Results and discussions 

     This section consists of two subsections. Using MATHEMATICA, the velocity distribution 

is depicted in the first and the pressure gradient is presented in the second. 

  

4.1 Velocity distribution u: 

      For changing values of u, it reflects the variation in axial velocity throughout the channel. 

The influence of different values on axial velocity u is introduced in Figurer 2-8 to show the 

effect of changing the values of 𝛺, 𝑀, 𝐺𝑟, 𝑚, 𝐴, 𝜙 𝑎𝑛𝑑 𝐵 on axial velocity u. Figurer 2, we can 

see that as the rotation (Ω) goes up, the axial velocity decreases on the left side of the wall while 

increasing along the middle toward the right of the channel walls. Figure , shows that as the 

Hartmann number (M) goes up, the axial velocity drops in the middle of the channel while 

increasing near the edge of the channel wall. As illustrated in Figure , the axial velocity reduces 

near the left and central region of the channel wall as the thermal Grashof number (Gr) 

increases, while it rises beside the right wall. As shown in Figure , increasing the value of the 

Hall parameter (m) doesn't change the axial speed. As illustrated in Figure, the axial velocity is 
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increased in the middle of the channel as the fluid parameter (A) increases, whereas it decreases 

near the channel wall. Figure  shows that raising the face difference () decreases the axial 

velocity near the left wall of the channel but has no effect in the center and along the right wall. 

As seen in Figure 8, As the constant heat radiation (B) increases, as the constant heat radiation 

(B) increases, the axial velocity also increases along the wall of the channel. 

 
 

Figurer 2: Change of velocity in relation 

to diverse values of 𝛺 when M=0.2, 
Gr=1, m=5, A=5,  𝜙=Pi/6, a=0.5, b=0.1  

Figure 3: Change of velocity in relation 

to diverse values of  M when 𝛺=10,  
Gr=1, m=5, A=5, 𝜙=Pi/6,  a=0.5, b=0.1  

 
 

Figure 4: Change of velocity in relation 

to diverse values of Gr when 𝛺=10, 
M=0.2,  m=5,  A=5, 𝜙=Pi/6,  a=0.5,  b=0.1 

Figure 5: Change of velocity in relation 

to diverse values of m when 𝛺=10,  
M=0.2,  Gr=1,  A=5,𝜙=Pi/6,  a=0.5, 

b=0.1 
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4.2 Pressure gradient 𝒅𝒑/𝒅𝒙: 

     Graphically, the influence that relevant parameters have on the pressure gradient 𝑑𝑝/𝑑𝑥 can 

be seen in  Figure -Figure . As seen in Figure , increasing the rotation (Ω) results in an increasing 

pressure gradient. Figure  illustrates how increasing values of the Hartmann number (M) are 

associated with a diminishing pressure gradient. Increasing the thermal Grashof number (Gr) 

lessens the pressure gradient towards the channel's left edge and the center of the channel but 

increases it toward the right wall of the channel, as depicted in Figure . Figure 3 demonstrates 

that the pressure gradient grows as the Hall parameter value (m) increases. Figure 4 shows that 

the pressure gradient rises as the value of a fluid parameter (A) increases. Figure  displays that 

the pressure gradient reduces towards the left wall in the channel as the face difference () 

increases whereas there is no influence in the central region and the pressure gradient increases 

near the right wall. Figure  shows that as the constant heat radiation (B) goes up, the pressure 

gradient goes up. 

  

Figure 6: Change of velocity in relation 

to diverse values of A when 𝛺=10, 
M=0.2,  Gr=1,  m=5,𝜙=Pi/6,  a=0.5, 
b=0.1 

Figure 7: Change of velocity in relation 

to diverse values of 𝜙 when 𝛺=10, 
M=0.2, Gr=1, m=5, A=5, a=0.5, b=0.1 

 

Figure 8: Change of  velocity in relation to diverse values of B when 

𝜴=10,M=0.2,Gr=1,m=5,A=5, 𝝓=Pi/6,a=0.5,b=0.1  
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Figure 9: Change of pressure gradient in 

relation to diverse values of Ω when 

M=5,Gr=1,m=7,A=5,ϕ=Pi/6,a=0.7,b=0

.8  

Figure 10: Change of pressure gradient in 

relation to diverse values of M when 

Ω=6,Gr=1,m=7,A=5,ϕ=Pi/6,a=0.7,b=0.8 

  

Figure 11: Change of pressure gradient 

in relation to diverse values of Gr when 

Ω=6,  M=5,  m=7,  A=5,  ϕ=Pi/6,  a=0.7,  
b=0.8  

Figure 3: Change of pressure gradient in 

relation to diverse values of m when Ω=6,  
M=5, Gr=1, A=5, ϕ=Pi/6, a=0.7, b=0.8  

  

Figure 43: Change of pressure gradient 

in relation to diverse values of A when 

Ω=6,  M=5,  Gr=1,  m=7,  ϕ=Pi/6,  a=0.7,  
b=0.8 

Figure 14: Change of pressure gradient in 

relation to diverse values of ϕ when Ω=6,  
M=5, Gr=1, m=7, A=5,  a=0.7, b=0.8  
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7. Conclusion  

     In this article, we study the influence of heat transfer and rotation of Sutterby fluid in an 

asymmetric channel. In this investigation, a lot of attention has been paid to the analysis of 

things like velocity distribution and pressure gradient based on a simple analytical solution. The 

key consequences of the current study are summarized below: 

1. As the rotation (Ω) goes up, the axial velocity decreases on the left side of the wall while it 

increases along the middle toward the right of the channel walls. 

2. In the central part of the channel, the axial velocity reduces as (M) is increased, whereas the 

axial velocity is increased at the boundaries. 

3. The axial velocity reduces near the left and the central region of the channel wall as the 

thermal Grashof number (Gr) increases, while it rises beside the right wall. 

4. There is no effect on the axial velocity with increase in the value (m). 

5. The axial velocity is increased in the middle of the channel as (A) increases, whereas it 

reduces near the channel walls. 

6. Increasing (𝜙) decreases the axial velocity at the left wall of the channel, but has no effects 

on the axial velocity in the middle region or on the right wall. 

7. As the constant heat radiation (B) increases, the axial velocity also increases along the wall 

of the channel. 

8. As (Ω), (m), (A), and (B) values increase, the pressure gradient increases. 

9. As (M) value increases, the pressure gradient reduces. 

10. Increasing the thermal Grashof number (Gr) lessens the pressure gradient towards the 

channel's left edge and the center of the channel, but has increased toward the right wall of the 

channel. 

11. We can see that as () goes up, the pressure gradient goes down near the left side of the 

channel, stays the same in the middle, and goes up near the right side.  

When the rotation is deleted, the work was compared with [2] and the results are compared with 

high accuracy, and the role of the impact on the issue is clear, as found in the above conclusions. 
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