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Abstract

The aim of this work is to study a modified version of the four-dimensional Lotka-
Volterra model. In this model, all of the four species grow logistically. This model
has at most sixteen possible equilibrium points. Five of them always exist without any
restriction on the parameters of the model, while the existence of the other points is
subject to the fulfillment of some necessary and sufficient conditions. Eight of the
points of equilibrium are unstable and the rest are locally asymptotically stable under
certain conditions, In addition, a basin of attraction found for each point that can be
asymptotically locally stable. Conditions are provided to ensure that all solutions are
bounded. Finally, numerical simulations are given to verify and support the obtained
theoretical results.

Keywords: Basin of attraction, Equilibrium points, Lyapunov function, Local
stability, Prey-Predator.
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1. INTRODUCTION

The food chain can be described as a transfer of energy from one type of living organism to
another, while the energy transferred is the food that ensures the continuity of life is ecological
balance. Chemical, physical and biological systems are inherently nonlinear. A large class of
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models that represent predator-prey population dynamics can be described by ordinary
differential system or partial differential system. One of the simplest model is the Lotka-
Volterra equations, also called predator and prey equations which are two of the first-order
nonlinear differential equations. Populations change over time according to the following
equations [1]:

x@®) =x@®(a—-by®),  y@©) =-y®(c—dx()),

where x(t) represents the prey species and y(t) is the density of predator species at time
t. All parameters a, b,c and d are nonnegative constants. The parameter a represents the
natural growth rate of the prey in the absence of the predator. Parameter b represents the effect
of the predator on the prey population. Moreover, if b is the only decreasing factor for the prey
population, then prey will be eaten by predators. Parameter ¢ represents the effect of prey on
the predator population. Moreover, if c is the only increasing factor for the predator population,
then the population growth is proportional to the food available. Parameter d represents the
natural death rate of the predator in the absence of prey. In [2], the predator-prey model with at
least one predator and two prey has been investigated.

In [3], the following population dynamics of the Lotka-Volterra model consists of three
species: two predators and one prey were studied.
X=ax—xy—xz, y=—bx+xy,Z=—cx+x,

where x(t) = 0, represents prey, y(t) = 0 and z(t) = 0 represent predators, and a,b,c are
positive parameters. The parameters a, b and c are positive and are interpreted as follows: a
represents the natural growth rate of the prey in the absence of predators, b represents the
natural death rate of the predator y in the absence of prey, c represents the natural death rate of
the predator z in the absence of prey. Many authors modified and investigate the classic Lotka-
Volterra model . For more details, see [4] and [5].

Global dynamics of 3—dimensional Lotka—Volterra models with two predators competing
for a single prey species in a constant and uniform environment has been studied in [6]. It is
assumed that the two predator species compete purely exploitatively with no interference
between rivals, the growth rate of the prey species is logistic or linear in the absence of
predation, respectively and the predator’s functional response is linear [6]. In [7], the two prey-
one predator system are also discussed and studied. In[8] and [9], the authors investigated the
following mathematical model :

X1 =X 1——
! ! __gl < ki/ xi+x}
%, =2 |g (1 xz) azx{l%l
2 =%X2|g2\1 =7~ — )
A xi + x3
8118 Syxl'x, l

Yi=Y1 |-+

xy+x3  x{+x3
Y2 = Yal—p2 + vx4],

where x; represents the density of the prey in their two divers' habitats; y; represents the
density of the predator. The two species of prey are supposed to grow logistically with a certain
growth rate g; and carrying environmental capacity k;to x;; a; represents the rate of predation
by the predator y,, on prey x;; S represents the rate of predation by the predator y, on x;;u;
represents the mortality rate of predators y; such that i = 1,2, and &§;,6, and yare the
corresponding conversion rates. The two functions a;x2y, (x + x7) " tand a;x}'y, (x +
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x2) ~texplain the behavior of predator switching y;. This model includes two prey and two
predators. The phenomenon of switching occurs only with one of the two predators, while the
two prey species live in two diverse habitats and has the ability of group-defense against one of
the two predators.

More details on the modified Lotka-Volterra models and prey-predator models can be found in
[10-14].

In [15], a modified for Lotka-Volterra model was proposed and studied, and it represents a
food chain consisting of three species. They all grow logistically, which means that the absence
or decimation of one species does not cause the death of the others:

x =x(a—yx—by—cz),y =y(d—By—ez+fx), z =z(g — 6z+ hy + mx).

Lions are at the top of the food chain. They do not differentiate between hyenas and deer
when they are hungry. Tigers are in the second place; they prey on every animal weaker than
them in the wild. In the third-place are hyenas; they live on less powerful animals such as deer
or zebra. In our work, a modification of the last mathematical model was introduced such that
another predator was added to the model that studied in [14]. The present model has four first-
order nonlinear differential equations describing the dynamic behavior for four species, in
which all the species grow logistically. The current model is considered more comprehensive
than the model studied in [14]. Because of the increase in the number of parameters as well as
the number of differential equations, and because of that this model contains sixteen possible
equilibrium points, while the number of the possible equilibrium points in the previous model
is eight.

In the following section, the modification of the four-dimensional Lotka-Volterra model,
such that the four species grow logistically is formulated, and the boundedness of the positive
solutions of the model is studied. In Section 3, it is shown that the model has at most sixteen
possible equilibrium points. Five of them always exist without any restriction on the parameters
of the model, while the existence of the other points is subject to the fulfillment of some
necessary and sufficient conditions, moreover the local stability of all possible equilibrium
points is discussed, and it is shown that eight of the equilibrium points are unstable while the
rest equilibrium points are locally asymptotically stable under certain conditions. In sections 4
a basin of attraction for all equilibrium points of the system (1), which are locally asymptotically
stable, will be discussed by finding a suitable Lyapunov function for the mentioned points. In
section 5 a numerical simulations are given to verify and support the obtained theoretical
results. Finally, a brief conclusion was presented about the findings of this work.

2. THE MATHEMATICAL MODEL
In this section, we modify the Lotka-Volterra model to include four species. The
mathematical model is given as follows:
x =x(a—pBx—ay—bz—cw),
y =y(y — 8y —dz—ew+ fx),
z =z(u— @z — gw + hy + mx),
w =w(o—ew+1rz+py+qx),
where X, y, zand w represent the densities of the species at time t . We assume that the four
species grow logistically. The parametersa, y, 4 and o are positive constants which represent
the growth's rates of the species X, y, z, and w, respectively. The nonnegative constantsa, b, and
c are the change's rates of x with respect to y,z, w, respectively. While the nonnegative
constants and w respectively. The nonnegative d, e and f are the change's rates of y with respect

(1)
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to z, w, and x respectively; g, h, and m are the change's rates of z with respect to w,y, and x
respectively; r, p, and g are the change's rates of w with respect to z, y, and x, respectively.

