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Abstract:

In this paper, new integro-differential operators are introduced that defined by
Salagean’s differential operator. The major object of the present study is to investigate
convexity properties on new geometric subclasses included these new operators.
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Introduction:
Let I" symbolize the class of all functions have the form

9O =+ X a,E" (<)

which is analytic in the open unit disk A={eC:&<1} and S={g eI':gis univalent in
A}.

For 0<y<land & eA, the starlike function of order » will be the subclass of T" involving
univalent function which is indicated by S(») and convex function of order y will be the
subclass of T involving univalent function which is indicated by C(y), and are defined
analytically by

*Email; fawzihiba@yahoo.com

6483


mailto:fawzihiba@yahoo.com

Khudhuir et al. Iragi Journal of Science, 2023, Vol. 64, No. 12, pp: 6483- 6492

Re [1+ 5;';?;)] >y, and Re[fs(’g)] >y, respectively, [1].

The class K and S™ of convex functions and starlike functions, respectively are identical by
K'=K(0) and S* =S"(0). Bharti et al., [2] defined k—S (a) to be the class of functions g

with 0<a <1 and 0<k <o that satisfy the condition:

Re{ég’(é)}zk 59'(5)_%&
9(8) 9(8)

Bharti et al., [2] defined k —UCV (&) to be the class of functions g with 0<a <1 and
0 <k <o that satisfy the condition:

Re {Hég”(é)}z £9'©)|,
9@ | [ 9® |

On the other hand, the special functions (SFs) are quite advantageous in solving diverse
types of differential equations. Those functions have great implementations in other fields of
mathematics such as complex analysis, [3]. During the last century, the use of special functions
(SFs) has been intensified fruitfully due to their importance in the Geometric Function Theory
(GFT). The reason for attracting the authors towards SFs is that the class of hypergeometric
functions was employed as a tool for resolving Bieberbach's problem in 1984 by de Branges,
[4]. Afterward, numerous significant works on connections between analytic univalent and SFs
have been discussed by several complex analysis such as, Jassim [5], Al-Janaby and Ahmad
[6], Mahmoud et. al [7], Al-Janaby et. al [8 -10], Atshan et. al [11], Elhaddad and Darus [12],
Yan and Liu [13], Oros [14], Ghanim et. al [15], Layth et. al [16] and Mahmood et. al [17].

The familiar ®(&,s,v) Hurwitz-Lerch zeta function is shown by [18],

O(£sv) =Y —=

m=0(m-|-V)S ’

such that (v e Z";Re(s) >1 where |&]=1 seC, and where |&]<1).

1)

In [19-21], more clarity can be seen about the exposition of the properties of different
generalizations and applications of CD(é, s,v) .

The following extension beta function B(#,,%,; o) introduced by Chaudhry et al. [22],

B(hl,hz;p)=J.tf’l‘l(l—t)f’z"lexp(—t(llit)Jdt. ()

Furthermore, Choi et al. [23] created the underlying generalization of extended beta functions
B, (7,,7,) given by:

1
= = 1% q
B,.0.) = [V -0 exp 28 o ©

(Re(q) > 0;Re(p) >0 and Re(#,) > 0; Re(h,) > 0).
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Motivated by those different fascinating extensions of ®(&,s,v), researchers have created

an extension of the generalized ®(&,s,v) that includes B, (%;,7,;0,q) the extended beta

function.
In [23] a new extension of the generalized Hurwitz-Lerch zeta functions

@, ., (&5,v;p,q) involving B, (7, 71,; p,q) Eq.(3) given by
2B (s+my—¢)(9), &
= B(cr-¢) ml (m+v)
such that (9>0,p>0;5,6€C;y,veZ”; Re(s+y—-5—-¢)>1 where |§|:l,SGC and where

|£]<1).

: (4)

CD(ig;y (51 S,V; o, q) =

For g eI, Layth et. al [24] introduced the following linear operator F;'7%:T"' > T as

6.6y
following
Fryia(@) =@, ., (£5.v:0.0) * 9($)
o0 l—‘ , _ S 5
S s+m)B,,(c+m,y g)(1+vjam§m' ®)
o §'m' B, (¢c+Ly-¢)\m+v

where @; (§,s,v;p,q) given by Eq.(4) is the normalized extended Hurwitz-Lerch zeta
function in terms of B, (72,,%,; p,q) given by Eq.(3).

