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Abstract  

     The aim of this work is to study a modified version of the four-dimensional Lotka-

Volterra model. In this model, all of the four species grow logistically. This model 

has at most sixteen possible equilibrium points. Five of them always exist without any 

restriction on the parameters of the model, while the existence of the other points is 

subject to the fulfillment of some necessary and sufficient conditions. Eight of the 

points of equilibrium are unstable and the rest are locally asymptotically stable under 

certain conditions, In addition, a basin of attraction found for each point that can be 

asymptotically locally stable. Conditions are provided to ensure that all solutions are 

bounded. Finally, numerical simulations are given to verify and support the obtained 

theoretical results. 

 

Keywords:  Basin of attraction, Equilibrium points, Lyapunov function, Local 

stability, Prey-Predator. 

 

 فولتيرا- مفترس رباعي للوتكا- حول استقرار نظام فريسة 
 

 2ناجي ناصر ال ناصر صادق ، 1*, علاء طارق بلاسم1عبد الخضر غالي فرحان
 المستنصرية، بغداد، العراق قسم الرياضيات، كلية التربية الأساسية، الجامعة   1

 ، العراق   بغدادقسم الرياضيات،كلية العموم،جامعة بغداد،   2
 

 الخلاصة 
  جميع   تنمو  ،   النموذج  هذا  في.  الأبعاد  رباعي  فولتيرا  -للوتكا  معدل  نموذج   دراسة  هو   العمل  هذا  من  الهدف       
  منها   خمسة   يوجد .  أقصى  بحد   ممكنة   توازن   نقطة   عشر  ستة   على  النموذج  هذا  يحتوي .  لوجستيا   الأربعة   الأنواع 
  الضرورية   الشروط  بعض   لاستيفاء  الأخرى   النقاط  وجود  يخضع  بينما  ،  النموذج  معلمات   على   قيود   أي  دون   دائمًا

  ظل   في  مقارب  بشكل  محليًا  مستقرة  الأخرى   النقاط   تكون   بينما  مستقرة  غير  التوازن   نقاط   من  ثمانية .  والكافية 
  بشكل   محليًا   مستقرة   تكون   أن  يمكن  نقطة  لكل  جذاب   حوض  على   العثور  تم   ، ذلك  إلى  بالإضافة.  معينة  ظروف 
  للتحقق   عددية  محاكاة  عمليات  إجراء  يتم  ،  أخيرًا.  محدودة   الحلول  جميع   أن   من  للتأكد   الشروط توفير يتم.  مقارب

  .ودعمها عليها الحصول  تم  التي النظرية النتائج من
 

1. INTRODUCTION 

     The food chain can be described as a transfer of energy from one type of living organism to 

another, while the energy transferred is the food that ensures the continuity of life is ecological 

balance. Chemical, physical and biological systems are inherently nonlinear. A large class of 
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models that represent predator-prey population dynamics can be described by ordinary 

differential system or partial differential system. One of the simplest model is the Lotka-

Volterra equations, also called predator and prey equations which are two of the first-order 

nonlinear differential equations. Populations change over time according to the following 

equations [1]: 

 

�̇�(𝑡) = 𝑥(𝑡)(𝑎 − 𝑏𝑦(𝑡)), �̇�(𝑡) = −𝑦(𝑡)(𝑐 − 𝑑𝑥(𝑡)),  
 

       where 𝑥(𝑡) represents the prey species and 𝑦(𝑡) is the density of predator species at time 

t. All parameters 𝑎, 𝑏, 𝑐  and 𝑑  are nonnegative constants. The parameter 𝑎  represents the 

natural growth rate of the prey in the absence of the predator. Parameter 𝑏 represents the effect 

of the predator on the prey population. Moreover, if 𝑏 is the only decreasing factor for the prey 

population, then prey will be eaten by predators. Parameter 𝑐 represents the effect of prey on 

the predator population. Moreover, if 𝑐 is the only increasing factor for the predator population, 

then the population growth is proportional to the food available. Parameter 𝑑 represents the 

natural death rate of the predator in the absence of prey. In [2], the predator-prey model with at 

least one predator and two prey has been investigated.  

 

     In [3], the following population dynamics of the Lotka-Volterra model consists of three 

species: two predators and one prey were studied.  

�̇� = 𝑎𝑥 − 𝑥𝑦 − 𝑥𝑧, �̇� = −𝑏𝑥 + 𝑥𝑦, �̇� = −𝑐𝑥 + 𝑥, 

 

     where 𝑥(𝑡) ≥ 0, represents prey, 𝑦(𝑡) ≥ 0 and 𝑧(𝑡) ≥ 0 represent predators, and a,b,c are 

positive parameters. The parameters 𝑎, 𝑏 and 𝑐 are positive and are interpreted as follows: 𝑎 

represents the natural growth rate of the prey in the absence of predators, 𝑏 represents the 

natural death rate of the predator y in the absence of prey, 𝑐 represents the natural death rate of 

the predator z in the absence of prey. Many authors modified  and investigate the classic Lotka-

Volterra model . For more details, see [4] and [5]. 

 

     Global dynamics of 3–dimensional Lotka–Volterra models with two predators competing 

for a single prey species in a constant and uniform environment has been studied in [6]. It is 

assumed that the two predator species compete purely exploitatively with no interference 

between rivals, the growth rate of the prey species is logistic or linear in the absence of 

predation, respectively and the predator’s functional response is linear [6]. In [7], the two prey-

one predator system are also discussed and studied. In[8] and [9], the authors investigated the 

following mathematical model : 

�̇�1 = 𝑥1 [𝑔1 (1 −
𝑥1
𝑘1
) −

𝛼1𝑥2
𝑛𝑦1

𝑥1
𝑛 + 𝑥2

𝑛 − 𝛽𝑦2], 

�̇�2 = 𝑥2 [𝑔2 (1 −
𝑥2
𝑘2
) −

𝛼2𝑥1
𝑛𝑦1

𝑥1
𝑛 + 𝑥2

𝑛], 

�̇�1 = 𝑦1 [−𝜇1 +
𝛿1𝑥1𝑥2

𝑛

𝑥1
𝑛 + 𝑥2

𝑛 +
𝛿2𝑥1

𝑛𝑥2
𝑥1
𝑛 + 𝑥2

𝑛], 

�̇�2 = 𝑦2[−𝜇2 + γ𝑥1], 
     where 𝑥𝑖  represents the density of the prey in their two divers' habitats; 𝑦𝑖 represents the 

density of the predator. The two species of prey are supposed to grow logistically with a certain 

growth rate 𝑔𝑖 and carrying environmental capacity 𝑘𝑖to 𝑥𝑖; 𝛼𝑖 represents the rate of predation 

by the predator 𝑦1, on prey 𝑥𝑖;  𝛽 represents the rate of predation by the predator 𝑦2 on 𝑥1;𝜇𝑖 
represents the mortality rate of predators  𝑦𝑖  such that 𝑖 = 1,2 , and 𝛿1, 𝛿2  and γ are the 

corresponding conversion rates. The two functions 𝛼1𝑥2
𝑛𝑦1(𝑥1

𝑛 + 𝑥2
𝑛)−1 and  𝛼1𝑥1

𝑛𝑦1(𝑥1
𝑛 +
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𝑥2
𝑛)−1explain the behavior of predator switching  𝑦1. This model includes two prey and two 

predators. The phenomenon of switching occurs only with one of the two predators, while the 

two prey species live in two diverse habitats and has the ability of group-defense against one of 

the two predators. 

 

More details on the modified Lotka-Volterra models and prey-predator models can be found in  

[10-14].  

 In [15], a modified for Lotka-Volterra model was proposed and studied, and it represents a 

food chain consisting of three species. They all grow logistically, which means that the absence 

or decimation of one species does not cause the death of the others: 

�̇�  = 𝑥( 𝑎 − 𝛾𝑥 − 𝑏𝑦 − 𝑐𝑧),  �̇�  = 𝑦(𝑑 − 𝛽𝑦 − 𝑒𝑧 + 𝑓𝑥),  �̇�  = 𝑧(𝑔 − 𝛿𝑧 + ℎ𝑦 +𝑚𝑥). 
 

      Lions are at the top of the food chain. They do not differentiate between hyenas and deer 

when they are hungry. Tigers are in the second place; they prey on every animal weaker than 

them in the wild. In the third-place are hyenas; they live on less powerful animals such as deer 

or zebra. In our work, a modification of the last mathematical model was introduced such that 

another predator was added to the model that studied in [14]. The present model has four first-

order nonlinear differential equations describing the dynamic behavior for four species, in 

which all the species grow logistically. The current model is considered more comprehensive 

than the model studied in [14].  Because of the increase in the number of parameters as well as 

the number of differential equations, and because of that this model contains sixteen possible 

equilibrium points, while the number of the possible equilibrium points in the previous model 

is eight.  

 

     In the following section, the modification of the four-dimensional Lotka-Volterra model, 

such that the  four species grow logistically is formulated, and the boundedness of the positive 

solutions of the model is studied. In Section 3, it is shown that the model has at most sixteen 

possible equilibrium points. Five of them always exist without any restriction on the parameters 

of the model, while the existence of the other points is subject to the fulfillment of some 

necessary and sufficient conditions, moreover the local stability of all possible equilibrium 

points is discussed, and it is shown that eight of the equilibrium points are unstable while the 

rest equilibrium points are locally asymptotically stable under certain conditions. In sections 4 

a basin of attraction for all equilibrium points of the system (1), which are locally asymptotically 

stable, will be discussed by finding a suitable Lyapunov function for the mentioned points. In 

section 5 a numerical simulations are given to verify and support the obtained theoretical 

results. Finally, a brief conclusion was presented about the findings of this work. 

 

2. THE MATHEMATICAL MODEL 

     In this section, we modify the Lotka-Volterra model to include four species. The 

mathematical model is given as follows:                         
�̇�  = 𝑥( 𝛼 − 𝛽𝑥 − 𝑎𝑦 − 𝑏𝑧 − 𝑐𝑤),

�̇�  = 𝑦(𝛾 − 𝛿𝑦 − 𝑑𝑧 − 𝑒𝑤 + 𝑓𝑥),

�̇�  = 𝑧(𝜇 − 𝜑𝑧 − 𝑔𝑤 + ℎ𝑦 +𝑚𝑥),

�̇�  = 𝑤(𝜎 − 𝜀𝑤 + 𝑟𝑧 + 𝑝𝑦 + 𝑞𝑥),

                                                (1)  

     where x, y, z and w  represent the densities of the species at time t . We assume that the four 

species grow logistically. The parameters𝛼, 𝛾, 𝜇 and 𝜎 are positive constants which represent 

the growth's rates of the species x, y, z, and w, respectively. The nonnegative constants𝑎, 𝑏, and 

𝑐  are the change's rates of 𝑥  with respect to 𝑦, 𝑧,   w, respectively. While the nonnegative 

constants  and w respectively. The nonnegative  𝑑, 𝑒 and f are the change's rates of y with respect 
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to 𝑧, 𝑤, and 𝑥 respectively; 𝑔, ℎ, and m are the change's rates of 𝑧 with respect to w,y, and x 

respectively; 𝑟, 𝑝, and 𝑞 are the change's rates of 𝑤 with respect to 𝑧, 𝑦, and 𝑥, respectively. 

 

     It is clear that the interaction functions of the model (1) are continuous and have continuous 

partial derivatives on  

R+4 = {(x, y, z, w) ∈ R4: x(0) ≥ 0, y(0) ≥ 0, z(0) ≥ 0, w(0) ≥ 0} .  

     Hence, all these functions are Lipschitizion functions on R+4. Therefore, the solution of the 

model (1) exists and is unique. Some sufficient conditions are provided in the next theorem 

which ensures all solutions of system (1) are bounded. 

 

THEOREM 1: Let  𝑟 ≤ 𝑔, 𝑝 ≤ 𝑒, 𝑞 ≤ 𝑐, ℎ ≤ 𝑑,𝑚 ≤ 𝑏, 𝑎𝑛𝑑 𝑓 ≤ 𝑎. Then all the trajectories of 

the positive solutions of System (1) are bounded. 