It is clear that the interaction functions of the model (1) are continuous and have continuous
partial derivatives on
R* ={(x, Y, z, w) € R4: x(0) >0, y(0) > 0, z(0) > 0, w(0) > 0} .

Hence, all these functions are Lipschitizion functions on R*. Therefore, the solution of the
model (1) exists and is unique. Some sufficient conditions are provided in the next theorem
which ensures all solutions of system (1) are bounded.

THEOREM1l:Let r < g,p<e,q<c,h<dm<b,and f < a. Then all the trajectories of
the positive solutions of System (1) are bounded.
Proof:
Consider that F(t) = x(t) + y(t) + z(t) + w(t), then
FO)+tF(t)=x(a+t—PBx—ay—bz—cw) +y(y + T — 8y —dz — ew + fx)
+z(u+t—@pz—gw+hy+mx)+w(lo+t—ew+rz+py+qx)
=xy(f—a)+xz(m—>b) +xw(q—c)+yz(h—d) +yw(p —e) +zw(r — g)

a+ 1\ a4+ 71\ y+1\2  y+1\°
-#|(x- ) -G |-~ ) - ()
B 2B ) 26
( u+r)2 (u+r)2 ( s+r)2 <e+r>2
ollz ” 20 ollw p o .
It is easy to show that the right hand of the last inequality is less than

+1)? +1)? +17)2 +1)2
F::(a 7) +(V 7) +(u 7) +(8 7) _

48 48 4¢ 4o
So that
F(t) +TF(t) <T.
By using Gronwall's inequality, we obtain that

I
F(t) < - + F(0)e™ ™
Now, when t approaches to infinity, it follows that

I
F(t) < ;
Thus, the proof is completed.

3. THE EQUILIBRIUM POINTS WITH ITS LOCAL STABILITY:

The system (1) contains at most sixteen equilibrium points, some of them exist regardless of
the parameter's values. While the other need the fulfillment of some necessary and sufficient
conditions to exist. The existence conditions and the local stability analyses of them are given
and shown in this section. The possible equilibria of the system(1) are:

1. The equilibrium points P,(0,0,0,0), P, (%,0,0,0),132 (o,g,o,o),P3 (0,0,%,0) ,

and P, (0,0,0, %) always exist.

2. The equilibrium point Ps(a, a,, 0,0) exists, if and only if 6a — ay > 0,where
_ba—ay _ yB+af

“Sf+af T B +af

3. The equilibrium point Py (da,, 0, d@,, 0)exists if and only if agp — bu > 0, where
_ _ap—bp _  Put+ma

= Bo + pm’ 2 = Bo +bm

a
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The equilibrium point P,(d,, 0,0, @) exists if and only if ae — ca > 0, where

. _ as—co . _ Po+qa
a1 = Betcq’ A2 = Betcq’
5. The equilibrium point Pg(0, d,, d,, 0), exists if and only if y¢ — du > 0,where
. _Yp—du _  Su+dy
G =F7——, 0y = ———
5¢ + dh’ 6o +dh
6. The equilibrium point Py(0,@;,0,@,), exist if and only if ye —eo >0, where
~ YeE—eo ., Oo+qy
a1= ,a2= .
s + eq s + eq
7. The equilibrium point Py, (0,0, d,, @,), exist if ue — go > 0, where
. ue—go . @o+ry
a, = yAp = ——.
pe+ gr pet+gr
8. The equilibrium point Py (b, by, bs, 0) , where
_ _ — b a a b
_ Bl . IBal . 1Bl | FC _
1=|Tﬂ’b2=|_-2|’b3=|Tﬂ'B'= —f & d |IBil=|vy & d
-m —h ¢ u —h o
~ B a b| B a «a
1Bl =|—f v d|,IBsl=| —f & v |
—q u ol l-m —h pu
exists, if and only if |B||B;| > 0,i = 1,2,3.
9. The equilibrium point Py, (by, b,, 0, b3) , where
- B - B 5 |Bs] ﬁ @4 ¢
ST R TR I A
q —p €
a a ¢ B a c p a «
Bil=|v 6 e | |B|=|-f v e||Bs|=|~f & v |
g —p —-q o & —-q —-p O
exists, if and only if |B||B;| > 0,i =1,2,3.
10. The equilibrium point Py5(by, 0, by, b3), where
0By . B . |Bs| ., |B D ¢
bl—g,b2=|—f|,b3=|—f|,|B|= -m ¢ g
|B| B 13| —q -1 ¢
5 a b c _ B a c| B b «
|Bi|=|u @ g|,|B|=|-m u g|,|Bs|=|-m ¢ u
o —-r € —q o0 ¢ -q -r o
exists, if and only if |B||B;| > 0,i = 1,2,3.
11. The equilibrium point Py, (0, by, by, b3), where
I 1 R LY B A
|3 B 3] —p -1 €
R y d e R 5 vy e ~ 6 d vy
Bil=|1 @ g|.,|[Bf=|-h u g|.IBs|=|-h ¢ n
o —-r ¢ -p o ¢ b -1 0

exists, if and only if |B||B;| > 0,i = 1,2,3.
12. The equilibrium point (The coexistence point) P,s(cy, ¢y, €3, C4), Where
|| |C; | [ . (Y

T e T e T e T e
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g a b c a a p ¢ B a b ¢
c —f 6 deC:V5 deC:—f)/ d e
-m h ¢ g|"* [p h @ g’ |-m p ¢ g
-q -p -r ¢ o -p -1 € —-q 0 —r ¢
p a a c p a b «a
| f o vl _|-fs dy
S o S VA N N
-q -p o ¢ -q -p -r ©

exist if and only if |C||C;| > 0,i = 1,2,3,4.
Now, we study the local stability of all possible equilibrium points of the system. This will be
done by evaluating the Jacobian matrix of system (1) at each equilibrium point. Recall that an
equilibrium point x* of the system (1) is said to be locally asymptotically stable if all
eigenvalues of the Jacobian matrix evaluated at x™ has negative real part. If one or more has a
positive real part, then X" is an unstable point. The Jacobian matrix of the system(1) at any point
(x,y,z,w) is

j11 j12 j13 j14
_ j21 j22 j23 j24

Jewyzw) = Ja1 Jz2 J3z Jza|
Ja1 Jaz  Jaz  Jaa
where
jin=a—2Bx —ay—bz—cw, J1z = —ax, Jjiz = —bx, J1a = —cx,
Jar=fy,  Ja=y—-20y—dz—ew+fx, jup=—-—dy, jau=-—ey,

]:31 =mz, ]:32 = hz, ]'.33 =u—2¢z - gw + hy + mx, J34 = —92Z,
Ja1 = qw, Jaz = PW, Jaz =TW, Jaa = 0 — 2ew + 71z + py + qx.

