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Abstract:

In this research, the effect of the rotation variable on the peristaltic flow of Sutterby
fluid in an asymmetric channel with heat transfer is investigated. The modeling of
mathematics is created in the presence of the effect of rotation, using constitutive
equations following the Sutterby fluid model. In flow analysis, assumptions such as
long wave length approximation and low Reynolds number are utilized. The resulting
nonlinear equation is numerically solved using the perturbation method. The effects
of the Grashof number, the Hartmann number, the Hall parameter, the magnetic field,
the Sutterby fluid parameter, and heat transfer analysis on the velocity and the pressure
gradient are analyzed graphically. Utilizing MATHEMATICA software, numerical
results are computed. It is discovered that velocity varies with parameters, while the
pressure gradient is directly proportional to most parameters.
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A special type of pumping is known as peristaltic pumping, which is a series of contractions
and diastoles that push fluid along [1]. Some examples of such physiological processes are the
passage of food, chyme, and urine. Peristalsis is the driving force behind everything from worm
movement to the transfer of noxious and clean fluids to the operation of finger pumps and the
heart-lung machine. Damping, dispensability, and tension in the vasculature play a critical part
in physiological processes involving peristalsis, such as blood flow, [2]. Studies of peristalsis
were first introduced in [3] and [4]. Since then, researchers have made numerous attempts to
dissect the peristaltic movement of fluids and its implications in the medical and business
worlds. In biological systems and industrial fluid transport, heat transfer is a fundamental
principle. One of the most essential roles of the cardiovascular system is maintaining the body's
temperature. Air that enters the lungs must also be tempered to the body's temperature. This is
accomplished through the use of all blood vessels. There are three methods of heat transmission;
however, convection is the most relevant for fluid circulation in the human body. Human and
animal bodies use convection heat transfer to release heat generated by metabolic processes
into the environment, [5]. In recent years, research [6-9] has been conducted on the interaction
between temperature and mass effects, as well as the influence of variable viscosity and
temperature. Researchers investigated the effects of initial pressure and rotation on the
peristaltic motion of an incompressible fluid in [10], [11]. Since Abdulhadi [12], Sadaf [13],
Abdulla [14] and Akram [15] examined the mechanism of peristaltic transport, which is
attracted the interest of numerous researchers. Non-Newtonian fluids are more recognized in
many industrial and physiological processes than viscous liquids.Various types of non-
Newtonian substances can be usually seen in nature such as ketchup, shampoo, paints,
lubricants and blood among that, Sutterby liquid [16] is one of these materials characterizing
the ionic high polymer solutions, [17]. Waveform motion of non-Newtonian fluids through
porous channels is discussed in [18-21], where the effects of rotation and an inclined MHD are
considered. The effects of radiation and convection in a Sutterby fluid are discussed in [22]. In
[23], electroosmotic peristaltic transport of Sutterby nanofluids is investigated. The peristaltic
flow of a Sutterby liquid in an inclined channel was investigated in [24]. In [17], convection
and Hall current were used to simulate the MHD peristaltic transport of a Sutterby nanofluid.

In this paper, we will look at the effects of rotation on heat transfer for peristaltic transport
in an asymmetric channel. We will do this by using different values of the parameters of
rotation, amplitude wave, and channel taper, as well as different values of the Grashof number,
the Hartmann number, and the Hall parameter, based on the changes in velocity, pressure
gradient, and heat transfer.

2. A mathematical formulation for asymmetric flow

Consider the peristaltic transport of an incompressible Sutterby fluid through a two-
dimensional asymmetric conduit that has a width of (d’ + d). whereas the motion is steady
inside a coordinate system flowing there at wave speed (c) in the wave framer (X, Y).