Proof: 

   Consider that   𝐹(𝑡) = 𝑥(𝑡) + 𝑦(𝑡) + 𝑧(𝑡) + 𝑤(𝑡), then  

�̇�(𝑡) + 𝜏𝐹(𝑡) = 𝑥( 𝛼 + 𝜏 − 𝛽𝑥 − 𝑎𝑦 − 𝑏𝑧 − 𝑐𝑤) + 𝑦(𝛾 + 𝜏 − 𝛿𝑦 − 𝑑𝑧 − 𝑒𝑤 + 𝑓𝑥) 
                   +𝑧(𝜇 + 𝜏 − 𝜑𝑧 − 𝑔𝑤 + ℎ𝑦 +𝑚𝑥) + 𝑤(𝜎 + 𝜏 − 𝜀𝑤 + 𝑟𝑧 + 𝑝𝑦 + 𝑞𝑥) 

= 𝑥𝑦(𝑓 − 𝑎) + 𝑥𝑧(𝑚 − 𝑏) + 𝑥𝑤(𝑞 − 𝑐) + 𝑦𝑧(ℎ − 𝑑) + 𝑦𝑤(𝑝 − 𝑒) + 𝑧𝑤(𝑟 − 𝑔) 

                   −𝛽 [(𝑥 −  
𝛼 + 𝜏

𝛽
)
2

− (
𝛼 + 𝜏

2𝛽
)
2

] − 𝛿 [(𝑦 −  
𝛾 + 𝜏

𝛿
)
2

− (
𝛾 + 𝜏

2𝛿
)
2

]

− 𝜑 [(𝑧 −  
𝜇 + 𝜏

𝜑
)
2

− (
𝜇 + 𝜏

2𝜑
)
2

] − 𝜎 [(𝑤 −  
𝜀 + 𝜏

𝜎
)
2

− (
𝜀 + 𝜏

2𝜎
)
2

]. 

   It is easy to show that the right hand of the last inequality is less than  

Γ =:
(𝛼 + 𝜏)2

4𝛽
+
(𝛾 + 𝜏)2

4𝛿
+
(𝜇 + 𝜏)2

4𝜑
+
(𝜀 + 𝜏)2

4𝜎
. 

So that  
�̇�(𝑡) + 𝜏𝐹(𝑡) ≤ Γ. 
 By using Grönwall's inequality, we obtain that   

𝐹(𝑡) ≤
Γ

𝜏
+ 𝐹(0)𝑒−𝜏𝑡 

Now, when 𝑡 approaches to infinity, it follows that 

𝐹(𝑡) ≤
Γ

𝜏
. 

Thus, the proof is completed. 

 

3. THE EQUILIBRIUM POINTS WITH ITS LOCAL STABILITY: 

     The system (1) contains at most sixteen equilibrium points, some of them exist regardless of 

the parameter's values. While the other need the fulfillment of some necessary and sufficient 

conditions to exist. The existence conditions and the local  stability analyses of them are given 

and  shown in this section. The possible equilibria of the system(1) are:  

1. The equilibrium points 𝑃0(0,0,0,0), 𝑃1 (
𝛼

𝛽
, 0,0,0) ,  𝑃2 (0,

𝛾

𝛿
, 0,0) ,  𝑃3 (0,0,

𝜇

𝜑
, 0) , 

and 𝑃4 (0,0,0,
𝜎

𝜀
)  always exist. 

2. The equilibrium point 𝑃5(�̅�1, �̅�2, 0,0) exists, if  and only if 𝛿𝛼 − 𝑎𝛾 > 0,where 

�̅�1 =
𝛿𝛼 − 𝑎𝛾

𝛿𝛽 + 𝑎𝑓
, �̅�2 =

𝛾𝛽 + 𝛼𝑓

𝛿𝛽 + 𝑎𝑓
.  

3. The equilibrium point 𝑃6(�̃�1, 0, �̃�2, 0)exists if and only if 𝛼𝜑 − 𝑏𝜇 > 0, where 

�̅�1 =
𝛼𝜑 − 𝑏𝜇

𝛽𝜑 + 𝑏𝑚
, �̅�2 =

𝛽𝜇 +𝑚𝛼

𝛽𝜑 + 𝑏𝑚
.  
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4. The equilibrium point 𝑃7(�̆�1, 0,0, �̆�2) exists if and only if 𝛼𝜀 − 𝑐𝜎 > 0, where  

�̆�1 =
𝛼𝜀−𝑐𝜎

𝛽𝜀+𝑐𝑞
, �̆�2 =

𝛽𝜎+𝑞𝛼

𝛽𝜀+𝑐𝑞
.    

5. The equilibrium point 𝑃8(0, �̌�1, �̌�2, 0), exists if and only if  𝛾𝜑 − 𝑑𝜇 > 0,where 

�̌�1 =
𝛾𝜑 − 𝑑𝜇

𝛿𝜑 + 𝑑ℎ
, �̌�2 =

𝛿𝜇 + 𝑑𝛾

𝛿𝜑 + 𝑑ℎ
.  

6. The equilibrium point 𝑃9(0, 𝑎⏞1 , 0, 𝑎⏞2),  exist if  and only if 𝛾𝜀 − 𝑒𝜎 > 0,  where  

𝑎⏞1 =
𝛾𝜀 − 𝑒𝜎

𝛿𝜀 + 𝑒𝑞
, 𝑎⏞2 =

𝛿𝜎 + 𝑞𝛾

𝛿𝜀 + 𝑒𝑞
. 

7. The equilibrium point 𝑃10(0,0, �̂�1, �̂�2), exist if  𝜇𝜀 − 𝑔𝜎 > 0, where 

�̂�1 =
𝜇𝜀 − 𝑔𝜎

𝜑𝜀 + 𝑔𝑟
, �̂�2 =

𝜑𝜎 + 𝑟𝜇

𝜑𝜀 + 𝑔𝑟
.  

8. The equilibrium point 𝑃11(𝑏1̅, �̅�2, �̅�3, 0) , where 

�̅�1 =
|�̅�1|

|�̅�|
, �̅�2 =

|�̅�2|

|�̅�|
, �̅�3 =

|�̅�3|

|�̅�|
, |�̅�| = |

𝛽 𝑎 𝑏

−𝑓 𝛿 𝑑
−𝑚 −ℎ 𝜑

| |�̅�1| = |
𝛼 𝑎 𝑏
𝛾 𝛿 𝑑
𝜇 −ℎ 𝜑

| , 

|�̅�2| = |
𝛽 𝛼 𝑏

−𝑓 𝛾 𝑑
−𝑞 𝜇 𝜑

| , |�̅�3| = |

𝛽 𝑎 𝛼

−𝑓 𝛿 𝛾
−𝑚 −ℎ 𝜇

|, 

exists, if  and only if   |�̅�||�̅�𝑖| > 0, 𝑖 = 1,2,3.         
9. The equilibrium point 𝑃12(�̃�1, �̃�2, 0, �̃�3) , where 

�̃�1 =
|�̃�1|

|�̃�|
, �̃�2 =

|�̃�2|

|�̃�|
, �̃�3 =

|�̃�3|

|�̃�|
, |�̃�| = |

𝛽 𝑎 𝑐
−𝑓 𝛿 𝑒
−𝑞 −𝑝 𝜀

|, 

|�̃�1| = |

𝛼 𝑎 𝑐
𝛾 𝛿 𝑒
𝜎 −𝑝 𝜀

| , |�̃�2| = |
𝛽 𝛼 𝑐
−𝑓 𝛾 𝑒
−𝑞 𝜎 𝜀

| , |�̃�3| = |
𝛽 𝑎 𝛼
−𝑓 𝛿 𝛾
−𝑞 −𝑝 𝜎

|, 

exists, if  and only if  |�̃�||�̃�𝑖| > 0, 𝑖 = 1,2,3.     

10. The equilibrium point 𝑃13(�̌�1, 0, �̌�2, �̌�3), where 

�̌�1 =
|�̌�1|

|�̌�|
, �̌�2 =

|�̌�2|

|�̌�|
, �̌�3 =

|�̌�3|

|�̌�|
, |�̌�| = |

 𝛽   𝑏  𝑐
−𝑚 𝜑 𝑔
−𝑞 −𝑟 𝜀

| 

|�̌�1| = |
𝛼 𝑏 𝑐
𝜇 𝜑 𝑔

𝜎 −𝑟 𝜀
| , |�̌�2| = |

 𝛽   𝛼   𝑐
−𝑚 𝜇 𝑔
−𝑞 𝜎 𝜀

| , |�̌�3| = |
𝛽 𝑏 𝛼
−𝑚 𝜑 𝜇
−𝑞 −𝑟 𝜎

|, 

exists, if  and only if   |�̌�||�̌�𝑖| > 0, 𝑖 = 1,2,3.    

11. The equilibrium point 𝑃14(0, �̂�1, �̂�2, �̂�3), where 

�̂�1 =
|�̂�1|

|�̂�|
, �̂�2 =

|�̂�2|

|�̂�|
, �̂�3 =

|�̂�3|

|�̂�|
, |�̂�| = |

𝛿 𝑑 𝑒
−ℎ 𝜑 𝑔
−𝑝 −𝑟 𝜀

| 

|�̂�1| = |
𝛾 𝑑 𝑒
𝜇 𝜑 𝑔

𝜎 −𝑟 𝜀
| , |�̂�2| = |

𝛿 𝛾 𝑒

−ℎ 𝜇 𝑔
−𝑝 𝜎 𝜀

| , |�̂�3| = |
𝛿 𝑑 𝛾

−ℎ 𝜑 𝜇
−𝑝 −𝑟 𝜎

| 

exists, if  and only if  |�̂�||�̂�𝑖| > 0, 𝑖 = 1,2,3. 

12. The equilibrium point (The coexistence point)  𝑃15(𝑐1, 𝑐2, 𝑐3, 𝑐4), where 

𝑐1 =
|𝐶1|

|𝐶|
, 𝑐2 =

|𝐶2|

|𝐶|
, 𝑐3 =

|𝐶3|

|𝐶|
, 𝑐4 =

|𝐶4|

|𝐶|
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𝐶 = [

𝛽 𝑎
−𝑓 𝛿

𝑏 𝑐
𝑑 𝑒

−𝑚 ℎ
−𝑞 −𝑝

𝜑 𝑔
−𝑟 𝜀

] , 𝐶1 = [

𝛼 𝑎
𝛾 𝛿

𝑏 𝑐
𝑑 𝑒

𝜇 ℎ
𝜎 −𝑝

𝜑 𝑔
−𝑟 𝜀

] , 𝐶2 = [

𝛽 𝛼
−𝑓 𝛾

𝑏 𝑐
𝑑 𝑒

−𝑚 𝜇
−𝑞 𝜎

𝜑 𝑔
−𝑟 𝜀

] 

𝐶3 = [

𝛽 𝑎
−𝑓 𝛿

𝛼 𝑐
𝛾 𝑒

−𝑚 ℎ
−𝑞 −𝑝

𝜇 𝑔
𝜎 𝜀

] , 𝐶4 = [

𝛽 𝑎
−𝑓 𝛿

𝑏 𝛼
𝑑 𝛾

−𝑚 ℎ
−𝑞 −𝑝

𝜑 𝜇
−𝑟 𝜎

] 

exist if  and only if  |𝐶||𝐶𝑖| > 0, 𝑖 = 1,2,3,4.   
Now, we study the local stability of all possible equilibrium points of the system. This will be 

done by evaluating the Jacobian matrix of system (1) at each equilibrium point. Recall that an 

equilibrium point x* of the system (1) is said to be locally asymptotically stable if all 

eigenvalues of the Jacobian matrix evaluated at x* has negative real part. If one or more has a 

positive real part, then x* is an unstable point. The Jacobian matrix of the system(1) at any point 

(𝑥, 𝑦, 𝑧, 𝑤) is  

𝐽(𝑥,𝑦,𝑧,𝑤) = [

𝑗11 𝑗12
𝑗21 𝑗22

𝑗13 𝑗14
𝑗23 𝑗24

𝑗31 𝑗32
𝑗41 𝑗42

𝑗33 𝑗34
𝑗43 𝑗44

], 

 where 

𝑗11 = 𝛼 − 2𝛽𝑥 − 𝑎𝑦 − 𝑏𝑧 − 𝑐𝑤, 𝑗12 = −𝑎𝑥, 𝑗13 = −𝑏𝑥, 𝑗14 = −𝑐𝑥, 
𝑗21 = 𝑓𝑦, 𝑗22 = 𝛾 − 2𝛿𝑦 − 𝑑𝑧 − 𝑒𝑤 + 𝑓𝑥, 𝑗23 = −− 𝑑𝑦, 𝑗24 = −𝑒𝑦, 
𝑗31 = 𝑚𝑧, 𝑗32 = ℎ𝑧, 𝑗33 = 𝜇 − 2𝜑𝑧 − 𝑔𝑤 + ℎ𝑦 +𝑚𝑥, 𝑗34 = −𝑔𝑧, 
𝑗41 = 𝑞𝑤, 𝑗42 = 𝑝𝑤, 𝑗43 = 𝑟𝑤, 𝑗44 = 𝜎 − 2𝜀𝑤 + 𝑟𝑧 + 𝑝𝑦 + 𝑞𝑥. 
 

THEOREM 2: Consider the system (1), then the equilibrium points  
𝟏. 𝑃0, 𝑃1, 𝑃2, 𝑃3, 𝑃5, 𝑃6, 𝑃8and 𝑃11 are unstable equilibrium points.  