Furthermore, for F;"7g(&) given in Eq.(5) and g €I, Layth et. al [24] considered the

8.5y
following Salagean’s differential operator

©59(8)=9(¢),
©,9(£)=(1-2)g9(&)+A£9'(6)=0,9(8), 12120,
B S Chal) Bp,q(g+m1y—g)( 1+V j aem

m=2 olm! prq(g+lly—g) m+v
then
@,9(8)=0,(0,'g(&)), TeN,.
.
[ L(5+m) qu(€+m:y—§)(1+vjs .
’ 1 -1)4 , 6
Z; 5'm' B,,(c+Ly—¢)m+v (L+(m-1)2)| a,¢ (6)
when

such that (q>0, p>0;0<A<L ¢5eC;yveZ ; Re(s+7-5-¢)>1  when
|£|=1, s €C when|é|<1, T eNp).

Let S; () symbolize the class of function g(&) I, which satisfies the following condition:

| 2(€9®) |

,
®}g(&) )

forsome 0<y<land T eN,.
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Additionally, in [24], Layth et. al presented the following subclass of uniformly star-like
functions.

Let Xx—S; (7) symbolize the class of function g(£) T, such as

z(@}g(z))’ Z<®;9(Z)>’
e W_y ZXW—L (0<y<lzeA). (8)

In this work, new generalized subclass of uniformly convex functions is introduced. Let
x—C; (7) symbolize the class of function g(z) T, such as

Rel+€g§g§21—y ZXEEZ@EQL, (0<y<L<éeA), 9

(079(9)) (079(9))
where 0<y <1, x>0, T e Ny, £ A. Clearly, for T =0 the class x-S (») and the class

x—C; (7) coincide respectively, as:

£9(9) ), ,|9) ‘
Re| 1 -1, eA), 10
e[+g<5)J Tow 1 =Y a0
and
¢9'(6) _ c 11
(g(é’)] 9(&) 4 S )

Let x—C; (v) symbolize the class of function g(¢) €T, which satisfies the following
condition:
@T " @T ﬂ‘
rel 1, £ ig(f)? el ig(f)? ron (Fen) )
(©7g(&)) (©7g(&))
for T =0 in Eq.(12), here the class studied in Shams et. al [25] in 2004.

Moreover, based on Salagean’s operator Eq.(6), the following integral operators can be
defined,

é Uy ,\Ye
()= j( (070,0) j ...((cazgﬁ(t))j dt, 13)

and

.....

O~ I[G gl(t)J (%?mj dt. (14)

where g, €I, u; >0 and j=12,..,7
For T =0, there is the operator

Ry (&)= i((gl(t))' ) ((g,(t))' ) dt

was introduced by Breaz et. al [26].
For T =0,¢=1,u=u,, the integral operator can be yield

() = j((g(t))’ J
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was studied by Pascu and Pescar [27].
For T =0, the operator is give

¢ u u,
o @=](80] (80T o,

was posed by Breaz and Breaz [28].

For T =0,¢=1,u=u,, the operator can be got

£ u
v, (5) = j(@) dt,

was considered by Miller et. al [29].
For T=0,/=1and u, =1, the Alexander operator [30] can be obtained by,

¢
AGHE

Next, for f,, g; el and 0<aj, S, je{1,2,...,€}, the integro-differential operator was
introduced as follows: @,(z):T" —T, by

¢t (®a. i A\
w,(£) = “—[(%@J ((@;fj(t))j dt. (15)

0 =1
Remark:
1) For «;=0, and g, = f, operator Eq.(15) reduces to operator Eq.(13).
2) For m; =0 this operator Eq.(15) concides operator given by Eq.(14).
3) Operator w,(¢) EQ.(15) generalizes the integral operators imposed by Breaz et. al. [26],
Pascu and Pescar [27], Breaz and Breaz [28], Miller et. al [29], Alexander [30], Frasin [31] and

Stanciu and Breaz [32].
Main Results:

Theorem 1. If g, ex;—S] (y;) with x;>0,0<y; <1for all Zuj S% and je{l,2,..,/},

j=1

then the operator y, , €C (o) where a=1+2uj (7;-1)-
=1

]

-1!|+...+uU, M_l

©9,(&)

! @) | £(0]6,©)

ve @ | 0L6.@)

re| Vo O e é(@gd«:)) |erure f(@Tlgp(f;)) .
Ve (S) 0,0,(%) ©,9,(5)
=u,Re w -u, —uy +uy +...+u,Re é(%ﬂ -u,—u,y, +u,y,
0,9,($) 0,9,(%)
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£(01g,9) £(019,(9)

=uRe| ————» |-U, +Uu, %, +..+uRe| —————», |—-U, +U,y,
1 ®;gl(§) N 1 tW ¢ ®;g¢(§) Ve ctU7,

Since g; e x-S () forall ] e{1,2,...,l}. From Eq.(8), the result is

Re[g%l ..... u/(f)J_ul 95((9&91(98))_ + 4u M Zu +ZUJ7’J

NG oae T elg @
ZZUJ (7J _1)’
j=L
SO,
< (<
R L 1(>1
e{ 7 ’ } 24 (7 -)

/
Thus, v, , €C(c) where o =1+ u, (}/j —1), the result is that 0< o <1.

