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Abstract 

     Binary relations or interactions among bio-entities, such as proteins, set up the 

essential part of any living biological system. Protein-protein interactions are usually 

structured in a graph data structure called "protein-protein interaction networks" 

(PPINs). Analysis of PPINs into complexes tries to lay out the significant 

knowledge needed to answer many unresolved questions, including how cells are 

organized and how proteins work. However, complex detection problems fall under 

the category of non-deterministic polynomial-time hard (NP-Hard) problems due to 

their computational complexity. To accommodate such combinatorial explosions, 

evolutionary algorithms (EAs) are proven effective alternatives to heuristics in 

solving NP-hard problems. The main aim of this study is to make a close 

examination of the performance of the EAs where modularity and modularity 

density are selected as two different objective functions. Topology-based modularity 

and topology-based modularity density are designed to examine the detection ability 

of the EAs and to compare their performance. To conduct the experiments, two 

yeast Saccharomyces cerevisiae PPINs are used and evaluated under nine evaluation 

metrics. The results reveal the potential impact of the topology-based modularity 

density to outperform the counterpart modularity functions in almost all evaluation 

metrics.   

   

Keywords: Complex detection, Evolutionary algorithm, Modularity, Modularity 

density, Protein–protein interaction networks. 

 

 للكشف عن مجمعات البروتين: دراسة مقارنة  التخطيط البنيوي النمطية والكثافة النمطية المستندة إلى 
 

 ، براء علي عطية*صفا أحمد عبدالصاحب
 الحاسبات ، كلية العلوم ، جامعة بغداد ، بغداد ، العراق قسم 

 

 خلاصة:ال
العلاقات الثنائية أو التفاعلات بين المكونات الحيوية ، مثل البروتينات ، تنشئ الجزء الأساسي في أي        

للتفا البنيوي  التخطيط  بيولوجي حي. عادة  تفاعل  سمى شبكات  يعلات البروتينية تمثل في رسم بياني ،  نظام 
إلى  تهدف    الكشف عنها و مركبات بروتينية  إلى    PPINs  شبكات تحليل (. محاولات  PPINs) بروتين    -البروتين

هامة للإجابة على العديد من الأسئلة التي لم يتم حلها ، وفهم كيفية تنظيم الخلايا وكيفية عمل  معلومات  طرح  
كشف   مشكلة  فإن   ، ذلك  ومع  والتي    المجمعاتالبروتينات.  الصعبة  المشاكل  فئة  تحت  تحت  تندرج  تندرج 

الحسابي.   NP-hard)  تصنيف  تعقيدها  بسبب  توافقية  (  حسابات  هكذا  مثل  إثبات  ولمعالجة  تم   ، هائلة  
 ( التطورية  حلEAsالخوارزميات  في  للاستدلال  فعالة  كبدائل  تقييم    ها.(  الدراسة هو  هذه  من  الرئيسي  الهدف 
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التطورية    الخوارزمية  وفعالية  تم     EAsلأداء  الهدف.  كدالة  النمطية  والكثافة  النمطية  الوحدات  اختيار  عند 
ومقارنة أدائها.    EAsتصميم النمطية والكثافة النمطية المستندة الى التخطيط البنيوي لفحص قدرة الاكتشاف لـ  

وتقييمها باستخدام    Saccharomyces cerevisiae PPINsالخميرة    شبكتي   تم استخدام ء التجارب ،  لإجرا 
تسعة مقاييس للتقييم. تكشف النتائج عن التأثير المحتمل لكثافة  النمطية المستندة الى التخطيط البنيوي لتتفوق  

   على النمطية في جميع مقاييس التقييم تقريبًا.بالمقارنة 
 

1. Introduction 

     Proteins, the workhorses of the cell, execute many cellular functions by interacting with 

other protein partners through Protein-Protein Interactions (PPIs). Proteins interact with one 

another to perform a variety of vital biological tasks, for example, DNA transcription and 

duplication, DNA damage repair, the translation of mRNA, signal transduction, cell cycle, 

cell metabolism, etc. [1]. These proteins control and mediate many biological activities by 

regulating and supporting one another, forming protein complexes and functional modules 

and, thus, large protein-protein interaction networks (PPINs). For example, Figure 1 depicts 

two yeast Saccharomyces cerevisiae PPINs containing, respectively, 4687 interactions over 

990 proteins (left) and 6993 interactions over 1443 proteins (right). In recent years, the 

computational analysis of PPINs has received a lot of attention because they accurately 

represent the complex interactions that take place between various cell components. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: An illustrative example of two yeast Saccharomyces cerevisiae PPINs. Yeast-D1 

(left) and Yeast-D2 (right). 

 

     Biologists have discovered that functionally related proteins tend to cluster together in a 

network of protein-protein or functional connections. Proteins that interact with each other 

frequently engage in the same biological processes. PPINs are specialized biological networks 

in which the cellular components under study are proteins. A PPIN, then, holds up 

information about the interactome of a given organism. However, not all biological processes 

are connected. It is worth noting that interacting proteins might be classified as "protein 

complexes" or "functional modules." Protein complex identification using PPINs can help 

with understanding the mechanisms that control cell life, describing the evolutionary 

orthology signal, predicting the biological functions of unknown proteins, and, most 

importantly, for therapeutic applications. As a result, protein complex prediction is essential, 

and a race for new high-performance clustering methods to uncover and analyze these 

networks has started. 
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     A PPIN is an undirected graph in which nodes represent proteins and edges represent 

pairwise interactions between proteins. An interaction is defined as a “within-complex 

interaction” or “intra-connection” when both protein partners map into the same protein 

complex. Otherwise, when an interaction between two proteins maps into two different 

complexes, it is termed a "between-complex" interaction or "inter-connection." Figure 2 

graphically maps one protein example. The proteins and their interactions inside the dashed 

circle in Figure 2 represent one protein complex.  

 

 

 

 

 

         

 

 

 

 

 

 

 

Figure 2: An illustrative example depicting the problem of detecting protein complexes from 

a PPI network. Here the nodes within the dashed circle represent proteins within one detected 

complex. Intra-connections are the edges inside the dashed circle. Inter-connections are all the 

others. 