2. 𝑃4 is a locally asymptotically stable point if  
𝜎

𝜀
> 𝑚𝑎𝑥 {

𝛼

𝑐
,
𝛾

𝑒
,
𝜇

𝑔
}, 

𝟑. 𝑃7 is a locally asymptotically stable point if  �̆�2 > 𝑚𝑎𝑥 {
𝛾 + 𝑓�̆�1

𝑒
,
𝜇 + 𝑚�̆�1

𝑔
}, 

𝟒. 𝑃9 is a locally asymptotically stable point if  𝑎⏞2 > 𝑚𝑎𝑥 {
𝜇 + ℎ 𝑎⏞1

𝑔
,
𝛼 − 𝑎 𝑎⏞1

𝑐
},   

𝟓. 𝑃10 is a locally asymptotically stable point if  and �̂�2 > 𝑚𝑎𝑥 {
𝛾−𝑑�̂�1

𝑒
,
𝛼−𝑏�̂�1

𝑐
}.   

 

Proof: 

1. It is clear that the eigenvalues of the 𝐽 at  the point 𝑃0(0,0,0,0) are λ1 = α, 𝜆2 = 𝛾, 𝜆3 = 𝜇,
and 𝜆4 = 𝜎. Therefore,  the point 𝑃0(0,0,0,0) is always unstable point . 

The Jacobian matrix  𝐽 at the equilibrium point 𝑃1 (
𝛼

𝛽
, 0,0,0) is given by 

𝐽𝑃1 =

[
 
 
 
 
 
 
 
 −𝛼              

−𝑎𝛼

𝛽
               

−𝑏𝛼

𝛽
                

−𝑐𝛼

𝛽

  0                𝛾 +
𝑓𝛼

𝛽
              0                       0

    0                         0               𝜇 +
𝑚𝛼

𝛽
                0

   0                       0                0                𝜎 +
𝑞𝛼

𝛽 ]
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So that that eigenvalues of 𝐽𝑃1are λ1 = −α, 𝜆2 = 𝛾 +
𝑓𝛼

𝛽
,  𝜆3 = 𝜇 +

𝑚𝛼

𝛽
  and  𝜆4 = 𝜎 +

𝑞𝛼

𝛽
>

0.  Since, some of them are positive, then the point 𝑃1 (
𝛼

𝛽
, 0,0,0) is unstable point. 

The Jacobian matrix  𝐽 of the system (1) at the equilibrium point  𝑃2 (0,
𝛾

𝛿
, 0,0) is 

𝐽 𝑃2 =

[
 
 
 
 
 
 
 𝛼 −

𝑎𝛾

𝛿
            0                   0                             0

  
𝑓𝛾

𝛿
                −  𝛾           −

𝑑𝛾

𝛿
                      −

𝑒𝛾

𝛿

    0                      0                 𝜇 +
ℎ𝛾

𝛿
                  0

   0                         0                      0              𝜎 +
𝑝𝛾

𝛿 ]
 
 
 
 
 
 
 

 

Therefore, the eigenvalues of the 𝐽 𝑃2  are λ1 = −𝛾, 𝜆2 = 𝛼 −
𝑎𝛾

𝛿
, 𝜆3 = 𝜇 +

ℎ𝛾

𝛿
, and 𝜆4 = 𝜎 +

𝑝𝛾

𝛿
. 

Since 𝜆3 and 𝜆4  are always positive values so that the equilibrium point  𝑃2 (0,
𝛾

𝛿
, 0,0) is 

unstable point. 

For the equilibrium point  𝑃3 (0,0,
𝜇

𝜑
, 0), we can see that the Jacobian matrix of the system (1) 

at  𝑃3 (0,0,
𝜇

𝜑
, 0) is 

𝐽 𝑃3 =

[
 
 
 
 
 
 
 
 𝛼 −

𝑏𝜇

𝜌
− 𝜆                 0                     0                  0

  0                 𝛾 −
𝑑𝜇

𝜌
− 𝜆                   0                 0

    
𝑚𝜇

𝜑
                      

ℎ𝜇

𝜑
                − 𝜇 − 𝜆                 0

   0                            0                        0       𝜎 +
𝑟𝜇

𝜑
− 𝜆 

]
 
 
 
 
 
 
 
 

. 

  Therefore, the eigenvalues of𝐽 𝑃3 , are λ1 = 𝛼 −
𝑏𝜇

𝜑
, 𝜆2 = 𝛾 −

𝑑𝜇

𝜑
, 𝜆3 = −𝜇, 𝜆4 = 𝜎 +

𝑟𝜇

𝜑
.  So 

that 𝐽 𝑃3  has one positive eigenvalues, namely 𝜆4 = 𝜎 +
𝑟𝜇

𝜑
. Therefore, the equilibrium point 

 𝑃3 (0,0,
𝜇

𝜑
, 0) is unstable point.                       

For the equilibrium point 𝑃5(�̅�1, �̅�2, 0,0), we can see that the Jacobian matrix of the system (1) 

at  𝑃5(�̅�1, �̅�2, 0,0) is 

𝐽 𝑃5 = [

−𝛽�̅�1           − 𝑎�̅�1                         − 𝑏�̅�1                      − 𝑐�̅�1
  𝑓�̅�2             − 𝛿�̅�2                       − 𝑑�̅�2                         − 𝑒�̅�2
0                        0              𝜇 + 𝑚�̅�1 + ℎ�̅�2                       0

        0                         0                        0                    𝜎 + 𝑞�̅�1 + 𝑝�̅�2

], 

Therefore, the  eigenvalues of the matrix 𝐽 𝑃5are 

{
 
 

 
 
λ1 = 𝜎 + 𝑞�̅�1 + 𝑝�̅�2, 𝜆3 =

−(𝛽�̅�1 + 𝑎�̅�2) − √(𝛽�̅�1 − 𝑎𝑦)2 − 4𝑎𝑓(�̅�1�̅�2)2

2

𝜆2 = 𝜇 +𝑚�̅�1 + ℎ�̅�2, 𝜆4 =
−(𝛽�̅�1 + 𝑎�̅�2) + √(𝛽�̅�1 − 𝑎𝑦)2 − 4𝑎𝑓(�̅�1�̅�2)2

2

    (4) 

It is noticed that the matrix  𝐽 𝑃5 has two positive eigenvalues, namely λ1 = 𝜎 + 𝑞�̅�1 + 𝑝�̅�2 and 

𝜆2 = 𝜇 +𝑚�̅�1 + ℎ�̅�2, so that the equilibrium point  𝑃5(�̅�1, �̅�2, 0,0) is unstable point.                       

The Jacobian  matrix 𝐽 at equilibrium point 𝑃6(�̃�1, 0, �̃�2, 0) is given by 
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𝐽𝑃6 =

[
 
 
 
 
−𝛽�̃�1                        − 𝑎�̃�1                     − 𝑏�̃�1                 − 𝑐�̃�1

0                  𝛾 − 𝑑�̃�2 + 𝑓�̃�1               0                         0

𝑚�̃�2                          ℎ�̃�2                     
 

−𝜑�̃�2                   − 𝑔�̃�2
     0                            0                             0       𝜎 + 𝑟�̃�2 + 𝑞�̃�1 ]

 
 
 
 

 

Therefore, the eigenvalues of the matrix 𝐽𝑃6are 

{
 
 

 
 
λ1 = 𝜎 + 𝑟�̃�2 + 𝑞�̃�1, 𝜆3 =

−(𝛽�̃�1 + 𝜑�̃�2) − √(𝛽�̃�1 − 𝜑�̃�2)2 − 4𝑚𝑏�̃�1�̃�2
2

,

𝜆2 = 𝛾 − 𝑑�̃�2 + 𝑓�̃�1, 𝜆4 =
−(𝛽�̃�1 + 𝜑�̃�2) + √(𝛽�̃�1 − 𝜑�̃�2)2 − 4𝑚𝑏�̃�1�̃�2

2
,

               

It is notice that the matrix  𝐽 𝑃6 has one positive eigenvalue, namely λ1 = 𝜎 + 𝑟�̃�2 + 𝑞�̃�1 , so 

that the equilibrium point 𝑃6(�̃�1, 0, �̃�2, 0) is unstable point.  

The Jacobi's matrix 𝐽 at the equilibrium point 𝑃8(0, �̌�1, �̌�2, 0),is given by 

 

𝐽𝑃8 =

[
 
 
 
 
𝛼 − 𝑎�̌�1 − 𝑏�̌�2                   0                     0                               0         

𝑓�̌�1                     −  𝛿�̌�1             − 𝑑�̌�1                       − 𝑒�̌�1

𝑚�̌�2                          𝑝�̌�2              
 

−𝜑�̌�2                    − g�̌�2
         0                              0                 0                  𝜎 + 𝑟�̌�2 + 𝑝�̌�1 ]

 
 
 
 

.  

   Therefore, the  eigenvalues of 𝐽𝑃8  are 

{
 
 

 
 
λ1 = 𝛼 − 𝑎�̌�1 − 𝑏�̌�2, 𝜆3 =

−(𝛿�̌�1 + 𝜑�̌�2) − √(𝛿�̌�1 − 𝜑�̌�2)2 − 4𝑑𝑝�̌�1�̌�2
2

,

𝜆2 = 𝜎 + 𝑟�̌�2 + 𝑝�̌�1, 𝜆4 =
−(𝛿�̌�1 + 𝜑�̌�2) + √(𝛿�̌�1 − 𝜑�̌�2)2 − 4𝑑𝑝�̌�1�̌�2

2
,

  (10.4) 

 

      Note that 𝜆2 = 𝜎 + 𝑟�̌�2 + 𝑝�̌�1  is positive eigenvalue which means that the equilibrium 

point 𝑃8(0, �̌�1, �̌�2, 0) is unstable. 

The Jacobi's matrix  𝐽 at the point  𝑃11(𝑏1̅, �̅�2, �̅�3, 0) is given by 

 

𝐽𝑃11 =

[
 
 
 
 
−𝛽𝑏1̅        − 𝑎𝑏1̅          − 𝑏𝑏1̅                  − 𝑐𝑏1̅                   

𝑓�̅�2         − 𝛿�̅�2         − 𝑑�̅�2              − 𝑒�̅�2                     

𝑚�̅�3             ℎ�̅�3        
 

−𝜑�̅�3              − 𝑔�̅�3                      

 0                 0                  0      𝜎 + 𝑟�̅�3 + 𝑝�̅�2 + 𝑞𝑏1̅ ]
 
 
 
 

 , 

Therefore, the characteristic equation of 𝐽𝑃11  is 

  ( λ1 − 𝜎 − 𝑟�̅�3 − 𝑝�̅�2 − 𝑞�̅�1)(λ
3 − trΗ̅λ2 + ∑ |H̅𝑖𝑖|

3
𝑖=1 λ − |Η̅|) = 0, 

where 

Η̅ = [

−𝛽𝑏1̅          −  𝑎𝑏1̅        −  𝑏𝑏1̅
𝑓�̅�2         −  𝛿�̅�2       −   𝑑�̅�2

𝑚�̅�3            ℎ�̅�3          −  
 

𝜑�̅�3

] 

H̅𝑖𝑖, 𝑖 = 1,2,3  are the diagonal minors of the matrix Η̅ . It is easy to see, that one of its 

eigenvalues, namely  λ1 = 𝜎 + 𝑟�̅�3 + 𝑝�̅�2 + 𝑞�̅�1  is positive. Thus, the equilibrium point 

𝑃11(𝑏1̅, �̅�2, �̅�3, 0) is unstable. 

2. The Jacobian matrix of system (1) at  𝑃4 (0,0,0,
𝜎

𝜀
) is 
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𝐽𝑃4 =

[
 
 
 
 
 
 
 𝛼 −

𝑐𝜎

𝜀
                 0                   0                    0

  0                 𝛾 −
𝑒𝜎

𝜀
                    0                   0

    0                           0                 𝜇 −
𝑔𝜎

𝜀
           0

   
𝑞𝜎

𝜀
                            

𝑝𝜎

𝜀
                    

𝑟𝜎

𝜀
          −  𝜎]

 
 
 
 
 
 
 

. 

     The eigenvalues of 𝐽𝑃4  are  λ1 = 𝛼 −
𝑐𝜎

𝜀
, 𝜆2 = 𝛾 −

𝑒𝜎

𝜀
, 𝜆3 = 𝜇 −

𝑔𝜎

𝜀
, 𝜆4 = −𝜎.  So that the 

equilibrium point  𝑃4 (0,0,0,
𝜎

𝜀
) is locally asymptotically stable if and only if  

𝜎

𝜀
> 𝑚𝑎𝑥 {

𝛼

𝑐
,
𝛾

𝑒
,
𝜇

𝑔
}. 