THEOREM 2: Consider the system (1), then the equilibrium points
1.P,, P,, P,, Ps, P, Pg, Pgand P, are unstable equilibrium points.
2. P, is a locally asymptotically stable point if % > max {%gg}
. . e = y+fa, p+ma,
3. P, is a locally asymptotically stable point if a, > max{ e g }

: : e e u+had, a—ad
4. P, is a locally asymptotically stable point if a, > max 7 ,

Cc

5.P,, is a locally asymptotically stable point if and @, > max {V_Tiial “_del}

Proof:
1. It is clear that the eigenvalues of the J at the point P,(0,0,0,0) areA; = o, A, =y, 153 = 4,
and A, = a. Therefore, the point P;(0,0,0,0) is always unstable point .

The Jacobian matrix J at the equilibrium point P; (% 0,0,0) is given by

—aa —ba —ca

_a — — —

B B B
a
0 y +% 0 0
]P1 = ma
0 0 U+ — 0
B

qa

0 0 0 o+—
B |

4114



Farhan et al. Iragi Journal of Science, 2023, Vol. 64, No. 8, pp: 4109-4130

So that that eigenvalues of Jp are ly = —a, A, =y +%“, Y +% and A, =0+ %“ >

0. Since, some of them are positive, then the point P; (% 0,0,0) is unstable point.

The Jacobian matrix J of the system (1) at the equilibrium point P, (0,%, 0,0) IS

_ ay —
_Z 0 0 0
7%
fr _ _dy _e&
| 4 ; 5
']PZ_ hy
0 0 i 0
5
py
0 0 0 o+

Therefore, the eigenvalues of the /p, are A, = —y, 4, = a — ‘;—y,/13 =u+ %y,and Ay =0+
Py

?.

Since A3 and A, are always positive values so that the equilibrium point P, (0,%,0,0) is
unstable point.

For the equilibrium point Ps (0,0,%, 0), we can see that the Jacobian matrix of the system (1)

at P, (0,0,%, 0)is

b
a—E_ 0 0 0
p
d
0 y - _ ) 0 0
Jp, = p
Ps mu hu
me i =2 0
¢ ¢
'8
0 0 0 0+§—/1

Therefore, the eigenvalues of/p,, are Ay = a — %”,/12 =y - %”,/13 =—-uwA, =0+ %. So
that / p, has one positive eigenvalues, namely 4, = o + %. Therefore, the equilibrium point

P, (0,0,%, 0) is unstable point.

For the equilibrium point Ps(a,, a,, 0,0), we can see that the Jacobian matrix of the system (1)
at Ps(a;, a,,0,0) is

—-pa, —aa, —ba, —-cay
_ fa, —-da, —da, —ea,
Jps = 0 0 u +ma, + ha, 0 ’
0 0 0 o+qa, +pa,

Therefore, the eigenvalues of the matrix / ,_are
_ —(Ba, +aay) - \/(;85—11 —ay)? — 4af(a,a,)?
o 2 ___ @
—(Ba, +aay) + \/(,Ba1 —ay)? — 4af(a,a,)?

2
It is noticed that the matrix ] p_ has two positive eigenvalues, namely A, = o + qa, + pa, and

A, = U+ ma,; + ha,, so that the equilibrium point Ps(a,, a,, 0,0) is unstable point.
The Jacobian matrix J at equilibrium point P;(d,, 0, d,, 0) is given by

}\1 :O_‘l‘qf_ll'i‘pdz, 13

Azzﬂ‘l‘ma_l‘l‘hc_lz, 14:
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_ﬁdl - adl - bal - Cdl

; 0 y —da, + fa, 0 0
o 7 | ma, ha, —@d, —ga;
0 0 0 o+ra,+qa

Therefore, the eigenvalues of the matrix Jp_ are
—(Ba, + pa,) — \/(,8&1 — @dy)? — 4mba, a,
2 )
—(pa, + pa,) + da, — @d,)? — 4mba,d
Ay =y —di, + fa, A, = (Ba, + pay) \/(,821 ®as,) 12,
It is notice that the matrix Jp, has one positive eigenvalue, namely A, = o + rd, + qd, , SO
that the equilibrium point P¢(d,, 0, @, 0) is unstable point.
The Jacobi's matrix J at the equilibrium point Pg(0, d,, d,, 0),is given by

A1=O-+rd2+qd1, A3=

[a —ad, — ba, 0 0 0 ]
| fa — 8d, —dd, —ed; |
Jra = | md, pd; —pd, — gdy [
l o0 0 0 o +rd, +pdy |
Therefore, the eigenvalues of J,_ are
( o — (88, + pidy) — (5, — py)? — 4dpli,
7\1=a—aa1—ba2, /13: 2 )
s ) \/(6 T (10.4)
— (80 + pdy) +/(8d; — ¢d,)? — 4dpd,a
L22=0+sz+pd1, A, = 1T @a; 21 pa; pa; 2’

Note that A, = o + rd, + pd, is positive eigenvalue which means that the equilibrium
point Pg(0, d,, d,, 0) is unstable.
The Jacobi's matrix J at the point Py (by, by, bs, 0) is given by

—Bb;,  —ab,  —bb, —cby
] sz _552 _dEZ _eEZ
= mb hbs —@b, — gb; ’
0 0 0 o+rby+pb,+qb,

Therefore, the characteristic equation of Jp _ is
(7\1 — 0 — T'Eg - pEz - qu)()\g - tI‘HKz + Z?leﬁiil }\_ |HD = 01

where
—Bby,  — aby,  — bb,
H=| fb, - &b, — db,
mE3 hEg - (pE3

H;;, i = 1,2,3 are the diagonal minors of the matrix H. It is easy to see, that one of its
eigenvalues, namely A; = o + rb; + pb, + qb; is positive. Thus, the equilibrium point
Py1(by, by, bs, 0) is unstable.