 

      
 

Figure 3: An illustrative example depicting a yeast Saccharomyces cerevisiae PPIN from 

Yeast Protein Database (left) with 990 proteins and 4687 interactions. The PPIN is 

decomposed into 78 complexes (right) of different sizes.  

 

     However, proteins are assembled into many potential complexes with different sizes, each 

of which performs a distinct function in the cell. In other words, interactions of proteins in 

PPINs often include interactions between protein assemblies or protein complexes. Proteins 

that interact with each other are frequently involved in the same biological processes or might 

be linked to certain biological activities. As an illustrative example, consider Figure 3. In the 

figure, the yeast Saccharomyces cerevisiae PPIN (left) contains 990 proteins with 4687 
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interactions. These proteins are from the Yeast Protein Database [2]. On the basis of the true 

81 known complexes annotated in the Munich Information Center for Protein Sequences 

(MIPS) database for genomes and protein sequences, the PPIN is decomposed into 78 

complexes (right). Three complexes are zoomed out in Figure 4, and further, protein #25 

(YGL066W) is zoomed out in Figure 5 with all its intra- and inter-connections.  

 

 

 
 

Figure 4: Three complexes are zoomed out from the yeast Saccharomyces cerevisiae PPIN.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: proteins #2 (YHL030W) and #590 (YBL041W) of the yeast Saccharomyces 

cerevisiae PPIN (shown in Figure 3) are zoomed out with all their intra-connections and inter-

connections. 

 

     Complex networks are useful formalisms for describing the interactions between items in 

many real-world systems. In the field of complex networks, the challenge of identifying 

protein complexes can be seen as a community detection (CD) problem [3]. The CD problem 

is a community discovery problem that asks for a data analysis method to reveal the hidden 

structure of a large-scale networked dataset into distinct and compact clusters, where the 

number and size of the subgroups are unknown. However, the CD problem is proved to be a 

non-deterministic polynomial-time hard (NP-hard) problem. Shortly speaking, the CD 
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problem is an optimization problem to identify the internal grouping of a huge networked 

dataset into clusters [4]. Several researchers from different fields, such as physics, statistics, 

and data mining, have come up with ideas for using artificially intelligent (AI) tools to better 

understand and discover communities in complex networks. 

 

     The main aim of this paper is to develop an evolutionary algorithm (EA) with modularity 

density and a topological-based mutation operator for detecting protein complexes in PPI 

networks. The performance of the proposed algorithm is evaluated against one of the state-of-

the-art complex detection algorithms, particularly EA with modularity and a topological-

based mutation operator. In other words, this study attempts to make a close examination of 

the performance of the EAs when modularity and modularity density are selected as two 

different objective functions. 

 

     The remainder of this paper is organized as follows: The related strategies for heuristic and 

evolutionary-based complex detection methods proposed in the literature are presented. This 

is followed by the main concepts associated with the complex detection problem. This 

includes the meaning of the interactome and interaction graph, the well-known modularity 

and modularity density, and the canonical framework for the evolutionary algorithms. In 

Section 4, we present the main characteristics and formulations of the proposed evolutionary-

based complex detection algorithm in two versions. The results and discussions are provided 

in Section 5. Finally, Section 6 presents the conclusion of the current work and further 

ramifications of the work. 

 

2. Related works 

     The two main streams for complex detection algorithms provided in the literature are 

heuristic-based complex detection algorithms (hCDs) and evolutionary-based complex 

detection algorithms (ECDs). However, due to problem complexity, the literature proves that 

ECDs are more powerful than their counterpart hCDs.  

 

     Traditionally, local-based search algorithms are characterized by heuristic methods. All 

these approaches have a common iterative framework operating on a single partial or 

complete solution. The general framework of the heuristic-based complex detection 

algorithms is composed of a solution perturbation operator and a quality or objective function. 

At each iteration, the objective function is used to evaluate how the perturbed solution 

improves. Different variants of perturbation operators and objective functions are suggested in 

the literature. Examples of some well-known heuristic-based complex detection algorithms 

are: Molecular Complex Detection (MCODE) [4], purification of the bait proteins [5], dense-

neighborhood extraction using connectivity and confidence features (DECAFF) [6], repeated 

random walks (RRW) [7], clustering-based on maximal cliques (CMC) [8], and hierarchical 

link clustering [9, 10]. Although these approaches have been widely adopted, they have 

limited accuracy and inferior performance as compared with evolutionary-based complex 

detection algorithms.  

 

     The beginning efforts to bring up the evolutionary-based complex detection methods were 

returned to Pizzuti and Rombo [3, 11], Bandyopadhyay et al. [12], and Ray et al. [13]. Pizzuti 

and Rombo [3, 11] explored the ability of single-objective genetic algorithms (GAs) to predict 

protein complexes in PPINs when different topological-based quality functions are employed 

as fitness functions. These include modularity (Q), community score (CS), conductance (CO), 

normalized cut (NC), internal density (ID), expansion (EX), and cut ratio (CR). All these 
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quality functions, but Q, explicitly define, with different formulations, the intra- and inter-

complex scores. 

 

     The de-facto formulation of the modularity (Q), on the other hand, handles only the intra-

complex structure score. The definitions of all these quality functions were based on the 

topological structure of the PPIN being clustered. However, all other components of the GA 

proposed in [3, 11], including selection, crossover, and mutation operators, were designed in 

their more or less canonical form. 

 

     Bandyopadhyay et al. and Ray et al. [12, 13] in 2015 and 2016, on the other hand, 

investigated the performance of the multi-objective genetic algorithm, the so-called “non-

dominated sorting genetic algorithm II” (NSGA-II), for solving complex detection problems. 

Again, they adopted the canonical design for the main components of the NSGA-II. The 

topological features of the network, however, were reflected in their multi-objective 

formulations in terms of both intra- and inter-complex structure.   