𝟑. The Jacobian matrix of system (1) at the equilibrium point 𝑃7(�̆�1, 0,0, �̆�2)  is given by  

𝐽𝑃7 =

[
 
 
 
 
−𝛽�̆�1               − 𝑎�̆�1                  − 𝑏�̆�1                 − 𝑐�̆�1
0            𝛾 + 𝑓�̆�1 − 𝑒�̆�2              0                          0

0                    0                    
 

𝜇 + 𝑚�̆�1 − 𝑔�̆�2         0

𝑞�̆�2                 𝑝�̆�2                          𝑟�̆�2                − 𝜀�̆�2 ]
 
 
 
 

,  

Therefore, the eigenvalues of 𝐽𝑃7 are  

{
 
 

 
 
λ1 = 𝛾 + 𝑓�̆�1 − 𝑒�̆�2, 𝜆3 =

−(𝛽�̆�1 + 𝜀�̆�2) − √(𝛽�̆�1 − 𝜀�̆�2)2 − 4𝑐𝑞�̆�1�̆�2
2

,

𝜆2 = 𝜇 +𝑚�̆�1 − 𝑔�̆�2, 𝜆4 =
−(𝛽�̆�1 + 𝜀�̆�2) + √(𝛽�̆�1 − 𝜀�̆�2)2 − 4𝑐𝑞�̆�1�̆�2

2
.

      

the point is locally asymptotically stable if and only if  

   𝛾 + 𝑓�̆�1 < 𝑒�̆�2 and 𝜇 + 𝑚�̆�1 < 𝑔�̆�2     or 

�̆�2 > 𝑚𝑎𝑥 {
𝛾 + 𝑓�̆�1

𝑒
,
𝜇 + 𝑚�̆�1

𝑔
}                                            , 

𝟒. The Jacobi's matrix of the system (1) at the equilibrium  point 𝑃9(0, 𝑎⏞1 , 0, 𝑎⏞2) 

is  as follows: 

 

𝐽𝑃9 =

[
 
 
 
 
𝛼 − 𝑎 𝑎⏞1 − 𝑐 𝑎⏞2              0                                   0                                 0  

𝑓 𝑎⏞1                               −  𝛿 𝑎⏞1                   − 𝑑 𝑎⏞1                       − 𝑒 𝑎⏞1

0                                    0                
 

𝜇 + ℎ 𝑎⏞1 − 𝑔 𝑎⏞2                   0

𝑞 𝑎⏞2                                 𝑝 𝑎⏞2                           𝑟 𝑎⏞2                     − 𝜀 𝑎⏞2 ]
 
 
 
 

 , 

Therefore, the eigenvalues of 𝐽𝑃7 are 

{
 
 

 
 

λ1 = 𝛼 − 𝑎 𝑎⏞1 − 𝑐 𝑎⏞2 , 𝜆3 =
−(𝛿 𝑎⏞1 + 𝜀 𝑎⏞2) − √(𝛿 𝑎⏞1 − 𝜀 𝑎⏞2)

2
− 4𝑑𝑝 𝑎⏞1 𝑎⏞2

2
,

𝜆2 = 𝜇 + ℎ 𝑎⏞1 − 𝑔 𝑎⏞2 , 𝜆4 =
−(𝛿 𝑎⏞1 + 𝜀 𝑎⏞2) + √(𝛿 𝑎⏞1 − 𝜀 𝑎⏞2)

2
− 4𝑑𝑝 𝑎⏞1 𝑎⏞2

2
.

 

   so that for the point 𝑃9(0, 𝑎⏞1 , 0, 𝑎⏞2)is to be locally asymptotically stable, the following must 

be achieved 

𝛼 < 𝑎 𝑎⏞1 + 𝑐 𝑎⏞2  and  𝜇 + ℎ 𝑎⏞1 < 𝑔 𝑎⏞2, or   𝑎⏞2 > 𝑚𝑎𝑥 {
𝜇+ℎ𝑎⏞1

𝑔
,
𝛼−𝑎𝑎⏞1

𝑐
}.   
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𝟓. The Jacobian matrix of the system (1) at the equilibrium point 𝑃10(0,0, �̂�1, �̂�2) is given 

𝐽𝑃10 =

[
 
 
 
 
𝛼 − 𝑏�̂�1 − 𝑐�̂�2               0                          0                     0 
 0                          𝛾 − 𝑑�̂�1 − 𝑒�̂�2         0                      0

𝑚�̂�1                          ℎ�̂�1                     
 

−𝜑�̂�1          − 𝑔�̂�1
𝑞�̂�2                            𝑝�̂�2                       𝑟�̂�2           − 𝜀�̂�2 ]

 
 
 
 

  

Therefore, the eigenvalues of 𝐽𝑃10  

are {
λ1 = 𝛼 − 𝑏�̂�1 − 𝑐�̂�2, 𝜆3 =

−(𝜑�̂�1+𝜀�̂�2)−√(𝜑�̂�1−𝜀�̂�2)2−4𝑟𝑔�̂�1�̂�2

2
,

𝜆2 = 𝛾 − 𝑑�̂�1 − 𝑒�̂�2, 𝜆4 =
−(𝜑�̂�1+𝜀�̂�2)+√(𝜑�̂�1−𝜀�̂�2)2−4𝑟𝑔�̂�1�̂�2

2
.
 

so that the point 𝑃10(0,0, �̂�1, �̂�2) is to be locally asymptotically stable if  

𝛼 < 𝑏�̂�1 + 𝑐�̂�2  and, 𝛾 < 𝑑�̂�1 + 𝑒�̂�2, or �̂�2 > 𝑚𝑎𝑥 {
𝛾−𝑑�̂�1

𝑒
,
𝛼−𝑏�̂�1

𝑐
}. 

Thus, the proof is completed. 

 

THEOREM 3: Consider the system (1), then we have the following: 

𝟏. the equilibrium point 𝑃12 is locally asymptotically stable point if the following conditions 

hold  

{
 
 

 
 𝜇 + ℎ�̃�2 +𝑚�̃�1 < 𝑔�̃�3
𝑑𝑒𝑡Η̃ < 0,                        

∑ |H̃𝑖𝑖|
3

𝑖=1
trΗ̃ < 𝑑𝑒𝑡Η̃,   

   where,   Η̃ = [

−𝛽�̃�1    −𝑎�̃�1     −𝑐�̃�1
𝑓�̃�2  −𝛿�̃�2     − 𝑒�̃�2
𝑞�̃�3       𝑝�̃�3     − 𝜀�̃�3

].      

𝟐. the equilibrium point 𝑃13 is locally asymptotically stable point provided the conditions 

{
 
 

 
 𝛾 + 𝑓�̌�1 < 𝛿�̌�2 + 𝑒�̌�3,      

𝑑𝑒𝑡Η̌ < 0,                           

∑ |Ȟ𝑖𝑖|
3

𝑖=1
trΗ̌ < 𝑑𝑒𝑡Η,̌     

     where,  Η̌ = [

−𝛽�̌�1    −𝑏�̌�1    − 𝑐�̌�1
𝑚�̌�2 −𝜑�̌�2    − 𝑔�̌�2
𝑞�̌�3     𝑟�̌�3        −𝜀�̌�3

] 

𝟑. the equilibrium point 𝑃14 is locally asymptotically stable point provided the conditions  

{
 
 

 
 𝛼 < 𝑎�̂�1 + 𝑏�̂�2 + 𝑐�̂�3,              

detΗ̂  < 0,                                  

∑ |Ĥ𝑖𝑖|
3

𝑖=1
trΗ̂ < 𝑑𝑒𝑡Η̂,           

where,   Η̂ = [

−𝛿�̂�1   − 𝑑�̂�1    − 𝑒�̂�1
ℎ�̂�2    −𝜑�̂�2    − 𝑔�̂�2
𝑝�̂�3      𝑟�̂�3       −𝜀�̂�3

]. 

𝟒. the equilibrium point 𝑃15 is locally asymptotically stable point provided the conditions  

{

∆𝑖> 0, 𝑖 = 1,2,3,4,              
∆1∆2 − ∆3> 0                       

∆3(∆1∆2 − ∆3) − ∆4∆1
2> 0.

       where, 

∆1= −𝑡𝑟𝐽15 

∆2= (𝛽𝛿 + 𝑎𝑓)𝑝1𝑝2 + (𝛽𝜑 +𝑚𝑏)𝑝1𝑝3 + (𝛽𝜀 + 𝑐𝑞)𝑝1𝑝4 

    +(𝛿𝜑 + ℎ𝑑)𝑝2𝑝3 + (𝛿𝜀 + 𝑝𝑒)𝑝2𝑝4 + (𝜑𝜀 + 𝑔𝑟)𝑝3𝑝4, 
∆3= −∑ 𝐽𝑃15 𝑖𝑖

4
𝑖=1 , ∆4= 𝑑𝑒𝑡𝐽15,  and  

𝐽𝑃15 = [

−𝛽𝑝1 −𝑎𝑝1
 𝑓𝑝2 −𝛿𝑝2

−𝑏𝑝1 −𝑐𝑝1
−𝑑𝑝2 −𝑒𝑝2

 𝑚𝑝3      ℎ𝑝3
 𝑞𝑝4     𝑝𝑝4

−𝜑𝑝3 −𝑔𝑝3
  𝑟𝑝4 −𝜀𝑝4

] . 
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Proof:  

1. The Jacobian matrix of the system (1) at the equilibrium point 𝑃12(�̃�1, �̃�2, 0, �̃�3) 
Is given as follows  

𝐽𝑃12 =

[
 
 
 
 
−𝛽�̃�1              − 𝑎�̃�1                   − 𝑏�̃�1                         − 𝑐�̃�1
   𝑓�̃�2             − 𝛿�̃�2                 − 𝑑�̃�2                        − 𝑒�̃�2

      0                        0            
 

𝜇 − 𝑔�̃�3 + ℎ�̃�2 +𝑚�̃�1       0  

   𝑞�̃�3                     𝑝�̃�3                        𝑟�̃�3                  − 𝜀�̃�3 ]
 
 
 
 

, 

Therefore, the characteristic equation of the 𝐽𝑃12  is 

[λ − 𝜇 − ℎ�̃�2 −𝑚�̃�1 + 𝑔�̃�3][λ
3 − trΗ̃λ2 + ∑ |H̃𝑖𝑖|

3
𝑖=1 λ − 𝑑𝑒𝑡Η̃] = 0,   

Where, H̃ 𝑖𝑖, 𝑖 = 1,2,3 are the diagonal minors of the following matrix 

Η̃ = [

−𝛽�̃�1    −𝑎�̃�1     −𝑐�̃�1
𝑓�̃�2  −𝛿�̃�2     − 𝑒�̃�2
𝑞�̃�3       𝑝�̃�3     − 𝜀�̃�3

], 

   According to the Routh-Hurwitz  principle, the equilibrium  point 𝑃12(�̃�1, �̃�2, 0, �̃�3) is to be 

locally asymptotically stable if:  

{
 
 

 
 

𝜇 + ℎ�̃�2 +𝑚�̃�1 < 𝑔�̃�3,      

trΗ̃ < 0,                                 

𝑑𝑒𝑡Η̃ < 0,                                 

∑ |H̃𝑖𝑖|
3

𝑖=1
trΗ̅ < 𝑑𝑒𝑡Η̃.           

                         

Note that, the trace of the matrix 𝐽𝑃12 is (−𝛽�̃�1 − 𝛿�̃�2 −  𝜀�̃�3), which is always negative. So 

that the previous conditions can be written as follows: 

{
 
 

 
 𝜇 + ℎ�̃�2 +𝑚�̃�1 < 𝑔�̃�3
𝑑𝑒𝑡Η̃ < 0,                        

∑ |H̃𝑖𝑖|
3

𝑖=1
trΗ̃ < 𝑑𝑒𝑡Η̃.   

                   

2. The Jacobian matrix of the system (1) at the equilibrium point 𝑃13(�̌�1, 0, �̌�2, �̌�3)is given by 

𝐽𝑃13 =

[
 
 
 
 
−𝛽�̌�1                         − 𝑎�̌�1                                − 𝑏�̌�1             − 𝑐�̌�1
    0              𝛾 − 𝛿�̌�2 − 𝑒�̌�3 + 𝑓�̌�1               0                         0

   𝑚�̌�2                             ℎ�̌�2                                 − 𝜑�̌�2            − 𝑔�̌�2
    𝑞�̌�3                             𝑝�̌�3                                  𝑟�̌�3              − 𝜀�̌�3 ]

 
 
 
 

 

Therefore, the characteristic equation of the 𝐽𝑃13  𝑖𝑠  

[𝜆1 − 𝛾 − 𝑓�̌�1 + 𝛿�̌�2 + 𝑒�̌�3][λ
3 − trΗ̌λ2 + ∑ |Ȟ𝑖𝑖|

3
𝑖=1 λ − detΗ̌] = 0, 

where,Ȟ 𝑖𝑖, 𝑖 = 1,2,3 are the diagonal minors of the following matrix: 

Η̌ = [

−𝛽�̌�1    −𝑏�̌�1    − 𝑐�̌�1
𝑚�̌�2 −𝜑�̌�2    − 𝑔�̌�2
𝑞�̌�3     𝑟�̌�3        −𝜀�̌�3

]. 

According to the Routh-Hurwitz  principle, the equilibrium  point 𝑃13(�̌�1, 0, �̌�2, �̌�3)is  to be 

locally asymptotically stable if:  
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{
 
 

 
 

𝛾 + 𝑓�̌�1 < 𝛿�̌�2 + 𝑒�̌�3,      

trΗ̌ < 0,                                 

𝑑𝑒𝑡Η̌ < 0,                                 

∑ |Ȟ𝑖𝑖|
3

𝑖=1
trΗ̌ < 𝑑𝑒𝑡Η̌.           