2. The Jacobian matrix of system (1) at P, (0,0,0, g) IS
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co
a—— 0 0 0
&
eo
0 y —— 0 0
_ &
]P4 - go
qo po ro
-— — — — 0
& & &

The eigenvalues of J,, are A; = a — %’,Az =y - %,13 =u- gf,/h = —0. So that the

equilibrium point P, (0,0,0, %) is locally asymptotically stable if and only if

o a
z > max{—,z,ﬁ}.

ceg
3. The Jacobian matrix of system (1) at the equilibrium point P,(a,, 0,0, d,) is given by
—-pa, —ad, —ba, - cdl]
O y + fdl - edz O O
= o 0 U+ ma; — ga, 0 |
l qdz pdz sz - gdz J

Therefore, the eigenvalues of Jp are
[, _ —(Ba, + £d,) — /(B — £,)* — 4cqd,d,
1 - )
2
—(Ba; + edy) + \/(351 — &dy)? — 4cqdqd,
5 :

=y+fa, —ed, A3

Ay =p+mad; — g, A=

the point is locally asymptotically stable if and only if
y+fa, <ed,andyu+ma, < ga, or
y+fa, u+ md1}
"y
4. The Jacobi's matrix of the system (1) at the equilibrium point Py(0,@;,0,@,)
is as follows:

a, > max{

)

a—ad;,—ca, 0 0
] fa\l - 531 _dal _e’a‘l
" 0 0 n+ha; - g, o |
qa, pa, ra, —£a,
Therefore, the eigenvalues of Jp are
( ~ ~ ~ ~~ M
—(5a1+€a2)—J(5a1—€a2)2—4dpa1a2
}\1=a—aal—caz, A3= )
) 2
_(561+862)+\/(681_832)2_4‘dpa-‘1’az
\12=u+ha1—ga2, Ay = 2 .

so that for the point Py (0, @, , 0,@, )is to be locally asymptotically stable, the following must
be achieved
u+ha, a—a?il}

a<ad,+cd,and u+hd, < ga,or ﬁ‘2>max{ P
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5. The Jacobian matrix of the system (1) at the equilibrium point P,,(0,0, a,, a,) is given

a—ba, —ca, 0 0 0
O y - dal - eaz O O
Trio = ma, ha, —pa,  —9G
qa, pa, T, —&d,
Therefore, the eigenvalues of Jp,,
)\1 - a— bdl _ Caz, 13 — —(<Pd1+$dz)—\/(¢21—Sdz)z—4rgaldz'
are

A _ —((pdl+€(i2)+\/((p('i1—8&2)2—4rg(i1('i2
4 = .

A, =y —da, —edy, >
so that the point P;,(0,0, @,, a,) is to be locally asymptotically stable if
a < ba, +ca, and, y < da, + ed,, or @, > max {V_T?al,a%lml}.

Thus, the proof is completed.

THEOREM 3: Consider the system (1), then we have the following:
1. the equilibrium point P;, is locally asymptotically stable point if the following conditions
hold

( i i ; - - -
e , o = = =
{3 N N N where, H = flj2 —6b~2 - eIZZ
LZ |Hii| trH < detH, CIb3 pb3 - €b3
i=1
2.the equilibrium point P, 5 is locally asymptotically stable point provided the conditions
( b b b - . .
);+Hfb10<6b2+eb3, —8b, —bb, —ch,
{ e3t <9 where, H=| mb, —¢b, —gb,
\Z |Hy| ol < detH, abs By —eby
i=1
3.the equilibrium point P, , is locally asymptotically stable point provided the conditions
(@ < ab, + bb, + cb R - R
c; <ﬁab1 ;)I— bb, + cb;, —6b, —db, b,
etH <0, =~ ~ ~ -
P - ~ ~ where, H = thz —<pAb2 - gAbz .
\z |Hii| trH < detH, pb3 T'b3 —€b3
i=1

4. the equilibrium point P, 5 is locally asymptotically stable point provided the conditions
A;>0,i =1,2,3,4,
AA, —A3>0 where,
As(AyA, — Ag) — A,AZ> 0.
A= —tr]ss
A= (BS + af )p1p, + (Bp + mb)p,ps + (Be + cq)p1ps
+(8¢ + hd)p,ps + (6 + pe)pzps + (9 + gr)pspa,
Az= _Z?=1]P15ii1A4= det]s, and
—Bp1 —aps —bpy —cpy
fo, —6p, —dp, —ep;
mps hps —¢ps —gps3|
qpa PD4 Dy  —EPs

]P15 =

4118



Farhan et al. Iragi Journal of Science, 2023, Vol. 64, No. 8, pp: 4109-4130

Proof:
1. The Jacobian matrix of the system (1) at the equilibrium point Py, (by, b5, 0, b5 )
Is given as follows

—Bb, —ab, — bb, —ch,
, f5, _ 5B, _ db, — ¢F,
frz 0 0 p—ghs +hb, +mb, O ’
qbs pby rb; — by

Therefore, the characteristic equation of the Jp , is
[A = u — hb, — mby + gbs][A® — orHA? + ¥7_,|Hy| A — detH] = 0,
Where, H ;;,i = 1,2,3 are the diagonal minors of the following matrix

—Bb, —ab, —ch,
ﬁ = fEZ _662 - eEZ )
qu P53 - 553

According to the Routh-Hurwitz principle, the equilibrium point Py, (by, b5, 0, b5) is to be
locally asymptotically stable if:
( u+hb, +mb, < gbs,
| trA < 0,

detH < 0,

3
Z || trfl < detHL.
i=1
Note that, the trace of the matrix Jp , is (—Bby — 8b, — €b3), which is always negative. So
that the previous conditions can be written as follows:
( i+ hby, + mby < gb,
detH < 0,
3
D |Hultrfl < detfl.
i=1

2. The Jacobian matrix of the system (1) at the equilibrium point Py3(b, 0, b, bs )is given by

—Bb, — ab, — bb, —ch,

_ 0 y — 6b, —ebs + fb, 0 0
I = mb, hb, — @b, — gb,
ql;3 pbs rb; — &b,

Therefore, the characteristic equation of the Jp . is
[ —v — fby + 6b, + ebs|[A® — trHAZ + T2, |H;| A — detH] = 0,
where,H ;;,i = 1,2,3 are the diagonal minors of the following matrix:

_BB]_ _b51 - CE]_
H= mBz _QDBZ - 952
qB3 TBg _853

According to the Routh-Hurwitz principle, the equilibrium point Py3(B;, 0, by, b3)is to be
locally asymptotically stable if:
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( ¥ + fby < 8b, + ebs,
trA < 0,
detH < 0,
3
z |H;;| trH < detH.
i=1
Note that, the trace of the matrix Jp , is (—Bby — @b, — £b3), which is always negative. So
that the previous conditions can be written as
(v + fby < 8b; + eb,

detH < 0,
3
z |H;;| trH < detH.
i=1
3. The Jacobian matrix of the system (1) at the equilibrium point Py, (0, b, b,, b3 )is given by
[a—aEl—bBZ—cE3 0 0 0
; _lfBl — b, —db, —eBll
P14 lmgz hEz - QDBZ - gng
qb; pbs rby  — &b,

Therefore, the characteristic equation of the Jp , is
(Al - + aBl + bEz + CE3)(}\3 - )\Ztrﬁ + Zi3=1|ﬁii| }\ - |ﬁ|) = 0,
where,H ;;,i = 1,2,3 are the diagonal minors of the following matrix

_661 - dBl - eBl
ﬁ = hBZ _(pBZ - gBZ
pB3 TB3 _833

According to the Routh-Hurwitz principle, the equilibrium point Py, (0, by, by, b3) is to be
locally asymptotically stable if the following the conditions hold :
a < aby + bb, + cbs,
tri < 0,
detd < 0,

3
> || ol < dech
i=1

Note that, the trace of the matrix Jp,, is (—8b, — @b, — €b3), which is always negative, it
follows that the previous conditions can be written as
a < aEl + sz + cl33,,
detH <0,
3
> |Hu|trfl < deeh,
i=1
4. The Jacobian matrix of the system (1) at the point P;s(c;, ¢3, 3, C4)
—Bpr1 —apy —bpy —cpy
fr2 —6p, —dp, —ep,
mps hps —9¢prs —gp3|

qDa PPy TPs  —ED4
Therefore, the characteristic equation of the Jp _ is

A+ A3+ A%+ A3+ A= 0,

where,

A= —tr]p .

Ay= (B + af)p1p2 + (Be + mb)p,ps + (Be + cq)p1pa

is given by Jp . =
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+(8¢ + hd)p,ps + (6 + pe)pzps + (9 + gr)pspa,
Az= — ?=1|]P15ii ,and
Ay=det]p, ..
Jp,.iit = 1,2,3,4 are the diagonal minors of /.

According to the Routh-Hurwitz principle, the equilibrium point P,<(cy, c5,¢3,¢4) is to be
locally asymptotically stable if:

A>0,i =1,2,3/4,

AA, — A3> 0

As(AA, — A3) — ALAZ> 0.
Thus, the proof is completed.
THEOREM 4.
1. If P, is locally asymptotically stable, then the equilibrium points P,,Pyand P;,  cannot
be existed.
2. If one of the equilibrium points P,, Py and P;, does not exist, then the P, is not stable.
Proof:
1. Let P, be a locally asymptotically stable, then according to Theorem 2, the following

condition must be satisfied:

% > max {%,5,5}. Therefore, we have ae —co < 0, ye —eo < 0 and ue — go < 0. Hence,

the conditions of the existence of the equilibrium points P,, Py and P;, can not be satisfied so
that these points are not existed.

2. Now, if one of the equilibrium points P,, Py, or P,, exists. Therefore, ae —co > 0, ye —

ead > 0 or ue — go > 0, that is% < % % < g or % < %‘ So that P, is locally not stable. Thus,

the proof is completed.

4. BASIN OF ATTRACTION

In this section, a basin of attraction for all equilibrium points of the system (1), which are
locally asymptotically stable, will be discussed by finding a suitable Lyapunov function for the
mentioned points.

THEOREM 5: If P, (0,0,0,%) is locally asymptotically stable and f <a,m<b, h<
d, then the following region

Q4= {(x,y,z,w):O <x,0<y,0 Sz,max{a Z,g} <w Sg}.

c’e €
is a basin of attraction for the equilibrium points P, % > max {%gg}
Proof: Consider the following real valued function

Va=|x+y+z+ >

It is clear that V,(x,y,z w) > 0, forall (x,y,z w)eR® {(0,0,0, %)} and is zero at (0,0,0, %)
The function V,(x, y, z, w) is differentiable with respect to time t and its derivative is given by
Vi=x+y+z+(w-2)w.

It is easy to notes that V, (0,0,0, %) = 0.

To prove that V, is negative in Q4\{(O,0,0, g)} it is sufficient to prove that x + y + Z, and

(w - %) W are negative in Q4\{(O,0,0, %)} and this is what we will do as follows
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X+ y+2z=ax—pfx*—axy—bxz—cxw +yy —6y? —dyz — eyw + fyx + uz — @pz*
—gzw + hyz + mxz =
=(a—cw)x+yly—ew)+z(u—gw) +(f —a)yx + (m—b)xz+ (h—d)yz
—px? — 8y? —pz? < —fx? —8§y? —pz?> <0,V (x,v,2, W)EQ4\{(0,0,0, g)},
o o

(W—E)W = (W—%)W(G—ew+rz+py+qx) <
< (w — %) wrz+py+qx) <0,V (x,v,2z, W)6Q4\{(O,O,O, g)}

Hence for all (x,y, z, w)eQ4\{(O,O,O, g)} we have that V, < 0,and V, (0,0,d, %) = 0. S0

that V, is a Lyapunov function . Therefore Q, is a basin of attraction for the equilibrium
points P,. Thus, the proof of Theorem5 has been completed.

THEOREM 6: If P,(d,,0,0,d,) is locally asymptotically stable and, h < d,ed, < g, then
the following region
ae—yc ag-—uc

Q7={(x,y,z,W):dlsxSmin{ o me },OSy,OSZ,%<WSd2},

is a basin of attraction for the equilibrium points P,.