 

     Thereafter, the starting effort to design a topological-based component in the framework of 

the evolutionary-based complex detection algorithms was suggested by Attea and Abdullah 

[14] in 2018. They proposed a topological-based mutation operator to work at the protein 

level and at the complex level. At the protein level, they proposed a migration operator to 

replace the traditional mutation operator used in [3, 11, 12, 13]. On the other hand, at the 

complex level, they proposed the so-called protein complex attraction and repulsion operator. 

They proved that the topological-based design of the mutation operator all right improves the 

performance of both the single-objective GA of Pizzuti and Rombo in [3, 11] and the NSGA-

II of Bandyopadhyay et al. and Ray et al. in [12, 13]. They demonstrated that this 

improvement is the outcome of the positive collaboration between the topological-based 

design of the algorithm with the single and multi-objective quality functions, i.e., Q, CS, CO, 

NC, ID, EX, and CR, adopted in [3, 11], and the multi-objective intra- and inter-complex 

structure suggested in [12, 13].  

 

     Further, Attea and Abdullah [14] supported their findings by defining a multi-objective 

quality function reflecting a topological intra- and inter-complex structure. Again, they 

proved their ability to reach a promising collaboration between the suggested multi-objective 

function and the topological-based mutation operator.  

 

     The next effort came in 2018 and 2019 by Abdulateef et al. [15, 16] to support the claim 

that the topological-based design for the component(s) of the evolutionary-based complex 

detection algorithms would hopefully improve their detection ability to hit more correct 

complex structures. They developed a heuristic mutation operator based on the topological 

properties of the tested PPIN. They also reported improved performance for the single-

objective EA and the multi-objective EA to uncover more correct complexes from the tested 

PPINs. 

 

3. Background 

3.1 Interactome and interaction graph 

     The term “interactome” sets out the set of all molecular interactions in cells, especially in 

the context of protein-protein interactions. In other words, the interactome is a global 

description obtained by various methods (mass spectrometry, two-hybrid methods, and 

genetic studies) to estimate the whole network of protein interactions for a given organism. 

For example, in 2002, the yeast interactome was estimated to contain up to 80,000 potential 
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interactions. These interactions are essential for almost all cellular processes, so the full 

representation of the interaction collection is needed to understand the cell molecular 

machinery at the system biology level [17].  

PPIN is generally represented as an undirected interaction graph, 𝑁(𝑃, 𝐸), where 𝑛 nodes 𝑃 =
{𝑝1, 𝑝2, … , 𝑝𝑛} represent 𝑛 proteins and 𝑚 edges 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑚} represent pairwise 

interactions. 𝐴 graph 𝑁 is typically represented as a symmetric adjacency matrix, 𝐴 =

[𝑎𝑖𝑗]
𝑛×𝑛

. If proteins 𝑝𝑖 and 𝑝𝑗 interact, both entries 𝑎𝑖𝑗 and 𝑎𝑗𝑖 of A are assigned with 1, 

otherwise, both entries are assigned with 0.  Figure 6 depicts an illustrative example of eight 

PPIs from the yeast Saccharomyces cerevisiae PPIN (Figure 3), with 990 proteins and 4687 

interactions. In Figure 6, a total of 22 interactions out of 4687 interactions are mapped to the 

adjacency matrix. In other words, 44 entries in the adjacency matrix are set to 1. Thus, for the 

whole yeast PPIN network, there should be 4687 × 2 entries set to 1 in the counterpart 

adjacency matrix. 

  

     Adjacency matrix 𝐴 can be represented in list notation by a collection 𝐿 = {𝑙1, 𝑙2, … , 𝑙𝑛} of 

𝑛 adjacency lists, with one list 𝑙𝑖 for each protein 𝑝𝑖 ∈ 𝑃 aggregating all 1 entries in row 𝑖. As 

a result, |𝑙𝑖|  =  ∑ (𝑎𝑖𝑗)𝑛
𝑗=1  and |𝐿|  = ∑ |𝑙𝑖|

𝑛
𝑖=1 . Mathematically, 𝑛 is the cardinality of 𝑁, |𝑙𝑖| 

is the degree of vertex 𝑝𝑖, and |𝐿| is the volume of 𝑁. 

Now, assume 𝛺 is the space of all the decomposition solutions divided into various sized 

complexes. Any clustering algorithm tries to partition the space of 𝐴 into a set 𝐶 =
{𝑐1, 𝑐2, … , 𝑐𝐾} of 𝐾 complexes. It is widely assumed that a protein 𝑝𝑖 ∈ 𝑐𝑘 should have more 

internal connections 𝑖𝑛(𝑝𝑖) than external ones 𝑜𝑢𝑡(𝑝𝑖). Formally speaking, 𝑖𝑛(𝑝𝑖) =
∑ 𝑎𝑖𝑗𝑝𝑗∈𝑐𝑘

 and 𝑜𝑢𝑡(𝑝𝑖) = ∑ 𝑎𝑖𝑗𝑝𝑗∉𝑐𝑘
 respectively, the number of intra-connections and inter-

connections of node 𝑝𝑖 which belongs to cluster 𝑐𝑘 (i.e., |𝑙𝑖| = 𝑖𝑛(𝑝𝑖) + 𝑜𝑢𝑡(𝑝𝑖)). 

 

    
Figure 6: A sample graph depicting a protein complex. On the left, eight nodes, numbered 

{107, 108, 109, 110, 415, 416, 417, 418}, are interacted via edges. An adjacency, symmetric, 

matrix, on the right, maps the complex, where "1" indicates the protein pair interaction, and 

"0" indicates no protein pair interaction. All diagonal elements are assigned with “0”. 

 

3.2 Modularity and modularity density  

     Many researchers investigated the topological properties of protein complexes in PPINs to 

address complex detection problems and discovered that many protein complexes are densely 
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connected among themselves but sparsely connected with the rest of the PPI network. This 

feature is normally computed using modularity-based methods to compute the modular 

structure of different complex networks, including PPINs.  