 

Note that, the trace of the matrix 𝐽𝑃13 is (−𝛽�̃�1 − 𝜑�̌�2 −  𝜀�̃�3), which is always negative. So 

that the previous conditions can be written as 

{
 
 

 
 𝛾 + 𝑓�̌�1 < 𝛿�̌�2 + 𝑒�̌�3,      

𝑑𝑒𝑡Η̌ < 0,                           

∑ |Ȟ𝑖𝑖|
3

𝑖=1
trΗ̌ < 𝑑𝑒𝑡Η̌.     

                                       

𝟑. The Jacobian matrix of the system (1) at the equilibrium point 𝑃14(0, �̂�1, �̂�2, �̂�3)is given by 

𝐽𝑃14 =

[
 
 
 
 
𝛼 − 𝑎�̂�1 − 𝑏�̂�2 − 𝑐�̂�3        0                      0                   0  

𝑓�̂�1                                     − 𝛿�̂�1           − 𝑑�̂�1         − 𝑒�̂�1
𝑚�̂�2                                     ℎ�̂�2              − 𝜑�̂�2         − 𝑔�̂�2
 𝑞�̂�3                                          𝑝�̂�3            𝑟�̂�3       − 𝜀�̂�3 ]

 
 
 
 

 

Therefore, the characteristic equation of the 𝐽𝑃14  𝑖𝑠  

(𝜆1 − 𝛼 + 𝑎�̂�1 + 𝑏�̂�2 + 𝑐�̂�3)(λ
3 − λ2trΗ̂ + ∑ |Ĥ𝑖𝑖|

3
𝑖=1 λ − |Η̂|) = 0, 

where,Ĥ 𝑖𝑖, 𝑖 = 1,2,3 are the diagonal minors of the following matrix 

Η̂ = [

−𝛿�̂�1   − 𝑑�̂�1    − 𝑒�̂�1
ℎ�̂�2    −𝜑�̂�2    − 𝑔�̂�2
𝑝�̂�3      𝑟�̂�3       −𝜀�̂�3

] 

   According to the Routh-Hurwitz  principle,  the equilibrium  point 𝑃14(0, �̂�1, �̂�2, �̂�3) is  to be 

locally asymptotically stable if the following the conditions hold : 

{
 
 

 
 
𝛼 < 𝑎�̂�1 + 𝑏�̂�2 + 𝑐�̂�3,

trΗ̂ < 0,                        

detΗ̂ < 0,                     

∑ |Ĥ𝑖𝑖|
3

𝑖=1
trΗ̂ < 𝑑𝑒𝑡Η̂.

                            

Note that, the trace of the matrix 𝐽𝑃14  is (−𝛿�̃�1 − 𝜑�̌�2 −  𝜀�̃�3), which is always negative, it 

follows that the previous conditions can be written as 

{
 
 

 
 𝛼 < 𝑎�̂�1 + 𝑏�̂�2 + 𝑐�̂�3,,               

detΗ̂  < 0,                                   

∑ |Ĥ𝑖𝑖|
3

𝑖=1
trΗ̂ < 𝑑𝑒𝑡Η̂.               

                  

𝟒. The Jacobian matrix of the system (1) at the point 𝑃15(𝑐1, 𝑐2, 𝑐3, 𝑐4) 

is given by  𝐽𝑃15 = [

−𝛽𝑝1 −𝑎𝑝1
 𝑓𝑝2 −𝛿𝑝2

−𝑏𝑝1 −𝑐𝑝1
−𝑑𝑝2 −𝑒𝑝2

 𝑚𝑝3      ℎ𝑝3
 𝑞𝑝4     𝑝𝑝4

−𝜑𝑝3 −𝑔𝑝3
  𝑟𝑝4 −𝜀𝑝4

]. 

Therefore, the characteristic equation of the 𝐽𝑃15  𝑖𝑠 

𝜆4 + ∆1𝜆
3 + ∆2𝜆

2 + ∆3𝜆 + ∆4= 0, 
where, 
∆1= −𝑡𝑟𝐽𝑃15 

∆2= (𝛽𝛿 + 𝑎𝑓)𝑝1𝑝2 + (𝛽𝜑 +𝑚𝑏)𝑝1𝑝3 + (𝛽𝜀 + 𝑐𝑞)𝑝1𝑝4 
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    +(𝛿𝜑 + ℎ𝑑)𝑝2𝑝3 + (𝛿𝜀 + 𝑝𝑒)𝑝2𝑝4 + (𝜑𝜀 + 𝑔𝑟)𝑝3𝑝4, 

∆3= −∑ |𝐽𝑃15𝑖𝑖|
4
𝑖=1 , and 

∆4= 𝑑𝑒𝑡𝐽𝑃15 . 

𝐽𝑃15𝑖𝑖, 𝑖 = 1,2,3,4 are the diagonal minors of 𝐽𝑃15 . 

    According to the Routh-Hurwitz principle, the equilibrium point 𝑃15(𝑐1, 𝑐2, 𝑐3, 𝑐4)  𝑖𝑠 𝑡𝑜 be 

locally asymptotically stable if: 

{

∆𝑖> 0, 𝑖 = 1,2,3,4,              
∆1∆2 − ∆3> 0                       

∆3(∆1∆2 − ∆3) − ∆4∆1
2> 0.

                                               

Thus, the proof is completed. 

THEOREM 4: 

1. If  𝑃4 is locally asymptotically stable, then the equilibrium points  𝑃7, 𝑃9 and   𝑃10       can not 

be existed. 

2. If one of the equilibrium points  𝑃7, 𝑃9 and  𝑃10 does not exist, then the 𝑃4 is not stable.    

Proof: 

1. Let  𝑃4  be a locally asymptotically stable, then according to Theorem 2, the following 

condition must be satisfied:  
𝜎

𝜀
> 𝑚𝑎𝑥 {

𝛼

𝑐
,
𝛾

𝑒
,
𝜇

𝑔
}. Therefore, we have  𝛼𝜀 − 𝑐𝜎 < 0,  𝛾𝜀 − 𝑒𝜎 < 0 and 𝜇𝜀 − 𝑔𝜎 < 0. Hence, 

the conditions of the existence of the equilibrium points  𝑃7, 𝑃9 and   𝑃10 can not be satisfied so 

that these points are not existed. 

2. Now, if one of the equilibrium points  𝑃7, 𝑃9, or  𝑃10  exists. Therefore,  𝛼𝜀 − 𝑐𝜎 > 0,  𝛾𝜀 −

𝑒𝜎 > 0 or 𝜇𝜀 − 𝑔𝜎 > 0, that is
𝜎

𝜀
<

𝛼

𝑐
,
𝜎

𝜀
<

𝛾

𝑒
 𝑜𝑟 

𝜎

𝜀
<

𝜇

𝑔
. So that  𝑃4 is locally not stable. Thus, 

the proof is completed. 

 

 4.  BASIN OF ATTRACTION 

     In this section, a basin of attraction for all  equilibrium points of the system (1), which are 

locally asymptotically stable, will be discussed by finding a suitable  Lyapunov function for the 

mentioned points. 

 

THEOREM 5: If 𝑃4 (0,0,0,
𝜎

𝜀
)  is locally asymptotically stable and 𝑓 ≤ 𝑎,𝑚 < 𝑏,    ℎ <

𝑑,  then  the following region  

 𝑄4 = {(𝑥, 𝑦, 𝑧, 𝑤): 0 ≤ 𝑥, 0 ≤ 𝑦, 0 ≤ 𝑧,𝑚𝑎𝑥 {
𝛼

𝑐
,
𝛾

𝑒
,
𝜇

𝑔
} ≤ 𝑤 ≤

𝜎

𝜀
}, 

is a basin of attraction for the equilibrium points 𝑃4  
𝜎

𝜀
> 𝑚𝑎𝑥 {

𝛼

𝑐
,
𝛾

𝑒
,
𝜇

𝑔
}. 

Proof: Consider the following real valued function  

𝑉4 = (𝑥 + 𝑦 + 𝑧 +
(𝑤 −

𝜎
𝜀
)
2

2
). 

It is clear that  𝑉4(𝑥, 𝑦, 𝑧, 𝑤) > 0,  for all (𝑥, 𝑦, 𝑧, 𝑤)𝜖ℛ+
4  ⃥{(0,0,0,

𝜎

𝜀
)}, and is zero at (0,0,0,

𝜎

𝜀
). 

The function 𝑉4(𝑥, 𝑦, 𝑧, 𝑤) is differentiable with respect to time t and its derivative is given by 

𝑉4̇ = �̇� + �̇� + �̇� +(𝑤 −
𝜎

𝜀
) �̇�. 

It is easy to notes  that 𝑉4̇ (0,0,0,
𝜎

𝜀
) = 0.  

To prove that 𝑉4̇ is negative in 𝑄4 ⃥{(0,0,0,
𝜎

𝜀
)}, it is sufficient to prove that �̇� + �̇� + �̇� , and 

(𝑤 −
𝜎

𝜀
) �̇� are negative in 𝑄4 ⃥{(0,0,0,

𝜎

𝜀
)}, and this is what we will do as follows 
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�̇� +  �̇� + �̇� = 𝛼𝑥 − 𝛽𝑥2 − 𝑎𝑥𝑦 − 𝑏𝑥𝑧 − 𝑐𝑥𝑤 + 𝛾𝑦 − 𝛿𝑦2 − 𝑑𝑦𝑧 − 𝑒𝑦𝑤 + 𝑓𝑦𝑥 + 𝜇𝑧 − 𝜑𝑧2

− 𝑔𝑧𝑤 + ℎ𝑦𝑧 + 𝑚𝑥𝑧 = 

= (𝛼 − 𝑐𝑤)𝑥 + 𝑦(𝛾 − 𝑒𝑤) + 𝑧(𝜇 − 𝑔𝑤) + (𝑓 − 𝑎)𝑦𝑥 + (𝑚 − 𝑏)𝑥𝑧 + (ℎ − 𝑑)𝑦𝑧 

     −𝛽𝑥2 − 𝛿𝑦2 − 𝜑𝑧2 ≤ −𝛽𝑥2 − 𝛿𝑦2 − 𝜑𝑧2 < 0, ∀ (𝑥, 𝑦, 𝑧, 𝑤)𝜖𝑄4 ⃥{(0,0,0,
𝜎

𝜀
)}, 

 (𝑤 −
𝜎

𝜀
) �̇� = (𝑤 −

𝜎

𝜀
)𝑤(𝜎 − 𝜀𝑤 + 𝑟𝑧 + 𝑝𝑦 + 𝑞𝑥) ≤ 

≤ (𝑤 −
𝜎

𝜀
)𝑤(𝑟𝑧 + 𝑝𝑦 + 𝑞𝑥) < 0, ∀ (𝑥, 𝑦, 𝑧, 𝑤)𝜖𝑄4 ⃥{(0,0,0,

𝜎

𝜀
)}. 

 

      Hence  for all (𝑥, 𝑦, 𝑧, 𝑤)𝜖𝑄4 ⃥{(0,0,0,
𝜎

𝜀
)}, we have that 𝑉4̇ < 0, and 𝑉4̇ (0,0,0,

𝜎

𝜀
) = 0.

̇
 So 

that 𝑉4  is a Lyapunov function . Therefore 𝑄4 is a basin of attraction for the equilibrium 

points 𝑃4. Thus, the proof of Theorem5 has been completed. 

 

THEOREM 6: If 𝑃7(�̆�1, 0,0, �̆�2) is locally asymptotically stable and,   ℎ < 𝑑, 𝜀�̆�2 < 𝜎,    then 

the following region  

 𝑄7 = {(𝑥, 𝑦, 𝑧, 𝑤): �̆�1 ≤ 𝑥 ≤ 𝑚𝑖𝑛 {
𝛼𝑒−𝛾𝑐

𝑓𝑐
,
𝛼𝑔−𝜇𝑐

𝑚𝑐
} , 0 ≤ 𝑦, 0 ≤ 𝑧,

𝛼

𝑐
< 𝑤 ≤ �̆�2}, 

is a basin of attraction for the equilibrium points 𝑃7. 

 

Proof: Consider the following real valued function  

𝑉7 =
(𝑥 − �̆�1)

2

2
+ 𝑦 + 𝑧 +

(𝑤 − �̆�2)
2

2
. 

 

     It is clear that  𝑉7(𝑥, 𝑦, 𝑧, 𝑤) > 0,  for all (𝑥, 𝑦, 𝑧, 𝑤)𝜖ℛ+
4   ⃥ {(�̆�1, 0,0, �̆�2)}, and is zero at 

(�̆�1, 0,0, �̆�2). The function 𝑉7(𝑥, 𝑦, 𝑧, 𝑤) is differentiable with respect to time t and its derivative 

is given by 

𝑉7̇ = (𝑥 − �̆�1)�̇� + �̇� + �̇� +(𝑤 − �̆�2)�̇�.  