Proof: Consider the following real valued function
(x — @y)? (w — d,)?
Vy =y it
It is clear that V,(x,v,z,w) >0, for all (x,y,z w)eR:\{(d,,0,0,d,)}, and is zero at
(d,, 0,0, d,). The function V,(x, y, z, w) is differentiable with respect to time t and its derivative
is given by
V,=(x—a)x+ y+z+w—a,w.
It is easy to notes that V, = 0, at (x,y,z,w) = (&;,0,0,d,).
To prove that V; is negative in Q\{(0,@,,0,%,)}, it is sufficient to prove that (x — &,)x,
(w — d,) and y + zw are negative in Q\{(0,@;,0,@,)}, and this is what we will do as follows
(x—dpx=x—d)x(a—Bx—ay —bz—cw) < (x—dl)x((a—cw) —ay — bz —
CW) < 0’ v (xl Y,z W)EQ7\{(d11 0;0; dZ)}
w—-—a)w=Ww-ay)wlo—ew+rz+py+qgx) < (W—dz)w((a—sd2)+rz+py+
qx)o' v (x! Y, Z, W)6Q7\{(dli OFOP dZ)}
We will now prove that y + Z is negative Q-\{(d,, 0,0, d,)}.
y+z=yy—08y?—dyz—eyw+ fyx + uz — pz* — gzw + hyz + mxz =
=—6y?—@z?+yz(h—d) +yly —ew+ fx) + z(u — gw + mx)
a a
<= —-6y% — @z*? +y(y—ez+fx)+z(,u—gz+mx) <0

<= —6y? — @z? +y(y — e%+fx) +z(u — g%+mx) <0, v(x,y,z,w)eQ,

\{(dlr 0!0! dZ)} ' )

Hence V, < 0 forall (x,y,z,w) € Q\{(d,,0,0,d,)}, and V,(&,,0,0,d,) = 0. Sothat V, is a
Lyapunov function. Therefore Q- is a basin of attraction for the equilibrium points P,. Thus,
the proof of Theorem6 is done.

THEOREM 7: If Py(0,a,,0,a,) is locally asymptotically stable and, m < b, €@, < g,
then the following region

Qo = {(x,y,z,w):o <x<

ae—6¢

ga—pc a ~
e ,Osy<T,OSZ,E<WSa2},
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Is a basin of attraction for the equilibrium points Ps.

Proof: Consider the following real valued function

- N2 - N2
V9=x+w+z+w_

It is clear that Vo(x,y,2z,w) >0, for all (x,y,z,w)eRH\{(0,d,,0,a,)}, and is zero at
(0,@1,0,a@,). The function Vy(x,y,z w) is differentiable with respect to time t and its
derivative is given by
Vo=%+ (y =@y + z+(w — @,)w.

It is easy to notice that V; = 0, at (x,y,z,w) = (0,4,,0,4,).
To prove that V, is negative in Q\{(0, @, ,0,@,)}, it is sufficient to prove that x + z,
(y — @)y, and (w — @,)w are negative in Q\{(0,@;,0,@,)}, and this is done as follows
x+z=x(a—Bx—ay—bz—cw) +z(u—@z—gw+ hy + mx) <
a a

< (m - b)xz — (Bx? +(pzz)+x(a—ay—cz)+Z(u—gz+hy) <
< —(Bx?+9z%) <0, V (x,y,2,w)eQ{(0,3,0,a,)}.
y =y(y—6y—dz—ew+ fx) < —6y2—dyz+y(y—e%+fx) < —=6y? <0,
V(x,y,2z,w)eQa{(0,a;,0,a,)}.
w=—a)w=w-a)wlo—ew+rz+py+qx) < (w—a,)w(c—ed;),<0 , V
(x,y,zw)eQa{(0,2,,0,a,)}. '
Hence V, < 0 for all (x,y,z, w)eQa{(0,4;,0,a,)}, and V5(0,@;,0,a,) = 0. So that Vy is a
Lyapunov function. Therefore Qo is a basin of attraction for the equilibrium points
Py(0,,,0,@,). Thus, the proof of Theorem? is done.

THEOREM 8 : If P,,(0,0,a,,d,) is locally asymptotically stable and f < a, e€d, <
o,and u > @ad,; + ga, , then the following region

Q10 = {(x,y,z,w):O <x,0<yz< dl,max{%,g} Sw=s az},

is a basin of attraction for the equilibrium points P;,.

Proof: Consider the following real valued function

~ \2 ~ \2
Vio=x+7y + (z 2“1) (w —ay)
It is clear that Vi o(x,v,z,w) >0, for all (x,y,z w)eR3\{(0,0,d,,d,)}, and is zero at
(0,0,da,,a,). The function V;,(x,y,z,w) is differentiable with respect to time t and its
derivative is given by
Vie=%+ v+ (z—a)z+(w — a,)w.
It is easy to notice that V; = 0, at (x,y,z,w) = (0,@;,0,@,). To prove that V;, is negative in
Q10\{(0,0,d,, a@,)}, itis sufficient to prove that x + y, (z — @,)z and
(w — d@,)w are negative in Q;)\{(0,0,d,, d,)}, and this is done as follows
x+y=x(a—Bx—ay—bz—cw)+y(y—38y—dz—ew+ fx) =
=x(a—cw)+yly—ew)+(f —a)xy + x(—Bx —bz) + y(—8y —dz) <0 , \
V(x' Y» Z, W)6Q10\{(0»0» al; aZ)}
(z—08)z =(z—8)z(u—z—gw+hy + mx) <(z—a)z(u— @a; — ga,)(z -
a,;)z(hy + mx) <0,V (x,y,z,w)eQ,\{(0,0,d,,4d,)}.
w—a)w=WwW-a,)w(c—ew+rz+py+qx) <
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<(w-ay)w(oc—edy)+Ww—-a,)wlrz+py+qx),<0, V(x,y,2,w)eQqo
\{(0101 a—l; aZ)} .

Hence V,, < 0, for all (x,y,z, w)eQ;\{(&;,0,0,d,)}, and V;,(0,0,d,,d,) = 0. So that V;, is

a Lyapunov function. Therefore Q,, is a basin of attraction for the equilibrium

points P;((0,0,d,,a,). . Thus, the proof of Theorem 8 is completed.

THEOREM 9: If Py,(by, by, 0,b;) is locally asymptotically stable, @ < b, ehf b, <
8b,(g — me) + e(my — fu), efb; > 8b,, €b; < o, then the following region

- 8by—y = b, (g— - &b ~
015 = {(x,y,z,w):bl <x< b; Y b, <y< 220 ’"‘;)]fhe(my ™ SZ,eifzs w < b3},

Is a basin of attraction for the equilibrium points P;,.

Proof: Consider the following real valued function

~ \2 ~ \2 ~ \2
—-b —-b —-b
V12=(x 21) +(y 22) +Z+u.