------
j=1

Corollary 1. If g; e x; =S () with x; >0, 0<y <1 for all ZUJ. s% and je{1,2,..,/},then
j=1

14
the operator , , €C(o) where o=1+(y-1)>_u;.
=

Proof. Putting /=1 in Theorem 1, we will have the required result.
Corollary 2. If g, ex—S] (y) with u s% and x>0, 0<y <1, then the operator y, €C(o)

where

u

(g)j *g()) dt and o =1+(y-1)u

Proof. Letting /=1 in Theorem 1 . Thus we will have the required result.

Theorem 2 . If g, e x;—C] (y;) with x; >0, 0<y,; <1 for all Zuj S% and je{l2,..,/},
-1

/

then the operator F, , €C(c) where o =1+ u;(y,-1).
=t

Proof.

L@ @) | £(€he @)

— Y

Rl @ (01g,0) (019,9)

nel £F ul 2O e 501 |,
Fou (©)

; ..+Uu,Re M
CHAG) (©79.(9)
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=u,Re w +U, —U, —uy, +uy +...+U,Re w +U,—-U,—u,y, +Uu,y,
(079,(9)) (©39,(9))
=u,Re 1+M_71 —u, +uy, +...+Uu,Re 1+M—n —-u, +u,y,
(©79,()) (©79,(9)

Since g; e x; ~C] (7;) forall ] €{1,2,...,}. From Eq.(9), we have

Re[fFF,u;',...,uxcf)JZulxl 5(@91(5)? B 5(@9((5)? oSS Y (7, -1)
e (6) (079,(4)) (@) | F HT

SO,

Re( GZF( g) +1] >1+ éu i(7-1),

Thus, F, eC(o-) where a:1+ZZ:uj(yj —1),then we obtain 0<o<1.

-1
Corollary 3. If g, e x, —C} () with x>0, 0< y <1 forall Zuj S% and je{l,2,..,0}, then

j=1

/
the operator F, , €C(c) where o =1+(y-1)>_u;.

..... u,
=L

Proof. By putting /=1 in Theorem 2, the result has been obtained.
Corollary 4. If g, ex—Cj (y) with x>0,0<y<land u< % then the operator F, eC (o)

where
5 A\
o=1+(y-1)u and F, (&) =j((®;g(t)) j dt.
0
Proof. Letting ¢ =1 in Theorem 2. Then we will have the required result.

Theorem 3. Let f;,@; be positive real numbers, and je{L2,...¢}. If g, €S, (iJ and
(24

j

fjexj—Cl(uj), X; >20,0<v, <1. If ZZ:[[)’j(l—uj)+aJ—€<l, then ,(&) given in

j=1

Eq.(15) is in the class C (o), where

a=1+€+i[ﬂj (v,-1)-a |

Proof. Forr:ldifferentiation of w,(&) which is given in Eq.(12) and by some calculatation, we
have

£l g, [£008,@) | £(0h8,0)
o/ (&) T 9.9, : (079,(2))
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5| £(01g,9) iy £(0lg,9)

=1 ®;gj(§) j j (@;gj(g))’ ’
for® |, EO0@) @) |
w; (&) = 059,09 b ((919,-(5)), |
Re(fa);'.(ég)_'_lj:i a;Re w —a; + fB;Re w-pi -5 |+1.
0@ )4 ©,9;(9) (©19,())
(16)

£(019,) | 1

Since g, €S, {ij ,then Re >—and f; ex;—Cj (v;), formEq.(16), there
a.
J

®;gj(‘§) a;
is
(5@,"(5) ]>Z 1-a;+B;| X —5((919](5)? +u; (=B |+1
o) ) = (©79,()
>1+/0— Za +Zﬂj J ( 9, (5)? ( v, 1),
2 (elg,9) |
Re(i)a/)"('(;))+l)>l+€+;a +Zﬂ (u - )
>1+z—2[ﬂj(uj—1)—a,.],
therefore, i

{4
0,(8)€C(0), o=1+0+> | Bi(v;-1)-; |
-1
Corollary 5. Let f3;,a; be positive real numbers, and je{12,.../}. If g eS| {ij and
aj;

f, exj—CI (uj), 0<v; <1 x;20, if S (1—01.)+05j <2, then @,(&) which is given in
Eq.(15) will be in the class C(c), where

o=2+p, (1—uj)+a

Proof. By setting T =0 and ¢ =1 in Theorem 3, the result has been obtained.

Conclusion:

In the complex domain, Hurwitz—Lerch zeta functions has been importane in geometric
function theory. Based on these type special function new integro-differential operator have
been introduced in term Salagean’s differential operator. Moreover, convexity properties on
new subclasses involving these considered operators have investigated and presented.
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