 

     In the context of community detection, the choice of a good fitness function is another 

critical step for obtaining optimal or near-optimal solutions, which was first introduced by 

Newman and Girvan in [18] using the modularity metric. Modularity, mathematically denoted 

by 𝑄 (Eq. 1) is the first and most well-known quality function used to formally define a 

community (or a complex) structure. It is a single-objective function reflecting the score of 

the internal structure of the community. For a complex structure 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝐾} of 𝐾 

modules or complexes, the modularity is defined as:  

Q=
1

2𝑚
∑ (𝑎𝑖𝑗 −

𝑑𝑖𝑑𝑗

2𝑚
)𝛿𝑐𝑖,𝑐𝑗𝑖𝑗                                             (1)

 Where m is the number of edges in the network, 𝑑𝑖 and 𝑑𝑗  are the degrees of nodes 𝑝𝑖 

and 𝑝𝑗, and 𝛿𝑐𝑖,𝑐𝑗
 is the Kronecker delta function, which returns one if 𝑝𝑖 and 𝑝𝑗 are in the 

same community (i.e. 𝑐𝑖 = 𝑐𝑗) and zero otherwise (i.e. 𝑐𝑖 ≠ 𝑐𝑗). Formally: 

𝛿𝑐𝑖,𝑐𝑗
=  {

1       𝑐𝑖 = 𝑐𝑗         

0       𝑐𝑖 ≠ 𝑐𝑗         
                    (2) 

Assume 𝑐1 and 𝑐2 to be two different complexes, and let 𝑚𝑖 be the number of connections for 

protein 𝑝𝑖 ∈ 𝑐𝑘. Further, let 𝐿(𝑐1, 𝑐2)  = ∑ 𝑎𝑖𝑗𝑖𝜖 𝑐1,𝑗𝜖𝑐2
 denotes the set of connections between 

the proteins of complex 𝑐1 and complex 𝑐2.  Then, Eq. (2) can be expressed in a  more 

convenient form as: 

𝑄 = ∑ [
𝐿(𝑐𝑖 ,𝑐𝑖))

𝑚
−  (

𝑚𝑖

2𝑚
) ²]𝐾

𝑖=1                                  (3) 

 

     For a given complex set structure, the basic idea of modularity is to maximize the number 

of intra-connections within each complex in the set. This is achieved in 𝑄 function by 

calculating the difference between the actual fraction of interactions within a complex and the 

expected number of interactions. Note that the expected number of interactions represents the 

fraction of intra-edges falling in an equivalent network with the same number of complexes 

but with a random distribution of connections in the complexes. If the fraction of intra-

connections is no better than the random distribution, then 𝑄 approaches its minimum value, 

i.e., 0. On the other hand, 𝑄 approaches its maximum value (i.e., 1) while meeting strong 

complex structures.  

 

     The main weakness of the formulation for modularity is that it may favor partitions with a 

few large modules rather than many small modules [19]. Modularity, thus, experiences a 

resolution limit problem where many small complexes (with respect to the whole network) 

may remain undetected even when they are well-defined, strong complexes, like cliques. This 

resolution limit problem often results from the comparison between the number of 

interconnected complexes and the total number of interconnections in the PPIN. It does not 

take into account the size of the network (i.e., 𝑛) as well as how many nodes there are in a 

single complex. Additionally, Eq. 3 does not account for the size of complexes. This indicates 

that partitions derived from modularity maximization could not identify small groups hidden 

within larger complexes with higher modularity values. 

  

     To address this issue and avoid the resolution limit problem of 𝑄, another variant called 

the modularity density (𝑄𝐷) function is proposed in [20]. It is based on the average degree or 

the density of sub-graphs (i.e., complexes). It measures the ratio of the difference between the 
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internal and external degrees, which corresponds to the size of the complex. It is formulated 

as follows:  

𝑄𝐷 = ∑
𝐿(𝑐𝑖,𝑐𝑖)−𝐿(𝑐𝑖,𝑐𝑗)

|𝑐𝑖|
𝐾
𝑖=1                      (4) 

 

3.3 Evolutionary algorithms (the canonical framework): 

     It has been recognized that EAs can produce acceptable or near-optimal solutions to a 

broad class of complex real-world optimization problems. Among the metaheuristic 

algorithms, evolutionary algorithms (EAs) are getting increased attention while supporting 

powerful performance in solving many real-world optimization problems. The key issues 

while considering the design of a new competitive EA for solving a particular real-world 

problem are 1) to formulate the problem  with more robust (mostly multi-objective) 

optimization models, and 2) to develop a cross-fertilization mechanism for combining 

heuristic operators (that are tailored specifically to fit the problem) with the EA framework 

[21]. Several studies followed this rule in designing competitive EAs for solving different NP-

hard problems [22–26].  

  

     The general framework of the EAs is an iterative population-based search model working 

on a set of individual solutions (a small subset of the whole search space of the problem). 

Generally, each individual chromosome in the population has a genotype and phenotype 

representation, and thus, a smooth genotype-phenotype mapping should be formulated. The 

genotype (or low-level) representation is designed as an EA-aware or algorithm-directed 

representation to enable the evolutionary operators to work on. It decomposes the decision 

parameters of the problem into their encoded genes. The phenotype representation, on the 

other hand, is the final high-level layout for the solution.  

  

     The general layout of the algorithm is composed of a set Φ = {Φs, Φ×, Φm} of three main 

evolutionary operators working iteratively, generation by generation. These operators are 

selection, crossover, and mutation [21]. Each operator has a distinct role; however, the 

collaborative endeavor for these evolutionary operators is to evolve a population of randomly 

initialized solutions toward a promising set of solutions in the problem’s search space. To this 

end, each operator adopts the exploitation-exploration search mechanism in a different mode. 

Some operators emphasize exploitation at the expense of exploration, while others stress 

exploration rather than exploitation. However, an appropriate balance between exploitation 

and exploration eventually has a positive impact on the performance of the EA. The 

generations of the EA work end when a stopping criterion is set. Various forms of the 

termination condition could be designed. For example, the search for the EA may end when 

stagnation occurs in the population and the solutions lack any further or obvious 

improvement. However, the more usual way to stop the EA course is after reaching a 

predetermined number of generations.  