It is clear that Vy,(x,y,z,w) >0, for all (x,y,z w)eRN\{(by, by, 0,b3)}, and it is zero at

(by, b, 0,bs). The function Vi,(x,y,z w) is differentiable with respect to time t and its
derivative is given by
V12 = (x - bl)x + (y _ bz)y + Z +(W - b3)W o _ .
It is easy to notice that V;, = 0, at (x,y,z,w) = (bl, b,, 0, b3). To prove that V;, is negative in
Q:\{ (B4, by, 0,b3)}, it is sufficient to prove that (x — b, )%, 0, (y — by)y.
z, amd (w — by)w are negatives in Q;\{(B, by, 0, b3)}, and this is done as follows
(x —by)x = (x —by)x(a— fx —ay — bz — cw)
< (x—by)x ((a — Bb,) —ay — bz — cw) < (x = by)x(—ay — bz — cw)
<0.
. - - - 5Bs
(y=bo)y =y(y—b,)(y =6y —dz—ew + fx) < (y—bz)y(y—5bz—dz—7+
652—]/ 652

fT) < y(y — by) (—dZ—T) <0.

_ 5b, 8b, —y
z=zW—@pz—gw+hy+mx) <z ,u—<pz—g?+hy+m 7

8b,(g — mez;le(my - fu)> < —pz2 <0,
(w—bs)w(o —ew +rz+py +qx) < (w—b3)w ((a —eb;y) +rz+py + qx) <

< (w—b3)w(rz +py + qx) < 0.
Hence V, < 0, for all (x,y, z, w)eQ, \{(B1, b5, 0, bs)}, and V;, (b, b,, 0, b;) = 0. So that Vy,
is a Lyapunov function. Therefore Q,, is a basin of attraction for the equilibrium
points Py, (b, by, 0, b3). Thus, the proof of Theorem 9 is completed.

< —@z*+ z(hy —

THEOREM 10: If Py3(by,0, by, b3) is locally asymptotically stable, 8b; < a @b, + gbs <
u +mby, and eb; < o, then the following region
Qs ={(xy,zw):b, <x<%,0<y,2 < b, 20
Is a basin of attraction for the equilibrium points P; 5.

<w< 53}
Proof: Consider the following real valued function
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C(x—hy)’ (z-b,)" (w=hy)*

It is clear that Vi3(x,y,z,w) >0, for all (x,y,z,w)eRI\{(b1,0,b,, b3)}, and is zero at
(b1,0,b,,b3). The function Vy3(x,y,z,w) is differentiable with respect to time t and its
derivative is given by
Vi3 = x(x - Bl) + y+ (z - Bz)z' +(w - 53)1/\/.
It is easy to notice that Vy3 = 0, at (x,y,z,w) = (by,0, by, b3).
To prove that V5 is negative Q1 \{(b1,0, by, b3)}
From the conditions of Q,5 , we have
(W—El) > 0,(2—52) <0, and (w—53) < 0.
So, in order to prove that V, 5 is negative, it is sufficient to prove that
x<0,y<0,z>0andw > 0, and this is done as follows
x =x(a—pBx—ay—bz—cw) Sx((a—ﬁEl)—ay—bz—cw) < x(—ay — bz — cw)
< 0.
y =y(y =8y —dz—ew+ fx) Sy(y—e%+f%)+y(—5y—d2) = y(=6y -
dz) < 0.
2z =z(u— @z — gw + hy + mx) = z(u + mby — @b, — gbs + hy) = z(hy) > 0.
W =w(o —ew + 71z +py + qx) Zw((a—sB3)+rz+py+qx) > w(rz + py + qx)
> 0.
Hence V3 < 0, for all (x,y, z, w)eQ:\{(0, by, by, bs)}, and Vy5(by, 0, 52,53) = 0. So that V;5
is a Lyapunov function. Therefore Q5 is a basin of attraction for the equilibrium
points Py3(B;,0, by, b3). Thus, the proof of Theorem 10 is done.

THEOREM 11: If P,(0, by, by, b3) is locally asymptotically stable, @ < ab,, @b, + ghs <
i+ hby and eb; < o, then the following region
Q14 = {(x,y,z,w):O <x< %,Bl < y,g <z<h,w< 133}

IS a basin of attraction for the equilibrium points P,.

Proof: Consider thezfollowing regl valued funcztion

Vig = x + b 2b1) + ( sz) + (w 2b3) .

It is clear that V(x,y,z,w) >0, for all (x,y,z,w)eR4\{(0,b,b,, b5)}, and is zero at

(0,b1,b,,b3). The function V(x,y,z w) is differentiable with respect to time t and its

derivative is given by

Vig=%+ (y—by)y+ (y — by)z +(y — bs)w

It is easy to notice that V,, = 0, at (x,y,z,w) = (0, by, by, b3).

To prove that Vy, is negative Qq,\{(0,by, by, bs)}, it is sufficient to show that x, (y —

b,)y,(y — b;)z, and (y — b3)w are negative, and this is done as follows

x =x(a—px—ay—bz—cw) <x((a—ab;)—px—bz—cw) < x(—fx — bz — cw)
< 0.
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(y=b1)y =y —b)yly — 6y —dz —ew + fx)
< (y—Bl)y(y—Sﬁl—dg—ew+fx)
- %
< (y-b,)y(-6b, —da—ew+fx)

A < —gy —by)eyw + (y — by)y(fx — 6by) < —eyw <0
(z—=by)z = (z—by)z(u — 9z — gw + hy + mx)
< (z—by)z(u— @b, + hby, — gh; + mx) < (z — by)mxz < 0
(w—Dbs)w = (w—Dby)w(o —ew +rz + py + qx)
< (w-—by)w ((a —¢ebs) +rz+py + qx) < (w — bs)w(+rz + py + qx)
< 0.
Hence V;, < 0, for all (x,y,z w)eQ,\{(0, by, by, b3)}, and V1, (0, by, 52,33) = 0. So that V;,
is a Lyapunov function. Therefore Q,, is a basin of attraction for the equilibrium points
P14(0, by, by, b3). Thus, the proof of Theorem11 is done.

THEOREM 12: If P;5(cq, ¢4, €3, C4) is locally asymptotically stable, fc; = a, ¢@c3 + gcy <
U+ hc, and ec, < o, then the following region

Q5 = {(x,y,z,w):cl <x< %,cz < y,g <z<cw< 04}
Is a basin of attraction for the equilibrium points P;s.

