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Abstract  

     In this article, the Laplace transformation method in connection with the 

variational iteration method will be used to solve approximately fuzzy random 

ordinary differential equations. After that, the sequence of approximated closed form 

iterated solutions is derived based on the general Lagrange multiplier evaluated using 

the well-known convolution theorem of the Laplace transformation method. In 

addition, two examples are given and solved to illustrate the reliability, efficiency and 

applicability of the proposed method, they are simulated using computer programs 

with two different generations of stochastic processes, namely the Wiener process or 

Brownian motion, which are 1000 and 10000, respectively. 
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باستخدام طريقة لابلاس  الاعتيادية  لمعادلات التفاضلية الخطية الضبابية العشوائية ل الحل التقريبي
 المتغير  لتكرارل

 

 1عيدي، جعفر حمود ، 2فاضل صبحي فاضل  ،،*1علي عدنان عبد الصاحب
 الرياضيات، كلية التربية ، الجامعة المستنصرية، بغداد، العراق قسم 1

 الحاسوب، كلية العلوم، جامعة النهرين، جادرية، بغداد، العراق قسم الرياضيات وتطبيقات 2
 
 

 الخلاصة 
في هذه البحث، سنقدم طريقة تحويل لابلاس مع طريقة التكرار المتغير لايجاد الحل التقريبي للمعادلات        

التفاضلية الخطية الاعتيادية العشوائية الضبابية. حيث تم اشتقاق متتابعة دوال الحلول التقريبية استناداً الى ايجاد  
إضافة إلى ذلك،  الالتفاف المعروفة في تحويلات لابلاس. مضروب لاكرانج والذي تم حسابه عن طريق مبرهنة 

بالإضافة إلى ذلك، تم تقديم مثالين    .تم تقديم مثالين وحلهما لتوضيح موثوقية وإمكانية تطبيق الطريقة المقترحة
مدىوحلهما   برامج    لبيان  باستخدام  محاكاتها  تمت  والتي  المقترحة،  الطريقة  تطبيق  وإمكانية  وكفاءة  موثوقية 
أو حركة    التصادفية   متغيرات وينروالتي تسمى  المتغيرات التصادفية  مختلفين من    توليد مجموعتين مع    ةحاسوبي 
 .، على التوالي10000و  1000، وهما نبراوني
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1. Introduction 

     The subject of fuzzy differential equations (FDEs) is generally one of the most important 

topics in mathematics. It is particularly important in many fields including medicine, 

engineering and technology, …etc. On the other hand, the theory of stochastic processes 

considers random processes that satisfy certain particular properties as well as the co-cycle 

property. Therefore, deterministic fuzzy random differential equations were developed as a 

result of research into dynamical systems, and they have various applications in the modelling 

of classical problems in control theory, physics, biology, engineering economics, and finance 

in which random disturbances are the only source of uncertainty for such type of problems. 

Thus, the stochastic analysis approaches must be employed to address these circumstances. 

Also, it is still in most real-world problems a second source of uncertainty encountered due to 

the ambiguous nature or imprecise, fuzzy, etc. For such work, one must investigate fuzzy 

random differential equations that are concerned with fuzzy random differential equations with 

classical Brownian motion. The fuzzy random ordinary differential equations (FRODEs) are 

defined as a fuzzy ordinary differential equation (RODE) involving random variables as a 

stochastic process where fuzziness appears when triangular fuzzy numbers are included in the 

differential equation.  
 

     In this paper, the FRODEs will be solved using the Laplace variational iteration method 

(LVIM) which is a hybrid method that combines the usual Laplace transformation method and 

the variational iteration method (VIM). Such equations are so difficult to solve analytically, 

however, numerical and approximate methods seem to be necessary and reliable to give 

resolvable accurate results. 
 

2. Literature Review and Problem Statement 

     Fuzzy random ordinary differential equations are used in real-world systems such that the 

phenomena are related to randomness and fuzziness as two kinds of uncertainties. These 

problems are encountered in economics and finance. There are several work projects and 

articles on the fuzzy stochastic differential equations and each one is different from the others 

in the approach. 
 

     In the literature, there is a large number of studies that have emerged in recent years that are 

concerned with differential equations containing either random variables or fuzzy sets (see [1], 

[4-6], [8-11], [16-19]). In 2008, Abbasbandy et al. [1] proposed a solution for general dual 

fuzzy linear systems, in which the existence of a minimal solution of the general dual fuzzy 

linear equation systems is investigated. Cortés et al. in 2011 [8] provided the numerical solution 

of random differential equations by means of random improved Euler's method. Khudair et al. 

in 2011 [16] used the Adomian decomposition method and the VIM to solve certain types of 

second order RODEs. In 2013, Guo et al. [11] presented the approximate solutions of the 

second-order linear differential equations with fuzzy boundary conditions, in which the 

indeterminate fuzzy coefficients approach converts the fuzzy linear boundary value problem 

into a crisp function system of linear equations. Behzadi in 2014 used the VIM to solve the 

second-order fuzzy Abel-Volterra integro-differential equations, [4]. The Runge-Kutta method 

was used by Nouri and Ranjbar in 2015 [18] to find a numerical solution to the initial value 

problems of RODEs. Chakraverty et al. presented in 2016 a new direction in the use of basic 

concepts of fuzzy differential equations, solutions and the applications of FDEs for engineers 

and scientists, [6]. Ghazanfari et al. [10] used the VIM to solve FDEs. The mean and variance 

of the approximate solutions of the second-order RODEs using the homotopy analysis method 

are proposed by Khudair et al. in 2016 [17]. Tchier et al. in 2017 [20] studied a family of RDEs 

with boundary conditions using a random fixed-point theorem. In 2019 Abdulsahib et al. 



Abdulsahib et al.                                          Iraqi Journal of Science, 2024, Vol. 65, No. 2, pp: 804- 817 

 

806 

presented a modified approach based on the VIM and numerical integration methods to solve 

the initial value problems of the n-th order RODEs, [3]. In 2021, Phu and Lupulescu provided 

the statement and the proof of the existence and uniqueness theorem of a solution for the class 

of fuzzy fractional functional differential equations, [19]. Fadhel et al. in 2021 [6] used the 

LVIM to solve RODEs. In 2022, Bica and Satmari [5] presented the numerical method to solve 

fuzzy Volterra integral equations based on the fuzzy Bernstein spline interpolation procedure. 
 