The geometry of a wall's structure is described as:
(XD =d~ aysin |7 ¢~ cD) &)
h,(X,t) = —d' — a, sin [ZTH(J?—CE) +CD] 2
In which h;(X,t), h,(X,t) are the lower and upper wall respectively, (d,d") indicates the
channel width, (a;,a,) are the wave's amplitudes, (1) represents the wavelength, (c) is the

speed of wave, (@) varies in the range (0 < ® < m), when the value of ® = 0 the channel is
symmetric with waves out of phase and ® =  waves are in phase the rectangular coordinates
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is designed in such a method that X — axis is along the path that waves use for propagation and
Y — axis perpendicular to X, £ represents the time.
Further, a;,a,,d,d’ and & satisfy the following condition

a? + a3 + 2a;a,cos® < (d +d')? (3)

y

Figure 1: Asymmetric channel coordinates in the Cartesian and Dimensional Systems

3. Basic equation
The additional stress tensor for the Sutterby model is determined by [23]:

s _ H[sinh™(ny) m*

s=3 = A )
y = [tras(a,)? (5)
A, =YV + (V)T (6)

Where S expresses the extra tensor's stress, n and m” representing the material constants of
the Sutterby fluid, V = (X, dY, 0) is the gradient vector, u represents the dynamic viscosity
and A, represents the first Rivilin-Ericksen tensor. The phrase sinh™! is approximately
equivalent to

RS Y AA TR
sinh (n) =

n 6n3’|6n5

(7)

The constituents of the extra stress tensor of Sutterby that are defined by Eq.(4) are listed as
follows:

Sgx =411 -2 (205" + (g + Up)? + 27, ) 12U @®)
_)? [1 — T (205" + (Vg + Up)* + 204,°)| (U + W) ©)
[1 - —(ZUX + (Vg + Up)? + 27, )] 27 (10)

4. governing equation
The flow is controlled by three coupled nonlinear partial differentials of continuity,
momentum, and energy, the governing equations in frame (X, Y) can be written as follows:
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6SXY O'BO

90 L G 790 _ o (f +2%7) = 2P | %Sx g
p(_aE+UaX+VaY) pQ (QU +Zaf)_ 6X+ X + ay (1+m2)( 12
mV)+g pBr(T — Tp) 2 (12)

v | Zov | S o7\ = 00\ _ _oP asxy dSpy _ 0Bo -
p(aE+UaX+VaY) P (QU 2 af) - ay+ + ar  (1+m?) v+

d =4 =0 82 92
pcp(£+uﬁ+va )T k(atz +m)T+(p0 (14)

Where p is the fluid density, (U,V) are the velocity components, P represents the
hydrodynamic pressure, Szs , Sgy , and Syy are the constituents of the extra stress tensor S. o
is the electrical conductivity, ¢, is the steady heat addition/absorption, B, is an applied
magnetic field, S is the thermal expansion coefficient, g is the gravitational acceleration and
Q represents the rotation. The specific heat, thermal conductivity and temperature are denoted
by Cp, k and T, respectively. Peristaltic movement in reality is an unstable behavior, but it can
be considered to be steady via the change from the experimental frame (fixed frame) (X,Y) to
the wave frame (moved frame) (X, ¥). The following transformations establish the link between
coordinates, velocities, and pressure in laboratory frame (X,Y) to wave frame (&, y):

X=x—-ct,Y=y,U=u—-c,V=0PXY,t)=p(x7) (15)

Where # and v represent the components of velocity, and p denotes the pressure in the
wave frame. Now, we will substitute Eq.(15) into Egs.(1), (2), and (11)-(10) and then normalize
the equation that is produced by doing so by utilizing the non-dimensional quantities that are
listed below:

x=192y=137,u=ll_] v=117 P = uCIS f,h1=%h_1,h2=%h_2,6=
_ i o (16)
g Re=2%% T=T- TO,H—T o Sij = =Spg, Gr = SN pr = £2
u T — uc uc k