It is easy to notes  that 𝑉7̇ = 0, at (𝑥, 𝑦, 𝑧, 𝑤) = (�̆�1, 0,0, �̆�2). 
To prove that 𝑉7̇ is negative in 𝑄7  ⃥{(0, 𝑎⏞1 , 0, 𝑎⏞2)}, it is sufficient to prove that (𝑥 − �̆�1)�̇� , 

(𝑤 − �̆�2) and �̇� + �̇�𝑤̇  are negative in 𝑄7 ⃥{(0, 𝑎⏞1 , 0, 𝑎⏞2)}, and this is what we will do as follows 

(𝑥 − �̆�1)�̇� = (𝑥 − �̆�1)𝑥( 𝛼 − 𝛽𝑥 − 𝑎𝑦 − 𝑏𝑧 − 𝑐𝑤) ≤ (𝑥 − �̆�1)𝑥((𝛼 − 𝑐𝑤) − 𝑎𝑦 − 𝑏𝑧 −

𝑐𝑤) < 0, ∀ (𝑥, 𝑦, 𝑧, 𝑤)𝜖𝑄7 ⃥{(�̆�1, 0,0, �̆�2)}.  

(𝑤 − �̆�2)�̇� = (𝑤 − �̆�2) 𝑤(𝜎 − 𝜀𝑤 + 𝑟𝑧 + 𝑝𝑦 + 𝑞𝑥) < (𝑤 − �̆�2) 𝑤((𝜎 − 𝜀�̆�2) + 𝑟𝑧 + 𝑝𝑦 +

𝑞𝑥)0, ∀ (𝑥, 𝑦, 𝑧, 𝑤)𝜖𝑄7 ⃥{(�̆�1, 0,0, �̆�2)}. 

We will now prove that  �̇� + �̇�  is negative 𝑄7 ⃥{(�̆�1, 0,0, �̆�2)}.  
 �̇� + �̇� = 𝛾𝑦 − 𝛿𝑦2 − 𝑑𝑦𝑧 − 𝑒𝑦𝑤 + 𝑓𝑦𝑥 + 𝜇𝑧 − 𝜑𝑧2 − 𝑔𝑧𝑤 + ℎ𝑦𝑧 + 𝑚𝑥𝑧 = 

= −𝛿𝑦2 − 𝜑𝑧2 + 𝑦𝑧(ℎ − 𝑑) + 𝑦(𝛾 − 𝑒𝑤 + 𝑓𝑥) + 𝑧(𝜇 − 𝑔𝑤 +𝑚𝑥) 

≤= −𝛿𝑦2 − 𝜑𝑧2 + 𝑦 (𝛾 − 𝑒
𝛼

𝑐
+ 𝑓𝑥) + 𝑧(𝜇 − 𝑔

𝛼

𝑐
+ 𝑚𝑥) < 0 

≤= −𝛿𝑦2 − 𝜑𝑧2 + 𝑦 (𝛾 − 𝑒
𝛼

𝑐
+ 𝑓𝑥) + 𝑧(𝜇 − 𝑔

𝛼

𝑐
+𝑚𝑥) < 0,  ∀(𝑥, 𝑦, 𝑧, 𝑤)𝜖𝑄7 

⃥{(�̆�1, 0,0, �̆�2)} . 

     Hence 𝑉7̇ < 0 for all (𝑥, 𝑦, 𝑧, 𝑤) 𝜖 𝑄7 ⃥{(�̆�1, 0,0, �̆�2)}, and 𝑉7̇(�̆�1, 0,0, �̆�2) = 0.
̇  So that 𝑉7 is a 

Lyapunov function. Therefore 𝑄7 is a basin of attraction for the equilibrium points 𝑃7. Thus, 

the proof of Theorem6 is done. 

THEOREM 7: If 𝑃9(0, 𝑎⏞1 , 0, 𝑎⏞2)  is locally asymptotically stable and , 𝑚 ≤ 𝑏, 𝜀 𝑎⏞2 < 𝜎,  
then the following region  

 𝑄9 = {(𝑥, 𝑦, 𝑧, 𝑤): 0 ≤ 𝑥 <
𝛼𝑒−𝛿𝑐

𝑓𝑐
, 0 ≤ 𝑦 <

𝑔𝛼−𝜇𝑐

ℎ𝑐
, 0 ≤ 𝑧,

𝛼

𝑐
< 𝑤 ≤ 𝑎⏞2}, 
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is a basin of attraction for the equilibrium points 𝑃9. 
 

Proof: Consider the following real valued function  

𝑉9 = 𝑥 +
(𝑦 − 𝑎⏞1)

2

2
+ 𝑧 +

(𝑤 − 𝑎⏞2)
2

2
. 

     It is clear that  𝑉9(𝑥, 𝑦, 𝑧, 𝑤) > 0,  for all (𝑥, 𝑦, 𝑧, 𝑤)𝜖ℛ+
4   ⃥{(0, 𝑎⏞1 , 0, 𝑎⏞2)}, and is zero at 

(0, 𝑎⏞1 , 0, 𝑎⏞2) . The function 𝑉9(𝑥, 𝑦, 𝑧, 𝑤)  is differentiable with respect to time t and its 

derivative is given by 

𝑉9̇ = �̇� + (𝑦 − 𝑎⏞1)�̇�
̇ +  �̇�+(𝑤 − 𝑎⏞2)�̇�. 

It is easy to notice that 𝑉7̇ = 0, at (𝑥, 𝑦, 𝑧, 𝑤) = (0, 𝑎⏞1 , 0, 𝑎⏞2). 

To prove that 𝑉9 is negative in 𝑄7 ⃥{(0, 𝑎⏞1 , 0, 𝑎⏞2)}, it is sufficient to prove that �̇� + �̇�,   

(𝑦 − 𝑎⏞1)�̇�, and (𝑤 − 𝑎⏞2)�̇� are negative in 𝑄9 ⃥{(0, 𝑎⏞1 , 0, 𝑎⏞2)}, and this is done as follows  

�̇� + �̇� = 𝑥( 𝛼 − 𝛽𝑥 − 𝑎𝑦 − 𝑏𝑧 − 𝑐𝑤) + 𝑧(𝜇 − 𝜑𝑧 − 𝑔𝑤 + ℎ𝑦 +𝑚𝑥) ≤ 

≤ (𝑚 − 𝑏)𝑥𝑧 − (𝛽𝑥2 + 𝜑𝑧2) + 𝑥 ( 𝛼 − 𝑎𝑦 − 𝑐
𝛼

𝑐
) + 𝑧 (𝜇 − 𝑔

𝛼

𝑐
+ ℎ𝑦) ≤ 

≤ −(𝛽𝑥2 +𝜑𝑧2) < 0,  ∀ (𝑥, 𝑦, 𝑧, 𝑤)𝜖𝑄9 ⃥{(0, 𝑎⏞1 , 0, 𝑎⏞2)}.  

�̇�  = 𝑦(𝛾 − 𝛿𝑦 − 𝑑𝑧 − 𝑒𝑤 + 𝑓𝑥) ≤ −𝛿𝑦2 − 𝑑𝑦𝑧 + 𝑦 (𝛾 − 𝑒
𝛼

𝑐
+ 𝑓𝑥) < −𝛿𝑦2 < 0, 

∀(𝑥, 𝑦, 𝑧, 𝑤)𝜖𝑄9 ⃥{(0, 𝑎⏞1 , 0, 𝑎⏞2)}. 

(𝑤 − 𝑎⏞2)�̇� = (𝑤 − 𝑎⏞2) 𝑤(𝜎 − 𝜀𝑤 + 𝑟𝑧 + 𝑝𝑦 + 𝑞𝑥) < (𝑤 − 𝑎⏞2) 𝑤(𝜎 − 𝜀 𝑎⏞2),< 0 , ∀ 

(𝑥, 𝑦, 𝑧, 𝑤)𝜖𝑄9 ⃥{(0, 𝑎⏞1 , 0, 𝑎⏞2)}.  

Hence 𝑉9̇ < 0 for all (𝑥, 𝑦, 𝑧, 𝑤)𝜖𝑄9 ⃥{(0, 𝑎⏞1 , 0, 𝑎⏞2)}, and �̇�9(0, 𝑎⏞1 , 0, 𝑎⏞2) = 0.̇  So that 𝑉9 is a 

Lyapunov function. Therefore 𝑄9 is a basin of attraction for the equilibrium points   
𝑃9(0, 𝑎⏞1 , 0, 𝑎⏞2). Thus, the proof of Theorem7 is done. 

 

THEOREM 𝟖 : If 𝑃10(0,0, �̂�1, �̂�2)  is locally asymptotically stable and  𝑓 ≤ 𝑎, 𝜀�̂�2 <
𝜎, and  𝜇 > 𝜑�̂�1 + 𝑔�̂�2 , then the following region  

 𝑄10 = {(𝑥, 𝑦, 𝑧, 𝑤): 0 ≤ 𝑥, 0 ≤ 𝑦, 𝑧 ≤ �̂�1, max {
𝛼

𝑐
,
𝛾

𝑒
} ≤ 𝑤 ≤ �̂�2}, 

is a basin of attraction for the equilibrium points 𝑃10. 

 

Proof: Consider the following real valued function  

𝑉10 = 𝑥 + 𝑦 +
(𝑧 − �̂�1)

2

2
+
(𝑤 − �̂�2)

2

2
. 

It is clear that  𝑉10(𝑥, 𝑦, 𝑧, 𝑤) > 0,  for all (𝑥, 𝑦, 𝑧, 𝑤)𝜖ℛ+
4   ⃥ {(0,0, �̂�1, �̂�2)} , and is zero at 

(0,0, �̂�1, �̂�2) . The function 𝑉10(𝑥, 𝑦, 𝑧, 𝑤)  is differentiable with respect to time t and its 

derivative is given by 

�̇�10 = �̇� + �̇� + (𝑧 − �̂�1)�̇�+(𝑤 − �̂�2)�̇�. 

It is easy to notice that �̇�10 = 0, at (𝑥, 𝑦, 𝑧, 𝑤) = (0, 𝑎⏞1 , 0, 𝑎⏞2). To prove that 𝑉10̇  is negative in 

𝑄10 ⃥{(0,0, �̂�1, �̂�2)}, it is sufficient to prove that �̇� + �̇�, (𝑧 − �̂�1)�̇�  and 

 (𝑤 − �̂�2)�̇� are negative in 𝑄10 ⃥{(0,0, �̂�1, �̂�2)}, and this is done as follows 

 �̇� +  �̇� = 𝑥( 𝛼 − 𝛽𝑥 − 𝑎𝑦 − 𝑏𝑧 − 𝑐𝑤) + 𝑦(𝛾 − 𝛿𝑦 − 𝑑𝑧 − 𝑒𝑤 + 𝑓𝑥) = 

= 𝑥( 𝛼 − 𝑐𝑤) + 𝑦(𝛾 − 𝑒𝑤) + (𝑓 − 𝑎)𝑥𝑦 + 𝑥( −𝛽𝑥 − 𝑏𝑧) + 𝑦(−𝛿𝑦 − 𝑑𝑧) < 0 , ∀ 

∀(𝑥, 𝑦, 𝑧, 𝑤)𝜖𝑄10 ⃥{(0,0, �̂�1, �̂�2)}.  
(𝑧 − �̂�1)�̇�  = (𝑧 − �̂�1)𝑧(𝜇 − 𝜑𝑧 − 𝑔𝑤 + ℎ𝑦 +𝑚𝑥) < (𝑧 − �̂�1)𝑧(𝜇 − 𝜑�̂�1 − 𝑔�̂�2)(𝑧 −
�̂�1)𝑧(ℎ𝑦 + 𝑚𝑥) < 0, ∀ (𝑥, 𝑦, 𝑧, 𝑤)𝜖𝑄10 ⃥{(0,0, �̂�1, �̂�2)} . 
(𝑤 − �̂�2)�̇� = (𝑤 − �̂�2) 𝑤(𝜎 − 𝜀𝑤 + 𝑟𝑧 + 𝑝𝑦 + 𝑞𝑥) < 
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< (𝑤 − �̂�2) 𝑤(𝜎 − 𝜀�̂�2) + (𝑤 − �̂�2) 𝑤(𝑟𝑧 + 𝑝𝑦 + 𝑞𝑥),< 0,  ∀(𝑥, 𝑦, 𝑧, 𝑤)𝜖𝑄10 

⃥{(0,0, �̂�1, �̂�2)}.  

Hence �̇�10 < 0, for all (𝑥, 𝑦, 𝑧, 𝑤)𝜖𝑄10 ⃥{(�̆�1, 0,0, �̆�2)}, and �̇�10(0,0, �̂�1, �̂�2) = 0.
̇  So that 𝑉10 is 

a Lyapunov function. Therefore 𝑄10 is a basin of attraction for the equilibrium 

points 𝑃10(0,0, �̂�1, �̂�2).  . Thus, the proof of Theorem 8 is completed. 