     The parameters, variables, and initial conditions of a mathematical model governed by 

ordinary differential equations (ODEs) are assumed to be precisely prescribed. In fact, there 

may be imprecise, ambiguous, random processes or insufficient information available regarding 

the variables and parameters that appeared in the differential equation. All of these are caused 

by accuracies in measurements, observations, or experimental data; the application of varied 

operating conditions; or maintenance-induced errors due to imprecise or randomness. To avoid 

uncertainties or lack of precision, a fuzzy environment in parameters, variables, and initial 

conditions can be used instead of accurate (fixed) ones by converting conventional differential 

equations into FRODEs. Because of the complexity of fuzzy logic and stochastic calculus, it 

can be difficult to find accurate solutions to such problems in real-world applications. So that 

the employment of reliable and efficient numerical and/or approximate methods in the solution 

of FRODEs is needed 
 

     The statement of the considered problem of this paper is to use the LVIM to find the 

approximate solution of the following n-th order FRODE: 

𝑥̃(𝑛)(𝑡, 𝜔) = 𝑓(𝑡, 𝑥̃(𝑡, 𝜔), 𝑥̃′(𝑡, 𝜔), . . . , 𝑥̃(𝑛−1)(𝑡, 𝜔)), 𝑡 ≥ 0, (1) 

with initial conditions that are given as triangular fuzzy numbers: 

𝑥̃(𝑖)(0, 𝜔) = 𝑥̃0
𝑖 , i = 0,1,…,n−1, 

where 𝜔 is a random process that is taken to be of Brownian motion, [20]. 

 

3. Preliminary and Fundamental Concepts 

     In this section, some basic concepts that are necessary for this work will be introduced. These 

concepts include basic definitions of  fuzzy set theory, stochastic calculus and some basic 

properties of the Laplace transform. 

 

Definition 1, [14]. A triangular fuzzy number is a mapping 𝑢:ℝ
            
→   [0,1], which satisfies: 

1. u is upper semi-continuous. 

2. There exist real numbers a, b and c, such that a  b  c and  

i. u(x) = 0 outside some interval [a,c], 

ii. u(x) is monotonic increasing on [a,b], 

iii. u(x) is monotonic decreasing on [b,c], 

iv. u(x) = 1 if x = b. 

v.  

Definition 2, [15]. The set of all elements that belong to the fuzzy set 𝑢̃ at least to the degree 𝛼 

is called the 𝛼-level set, which is defined by: 

u = {x  X : μ𝑢(𝑥) ≥ 𝛼}, 

where μ𝑢 refers to the membership function related to the fuzzy set 𝑢̃. 

Fuzzy numbers may be characterized or parameterized in terms of 𝛼-level sets. 

 

Definition 3, [14]. A fuzzy number 𝑢̃ is in parametric form as an interval [𝑢(𝛼), 𝑢(𝛼)],  

0  𝛼  1, which satisfies the following requirements: 

1. 𝑢(𝛼) is a bounded monotonic increasing right continuous function, 

2. 𝑢(𝛼) is a bounded monotonic decreasing left continuous function, 

https://www.sciencedirect.com/science/article/abs/pii/S0165011420303808?via%3Dihub#!
https://www.sciencedirect.com/science/article/abs/pii/S0165011420303808?via%3Dihub#!
https://www.sciencedirect.com/science/article/abs/pii/S0165011421004413#!
https://www.sciencedirect.com/science/article/abs/pii/S0165011421004413#!
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3. 𝑢(𝛼) ≤ 𝑢(𝛼), for all 0  𝛼  1. 

Remark 1. For an arbitrary two fuzzy numbers 𝑢̃ = [𝑢(𝛼), 𝑢(𝛼)] and 𝑣̃ = [𝑣(𝛼), 𝑣(𝛼)], 𝛼  

[0,1] the following algebraic operations may be fulfilled: 

1. If k is any real number, then: 

𝑘𝑢̃ = {
(𝑘𝑢(𝛼), 𝑘𝑢(𝛼)), if 𝑘 ≥ 0

(𝑘𝑢(𝛼), 𝑘𝑢𝛼)), if 𝑘 < 0
  

2. 𝑢̃ ∓ 𝑣̃ = (𝑢(𝛼) ∓ 𝑣(𝛼), 𝑢(𝛼) ∓ 𝑣̄(𝛼)). 

3. 𝑢̃𝑣̃ = (min s, max s), where 𝑠 = {𝑢 𝑣, 𝑢 𝑣, 𝑢 𝑣, 𝑢 𝑣}. 
Some preliminary concepts of the stochastic process are also given for completeness purpose, 

which are encountered in stochastic calculus. These concepts start with the following basic 

definition: 

 

Definition 4, [3,9]. A stochastic process is a family of random variables x(t, 𝜔) (or briefly Xt(𝜔) 

or Xt) of independent variables t and parameter 𝜔. Let t  [t0,T]  [0,), 𝜔   on a common 

probability space (,F,P), where Ω is a sample space which is the set of all possible outcomes 

of random increment, F is the class of all subset of Ω and P is a probability measure whose 

domain is Ω and the codomain is the interval [0,1], which is assumed to be real values and P is 

measurable as a function of ω for each fixed t. The parameter t is the time and Xt(.) represents 

a random variable on the above probability space , while X.( 𝜔) is called a sample path or 

trajectory of the stochastic process. 

 

Definition 5, [3,9]. A stochastic process Wt for all t  [0,) is called a Wiener process or 

Brownian motion if: 

1. P({𝜔  Ω | W0(ω) = 0}) = 1. 

2. For 0 < t0 < t1 <…< tn, the increments 𝑊𝑡1 −𝑊𝑡0, 𝑊𝑡2 −𝑊𝑡1,…, 𝑊𝑡𝑛 −𝑊𝑡𝑛−1 are 

independent. 

3. For an arbitrary t and h>0, Wt+h−Wt has the normal distribution with mean 0 and variance h. 

 

4. Solution of FRODEs Using Laplace VIM 

     In order to be familiar with Eq.(1), the α-level sets associated with fuzzy sets will be 

considered, for all 𝛼 ∈ [0,1]. Hence, the general form of the n-th order linear FRODE with 

constant coefficients related to Eq.(1) will take the form: 

𝑥̃(𝑛)(𝑡, 𝜔, 𝛼) = 𝑓(𝑡, 𝑥̃(𝑡, 𝜔, 𝛼), 𝑥̃′(𝑡, 𝜔, 𝛼), . . . , 𝑥̃(𝑛−1)(𝑡, 𝜔, 𝛼)), 𝑡 ≥ 0, 𝛼  [0,1], (2) 

with initial conditions that are given as fuzzy numbers: 

𝑥̃(𝑖)(0, 𝜔, 𝛼) = (𝐺𝑖(𝑡, 𝜔, 𝛼), 𝐻𝑖(𝑡, 𝜔, 𝛼)), i = 0,1,…,n−1.  

 

     Let 𝑥̃ = [𝑥̱, 𝑥̄], then Eq.(2) may be written in terms of its lower and upper solutions related 

to the -levels depending on their coefficients [7]. The linear FRODE with constant coefficients 

in terms of 𝛼-levels is given by: 

𝑥̃(𝑛)(𝑡, 𝜔, 𝛼) + 𝑐𝑛−1𝑥̃
(𝑛−1)(𝑡, 𝜔, 𝛼)+. . . +𝑐1𝑥̃′(𝑡, 𝜔, 𝛼) + 𝑐0𝑥̃(𝑡, 𝜔, 𝛼) = g(t, 𝜔), t  0,  (3) 

with initial conditions are given as a triangular fuzzy numbers:  

𝑥̃(0, 𝜔0, 𝛼) = 𝑏̃0, 𝑥̃
′(0, 𝜔0, 𝛼) = 𝑏̃1, . . . , 𝑥̃

(𝑛−1)(0, 𝜔0, 𝛼) = 𝑏̃𝑛−1, 
where 𝑐𝑖 are real constants for all i = 0, 1, …, n−1, g is a given function and 𝑏̃𝑖 are triangular 

fuzzy numbers for all i = 0, 1, …, n−1, and 𝑥̃ is the solution to be determined as a fuzzy function. 