  

     The main role of the selection operator (,Φ-𝑠.) is to prepare the mating pool of parent 

solutions. It works as a high-level bias (or preference) operator to prefer some solutions over 

others according to their quality values. The quality of each solution is determined by the 

objective or fitness function, whether single- or multi-objective. It operates on different 

solutions, and copies of the winning solutions will form the mating pool. Crossover and 

mutation operators, on the other hand, are involved as perturbation operators to modify 

complete as well as part of solutions, hopefully towards better, ones. The crossover operator 

(,Φ-×.), with different sorts of design, works as a middle-level operator. It aims to mix 

different parts (i.e., groups of genes) of two parent solutions to generate a different child 
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solution that inherits good traits from the crossed parents. The mutation operator (,Φ-𝑚.), on 

the other hand, works at the low-level operator. It aims to modify different, but single, genes 

of single solutions to generate new nearby children's solutions. The logical course of the 

crossover operator and the mutation operator labors under probabilistic control, and they are 

generally set as opposite. Normally, the crossover operator works with a high probability (,-

×.) to cross two selected parents, while mutation, in its general form, works with a low 

probability (,-𝑚.) to alter a few parts of the solution. 

 

4. The proposed evolutionary-based complex detection algorithm  

     The computational complexity of the complex detection problem in PPINs is proved to be 

NP-hard, and thus, it has been modeled as an optimization problem in several efficacious 

single- and multi-objective evolutionary algorithms [21]. The general framework for an 

evolutionary-based complex detection 𝐸𝐶𝐷: 𝚰 → 𝚰 is an iterated transformation function that 

starts with an initial population 𝚰 = {𝐼1, 𝐼2, … , 𝐼𝑁} of 𝑁 encoded (i.e. genotype) solutions. 

These solutions are generated randomly from the whole search space of the problem Ω. The 

encoding scheme is locus-based adjacency representation [27]. An individual 𝐼1≤𝑖≤𝑛 ∈ 𝚰 can, 

thus, be represented as a vector (Eq. 5) of 𝑛 decision making parameters for the 𝑛 proteins in 

the PPIN. 

𝐼𝑖 = (𝐼𝑖,1, 𝐼𝑖,2, … , 𝐼𝑖,𝑛)                         (5) 

 

     Here, each locus 𝑗 (plural loci) is defined by its index 𝑗 corresponding to protein 𝑝𝑗 and its 

allele value 𝐼𝑖,𝑗. In locus-based representation, 𝐼𝑖,𝑗 refers to a neighbor protein 𝑘 with which 

protein 𝑗 can coexist in the same complex. The global locus-based initialization process 

designates the direct neighbors of 𝑗 in 𝐴, i.e. 𝑎𝑗𝑘 = 1, to be the possible allele values at locus𝑗.  

The decoding function Γ: 𝐼 → 𝐶, then, maps a genotypic solution 𝐼 into its corresponding set 

of complexes 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝐾} of 𝐾 complexes. Note that for any two solutions, 𝐼𝑖 and 𝐼𝑗 in 

the population 𝚰, 𝐾𝑖 and 𝐾𝑗 do not necessarily have to be equivalent. In other words, their 

phenotype solutions 𝐶𝑖 = {𝑐1, 𝑐2, … , 𝑐𝐾𝑖
} and 𝐶𝑗 = {𝑐1, 𝑐2, … , 𝑐𝐾𝑗

} could be dissimilar. Figure 

7 depicts an illustrative example of the genotype and phenotype of a random individual for 

the yeast Saccharomyces cerevisiae PPIN of 990 proteins. The individual is randomly 

initialized with random neighbor-proteins for the 990 proteins. In the figure, four complexes 

from the whole phenotype are also zoomed out.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Example of a randomly initialized individual for the yeast Saccharomyces 

Four complexes 𝐶21, 

𝐶46, 𝐶52 and 𝐶62 are 

zoomed out from a 
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cerevisiae PPIN of 990 proteins. Four complexes; 𝑐21, 𝑐46, 𝑐52 and 𝑐62 are zoomed out in the 

Top-right. Bottom: the genotype of a random individual. The top vector refers to protein 

identifiers. The middle vector assigns random neighbor-protein alleles for the corresponding 

protein identifiers, while the bottom vector represents the phenotype in terms of complex 

identifiers.  

 

     Two quantitative functions; modularity (𝑄 in Eq. 3) and modularity density (𝑄𝐷 in Eq. 4), 

are adopted as objective functions to quantitatively measure the quality of the generated 

complex partitions. Based on the quality values of the solutions, parent solutions are then 

selected using binary tournament selection Φ𝑠: (𝐼1, Θ1) × (𝐼2, Θ2) → 𝐼, where Θ is the quality 

value of the solution computed by 𝑄 or 𝑄𝐷.  
For the work of the remaining evolutionary operators, the selection operator prepares a pool 

of 𝑁 pairs of parents. Then, for a pair of parent solutions, 𝐼1 and 𝐼2,  uniform crossover 

operator (Φ×: 𝐼1 × 𝐼2 × 𝑝× → 𝐼) is adopted to evenly mix their 𝑛 decision making parameters. 

Crossover occurs for the parents pair if the probability of crossing 𝑝 is greater than the 

probability of crossover, 𝑝×. Here,  𝑝×is set to 0.8.  