 

THEOREM 9: If 𝑃12(�̃�1, �̃�2, 0, �̃�3)  is locally asymptotically stable, 𝛼 < 𝛽�̌�1  𝑒ℎ𝑓 �̃�2 <

 𝛿�̃�2(𝑔 − 𝑚𝑒) + 𝑒(𝑚𝛾 − 𝑓𝜇), 𝑒𝑓�̃�3 > 𝛿�̃�2,   𝜀�̃�3 ≤ 𝜎,   then the following region  

 𝑄12 = {(𝑥, 𝑦, 𝑧, 𝑤): �̃�1 ≤ 𝑥 ≤
𝛿�̃�2−𝛾

𝑓
, �̃�2 ≤ 𝑦 ≤   

𝛿�̃�2(𝑔−𝑚𝑒)+𝑒(𝑚𝛾−𝑓𝜇)

𝑒𝑓ℎ
, 0 ≤ 𝑧,

𝛿�̃�2

𝑒𝑓
≤ 𝑤 ≤ �̃�3}, 

is a basin of attraction for the equilibrium points 𝑃12. 

 

Proof: Consider the following real valued function  

𝑉12 =
(𝑥 − �̃�1)

2

2
+
(𝑦 − �̃�2)

2

2
+ 𝑧 +

(𝑤 − �̃�3)
2

2
. 

It is clear that  𝑉12(𝑥, 𝑦, 𝑧, 𝑤) > 0,  for all (𝑥, 𝑦, 𝑧, 𝑤)𝜖ℛ+
4   ⃥{(�̃�1, �̃�2, 0, �̃�3)}, and it is zero at 

(�̃�1, �̃�2, 0, �̃�3) . The function 𝑉12(𝑥, 𝑦, 𝑧, 𝑤)  is differentiable with respect to time t and its 

derivative is given by 

�̇�12 = (𝑥 − �̃�1)�̇� + (𝑦 − �̃�2)�̇� + �̇� +(𝑤 − �̃�3)�̇� 

It is easy to notice that �̇�12 = 0, at (𝑥, 𝑦, 𝑧, 𝑤) = (�̃�1, �̃�2, 0, �̃�3). To prove that �̇�12 is negative in 

𝑄12 ⃥{(�̃�1, �̃�2, 0, �̃�3)}, it is sufficient to prove that (𝑥 − �̃�1)�̇�, 0, (𝑦 − �̃�2)𝑦.̇  

�̇� , amd (𝑤 − �̃�3)�̇� are negatives in 𝑄12 ⃥{(�̃�1, �̃�2, 0, �̃�3)}, and this is done as follows 

(𝑥 − �̃�1)�̇�  = (𝑥 − �̃�1)𝑥( 𝛼 − 𝛽𝑥 − 𝑎𝑦 − 𝑏𝑧 − 𝑐𝑤)

≤ (𝑥 − �̃�1)𝑥 ((𝛼 − 𝛽�̃�1) − 𝑎𝑦 − 𝑏𝑧 − 𝑐𝑤) ≤ (𝑥 − �̃�1)𝑥(−𝑎𝑦 − 𝑏𝑧 − 𝑐𝑤)

< 0. 

(𝑦 − �̃�2)�̇�  = 𝑦(𝑦 − �̃�2)(𝛾 − 𝛿𝑦 − 𝑑𝑧 − 𝑒𝑤 + 𝑓𝑥) ≤ (𝑦 − �̃�2)𝑦 (𝛾 − 𝛿�̃�2 − 𝑑𝑧 −
𝛿�̃�2

𝑓
+

𝑓
𝛿�̃�2−𝛾

𝑓
) ≤ 𝑦(𝑦 − �̃�2) (−𝑑𝑧 −

𝛿�̃�2

𝑓
) < 0. 

�̇�  = 𝑧(𝜇 − 𝜑𝑧 − 𝑔𝑤 + ℎ𝑦 +𝑚𝑥) ≤ 𝑧 (𝜇 − 𝜑𝑧 − 𝑔
𝛿�̃�2
𝑒𝑓

+ ℎ𝑦 +𝑚
𝛿�̃�2 − 𝛾

𝑓
)

≤ −𝜑𝑧2 + 𝑧(ℎ𝑦 −
𝛿�̃�2(𝑔 − 𝑚𝑒) + 𝑒(𝑚𝛾 − 𝑓𝜇)

𝑒𝑓ℎ
) ≤ −𝜑𝑧2 < 0. 

 (𝑤 − �̃�3)𝑤(𝜎 − 𝜀𝑤 + 𝑟𝑧 + 𝑝𝑦 + 𝑞𝑥) ≤ (𝑤 − �̃�3)𝑤 ((𝜎 − 𝜀�̃�3) + 𝑟𝑧 + 𝑝𝑦 + 𝑞𝑥) ≤

≤ (𝑤 − �̃�3)𝑤(𝑟𝑧 + 𝑝𝑦 + 𝑞𝑥) < 0. 

Hence �̇�12 < 0,  for all (𝑥, 𝑦, 𝑧, 𝑤)𝜖𝑄12 ⃥{(�̃�1, �̃�2, 0, �̃�3)}, and �̇�12(�̃�1, �̃�2, 0, �̃�3) = 0.
̇  So that 𝑉12 

is a Lyapunov function. Therefore 𝑄12 is a basin of attraction for the equilibrium 

points 𝑃12(�̃�1, �̃�2, 0, �̃�3).  Thus, the proof of Theorem 9 is completed. 

 

THEOREM 10: If 𝑃13(�̌�1, 0, �̌�2, �̌�3) is locally asymptotically stable, 𝛽�̌�1 < 𝛼 𝜑�̌�2 + 𝑔�̌�3 ≤

𝜇 +𝑚�̌�1,    and 𝜀�̌�3 ≤ 𝜎 , then the following region  

 𝑄13 = {(𝑥, 𝑦, 𝑧, 𝑤): �̌�1 ≤ 𝑥 ≤
𝛼

𝛽
, 0 ≤ 𝑦, 𝑧 ≤ �̌�2,

𝑓𝛼+𝛾𝛽

𝑒𝛽
≤ 𝑤 ≤ �̌�3} 

is a basin of attraction for the equilibrium points 𝑃13.   
 

Proof: Consider the following real valued function  
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𝑉13 =
(𝑥 − �̌�1)

2

2
+ 𝑦 +

(𝑧 − �̌�2)
2

2
+
(𝑤 − �̌�3)

2

2
. 

It is clear that  𝑉13(𝑥, 𝑦, 𝑧, 𝑤) > 0,  for all (𝑥, 𝑦, 𝑧, 𝑤)𝜖ℛ+
4   ⃥{(�̌�1, 0, �̌�2, �̌�3)} , and is zero at 

(�̌�1, 0, �̌�2, �̌�3) . The function 𝑉13(𝑥, 𝑦, 𝑧, 𝑤)  is differentiable with respect to time t and its 

derivative is given by 

�̇�13 = �̇�(𝑥 − �̌�1) + �̇� + (𝑧 − �̌�2)�̇� +(𝑤 − �̌�3)�̇�. 

It is easy to notice  that �̇�13 = 0, at (𝑥, 𝑦, 𝑧, 𝑤) = (�̌�1, 0, �̌�2, �̌�3).  

To prove that �̇�13 is negative 𝑄13 ⃥{(�̌�1, 0, �̌�2, �̌�3)} 

From the conditions of   𝑄13 , we have  

 (𝑤 − �̌�1) > 0, (𝑧 − �̌�2) < 0 ,  and (𝑤 − �̌�3) < 0. 

So, in order to prove that �̇�13 is negative, it is sufficient to prove that 

�̇� < 0, �̇� < 0, �̇�  > 0 and �̇� > 0, and this is done as follows 

�̇�  = 𝑥( 𝛼 − 𝛽𝑥 − 𝑎𝑦 − 𝑏𝑧 − 𝑐𝑤) ≤ 𝑥 ((𝛼 − 𝛽�̌�1) − 𝑎𝑦 − 𝑏𝑧 − 𝑐𝑤) ≤ 𝑥(−𝑎𝑦 − 𝑏𝑧 − 𝑐𝑤)

< 0. 

�̇�  = 𝑦(𝛾 − 𝛿𝑦 − 𝑑𝑧 − 𝑒𝑤 + 𝑓𝑥) ≤ 𝑦 (𝛾 − 𝑒
𝑓𝛼+𝛾𝛽

𝑒𝛽
+ 𝑓

𝛼

𝛽
) + 𝑦(−𝛿𝑦 − 𝑑𝑧) = 𝑦(−𝛿𝑦 −

𝑑𝑧) < 0. 

�̇�  = 𝑧(𝜇 − 𝜑𝑧 − 𝑔𝑤 + ℎ𝑦 +𝑚𝑥) ≥ 𝑧(𝜇 + 𝑚�̂�1 − 𝜑�̂�2 − 𝑔�̂�3 + ℎ𝑦) ≥ 𝑧(ℎ𝑦) > 0. 

�̇�  = 𝑤(𝜎 − 𝜀𝑤 + 𝑟𝑧 + 𝑝𝑦 + 𝑞𝑥) ≥ 𝑤 ((𝜎 − 𝜀�̂�3) + 𝑟𝑧 + 𝑝𝑦 + 𝑞𝑥) ≥ 𝑤(𝑟𝑧 + 𝑝𝑦 + 𝑞𝑥)

> 0. 

Hence �̇�13 < 0,  for all (𝑥, 𝑦, 𝑧, 𝑤)𝜖𝑄14 ⃥{(0, �̂�1, �̂�2, �̂�3)}, and �̇�13(�̌�1, 0, �̌�2, �̌�3) = 0.
̇  So that 𝑉13 

is a Lyapunov function. Therefore 𝑄13 is a basin of attraction for the equilibrium 

points 𝑃13(�̌�1, 0, �̌�2, �̌�3).  Thus, the proof of Theorem 10 is done. 

 

THEOREM 11: If 𝑃14(0, �̂�1, �̂�2, �̂�3) is locally asymptotically stable, 𝛼 ≤ 𝑎�̂�1, 𝜑�̂�2 + 𝑔�̂�3 ≤

𝜇 + ℎ�̂�1 and  𝜀�̂�3 ≤ 𝜎,  then the following region  

 𝑄14 = {(𝑥, 𝑦, 𝑧, 𝑤): 0 ≤ 𝑥 <
𝛿�̂�1

𝑓
, �̂�1 ≤ 𝑦,

𝛾

𝑑
< 𝑧 ≤ �̂�2, 𝑤 ≤ �̂�3} 

is a basin of attraction for the equilibrium points 𝑃14.   
 

Proof: Consider the following real valued function  

𝑉14 = 𝑥 +
(𝑦 − �̂�1)

2

2
+
(𝑧 − �̂�2)

2

2
+
(𝑤 − �̂�3)

2

2
. 

It is clear that  𝑉(𝑥, 𝑦, 𝑧, 𝑤) > 0,  for all (𝑥, 𝑦, 𝑧, 𝑤)𝜖ℛ+
4   ⃥ {(0, �̂�1, �̂�2, �̂�3)} , and is zero at 

(0, �̂�1, �̂�2, �̂�3) . The function 𝑉(𝑥, 𝑦, 𝑧, 𝑤)  is differentiable with respect to time t and its 

derivative is given by 

�̇�14 = �̇� + (𝑦 − �̂�1)�̇� + (𝑦 − �̂�2)�̇� +(𝑦 − �̂�3)�̇� 

It is easy to notice that �̇�14 = 0, at (𝑥, 𝑦, 𝑧, 𝑤) = (0, �̂�1, �̂�2, �̂�3).  

To prove that �̇�14  is negative 𝑄14  ⃥ {(0, �̂�1, �̂�2, �̂�3)} , it is sufficient to show that �̇�, (𝑦 −

�̂�1)�̇�, (𝑦 − �̂�2)�̇� ,  and (𝑦 − �̂�3)�̇� are negative, and this is done as follows  

�̇�  = 𝑥( 𝛼 − 𝛽𝑥 − 𝑎𝑦 − 𝑏𝑧 − 𝑐𝑤) ≤ 𝑥( (𝛼 − 𝑎�̂�1) − 𝛽𝑥 − 𝑏𝑧 − 𝑐𝑤) ≤ 𝑥( −𝛽𝑥 − 𝑏𝑧 − 𝑐𝑤)

< 0. 
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(𝑦 − �̂�1)�̇�  = (𝑦 − �̂�1)𝑦(𝛾 − 𝛿𝑦 − 𝑑𝑧 − 𝑒𝑤 + 𝑓𝑥)

≤ (𝑦 − �̂�1)𝑦 (𝛾 − 𝛿�̂�1 − 𝑑
𝛾

𝑑
− 𝑒𝑤 + 𝑓𝑥)

≤ (𝑦 − �̂�1)𝑦 (−𝛿�̂�1 − 𝑑
𝛾

𝑑
− 𝑒𝑤 + 𝑓𝑥)

≤ −(𝑦 − �̂�1)𝑒𝑦𝑤 + (𝑦 − �̂�1)𝑦(𝑓𝑥 − 𝛿�̂�1) < −𝑒𝑦𝑤 < 0 

(𝑧 − �̂�2)�̇�  = (𝑧 − �̂�2)𝑧(𝜇 − 𝜑𝑧 − 𝑔𝑤 + ℎ𝑦 +𝑚𝑥)

≤ (𝑧 − �̂�2)𝑧(𝜇 − 𝜑�̂�2 + ℎ�̂�1 − 𝑔�̂�3 +𝑚𝑥) ≤ (𝑧 − �̂�2)𝑚𝑥𝑧 < 0 

(𝑤 − �̂�3)�̇�  = (𝑤 − �̂�3)𝑤(𝜎 − 𝜀𝑤 + 𝑟𝑧 + 𝑝𝑦 + 𝑞𝑥)

≤ (𝑤 − �̂�3)𝑤 ((𝜎 − 𝜀�̂�3) + 𝑟𝑧 + 𝑝𝑦 + 𝑞𝑥) ≤ (𝑤 − �̂�3)𝑤(+𝑟𝑧 + 𝑝𝑦 + 𝑞𝑥)

< 0. 