 

     To demonstrate the concept of the VIM [2,12-15], consider the following general FRODE 

in operator form: 

L[𝑥̃(t, 𝜔,α)] + N[𝑥̃(t, 𝜔,α)] = g(t, 𝜔), t  [t0,T], (4) 
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where L is a linear differential operator, N is a nonlinear differential operator and g is a given 

function that contains random variable 𝜔. 

 

     If the -level sets are considered, then the correction functional of Eq.(4) for the lower and 

upper fuzzy solution 𝑥̃ will read for all m = 0, 1, … . Three cases are considered to solve the 

fuzzy differential equation, these cases may be summarized as follows: 

 

Case 1: All the coefficients 𝑐𝑛−1, 𝑐𝑛−2, … , 𝑐0 are positive and hence Eq.(4) will be decomposed 

into the following non-fuzzy or crisp ordinary differential equations: 

𝑥̱𝑚+1(𝑡, 𝜔, 𝛼) = 𝑥̱𝑚(𝑡, 𝜔, 𝛼) + ∫ 𝜆̱(𝜉, 𝑡) [
𝑑𝑛

𝑑𝜉𝑛
𝑥̱𝑚(𝜉, 𝜔, 𝛼) +

𝑡

0

𝑐𝑛−1𝑥̱𝑚
(𝑛−1)(𝜉, 𝜔, 𝛼)+. . . +𝑐1𝑥̱′𝑚(𝜉, 𝜔, 𝛼) + 𝑐0𝑥̱𝑚(𝜉, 𝜔, 𝛼) − g(𝜉, 𝜔)] 𝑑𝜉, (5) 

𝑥̄𝑚+1(𝑡, 𝜔, 𝛼) = 𝑥̄𝑚(𝑡, 𝜔, 𝛼) + ∫ 𝜆̄(𝜉, 𝑡) [
𝑑𝑛

𝑑𝜉𝑛
𝑥̄𝑚(𝜉, 𝜔, 𝛼) +

𝑡

0

𝑐𝑛−1𝑥̄𝑚
(𝑛−1)(𝜉, 𝜔, 𝛼)+. . . +𝑐1𝑥̄′𝑚(𝜉, 𝜔, 𝛼) + 𝑐0𝑥̄𝑚(𝜉, 𝜔, 𝛼) − g(𝜉, 𝜔)] 𝑑𝜉. (6) 

 

Case 2: The coefficients 𝑐𝑛−1, 𝑐𝑛−2, … , 𝑐𝑛−𝑚 are positive and 𝑐𝑛−𝑚−1, 𝑐𝑛−𝑚−2, … , 𝑐1, 𝑐0 are 

negative, then the lower and upper fuzzy solution of 𝑥̃ related to equation (4) are written as: 

𝑥̱𝑚+1(𝑡, 𝜔, 𝛼) = 𝑥̱𝑚(𝑡, 𝜔, 𝛼) + ∫ 𝜆̱(𝜉, 𝑡) [
𝑑𝑛

𝑑𝜉𝑛
𝑥̱𝑚(𝜉, 𝜔, 𝛼) +

𝑡

0

𝑐𝑛−1𝑥̱𝑚
(𝑛−1)(𝜉, 𝜔, 𝛼)+. . . +𝑐𝑛−𝑚𝑥̱𝑚

(𝑛−𝑚)(𝜉, 𝜔, 𝛼) + 𝑐𝑛−𝑚−1𝑥̄𝑚
(𝑛−𝑚−1)(𝜉, 𝜔, 𝛼) +

𝑐𝑛−𝑚−2𝑥̄𝑚
(𝑛−𝑚−2)(𝜉, 𝜔, 𝛼)+. . . +𝑐1𝑥̄′𝑚(𝜉, 𝜔, 𝛼) + 𝑐0𝑥̄𝑚(𝜉, 𝜔, 𝛼) − g(𝜉, 𝜔)] 𝑑𝜉, (7) 

𝑥̄𝑚+1(𝑡, 𝜔, 𝛼) = 𝑥̄𝑚(𝑡, 𝜔, 𝛼) + ∫ 𝜆̄(𝜉, 𝑡) [
𝑑𝑛

𝑑𝜉𝑛
𝑥̄𝑚(𝜉, 𝜔, 𝛼) +

𝑡

0

𝑐𝑛−1𝑥̄𝑚
(𝑛−1)(𝜉, 𝜔, 𝛼)+. . . +𝑐𝑛−𝑚𝑥̄𝑚

(𝑛−𝑚)(𝜉, 𝜔, 𝛼) + 𝑐𝑛−𝑚−1𝑥̱𝑚
(𝑛−𝑚−1)(𝜉, 𝜔, 𝛼) +

𝑐𝑛−𝑚−2𝑥̱𝑚
(𝑛−𝑚−2)(𝜉, 𝜔, 𝛼)+. . . +𝑐1𝑥̱′𝑚(𝜉, 𝜔, 𝛼) + 𝑐0𝑥̱𝑚(𝜉, 𝜔, 𝛼) − g(𝜉, 𝜔)] 𝑑𝜉. (8) 

 

Case 3: All the coefficients 𝑐𝑛−1, 𝑐𝑛−2, … , 𝑐0 are negative, then Eq. (4) will be decomposed into 

the following upper and lower cases solutions:  

𝑥̱𝑚+1(𝑡, 𝜔, 𝛼) = 𝑥̱𝑚(𝑡, 𝜔, 𝛼) + ∫ 𝜆̱(𝜉, 𝑡) [
𝑑𝑛

𝑑𝜉𝑛
𝑥̱𝑚(𝜉, 𝜔, 𝛼) +

𝑡

0

𝑐𝑛−1𝑥̄𝑚
(𝑛−1)(𝜉, 𝜔, 𝛼)+. . . +𝑐1𝑥̄′𝑚(𝜉, 𝜔, 𝛼) + 𝑐0𝑥̄𝑚(𝜉, 𝜔, 𝛼) − g(𝜉, 𝜔)] 𝑑𝜉  (9) 

𝑥̄𝑚+1(𝑡, 𝜔, 𝛼) = 𝑥̄𝑚(𝑡, 𝜔, 𝛼) + ∫ 𝜆̄(𝜉, 𝑡) [
𝑑𝑛

𝑑𝜉𝑛
𝑥̄𝑚(𝜉, 𝜔, 𝛼) +

𝑡

0

𝑐𝑛−1𝑥̱𝑚
(𝑛−1)(𝜉, 𝜔, 𝛼)+. . . +𝑐1𝑥̱′𝑚(𝜉, 𝜔, 𝛼) + 𝑐0𝑥̱𝑚(𝜉, 𝜔, 𝛼) − g(𝜉, 𝜔)] 𝑑𝜉.  (10) 