Where, (&) represents the wave number, (h,) and (h,) are the non-dimensional upper and
lower wall surface, respectively. (Re) is the Reynolds number, (Pr) is the dimensionless Prandtl
number, (Gr) is the dimensionless Grashof number, (M) is the Hartman number, (®) is the face
difference, () is the wave number, and 0 is the temperature, (A) is the Sutterby liquid
parameter, and (T,) and (T,) are the wall temperatures at the top and bottom, respectively.
Then, in view of Eq.(16), Egs.(1), (2), and (11)-(14) take the form :

hi(x) = 1+asinx a7

hy(x) = —d; — b sin (x + ®) (18)
53—’;+2—;=0 (19)
Re (66—”+5 2y p2) 02 (gu +25%) = — 24 gy D "
(1+m2) (u—mv)+Gré

sy )
5(56—”+5 a—v+vg—;)—Re%Q (06u—26220) = L4 5224 200

ay ax y
0By? 5 + (21)
(1+m2) u (v mu)
2 2
RePrs (S +u—+v )49_(<526mi+52a 2)0+B (22)
Introduction to fluid flow (1/;) through a relationship:
u=1,,v=—06yy (23)

Substituted Egs.(23) in Eq.(19) to Eqg.(22) respectively,
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Y, 0y,
Ty s x 24
0 dx 61,1;6 dy 6(1),1) o (24)
y [ y pd? v\ asxx
Re (8222 + 61, 22 — 5y, ) 20 (o9, +262) =24 52 -
0Sxy

- m(lﬂy + méy,) + Gré

dy
ov W, 52 % _Rel 20%y\ _ _9p <295y
Reo (6 +5¢ya + 8%, ) ReS0 (08, — 26252 = — 5t o6
ds 0B
66—?} + m—52(¢x + ml/Jy)
9 2 _su. 2 2¢%0% | £2 0% | 0%
RePrs (5 4+ Wy 3z — St n) 0 = (8255 + 8% 35 +75) 0.+ B @7)
When (Re and § <<1), Egs. (25)-(27) become in the form:
2 _op asxy
Py =—-+ 3y (1+m2)1/)y + Gro (28)
610
-2=0 (29)
2
a—g +B=0 (30)
Whlle an additional stress tensor component takes the following form:
19%y 0%y _ _
Sey =595 —(ayz)  Sex = 0,55, =0 (31)
2.2
Where M = \/%Bod the Hartman number, A = m:dzc the Sutterby liquid parameter and
B= a%0 the constant heat radiation
k(T1—To)

If we substitute equation Egs.(31) into Eq.(28), then to eliminate the pressure take derivation
of Eq.(28) with respect to y, we obtain the following equation'

10%Y 821 a2y (93 GE) 20

Em[1—3,4( ) ] 3455 ( ) (m2+1 ; Q)ay +Gr=0 (32)

220

SS+B=0 (33)
In wave frames, the dimensionless boundary conditions are:

_F oy _ _ _

l/)—z,ay— laty=h, (34)

lp—_—F %——1aty=h2 (35)

6=0 aty h1,0=1 aty=h2 (36)

Where F is just the flow rate, which is dimensionless in time in the frame of the wave. It is
associated with the form that has no dimensions temporal flow rate Q, in the experimental
frame via the expression:

asa,b,® and d achieve Eq.(3):
a’? + b? + 2abcos(P) < (1 + d,)? (38)

Initially, we solve the nonlinear equation Eq.(33) by integral and substituting the boundary
conditions EQs.(36), and then we obtain:
__ —2hy+hfh,B-h;h3B  (2-hiB+h3B)y  By?
o= 2(h1-hy) 2(h;—hy) 2 (39)

Now, we can get the following nonlinear equation by differentiating the equation Eq.(39)
with respect to y and substituting it in Eqg.(32), we get high nonlinear equation:
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-3 ] e T (5E) 2k - an Tt

ay* m dy2 \ay3 m2+1 u dy? (40)
ZGr(—M —By)=0
2(h;—hy) y)=

5. Solution of the problem
Itis not possible to construct a solution in closed form for each and every one of the arbitrary
parameters involved in Eq.(40), as it is highly non-linear and convoluted. Therefore, we use the
perturbation approach to get the answer. We expand the solution to include perturbation: [14]
W =1y + APy + 0(4?) (41)
And by substituting the boundary conditions Eq.(34) and Eq.(35) into Eq.(28)-(33) and
equating the coefficients of similar powers of A, we obtain the following system of equations:

3.1 Zeroth order system
When such terms of order (A) in a zero-order system are negligible, we obtain

l'bOyyyy - (¢0yy —yy+n=20 (42)
Where ¢ = 2(—_ _ 2% g2y
T “Ym241 7
y = 2GrB
_ _ (2-hiB+hiB)
Andn = 2Gr( 2ti_hy) By)
Such that
Fo 0
IPo:?o,alyO:—laty:fh (43)
and
~F, @
Yo=72, 2= —laty =h, (44)
3.2 First order system
2 2
l'blyy}%/ _ai}plyy = 3¢°Y3’Y3’(¢°Y3’) + 6¢OVY(¢OYYY) (45)
Y= 5t =—laty = Iy (46)
and
-F, 0
Y= 00 = —laty=h, (47)

Solving the relevant zeroth-order and first-order systems yields the final stream function
equation.
Y =19 + Ay (48)
6. Results and discussions
This section consists of two subsections. Using MATHEMATICA, the velocity distribution
is depicted in the first and the pressure gradient is presented in the second.

4.1 Velocity distribution u:

For changing values of u, it reflects the variation in axial velocity throughout the channel.
The influence of different values on axial velocity u is introduced in Figurer 2-8 to show the
effect of changing the values of 2, M, Gr,m, A, ¢ and B on axial velocity u. Figurer 2, we can
see that as the rotation (€2) goes up, the axial velocity decreases on the left side of the wall while
increasing along the middle toward the right of the channel walls. Figure , shows that as the
Hartmann number (M) goes up, the axial velocity drops in the middle of the channel while
increasing near the edge of the channel wall. As illustrated in Figure , the axial velocity reduces
near the left and central region of the channel wall as the thermal Grashof number (Gr)
increases, while it rises beside the right wall. As shown in Figure , increasing the value of the
Hall parameter (m) doesn't change the axial speed. As illustrated in Figure, the axial velocity is
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increased in the middle of the channel as the fluid parameter (A) increases, whereas it decreases
near the channel wall. Figure shows that raising the face difference (¢) decreases the axial
velocity near the left wall of the channel but has no effect in the center and along the right wall.
As seen in Figure 8, As the constant heat radiation (B) increases, as the constant heat radiation
(B) increases, the axial velocity also increases along the wall of the channel.

Figurer 2: Change of velocity in relation Figure 3: Change of velocity in relation
to diverse values of 2 when M=0.2, to diverse values of M when 2=10,
Gr=1, m=5, A=5, ¢=Pi/6, a=0.5,b=0.1 Gr=1, m=5, A=5, $=Pi/6, a=0.5, b=0.1

2

01f

o2}

010 005 0.0 05 10 1
y

. ] N . Figure 5: Change of velocity in relation
Flgu_re 4: Change of velocity in reIEtlon to diverse values of m when 02=10,
to diverse values of Gr when 2=10, M=0.2 Gr=1 A=5&=Pi/6. a=05
M=0.2, m=5, A=5, ¢=Pi/6,a=0.5, b=0.1 b:_O.l’ =1, A=S,¢=PIG, =05,
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Figure 6: Change of velocity in relation
to diverse values of A when 2=10,
M=0.2, Gr=1, m=5,¢p=Pi/6, a=0.5,
b=0.1

Figure 7: Change of velocity in relation
to diverse values of ¢ when 2=10,
M=0.2, Gr=1, m=5, A=5, a=0.5, b=0.1

T ‘_h‘-.‘.;

L d

15+

10} ' — BO1
- BI2

--- BO3

019 018 017

020
y

123 022 02l
Figure 8: Change of velocity in relation to diverse values of B when
0=10,M=0.2,Gr=1,m=5,A=5, ¢p=Pi/6,a=0.5,b=0.1