∀𝑖 ∈ {1,2, … , 𝑁}⋀∀𝑗 ∈ {1,2, … , 𝑛}  

𝐼𝑖,𝑗 = {
𝐼1,𝑗 𝑖𝑓 𝑟𝑎𝑛𝑑 ≤ 0.5

𝐼2,𝑗 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       
                        (6) 

 

     The mutation operator, on the other hand, is adopted to either change the allele value (i.e., 

the neighbor of the mutated protein 𝐼𝑖,𝑗) or the complex-belonging of the mutated protein (i.e., 

𝑗) itself. The strength, or probability, of the mutation operator (,-𝑚.) is usually set low to let 

the mutation operator work as a background operator. The first design (Eq. 7) is the so-called 

"traditional neighbor-based mutation" (,Φ-𝑚.:I×,-𝑚.→𝐼) of Pizzuti and Rombo [3], which 

works on the genotype representation. This in turn will alter the phenotypic structure of the 

individual. The traditional neighbor-based mutation  Φ𝑚 works as follows: It considers all 𝑛 

loci for all 𝑁 individual solutions in the population. If a mutation operator is determined on a 

given locus 𝑗 for an individual 𝐼𝑖 (i.e. when a uniform random number, 𝑟𝑎𝑛𝑑, be less than or 

equal  𝑝𝑚),  then the allele value 𝐼𝑖,𝑗 is exchanged by another value 𝑗′, such that 𝑗′ is one of the 

direct neighbors of protein 𝑗. This can be expressed as:   

∀𝑖 ∈ {1,2, … , 𝑁}⋀∀𝑗 ∈ {1,2, … , 𝑛}  

𝐼𝑖,𝑗 = {
𝑗′ |𝑎𝑗𝑗′ = 1 𝑖𝑓 𝑟𝑎𝑛𝑑 ≤ 𝑝𝑚

𝐼𝑖,𝑗                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       
                       (7) 

 

     The second design (Eq. 8), on the other hand, is named the "migration operator" (,Φ-

𝑡𝑜𝑝−𝑚.:I×,-𝑚.→𝐼) and it directly operates on the phenotype (or the topological) 

representation of the PPIN [14]. When the mutation operator is activated on protein 𝑗 for an 

individual ,𝐼-𝑖., it will change the complex of this protein to a new complex, say ,𝑐-𝑘., where 

it could maintain there the maximum function homogeneity (i.e. ,𝑙∈,𝑐-𝑘.-,𝑎-𝑗𝑙.. has its 

maximum value). 

∀𝑖 ∈ {1,2, … , 𝑁}⋀∀𝑗 ∈ {1,2, … , 𝑛}  

𝐼𝑖,𝑗 = {
𝑗′ |𝑗′ ∈ 𝑐𝑘 ∧ 𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑘∈𝒞(∑ 𝑎𝑗𝑙𝑙∈𝑐𝑘

) 𝑖𝑓 𝑟𝑎𝑛𝑑 ≤ 𝑝𝑚

𝐼𝑖,𝑗                                                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       
                   (8) 

 

     This, in the opposite order, will imply a modification to the genotype representation. The 

general framework for the proposed EA with modularity density and a topology-based 

mutation operator is sketched out in Algorithm 1 and noted as 𝐸𝐴𝑇𝑜𝑝−𝑄𝐷.  
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Algorithm 1: The general framework for the proposed 𝐸𝐴𝑇𝑜𝑝−𝑄𝐷 

Input: 𝑁, Φ𝑠, Φ×, Φ𝑚,  𝑝×, 𝑝𝑚 

Output: 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝐾} with maximum 𝑄𝐷 

begin 

𝑡 ← 0; // initial generation 

 𝑀𝑎𝑥𝐺𝑒𝑛 ← 100; // maximum number of generations 

initialize 𝚰𝑡 ← {𝐼1
𝑡, 𝐼2

𝑡, … , 𝐼𝑁
𝑡 };  

decode: Γ( 𝐼1≤𝑖≤𝑁
𝑡 ): {𝐶1

𝑡 , 𝐶2
𝑡 , … , 𝐶𝑁

𝑡 }; // where 𝐶𝑖
𝑡 = {𝑐1, 𝑐2, … , 𝑐𝐾𝑖

} 

evaluate: 𝚰𝑡: {𝑄𝐷(𝐶1
𝑡), 𝑄𝐷(𝐶2

𝑡), … , 𝑄𝐷(𝐶𝑁
𝑡 )}; 

while (𝑡 ≠ 𝑀𝑎𝑥𝐺𝑒𝑛) do  

    select Φ𝑠: 𝚰𝑡+1 ← {(𝐼1, 𝑄𝐷1)1≤𝑖≤𝑁 × (𝐼2, 𝑄𝐷2)1≤𝑖≤𝑁}; 

    recombine Φ×: 𝚰𝑡+1 ← {(𝐼1 × 𝐼2 × 𝑝×)1≤𝑖≤𝑁}; 

    mutate Φ𝑚: 𝚰𝑡+1 ← {𝐼1≤𝑖≤𝑁
𝑡+1 , 𝑝𝑚};  

    decode: Γ( 𝐼1≤𝑖≤𝑁
𝑡+1 ): {𝐶1

𝑡+1, 𝐶2
𝑡+1, … , 𝐶𝑁

𝑡+1}; // where 𝐶𝑖
𝑡+1 = {𝑐1, 𝑐2, … , 𝑐𝐾𝑖

} 

    evaluate: 𝚰𝑡+𝟏: {𝑄𝐷(𝐶1
𝑡+1), 𝑄𝐷(𝐶2

𝑡+1), … , 𝑄𝐷(𝐶𝑁
𝑡+!)}; 

    𝑡 ← 𝑡 + 1; 

end while; 

return 𝐼1≤𝑖≤𝑁
𝑡  with best 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝐾}  with maximum 𝑄𝐷; 

end 

 

5. Results and discussions 

5.1 PPIN dataset and reference dataset 

     To evaluate the performance of the proposed EA with modularity density (𝑄𝐷) against the 

canonical EA with modularity (𝑄), two yeast Saccharomyces cerevisiae PPINs (refer to 

Figure 1) are used in the experiments [28]. The filtered versions of these networks were 

prepared in [29]. The first PPIN (Yeast-D1) has 4687 interactions over 990 proteins. Only 28 

proteins have single interactions, while the remaining proteins have two or more interactions, 

for an average of 9.4687 interactions per protein. However, the highest number of interactions 

is 52, which are recognized by the protein “YCR057C” (#170). The second PPIN (Yeast-D2) 

contains 1443 proteins paired with 6993 interactions. Here, 92 proteins have single 

interactions, while the remaining proteins have two or more interactions. The maximum 

number of interactions for a single protein is 59 interactions, which are paired by protein 

“YHR052W” (#339). The average number of interactions per protein in PPINs is 9.6923.  