     The proposed approach starts by taking the Laplace transform of Eq.(4), yields to: 

ℒ{𝐿(𝑥̃(𝑡, 𝜔, 𝛼))} + ℒ{𝑁(𝑥̃(𝑡, 𝜔, 𝛼))} = ℒ{g(𝑡, 𝜔)}  (11) 

where the Laplace transformation of the differential operator of the correction functional (11) 

using the VIM will give: 

ℒ{𝑥̃𝑚+1(𝑡, 𝜔, 𝛼)} = ℒ{𝑥̃𝑚(𝑡, 𝜔, 𝛼)} + ℒ ∫ 𝜆(𝜉, 𝑡){𝐿(𝑥̃𝑚(𝜉, 𝜔, 𝛼)) + 𝑁(𝑥̃𝑚(𝜉, 𝜔, 𝛼)) −
𝑡

0

g(𝜉, 𝜔)} 𝑑𝜉, for all m = 0,1,…  

 

     The correction functional depends on the fuzzy differential equations which mean it depends 

on the coefficients to be either positive or negative so one of the following cases should be 

considered: 

 

Case 1: If the all coefficients 𝑐0, 𝑐1, … , 𝑐𝑛−1 are positive, this yields to: 
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ℒ{𝑥̱𝑚+1(𝑡, 𝜔, 𝛼)} = ℒ{𝑥̱𝑚(𝑡, 𝜔, 𝛼)} + ℒ {∫ 𝜆̱(𝜉, 𝑡) [
𝑑𝑛

𝑑𝜉𝑛
𝑥̱𝑚(𝜉, 𝜔, 𝛼) +

𝑡

0

𝑐𝑛−1𝑥̱𝑚
(𝑛−1)

(𝜉, 𝜔, 𝛼)+. . . +𝑐1𝑥̱′𝑚(𝜉, 𝜔, 𝛼) + 𝑐0𝑥̱𝑚(𝜉, 𝜔, 𝛼) − g(𝜉, 𝜔)] 𝑑𝜉,  

ℒ{𝑥̄𝑚+1(𝑡, 𝜔, 𝛼)} = ℒ{𝑥̄𝑚(𝑡, 𝜔, 𝛼)} + ℒ {∫ 𝜆̄(𝜉, 𝑡) [
𝑑𝑛

𝑑𝜉𝑛
𝑥̄𝑚(𝜉, 𝜔, 𝛼) + 𝑐𝑛−1𝑥̄𝑚

(𝑛−1)(𝜉, 𝜔, 𝛼) + ⋯+
𝑡

0

𝑐1𝑥̄′𝑚(𝜉, 𝜔, 𝛼) + 𝑐0𝑥̄𝑚(𝜉, 𝜔, 𝛼) − g(𝜉, 𝜔)] 𝑑𝜉. 

Therefore, upon using the convolution theorem for the lower-case solution with respect to t, 

this implies that: 

ℒ{𝑥̱𝑚+1(𝑡, 𝜔, 𝛼)} = ℒ{𝑥̱𝑚(𝑡, 𝜔, 𝛼)} + ℒ{𝜆(𝑡 − 𝑠) ∗ {𝐿(𝑥̱𝑚(𝑡, 𝜔, 𝛼)) + 𝑁(𝑥̱𝑚(𝑡, 𝜔, 𝛼)) − g(𝑡, 𝜔)}}  

= ℒ{𝑥̱𝑚(𝑡, 𝜔, 𝛼)} + ℒ{𝜆(𝑠, 𝑡){𝐿(𝑥̱(𝑡, 𝜔, 𝛼)) + 𝑁(𝑥̱𝑚(𝑡, 𝜔, 𝛼)) − 𝑔(𝑡, 𝜔)}}  

= ℒ{𝑥̱𝑚(𝑡, 𝜔, 𝛼)} + ℒ {𝜆̱(𝑠, 𝑡) ∗ [
𝑑𝑛

𝑑𝑡𝑛
𝑥̱𝑚(𝑡, 𝜔, 𝛼) + 𝑐𝑛−1𝑥̱𝑚

(𝑛−1)(𝑡, 𝜔, 𝛼)+. . . +𝑐1𝑥̱′𝑚(𝑡, 𝜔, 𝛼) +

𝑐0𝑥̱𝑚(𝑡, 𝜔, 𝛼) − g(𝑡, 𝜔)], (12)  

where * refers to the usual convolution operation between two functions. 

Also, for the upper-case solution, we have: 

ℒ{𝑥̄𝑚+1(𝑡, 𝜔, 𝛼)} = ℒ{𝑥̄𝑚(𝑡, 𝜔, 𝛼)} + ℒ {𝜆̄(𝑠, 𝑡) ∗ [
𝑑𝑛

𝑑𝑡𝑛
𝑥̄𝑚(𝑡, 𝜔, 𝛼) + 𝑐𝑛−1𝑥̄𝑚

(𝑛−1)(𝑡, 𝜔, 𝛼) + ⋯+

𝑐1𝑥̄′𝑚(𝑡, 𝜔, 𝛼) + 𝑐0𝑥̄𝑚(𝑡, 𝜔, 𝛼) − g(𝑡, 𝜔)]},  (13) 

then Eqs.(12) and (13) become as follows: 

ℒ{𝑥̱𝑚+1(𝑡, 𝜔, 𝛼)} = ℒ{𝑥̱𝑚(𝑡, 𝜔, 𝛼)} + ̱(𝑠) {𝑠𝑛ℒ{𝑥̱𝑚(𝑡,, 𝛼)} −

𝑐𝑛−1𝑥̱𝑚
(𝑛−1)

(0,, 𝛼)+. . . +𝑐1𝑥̱′𝑚(0,, 𝛼) + 𝑐0𝑥̱𝑚(0,, 𝛼)} + ℒ{𝑁(𝑥̱𝑚(𝑡; 𝜔)) − g(𝑡;𝜔)}  (14) 

ℒ{𝑥̄𝑚+1(𝑡,, 𝛼)} = ℒ(𝑥̄𝑚(𝑡,, 𝛼)) + ̄(𝑠) {𝑠𝑛ℒ{𝑥̄𝑚(𝑡,, 𝛼)} −

𝑐𝑛−1𝑥̄𝑚
(𝑛−1)(0,, 𝛼)+. . . +𝑐1𝑥̄′𝑚(0,, 𝛼) + 𝑐0𝑥̄𝑚(0,, 𝛼)} + ℒ{𝑁(𝑥̄𝑚(𝑡; 𝜔)) − g(𝑡;𝜔)},  (15) 

where ̱(𝑠) = ℒ{𝜆̱(𝑠, 𝑡)} and ̄(𝑠) = ℒ{𝜆̄(𝑠, 𝑡)}. The iteration formula of Eqs.(14) and (15) are 

used to suggest the main scheme of the proposed approach involving the Lagrange multiplier. 