4.2 Pressure gradient dp/dx:

Graphically, the influence that relevant parameters have on the pressure gradient dp/dx can
be seen in Figure -Figure . As seen in Figure , increasing the rotation (Q) results in an increasing
pressure gradient. Figure illustrates how increasing values of the Hartmann number (M) are
associated with a diminishing pressure gradient. Increasing the thermal Grashof number (Gr)
lessens the pressure gradient towards the channel's left edge and the center of the channel but
increases it toward the right wall of the channel, as depicted in Figure . Figure 3 demonstrates
that the pressure gradient grows as the Hall parameter value (m) increases. Figure 4 shows that
the pressure gradient rises as the value of a fluid parameter (A) increases. Figure displays that
the pressure gradient reduces towards the left wall in the channel as the face difference (¢)
increases whereas there is no influence in the central region and the pressure gradient increases
near the right wall. Figure shows that as the constant heat radiation (B) goes up, the pressure
gradient goes up.
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20w [37

10000 +

Figure 9: Change of pressure gradient in  Figure 10: Change of pressure gradient in
relation to diverse values of Q when relation to diverse values of M when
M=5,Gr=1,m=7,A=5,4=Pi/6,a=0.7,0=0 Q=6,Gr=1,m=7,4A=5,¢=Pil6,a=0.7,b=0.8
8

Figure 11: Change of pressure gradient
in relation to diverse values of Gr when
=6, M=5, m=7, A=5, ¢=Pi/6, a=0.7,
b=0.8

U0 [[F T

Figure 3: Change of pressure gradient in
relation to diverse values of m when Q=6,
M=5, Gr=1, A=5, ¢=Pi/6, a=0.7, b=0.8

30000 |

Figure 43: Change of pressure gradient
in relation to diverse values of A when
Q=6, M=5, Gr=1, m=7, ¢=Pi/6, a=0.7,
b=0.8

Figure 14: Change of pressure gradient in
relation to diverse values of ¢ when Q=6,
M=5, Gr=1, m=7, A=5, a=0.7, b=0.8
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10000

Figure 15: Change of pressure gradient in relation to diverse values of a when Q=6,
M=5 ,Gr=1, m=7, A=5, ¢=Pi/6, b=0.8

7. Conclusion

In this article, we study the influence of heat transfer and rotation of Sutterby fluid in an
asymmetric channel. In this investigation, a lot of attention has been paid to the analysis of
things like velocity distribution and pressure gradient based on a simple analytical solution. The
key consequences of the current study are summarized below:
1. As the rotation (Q) goes up, the axial velocity decreases on the left side of the wall while it
increases along the middle toward the right of the channel walls.
2. In the central part of the channel, the axial velocity reduces as (M) is increased, whereas the
axial velocity is increased at the boundaries.
3. The axial velocity reduces near the left and the central region of the channel wall as the
thermal Grashof number (Gr) increases, while it rises beside the right wall.
4. There is no effect on the axial velocity with increase in the value (m).
5. The axial velocity is increased in the middle of the channel as (A) increases, whereas it
reduces near the channel walls.
6. Increasing (¢) decreases the axial velocity at the left wall of the channel, but has no effects
on the axial velocity in the middle region or on the right wall.
7. As the constant heat radiation (B) increases, the axial velocity also increases along the wall
of the channel.
8. As (Q), (m), (A), and (B) values increase, the pressure gradient increases.
9. As (M) value increases, the pressure gradient reduces.
10. Increasing the thermal Grashof number (Gr) lessens the pressure gradient towards the
channel's left edge and the center of the channel, but has increased toward the right wall of the
channel.
11. We can see that as (¢) goes up, the pressure gradient goes down near the left side of the
channel, stays the same in the middle, and goes up near the right side.
When the rotation is deleted, the work was compared with [2] and the results are compared with
high accuracy, and the role of the impact on the issue is clear, as found in the above conclusions.
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