Hence �̇�14 < 0,  for all (𝑥, 𝑦, 𝑧, 𝑤)𝜖𝑄14 ⃥{(0, �̂�1, �̂�2, �̂�3)}, and �̇�14(0, �̂�1, �̂�2, �̂�3) = 0.
̇  So that 𝑉14 

is a Lyapunov function. Therefore 𝑄14 is a basin of attraction for the equilibrium points   

𝑃14(0, �̂�1, �̂�2, �̂�3). Thus, the proof of Theorem11 is done. 

 

THEOREM 12: If 𝑃15(𝑐1, 𝑐2, 𝑐3, 𝑐4) is locally asymptotically stable,  𝛽𝑐1 ≥ 𝛼,   𝜑𝑐3 + 𝑔𝑐4 ≤
𝜇 + ℎ𝑐2 and  𝜀𝑐4 ≤ 𝜎,  then the following region  

 𝑄15 = {(𝑥, 𝑦, 𝑧, 𝑤): 𝑐1 ≤ 𝑥 ≤
𝛿𝑐2

𝑓
, 𝑐2 ≤ 𝑦,

𝛾

𝑑
≤ 𝑧 ≤ 𝑐3, 𝑤 ≤ 𝑐4} 

is a basin of attraction for the equilibrium points 𝑃15.   
 

Proof: Consider the following real valued function  

𝑉15 =
(𝑥 − 𝑐1)

2

2
+
(𝑦 − 𝑐2)

2

2
+
(𝑧 − 𝑐3)

2

2
+
(𝑤 − 𝑐4)

2

2
. 

It is clear that  𝑉15(𝑥, 𝑦, 𝑧, 𝑤) > 0,  for all (𝑥, 𝑦, 𝑧, 𝑤)𝜖ℛ+
4   ⃥ {(𝑐1, 𝑐2, 𝑐3, 𝑐4)} , and is zero at 

(𝑐1, 𝑐2, 𝑐3, 𝑐4) . The function 𝑉(𝑥, 𝑦, 𝑧, 𝑤)  is differentiable with respect to time t and its 

derivative is given by 

�̇� = (𝑥 − 𝑐1)�̇� + (𝑦 − 𝑐2)�̇� + (𝑧 − 𝑐3)�̇� +(𝑤 − 𝑐4)�̇� 

It is easy to notice  that �̇�15 = 0, at (𝑥, 𝑦, 𝑧, 𝑤) = (𝑐1, 𝑐2, 𝑐3, 𝑐4) 
To prove that �̇�14  is negative 𝑄15  ⃥{(𝑐1, 𝑐2, 𝑐3, 𝑐4)}, , it is sufficient to show that (𝑥 − 𝑐1)�̇�,
(𝑦 − 𝑐2)�̇�, (𝑧 − 𝑐3)�̇� , and  (𝑤 − 𝑐4)�̇�, are negatives in the region 

 𝑄15 ⃥{(𝑐1, 𝑐2, 𝑐3, 𝑐4)}, and this is done as follows 

(𝑥 − 𝑐1)�̇�  = (𝑥 − 𝑐1)𝑥( 𝛼 − 𝛽𝑥 − 𝑎𝑦 − 𝑏𝑧 − 𝑐𝑤) ≤ (𝑥 − 𝑐1)𝑥(−𝑎𝑦 − 𝑏𝑧 − 𝑐𝑤) < 0. 
(𝑦 − 𝑐2)�̇�  = (𝑦 − 𝑐2)𝑦(𝛾 − 𝛿𝑦 − 𝑑𝑧 − 𝑒𝑤 + 𝑓𝑥) ≤ (𝑦 − 𝑐2)𝑦(𝛾 − 𝑑𝑧 + 𝑓𝑥 − 𝛿𝑐2 − 𝑒𝑤)

≤ −𝑒𝑥𝑤(𝑦 − 𝑐2) < 0. 
(𝑧 − 𝑐3)�̇�  = (𝑧 − 𝑐3)𝑧(𝜇 − 𝜑𝑧 − 𝑔𝑤 + ℎ𝑦 +𝑚𝑥)

≤ (𝑧 − 𝑐3)𝑧(𝜇 − 𝜑𝑐3 − 𝑔𝑐4 + ℎ𝑐2 +𝑚𝑥) ≤ 𝑚𝑥𝑧(𝑧 − 𝑐3) < 0 
(𝑤 − 𝑐4)�̇�  = (𝑤 − 𝑐4)𝑤(𝜎 − 𝜀𝑤 + 𝑟𝑧 + 𝑝𝑦 + 𝑞𝑥) ≤ (𝑤 − 𝑐4)𝑤(+𝑟𝑧 + 𝑝𝑦 + 𝑞𝑥) < 0 

Hence �̇�15 < 0,  for all (𝑥, 𝑦, 𝑧, 𝑤)𝜖𝑄 ⃥{(𝑐1, 𝑐2, 𝑐3, 𝑐4)}, and �̇�(𝑐1, 𝑐2, 𝑐3, 𝑐4) = 0.̇  So that 𝑉15 is a 

Lyapunov function. Therefore 𝑄15 is a basin of attraction for the equilibrium 

points 𝑃15(𝑐1, 𝑐2, 𝑐3, 𝑐4)  . Thus, the proof of Theorem12 is done. 

 

5. NUMERICAL SIMULATIONS AND DISCUSSIONS : 

    In this section, a numerical example of the system (1) will be given for the following set of 

parameters. 

𝛼 = 0.34, 𝛽 = 0.2, 𝑎 = 0.4, 𝑏 = 0.3, 𝑐 = 0.1, 𝛾 = 0.18, 𝛿 = 0.4, 𝑑 = 0.3, 𝑒 = 0. 
𝑓 = 0.2, 𝜇 = 0.09, 𝜑 = 0.5, 𝑔 = 0.4, ℎ = 0.3,𝑚 = 0.6, 𝜎 = 0.2, 𝜀 = 0.4, 𝑟 = 0.1, 
𝑝 = 0.2, 𝑞 = 0.1. 
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    The purpose of the presenting this example is to verify and confirm the theoretical results 

that have been obtained in Section 3, it was demonstrated in Theorem 2 that the equilibrium 

points  𝑃0,  𝑃1,  𝑃2,  𝑃3,   𝑃5(0.4,0.65,0,0) ,   𝑃6(0.5107,0,0.729,0),   𝑃8(0,02172,0.3103,0)  and 

 𝑃11(0.4,0.107,0.724,0)    are unstable points. So we will find the rest of the points and 

determine the local stability for each of them.  Easy calculations show that the points 

 𝑃4(0,0,0,0.5),  𝑃7(0.2889,0,0,0.8222),   𝑃9(0,0.359,0,0.5765),  
 𝑃12( 0.4,0.4444,0,0.822)  and, 𝑃13(0.705, 0, 0.404, 0.777)  are not stable because the 

conditions given in 2., 3., 4., of Theorem 2 and the conditions given in 1., 2., 3., of Theorem 3 

are not met, for each equilibrium point respectively, see Figures 1-5. While the two equilibrium 

points  𝑃10(0,0, �̂�1, �̂�2), and 𝑃14(0, �̂�1, �̂�2, �̂�3) do not exist, because the conditions given in 7., 

and 12. of Section 4 are not satisfied, for each point respectively. The last equilibrium point of 

the system (1), is   𝑃15(0.4, 0.3, 0.2, 0.8). This point is locally asymptotically stable due to the 

fulfillment of the conditions 4., of  Theorem 3 that has been mentioned in the Section 4, that 

is: 

  

{

∆1= 0.62,  ∆2= 0.1774, ∆3= 0.026,  ∆14= 1.4274𝑥10
−5    

∆1∆2 − ∆3= 0.0840 > 0,                                                                      

∆3(∆1∆2 − ∆3) − ∆4∆1
2= 0.0022 > 0,                                                

    

see Figures 1-6. 

 

     Now, if α = γ = 0.04, but the rest of the parameters keep their values as given. The 

equilibrium points 𝑃5,  𝑃6, 𝑃7,  𝑃8, 𝑃9,  𝑃10,  𝑃11,  𝑃12,   𝑃13,  𝑃14 and  𝑃15 do not exists because 

the conditions given in 4., 6., 7., 9., 10., 11. and 14. As for equilibrium point  𝑃4, it is locally 

asymptotically stable, see Figure 7.  

The system (1) with the parameters shown in section 6 has 14 equilibrium points, 13 of which  

are unstable and only one point, which is the coexistence point 𝑃15, is locally asymptotically 

stable. The point   𝑃10(0,0, �̂�1, �̂�2), and 𝑃14(0, �̂�1, �̂�2, �̂�3) do not exist. According to Theorem 

4, if  𝑃7,   𝑃9 and   𝑃10 do not exist then   𝑃4 is locally asymptotically stable. Which follows 

that if  both α and γ are smaller than 0.05 and 𝜇 is are smaller than 0.2, then   𝑃4 is locally 

asymptotically stable, which annihilates the equilibrium points   𝑃7,   𝑃9 and   𝑃10.. Furthermore, 

eight equilibrium points were annihilated due to the change in these two parameters. This is due 

to the influence of each parameter on the dynamic behaviors of the model. 

  
Figure 1: 𝑃4.is unstable point. The trajectory with the parameter values is given above, and for 

the initial point   (0.03,0.01 ,0.02,0.5), located close 𝑃4 and it diverges from 𝑃4  and, converges 

to 𝑃15.. 
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Figure 2: 𝑃7is unstable point. The trajectory with the parameter values is given above, and 

for the initial point   (0.28,0.02 ,0.01,0.82), located close𝑃7 and it diverges from 𝑃7  and, 

converges to 𝑃15.. 

 
Figure 3: 𝑃9is unstable point. The trajectory with the parameter values is given above, and for 

the initial point   (0.02,0.358 ,0.01,0.577) , located close𝑃9  and it diverges from 𝑃9   and, 

converges to 𝑃15. 

 
Figure 4: 𝑃12is unstable point. The trajectory with the parameter values is given above, and 

for the initial point   (0.4,0.45 ,0.1,0.82) , located close𝑃12  and it diverge from 𝑃12  and, 

converges to  𝑃15.. 



Farhan et al.                                           Iraqi Journal of Science, 2023, Vol. 64, No. 8, pp: 4109-4130  

4129 

 
Figure 5: 𝑃13is unstable point. The trajectory with the parameter values is given above, and 

for the initial point    (0.705,0.03 ,0.403,0.777), located close 𝑃13 , diverge from 𝑃13  and, 

converges to 𝑃15.. 

 
Figure 6: 𝑃15is locally stable point. The trajectory with the parameter values given above  and, 

for different initial points, converges to 𝑃15. 

 
Figure 7: 𝑃4is locally stable point. The trajectory when α = γ = 0.04 and the rest parameter 

keep their values as given above, and the initial point (0.5,0.6,0.3,0.1), converges to  

𝑃4(0,0,0,0.5). 



Farhan et al.                                           Iraqi Journal of Science, 2023, Vol. 64, No. 8, pp: 4109-4130  

4130 

6. CONCLOSIONS 

     In this paper, a modified model of the Lotka-Volterra model was presented such that the 

proposed model is a complete food chain consisting of four species. The model has sixteen 

possible equilibrium points; five of them always exist, whatever the values of the model 

parameters. The number of unstable equilibrium points is eight, while the rest are locally 

asymptotically stable if they meet the conditions specified in this paper. For each of the 

equilibrium points that can be locally asymptotically stable, a basin of attraction was found 

using the Lyapunov function. In a numerical example, it is found that the number of equilibrium 

points for the system (1) was fourteen, all of which were unstable, except the coexistence point, 

which was locally asymptotically stable and, two points, do not exist in the mentioned examples 

due to not meeting some specific conditions. Changing two value parameters eliminates eleven 

equilibrium points. 
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