 

      Now, consider ℒ{𝑁(𝑥̱𝑚(𝑡; 𝜔)) − g(𝑡; 𝜔)} and ℒ{𝑁(𝑥̄𝑚(𝑡; 𝜔)) − g(𝑡; 𝜔)} in Eqs.(14) and 

(15) as a restricted variation, which makes Eqs.(12) and (13) stationary with respect to 𝑥̱𝑚 and 

𝑥̄𝑚 , respectively. Hence: 

ℒ{𝛿𝑥̱𝑚+1(𝑡, 𝜔, 𝛼)} = ℒ{𝛿𝑥̱𝑚(𝑡, 𝜔, 𝛼)} + ℒ{𝜆̱(𝑠, 𝑡)}{𝑠
𝑛ℒ{𝛿𝑥̱𝑚(𝑡,, 𝛼)}},                           (16) 

ℒ{𝛿𝑥̄𝑚+1(𝑡,, 𝛼)} = ℒ{𝛿𝑥̄𝑚(𝑡,, 𝛼)} + ℒ{𝜆̄(𝑠, 𝑡)}{𝑠
𝑛ℒ{𝛿𝑥̄𝑚(𝑡,, 𝛼)}},                            (17) 

where 𝛿 is the classical first variation. The optimality condition for the extremum is 

ℒ{𝛿𝑥̱𝑚+1(𝑡, 𝜔, 𝛼)} = ℒ{𝛿𝑥̄𝑚+1(𝑡, 𝜔, 𝛼)} = 0. Hence, Eqs.(16) and (17) lead to: 

ℒ{𝜆̱(𝑠, 𝑡)} = ℒ{𝜆̄(𝑠, 𝑡)} =
−1

𝑠𝑛
, s > 0. 

The sequential approximations are obtained by taking the inverse Laplace transform of Eqs.(12) 

and (13) after substituting 𝜆̱(𝑠, 𝑡) and 𝜆̄(𝑠, 𝑡), this yields: 

𝑥̱𝑚+1(𝑡, 𝜔, 𝛼) = 𝑥̱𝑚(𝑡, 𝜔, 𝛼) − ℒ
−1 {

1

𝑠𝑛
[𝑋̱𝑚(𝑡, 𝜔, 𝛼) −

𝑠𝑛−1𝑥̱(0, 𝜔, 𝛼)−. . . −𝑥̱(𝑛−1)(0; 𝜔, 𝛼) + ℒ{𝑁𝑥̱𝑚(𝑡, 𝜔, 𝛼) − g(𝑡; 𝜔)}]},  (18) 

𝑥̄𝑚+1(𝑡, 𝜔, 𝛼) = 𝑥̄𝑚(𝑡, 𝜔, 𝛼) − ℒ
−1 {

1

𝑠𝑛
[𝑋̄𝑚(𝑡, 𝜔, 𝛼) − 𝑠

𝑛−1𝑥̄(0,𝜔, 𝛼)−. . . −𝑥̄(𝑛−1)(0;𝜔, 𝛼) +

ℒ(𝑁𝑥̄𝑚(𝑡, 𝜔, 𝛼) − g(𝑡; 𝜔))]},  (19) 

where 𝑋̱𝑚(𝑡, 𝜔, 𝛼) = ℒ{𝑥̱𝑚(𝑡, 𝜔, 𝛼)} and 𝑋̄𝑚(𝑡, 𝜔, 𝛼) = ℒ{𝑥̄𝑚(𝑡,, 𝛼)}. Rearrange Eqs.(18) 

and (19), it implies to: 

𝑥̱𝑚+1(𝑡, 𝜔, 𝛼) = ℒ
−1 {

𝑥̱(0,𝜔,𝛼)

𝑠
+. . . +

𝑥̱(𝑛−1)(0,𝜔,𝛼)

𝑠𝑛
} − ℒ−1 {

1

𝑠𝑛
(ℒ(𝑁𝑥̱𝑚(𝑡, 𝜔, 𝛼) − g(𝑡;𝜔)))},  (20) 

𝑥̄𝑚+1(𝑡, 𝜔, 𝛼) = ℒ
−1 {

𝑥̄(0,𝜔,𝛼)

𝑠
+. . . +

𝑥̄(𝑛−1)(0,𝜔,𝛼)

𝑠𝑛
} − ℒ−1 {

1

𝑠𝑛
(ℒ(𝑁𝑥̄𝑚(𝑡, 𝜔, 𝛼) − g(𝑡;𝜔)))}, (21) 
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with initial approximation to Eqs.(20) and (21), the following equations can be considered: 

𝑥̱0(𝑡, 𝜔, 𝛼) = ℒ
−1 {

𝑥̱(0,𝜔,𝛼)

𝑠
+
𝑥̱′(0,𝜔,𝛼)

𝑠2
+. . . +

𝑥̱(𝑛−1)(0,𝜔,𝛼)

𝑠𝑛
},  (22) 

𝑥̄0(𝑡, 𝜔, 𝛼) = ℒ
−1 {

𝑥̄(0,𝜔,𝛼)

𝑠
+
𝑥̄′(0,𝜔,𝛼)

𝑠2
+. . . +

𝑥̄(𝑛−1)(0,𝜔,𝛼)

𝑠𝑛
}. (23) 

After applying the inverse Laplace transform to Eqs.(22) and (23), one can get: 

𝑥̱0(𝑡, 𝜔, 𝛼) = 𝑥̱(0,𝜔, 𝛼) + 𝑥̱′(0,𝜔, 𝛼)𝑡+. . . +
𝑥̱(𝑛−1)(0,𝜔,𝛼)

(𝑛−1)!
𝑡𝑛−1,  (24) 

𝑥̄0(𝑡, 𝜔, 𝛼) = 𝑥̄(0,𝜔, 𝛼) + 𝑥̄′(0,𝜔, 𝛼)𝑡+. . . +
𝑥̄(𝑛−1)(0,𝜔,𝛼)

(𝑛−1)!
𝑡𝑛−1. (25) 

Therefore, the solution of Eq.(1) will be 𝑥̱(𝑡, 𝜔, 𝛼) = lim
𝑚→∞

𝑥̱𝑚(𝑡, 𝜔, 𝛼) and 𝑥̄(𝑡, 𝜔, 𝛼) =

lim
𝑚→∞

𝑥̄𝑚(𝑡, 𝜔, 𝛼). 