  

     Two reference sets, as identified by 𝐶𝑚𝑝𝑙𝑥_𝐷1 and 𝐶𝑚𝑝𝑙𝑥 _𝐷2, are utilized to validate 

the quality of the detected complexes over, respectively, Yeast-D1 and Yeast-D2. These 

complex datasets were created from the Munich Information Center for Protein Sequences 

(MIPS) genome and protein sequence database. 𝐶𝑚𝑝𝑙𝑥_𝐷1 dataset contains 81 golden or true 

complexes with different sizes ranging from 6 yeast proteins up to 38 yeast proteins. 

However, out of all 990 proteins in the first PPIN (i.e., yeast-D1), 701 proteins are spread out 

among only 78 true complexes with other unknown yeast proteins. This leaves the remaining 

three true complexes free of the known proteins in yeast D1. In short, we found that 701 yeast 

proteins from Yeast-D1 are distributed over 78 true complexes, with sizes ranging from only 

one singular protein up to 34 proteins, with an average of 8.9872 proteins per true complex. 

Thus, the raw representation of 𝐶𝑚𝑝𝑙𝑥_𝐷1 and its representation concerning Yeast-D1 can be 

formally stated in Eqs. 9 and 10, respectively: 

𝑆∗ = {𝑆1, 𝑆2, … , 𝑆81}, |𝑆∗| = 𝐾∗ = 81 and ∀𝑆𝑖∈𝑆∗  6 ≤ |𝑆𝑖| ≤  38                              (9) 
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𝑆∗ = {𝑆1, 𝑆2, … , 𝑆78}, |𝑆∗| = 𝐾∗ = 78 and ∀𝑆𝑖∈𝑆∗  1 ≤ |𝑆𝑖| ≤  34               (10) 

𝐶𝑚𝑝𝑙𝑥 _𝐷2 dataset, on the other hand, contains 162 true complexes (Eq. 11), with sizes 

ranging from 4 yeast proteins up to 266 yeast proteins. However, only 680 yeast proteins in 

Yeast-D2 are distributed over 150 true complexes (Eq. 13), leaving the remaining 12 true 

complexes to contain other yeast proteins. Then, the 150 true complexes contain Yeast-D2 

proteins with sizes ranging from singular proteins up to 136 proteins, with an average of 
680

150
= 4.5333 yeast proteins per true complex. These can be stated mathematically as:  

𝑆∗ = {𝑆1, 𝑆2, … , 𝑆162}, |𝑆∗| = 𝐾∗ = 162 and ∀𝑆𝑖∈𝑆∗  4 ≤ |𝑆𝑖| ≤  266                 (11) 

𝑆∗ = {𝑆1, 𝑆2, … , 𝑆150}, |𝑆∗| = 𝐾∗ = 150 and ∀𝑆𝑖∈𝑆∗  1 ≤ |𝑆𝑖| ≤  136                          (12) 

Now, for validation, we can say that a predicted complex 𝐶𝑖 matches (Eq. 13) one of the true 

complexes from the benchmark set in 𝑆∗ (say 𝑆j), if the proteins of both complexes overlap or 

intersect with overlapping score (Eq. 14) that is equal to or greater than a specified 

threshold 𝜎𝑂𝑆 [30].  

𝑚𝑎𝑡𝑐ℎ (𝐶𝑖, 𝑆𝑗) =  {
1  𝑖𝑓  𝑂𝑆(𝐶𝑖, 𝑆𝑗) ≥ 𝜎𝑂𝑆

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒𝑥              
                             (13) 

𝑂𝑆(𝐶𝑖, 𝑆𝑗) =
|𝐶𝑖∩ 𝑆𝑗|

2

|𝐶𝑖||𝑆𝑗|
                        (14) 

where |𝐶𝑖 ∩  𝑆𝑗|  refers to the number of common proteins to both a predicted complex 𝐶𝑖 and 

a true standard complex 𝑆𝑗. |𝐶𝑖| and  |𝑆𝑗| refer to the number of proteins in 𝐶𝑖 and 𝑆𝑗, 

respectively. In the experiments, we set  𝑂𝑆 to range from 0.1 to 0.8, in an incremental step of 

0.05. 

 

5.2 Algorithm settings 

     In summary, four algorithms are evaluated in the experimental investigations. These are 

the canonical EA with the modularity function and the neighbor-based mutation operator of 

Pizzuti and Rombo [3], the canonical EA with the modularity function and the topological-

based mutation operator of Attea and Abdullah [14, 20], the proposed EA with the modularity 

density function and the neighbor-based mutation operator, and the proposed EA with the 

modularity density function and the topological-based mutation operator. These algorithms 

are noted in the results as 𝐸𝐴𝑄 [3], 𝐸𝐴𝑇𝑜𝑝−𝑄 [14], 𝐸𝐴𝑄𝐷, and 𝐸𝐴𝑇𝑜𝑝−𝑄𝐷, respectively. Each 

algorithm is endorsed for evaluation under a simulation of 30 different runs, and each is 

initialized with a random population of 100 individual genotype solutions. The evolutionary 

process of each algorithm is allowed to continue for 100 generations. The average of the 30 

different runs (in terms of the best solution obtained) is reported for each algorithm. The best 

solution for each algorithm is recognized by its objective value (𝑄 or 𝑄𝐷). Thus, the best 

solution for the canonical EA with modularity and the topological-based EA with modularity 

(i.e. 𝐸𝐴𝑄 and 𝐸𝐴𝑇𝑜𝑝−𝑄) is the solution with the largest value of 𝑄. On the other hand, the best 

solution for the canonical EA with modularity density and the topological-based EA with 

modularity density (i.e. 𝐸𝐴𝑄𝐷, and 𝐸𝐴𝑇𝑜𝑝−𝑄𝐷) is the solution with the largest value of 𝑄𝐷. 

 

5.3 Evaluation metrics 

     The percentage of the true benchmark complexes that match (with respect to the 

overlapping score) any of the detected complexes is known as 𝑟𝑒𝑐𝑎𝑙𝑙. On the other hand, 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 refers to the fraction of the detected complexes that match any of the true 

complexes. The 𝐹 score, then, represents the harmonic mean of both  recall and precision. 