Proof: Consider the following real valued function
poo e O-e)? o) w-c)?
2 2 2 2

It is clear that V s(x,v,z,w) >0, for all (x,y,z,w)eRi\{(cy, ¢y, c3,¢4)}, and is zero at
(c1,€2,¢3,¢4) . The function V(x,y,z w) is differentiable with respect to time t and its
derivative is given by
V=(—c)i+ (y—c)y+ (z—c3)z+(w — cy)w
It is easy to notice that Vs = 0, at (x,y,z,w) = (¢4, ¢y, C3,Cs)
To prove that V,, is negative Q;:\{(cy, c,, c3,c4)}, , it is sufficient to show that (x — c;)x,
(y —cy)y, (z—c3)z,and (w — c,)Ww, are negatives in the region
Q1:\{(cy, €3, c3,¢4)}, and this is done as follows
x—c)x =(x—cpx(a—pBx—ay—bz—cw) < (x —c)x(—ay — bz — cw) < 0.
-y =@ —c)yly -6y —dz—ew+ fx) < (y —c2)y(y —dz + fx — 6c, — ew)

< —exw(y —c,) <O0.
(z—1c3)z =(z—c3)z(u— @z — gw + hy + mx)

<(z—-c3)z(u—@pc3 —gcy +hcy, + mx) <mxz(z—1c3) <0
WwW—cw =(w—c)w(c—ew+rz+py+qx) < (w—cy)w(+rz+py +qx) <0
Hence V,s < 0, forall (x,y,z w)eQ\{(c;, c,, c3,¢c4)}, and V(cy, ¢, c3,¢c4) = 0. Sothat V5 isa
Lyapunov function. Therefore Q,s is a basin of attraction for the equilibrium
points P,s(cy, ¢4, €3,¢4) . Thus, the proof of Theorem12 is done.

5. NUMERICAL SIMULATIONS AND DISCUSSIONS :
In this section, a numerical example of the system (1) will be given for the following set of
parameters.
a=034,=02,a=04b=03,c=0.1y=01846 =0.4,d =0.3,e =0.
f=0.2,u=009¢=05g=04h=03m=060=02¢=04r=0.1,
p=0.2,q=0.1.
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The purpose of the presenting this example is to verify and confirm the theoretical results
that have been obtained in Section 3, it was demonstrated in Theorem 2 that the equilibrium
points Py, P;, P,, P;, P5(0.4,0.65,0,0), P;(0.5107,0,0.729,0), P4(0,02172,0.3103,0) and
P;,(0.4,0.107,0.724,0) are unstable points. So we will find the rest of the points and
determine the local stability for each of them. Easy calculations show that the points
P,(0,0,0,0.5), P,(0.2889,0,0,0.8222), Py(0,0.359,0,0.5765),
P;,(0.4,0.4444,0,0.822) and, P,5(0.705,0,0.404,0.777) are not stable because the
conditions given in 2., 3., 4., of Theorem 2 and the conditions given in 1., 2., 3., of Theorem 3
are not met, for each equilibrium point respectively, see Figures 1-5. While the two equilibrium
points Py4(0,0,4,,4,), and Py, (0, by, by, bs) do not exist, because the conditions given in 7.,
and 12. of Section 4 are not satisfied, for each point respectively. The last equilibrium point of
the system (1), is P;<(0.4,0.3,0.2,0.8). This point is locally asymptotically stable due to the
fulfillment of the conditions 4., of Theorem 3 that has been mentioned in the Section 4, that
is:

A= 0.62, A,=0.1774,  Az= 0.026, A;,= 1.4274x1075
AN, — A;=0.0840 > 0,
Az (A A, — A3) — A, A?= 0.0022 > 0,

see Figures 1-6.

Now, if o =y = 0.04, but the rest of the parameters keep their values as given. The

equilibrium points Ps, P, P;, Pg, Py, Pyg, P11, P12, Pi3, P14 and P;s do not exists because
the conditions given in 4., 6., 7., 9., 10., 11. and 14. As for equilibrium point P,, it is locally
asymptotically stable, see Figure 7.
The system (1) with the parameters shown in section 6 has 14 equilibrium points, 13 of which
are unstable and only one point, which is the coexistence point P;s, is locally asymptotically
stable. The point Py,(0,0,ay,a,), and Py4(0, by, by, b3) do not exist. According to Theorem
4, if P,, Pyand P, do not exist then P, is locally asymptotically stable. Which follows
that if both a and y are smaller than 0.05 and u is are smaller than 0.2, then P, is locally
asymptotically stable, which annihilates the equilibrium points P,, Py and P;,. Furthermore,
eight equilibrium points were annihilated due to the change in these two parameters. This is due
to the influence of each parameter on the dynamic behaviors of the model.

<

0 EIU 1[;[] 15I[] 2[;[] 25I[]
t
Figure 1: P, is unstable point. The trajectory with the parameter values is given above, and for
the initial point (0.03,0.01,0.02,0.5), located close P, and it diverges from P, and, converges
to P .
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Figure 2: P;is unstable point. The trajectory with the parameter values is given above, and
for the initial point (0.28,0.02,0.01,0.82), located closeP, and it diverges from P, and,
converges to P;s.
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Figure 3: Pyis unstable point. The trajectory with the parameter values is given above, and for
the initial point (0.02,0.358,0.01,0.577), located close Py and it diverges from P, and,
converges to P;s.
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Figure 4: P,,is unstable point. The trajectory with the parameter values is given above, and
for the initial point (0.4,0.45,0.1,0.82), located close P,, and it diverge from P,, and,
convergesto P;s.
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Figure 5: P,;is unstable point. The trajectory with the parameter values is given above, and
for the initial point  (0.705,0.03,0.403,0.777), located close P, , diverge from P,; and,

converges to P;s .
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Figure 6: P;sis locally stable point. The trajectory with the parameter values given above and,

for different initial points, converges to P;s.
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Figure 7: P,is locally stable point. The trajectory when a =y = 0.04 and the rest parameter
keep their values as given above, and the initial point (0.5,0.6,0.3,0.1), converges to
P,(0,0,0,0.5).
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6. CONCLOSIONS

In this paper, a modified model of the Lotka-Volterra model was presented such that the
proposed model is a complete food chain consisting of four species. The model has sixteen
possible equilibrium points; five of them always exist, whatever the values of the model
parameters. The number of unstable equilibrium points is eight, while the rest are locally
asymptotically stable if they meet the conditions specified in this paper. For each of the
equilibrium points that can be locally asymptotically stable, a basin of attraction was found
using the Lyapunov function. In a numerical example, it is found that the number of equilibrium
points for the system (1) was fourteen, all of which were unstable, except the coexistence point,
which was locally asymptotically stable and, two points, do not exist in the mentioned examples
due to not meeting some specific conditions. Changing two value parameters eliminates eleven
equilibrium points.
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