 

Case 2: If the coefficients 𝑐𝑛−1, 𝑐𝑛−2, … , 𝑐𝑛−𝑚 are positive and 𝑐𝑛−𝑚−1, 𝑐𝑛−𝑚−2, … , 𝑐1, 𝑐0 are 

negative, then Laplace transformation of the lower and upper fuzzy solution 𝑥̃ takes the form: 

ℒ{𝑥̱𝑚+1(𝑡, 𝜔, 𝛼)} = ℒ{𝑥̱𝑚(𝑡, 𝜔, 𝛼)} + ℒ {∫ 𝜆̱(𝜉, 𝑡) [
𝑑𝑛

𝑑𝜉𝑛
𝑥̱𝑚(𝜉, 𝜔, 𝛼) +

𝑡

0

𝑐𝑛−1𝑥̱𝑚
(𝑛−1)(𝜉, 𝜔, 𝛼)+. . . +𝑐𝑛−𝑚𝑥̱𝑚

(𝑛−𝑚)(𝜉, 𝜔, 𝛼) + 𝑐𝑛−𝑚−1𝑥̄𝑚
(𝑛−𝑚−1)(𝜉, 𝜔, 𝛼) +

𝑐𝑛−𝑚−2𝑥̄𝑚
(𝑛−𝑚−2)(𝜉, 𝜔, 𝛼)+. . . +𝑐1𝑥̄′𝑚(𝜉, 𝜔, 𝛼) + 𝑐0𝑥̄𝑚(𝜉, 𝜔, 𝛼) − g(𝜉, 𝜔)] 𝑑𝜉},  

ℒ{𝑥̄𝑚+1(𝑡, 𝜔, 𝛼)} = ℒ{𝑥̄𝑚(𝑡, 𝜔, 𝛼)} + ℒ {∫ 𝜆̄(𝜉, 𝑡) [
𝑑𝑛

𝑑𝜉𝑛
𝑥̄𝑚(𝜉, 𝜔, 𝛼) +

𝑡

0

𝑐𝑛−1𝑥̄𝑚
(𝑛−1)(𝜉, 𝜔, 𝛼)+. . . +𝑐𝑛−𝑚𝑥̄𝑚

(𝑛−𝑚)(𝜉, 𝜔, 𝛼) + 𝑐𝑛−𝑚−1𝑥̱𝑚
(𝑛−𝑚−1)(𝜉, 𝜔, 𝛼) +

𝑐𝑛−𝑚−2𝑥̱𝑚
(𝑛−𝑚−2)(𝜉, 𝜔, 𝛼)+. . . +𝑐1𝑥̱′𝑚(𝜉, 𝜔, 𝛼) + 𝑐0𝑥̱𝑚(𝜉, 𝜔, 𝛼) − g(𝜉, 𝜔)] 𝑑𝜉}.  

 

Case 3: If all the coefficients 𝑐0, 𝑐1, … , 𝑐𝑛−1 are negative, then: 

ℒ{𝑥̱𝑚+1(𝑡, 𝜔, 𝛼)} = ℒ{𝑥̱𝑚(𝑡, 𝜔, 𝛼)} + ℒ {∫ 𝜆̱(𝜉, 𝑡) [
𝑑𝑛

𝑑𝜉𝑛
𝑥̱𝑚(𝜉, 𝜔, 𝛼) + 𝑥̄𝑚

(𝑛−1)(𝜉, 𝜔, 𝛼) + ⋯+
𝑡

0

𝑐1𝑥̄′𝑚(𝜉, 𝜔, 𝛼) + 𝑐0𝑥̄𝑚(𝜉, 𝜔, 𝛼) − g(𝜉, 𝜔)]} 𝑑𝜉,  

ℒ{𝑥̄𝑚+1(𝑡, 𝜔, 𝛼)} = ℒ{𝑥̄𝑚(𝑡, 𝜔, 𝛼)} + ℒ {∫ 𝜆̄(𝜉, 𝑡) [
𝑑𝑛

𝑑𝜉𝑛
𝑥̄𝑚(𝜉, 𝜔, 𝛼) +

𝑡

0

𝑐𝑛−1𝑥̱𝑚
(𝑛−1)(𝜉, 𝜔, 𝛼)+. . . +𝑐1𝑥̱′𝑚(𝜉, 𝜔, 𝛼) + 𝑐0𝑥̱𝑚(𝜉, 𝜔, 𝛼) − g(𝜉, 𝜔)]} 𝑑𝜉. 

 

     The same followed approach in the first case is used in cases 2 and 3 to get the final Lagrange 

multipliers: 

ℒ{𝜆̱(𝑠, 𝑡)} = ℒ{𝜆̄(𝑠, 𝑡)} =
−1

𝑠𝑛
.  

     Taking the inverse Laplace transform, it gives the optimal values of 𝜆̱ and 𝜆̄. Thus, the 

iteration formulations of the second and third cases take the form: 

𝑥̱𝑚+1(𝑡, 𝜔, 𝛼) = 𝑥̱𝑚(𝑡, 𝜔, 𝛼) − ℒ
−1 {

1

𝑠𝑛
[𝑋̱𝑚(𝑡, 𝜔, 𝛼) − 𝑠

𝑛−1𝑥̄(0,𝜔, 𝛼)−. . . −𝑥̄(𝑛−1)(0;𝜔, 𝛼) +

ℒ(𝑁𝑥̄𝑚(𝑡, 𝜔, 𝛼) − g(𝑡; 𝜔))]},  

𝑥̄𝑚+1(𝑡, 𝜔, 𝛼) = 𝑥̄𝑚(𝑡, 𝜔, 𝛼) − ℒ
−1 {

1

𝑠𝑛
[𝑋̄𝑚(𝑡, 𝜔, 𝛼) − 𝑠

𝑛−1𝑥̱(0,𝜔, 𝛼)−. . . −𝑥̱(𝑛−1)(0;𝜔, 𝛼) +

ℒ(𝑁𝑥̱𝑚(𝑡, 𝜔, 𝛼) − g(𝑡; 𝜔))]}.  

 

5. Illustrative Examples 

     Two illustrative examples will be considered in this section, which are carried out for two 

different generations of stochastic processes, namely the Wiener process or Brownian motion, 

which are 1000 and 10000, respectively. The same discretized signal processes of those two 

generations are used in the simulation of the considered examples. These generations are given 

in Figure 1. 
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Figure 1: Discretized Brownian motion with N = 1000 and 10000 generations 

 

Example 1: Consider the first order linear FRODE: 

𝑥̃′(𝑡, 𝜔, 𝛼) + 𝑥̃(𝑡, 𝜔, 𝛼) = 𝑊𝑡(𝜔), 𝑡 ∈ [0,1], 𝑊𝑡 is the Wiener process (26) 

with initial condition: 

𝑥̃0(0, 𝜔0, 𝛼) =  (𝛼, 2 − 𝛼), 𝛼 ∈ [0,1] 
Now, to solve Eq.(26) using the Laplace VIM, it is notable that this equation follows the first 

case because it contains only positive coefficients of the dependent variable. Therefore, using 

the Laplace VIM, we get: 

ℒ{𝑥̱𝑚+1(𝑡, 𝜔, 𝛼)} = ℒ{𝑥̱𝑚(𝑡, 𝜔, 𝛼)} + ℒ {∫ 𝜆̱(𝜉, 𝑡)[𝑥̱′𝑚(𝜉, 𝜔, 𝛼) + 𝑥̱𝑚(𝜉, 𝜔, 𝛼) −𝑊𝜉(𝜔)]
𝑡

0
} 𝑑𝜉,  

ℒ{𝑥̄𝑚+1(𝑡, 𝜔, 𝛼)} = ℒ{𝑥̄𝑚(𝑡, 𝜔, 𝛼)} + ℒ {∫ 𝜆̄(𝜉, 𝑡)[𝑥̄′𝑚(𝜉, 𝜔, 𝛼) + 𝑥̄𝑚(𝜉, 𝜔, 𝛼) −𝑊𝜉(𝜔)]
𝑡

0
} 𝑑𝜉.  

Which will give the general Lagrange multipliers ℒ{𝜆̱(𝑠, 𝑡)} = ℒ{𝜆̄(𝑠, 𝑡)} =
−1

𝑠
. 

Letting the fuzzy solution be given in terms of the lower and upper cases as in the interval 𝑥̃ =
[𝑥̱, 𝑥̄]. Then, the lower-case solution 𝑥̱ may be obtained iteratively as: 
𝑥̱0(0,𝜔0, 𝛼) = 𝛼  

𝑥̱1(𝑡, 𝜔, 𝛼) = ℒ
−1 {

𝑥̱0(0,𝜔0,𝛼)

𝑠
−
 1 

𝑠
ℒ[𝑥̱0(𝑡, 𝜔, 𝛼) −𝑊𝑡(𝜔)]}  

= 𝑥̱0(0,𝜔0, 𝛼) + 𝑡𝑥̱0(0, 𝜔0, 𝛼) − 𝑡𝑊𝑡(𝜔)  
= 𝛼 + 𝛼𝑡 − 𝑡𝑊𝑡(𝜔),  

𝑥̱2(𝑡, 𝜔, 𝛼) = ℒ
−1 {

𝑥̱0(0,𝜔0,𝛼)

𝑠
−
1

𝑠
ℒ[𝛼 + 𝛼𝑡 − 𝑡𝑊𝑡(𝜔) −𝑊𝑡(𝜔)]}  

= 𝛼 + 𝛼𝑡 − 𝑡𝑊𝑡(𝜔) +
𝛼𝑡2

2
−
𝑡2𝑊𝑡(𝜔)

2
,  

𝑥̱3(𝑡, 𝜔, 𝛼) = ℒ
−1 {

𝑥̱0(0,𝜔0,𝛼)

𝑠
−
1

𝑠
ℒ [𝛼 + 𝛼𝑡 − 𝑡𝑊𝑡(𝜔) +

𝛼𝑡2

2
−
𝑡2𝑊𝑡(𝜔)

2
−𝑊𝑡(𝜔)]}  

= 𝛼 + 𝛼𝑡 − 𝑡𝑊𝑡(𝜔) +
𝛼𝑡2

2
−
𝑡2𝑊𝑡(𝜔)

2
+
𝛼𝑡3

6
−
𝑡3𝑊𝑡(𝜔)

6
,  

and so on by induction, one may get: 

𝑥̱𝑚(𝑡, 𝜔, 𝛼) = 𝛼 + ∑
(𝑡)𝑖

𝑖!

𝑚
𝑖=1 (𝛼 −𝑊𝑡(𝜔)), m  ℕ. 

Also, the upper-case solution 𝑥̄ is obtained using the following iterative approximate solutions: 
𝑥̄0(0,𝜔0, 𝛼) = 2 − 𝛼,  

𝑥̄1(𝑡, 𝜔, 𝛼) = ℒ
−1 {

𝑥̄0(0,𝜔0,𝛼)

𝑠
−
 1 

𝑠
ℒ[𝑥̄0(𝑡, 𝜔, 𝛼) −𝑊𝑡(𝜔)]}  

= 𝑥̄0(0,𝜔0, 𝛼) + 𝑡𝑥̄0(0, 𝜔0, 𝛼) + 𝑡𝑊𝑡(𝜔)  
= 2 − 𝛼 − 𝛼𝑡 + 2𝑡 − 𝑡𝑊𝑡(𝜔),  

𝑥̄2(𝑡, 𝜔, 𝛼) = ℒ
−1 {

𝑥̄0(0,𝜔0,𝛼)

𝑠
−
1

𝑠
ℒ[𝑥̄1(𝑡, 𝜔, 𝛼) −𝑊𝑡(𝜔)]}  

= ℒ−1 {
𝑥̄0(0,𝜔0,𝛼)

𝑠
−
1

𝑠
ℒ[2 − 𝛼 − 𝛼𝑡 + 2𝑡 − 𝑡𝑊𝑡(𝜔) −𝑊𝑡(𝜔)]}  

= 2 − 𝛼 − 𝛼𝑡 + 2𝑡 − 𝑡𝑊𝑡(𝜔) + 𝑡
2 −

𝛼𝑡2

2
−
𝑡2𝑊𝑡(𝜔)

2
,  
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𝑥̄3(𝑡, 𝜔, 𝛼) = ℒ
−1 {

𝑥̄0(0,𝜔0,𝛼)

𝑠
−
1

𝑠
ℒ[𝑥̄2(𝑡, 𝜔, 𝛼) −𝑊𝑡(𝜔)]}  

= 2 − 𝛼 − 𝛼𝑡 + 2𝑡 − 𝑡𝑊𝑡(𝜔) + 𝑡
2 −

𝛼𝑡2

2
−
𝑡2𝑊𝑡(𝜔)

2
+
𝑡3

3
−
𝛼𝑡3

6
−
𝑡3𝑊𝑡(𝜔)

6
,  

and so on by induction implies to: 

𝑥̄𝑚(𝑡, 𝜔, 𝛼) = 2 − 𝛼 + ∑
(𝑡)𝑖

𝑖!

𝑚
𝑖=1 ((2 − 𝛼) −𝑊𝑡(𝜔))  

 

     The signal simulation of the generated discretized Brownian motion (or Wiener process) 

with the total number of generations N = 1000 and 10000 (see Figure 1) over the unit time 

interval [0,1]. The corresponding eighth upper and lower approximate solutions of Eq.(26) for 

each generation are given in Figures 2 and 3, respectively with different 𝛼-levels which are 0, 

0.2, 0.4, 0.6, 0.8 and 1. 

 

 

 

 
Figure 2: The eighth lower and upper iterative solutions of Example 1 using Laplace VIM for 

different values of 𝛼-levels and discretized Brownian motion with total signal processing 

number N = 1000. 
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Figure 3: The eighth lower and upper iterative solutions of Example 1 using Laplace VIM for 

different values of 𝛼-levels and discretized Brownian motion with total signal processing 

number N = 10000. 
 

Example 2: Consider the second order FRODE: 

𝑥̃′′(𝑡, 𝜔, 𝛼) − 𝑥̃′(𝑡, 𝜔, 𝛼) + 𝑥̃(𝑡, 𝜔, 𝛼) = cos(𝑊𝑡(𝜔)), 𝑡 ∈ [0,1], (27) 

with initial conditions: 

𝑥̃0(0, 𝜔0, 𝛼) =  (𝛼, 1.5 − 0.5𝛼), 𝑥̃′0(0, 𝜔0, 𝛼) =  (0.5𝛼, 1 − 0.5𝛼), 𝛼 ∈ [0,1], 
where 𝑊𝑡 is the Brownian motion. 

Now, to solve Eq.(27) using the Laplace VIM, it is notable that this equation is of the second 

case because it contains positive and negative coefficients simultaneously. Therefore: 

ℒ{𝑥̱𝑚+1(𝑡, 𝜔, 𝛼)} = ℒ{𝑥̱𝑚(𝑡, 𝜔, 𝛼)} + ℒ {∫ 𝜆̱(𝜉, 𝑡)[𝑥̱′′𝑚(𝜉, 𝜔, 𝛼) + 𝑥̄′𝑚(𝜉, 𝜔, 𝛼) +
𝑡

0

𝑥̱𝑚(𝜉, 𝜔, 𝛼) − cos(𝑊𝑡(𝜔))]} 𝑑𝜉,  

ℒ{𝑥̄𝑚+1(𝑡, 𝜔, 𝛼)} = ℒ{𝑥̄𝑚(𝑡, 𝜔, 𝛼)} + ℒ {∫ 𝜆̄(𝜉, 𝑡)[𝑥̄′′𝑚(𝜉, 𝜔, 𝛼)+𝑥̱′𝑚(𝜉, 𝜔, 𝛼) +
𝑡

0

𝑥̄𝑚(𝜉, 𝜔, 𝛼) − cos(𝑊𝑡(𝜔))]} 𝑑𝜉.  

Therefore, the general Lagrange multiplier ℒ{𝜆̱(𝑠, 𝑡)} = ℒ{𝜆̄(𝑠, 𝑡)} =
−1

𝑠2
. Hence, the lower and 

upper fuzzy solution 𝑥̃ are obtained using the successive approximate solutions as: 

𝑥̱0(0, 𝜔0, 𝛼) = 𝛼, 𝑥̱′0(0, 𝜔0, 𝛼) = 0.5𝛼,  

𝑥̄0(0, 𝜔0, 𝛼) = 1.5 − 0.5𝛼, 𝑥̄′0(0, 𝜔0, 𝛼) = 1 − 0.5𝛼, 
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𝑥̱1(𝑡, 𝜔, 𝛼) = ℒ
−1 {

𝑥̱0(0,𝜔0,𝛼)

𝑠
+
𝑥̱′0(0,𝜔0,𝛼)

𝑠2
−

1

𝑠2
ℒ[𝑥̄′0(𝑡, 𝜔, 𝛼) + 𝑥̱0(𝑡, 𝜔, 𝛼) − cos(𝑊𝑡(𝜔))]}  

= 𝛼 − 0.5𝛼𝑡2 + 0.5𝑡2 cos𝑊𝑡(𝜔) + 0.5𝛼𝑡,  

𝑥̄1(𝑡, 𝜔, 𝛼) = ℒ
−1 {

𝑥̄0(0,𝜔0,𝛼)

𝑠
+
𝑥̄′0(0,𝜔0,𝛼)

𝑠2
−

1

𝑠2
ℒ[𝑥̱′0(𝑡, 𝜔, 𝛼) + 𝑥̄0(𝑡, 𝜔, 𝛼) − cos(𝑊𝑡(𝜔))]}  

= 𝑡 − 0.5𝛼 + 0.25𝛼𝑡2 + 0.5𝑡2 𝑐𝑜𝑠𝑊𝑡(𝜔) − 0.75𝑡
2 − 0.5𝛼𝑡 + 1.5,  

𝑥̱2(𝑡, 𝜔, 𝛼) = ℒ
−1 {

𝑥̱0(0,𝜔0,𝛼)

𝑠
+
𝑥̱′0(0,𝜔0,𝛼)

𝑠2
−

1

𝑠2
ℒ[𝑥̄′1(𝑡, 𝜔, 𝛼) + 𝑥̱1(𝑡, 𝜔, 𝛼) − cos(𝑊𝑡(𝜔))]}  

= 𝛼 − 0.25𝛼𝑡2 − 0.17𝛼𝑡3 + 0.042𝛼𝑡4 + 0.5𝑡2 cos𝑊𝑡(𝜔) − 0.17𝑡
3 cos𝑊𝑡(𝜔) −

0.042𝑡4 cos𝑊𝑡(𝜔) − 0.5𝑡
2 + 0.5𝛼𝑡 + 0.25𝑡3,  

𝑥̄2(𝑡, 𝜔, 𝛼) = ℒ
−1 {

𝑥̄0(0,𝜔0,𝛼)

𝑠
+
𝑥̄′0(0,𝜔0,𝛼)

𝑠2
−

1

𝑠2
ℒ[𝑥̱′1(𝑡, 𝜔, 𝛼) + 𝑥̄1(𝑡, 𝜔, 𝛼) − cos(𝑊𝑡(𝜔))]}  

= 𝑡 − 0.5𝛼 + 0.25𝛼𝑡3 − 0.023𝛼𝑡4 + 0.5𝑡2 cos𝑊𝑡(𝜔) − 0.17𝑡
3 cos𝑊𝑡(𝜔) −

0.042𝑡4 cos𝑊𝑡(𝜔) − 0.75𝑡
2 − 0.17𝑡3 + 0.063𝑡4 − 0.5𝛼𝑡 + 1.5,  

and so on, we can find the approximate lower and upper solutions up to the fifth iterations, 

which are simulated and presented in Figures 4 and 5 related to the above generations of 

Brownian motion given in Figure 1 with different -levels. 

 
 

 

 

 
Figure 4: The fifth lower and upper iterative solutions of Example 2 using Laplace VIM for 

different values of 𝛼-levels and discretized Brownian motion with total signal processing 

number N = 1000. 
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Figure 5: The fifth lower and upper iterative solutions of Example 2 using Laplace VIM for 

different values of 𝛼-levels and discretized Brownian motion with total signal processing 

number N = 10000. 

 

6. Conclusions and Discussion of the Experimental Results 

     Laplace VIM is shown to be an effective and reliable method for solving linear FRODEs, 

where the analytical approximate solution may be obtained. Verification of the obtained results 

may be considered by comparing the approximate results for the lower and upper solutions for 

each -level as well as the coincidence between them when 𝛼 = 1, which is the crisp solution. 

 

     The obtained results are presented in Figures 1-5 of the considered examples show that the 

stochastic process and fuzzy phenomena occurring in the differential equation will affect the 

behavior of the obtained solution, as well as the number generation of the Brownian motion. 
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which may be helpful and needed later on in other real-life applications. In applications, such 

solutions, as an analytical function, are more reliable than numerical results that are obtained 

by other methods. 

  

     It is obvious to notice that the only limitation of the followed approach in this paper is its 

difficulty in solving nonlinear problems that can be treated or handled using the linearization 

approach or considered the Adomian decomposition method to treat nonlinear parts. This may 

be considered a recommendation for further work on this topic. 
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