𝑟𝑒𝑐𝑎𝑙𝑙 =
|𝑆𝑖|𝑆𝑖∈𝑆∗⋀∃𝐶𝑗∈𝐶→𝑚𝑎𝑡𝑐ℎ(𝑆𝑖,𝐶𝑗)

𝐾∗                    (15) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝐶𝑖|𝐶𝑖∈𝐶⋀∃𝑆𝑗∈𝑆∗→𝑚𝑎𝑡𝑐ℎ(𝐶𝑖,𝑆𝑗)

𝐾
                  (16) 
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𝐹 =
2×𝑟𝑒𝑐𝑎𝑙𝑙×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
                     (17) 

 

     While 𝑟𝑒𝑐𝑎𝑙𝑙 and 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 measure the cumulative quality of the detected complexes for 

an algorithm prediction at the complex level, 𝑟𝑒𝑐𝑎𝑙𝑙𝑁 and 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑁 can estimate the 

detection accuracy at the protein level [29]. Finally, 𝐹𝑁 score imitates the 𝐹 score but at the 

protein level for both 𝑟𝑒𝑐𝑎𝑙𝑙𝑁 and 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑁 measures. 

𝑟𝑒𝑐𝑎𝑙𝑙𝑁 =
∑ |𝑚𝑖|

𝐾𝑠
𝑖=1

∑ |𝑆𝑖|
𝐾𝑆
𝑖=1

                     (18) 

where |𝑚𝑖| = 𝑚𝑎𝑥|𝐶𝑖∩𝑆𝑗| {∀ 𝑆𝑗 ∈  𝑆∗ ∧ 𝑚𝑎𝑡𝑐ℎ(𝑆𝑖, 𝐶𝑗) ≥ 𝜎𝑂𝑆}   

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑁 =
∑ |𝑚𝑖|

𝐾𝑐
𝑖=1

∑ |𝐶𝑖|
𝐾𝑐
𝑖=1

              (19) 

where |𝑚𝑖| = 𝑚𝑎𝑥|𝐶𝑗∩𝑆𝑖| {∀ 𝐶𝑗 ∈  𝐶∗ ∧ 𝑚𝑎𝑡𝑐ℎ(𝐶𝑗 , 𝑆𝑖) ≥ 𝜎𝑂𝑆} 

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑁 =
2  ×  𝑟𝑒𝑐𝑎𝑙𝑙𝑁  ×  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑁

𝑟𝑒𝑐𝑎𝑙𝑙𝑁+  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑁
              (20) 

 

     Three other measures are also used in the evaluation. These are the complex-wise positive 

predictive value (PPV), the complex-wise sensitivity (𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦), and the geometric 

accuracy (𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) [30]. Both 𝑃𝑃𝑉 and 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 are based on the size of the 

intersection between the detected complexes and the true benchmark complexes. 

𝑃𝑃𝑉 =
∑ 𝑚𝑎𝑥

𝑖=1

𝐾𝑆 𝑡𝑖𝑗
𝐾𝐶
𝑗=1

∑ ∑ 𝑡𝑖𝑗
𝐾𝑠
𝑖=1

𝐾𝑐
𝑗=1

              (21) 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
∑ 𝑚𝑎𝑥

𝑗=1

𝐾𝐶 𝑡𝑖𝑗
𝐾𝑆
𝑖=1

∑ |𝑆𝑖|
𝐾𝑆
𝑖=1

              (22) 

where 𝑡𝑖𝑗  acts as the number of proteins shared by both the golden standard complex 𝑖 and the 

predicted complex 𝑗. The geometric accuracy can be utilized to indicate the trade-off between 

𝑠𝑒𝑛𝑠𝑖𝑡𝑣𝑖𝑡𝑦 and 𝑃𝑃𝑉. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = √𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑃𝑃𝑉              (23) 

 

5.4 Results 

 

The results are reported in Tables 1–10, where the efficacious results of one competitive 

algorithm as compared with its counterpart algorithm are designated with boldface. Almost all 

the results presented in Tables 1–10 prove the ability of the EA with modularity density in 

both versions (i.e., 𝐸𝐴𝑄𝐷 and 𝐸𝐴𝑇𝑜𝑝−𝑄𝐷) to outperform (in almost all evaluation metrics) 𝐸𝐴𝑄 

of Pizzuti and Rombo [3] and 𝐸𝐴𝑇𝑜𝑝−𝑄 of Attea and Abdullah [14]. This is mainly due to the 

modularity density function’s ability to handle more complex structures accurately than its 

counterpart. In other words, 𝑄𝐷 in 𝐸𝐴𝑄𝐷 tends to lessen the negative impact of the resolution 

limit problem of 𝑄 in 𝐸𝐴𝑄. This in turn would promote those solutions with smaller complex 

sizes than those larger complex sizes preferred by 𝑄 in 𝐸𝐴𝑄.  

Further, the results give an indication that positive collaboration can be obtained by 𝑄𝐷 and 

the topological-based mutation. Here, while the topologically based mutation attempts to 

figure out more appropriate complex structures than the canonical neighbor-based mutation, 

𝑄𝐷 more quickly directs its search ability towards such solutions.   
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Table 1: Performance comparison for Yeast-D1 in terms of 𝑅𝑒𝑐𝑎𝑙𝑙, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, and 𝐹 for an 

average of 30 runs of canonical EA with 𝑄 model (𝐸𝐴𝑄) against the proposed EA with 𝑄𝐷 

model (𝐸𝐴𝑄𝐷). 

𝑶𝑺 
𝑹𝒆𝒄𝒂𝒍𝒍 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝑭 

𝑬𝑨𝑸 𝑬𝑨𝑸𝑫 𝑬𝑨𝑸 𝑬𝑨𝑸𝑫 𝑬𝑨𝑸 𝑬𝑨𝑸𝑫 

0.10 0.8944 0.9287 0.7826 0.7813 0.8345 0.8484 

0.15 0.8462 0.8765 0.7368 0.7446 0.7873 0.8050 

0.20 0.7962 0.8361 0.7244 0.7374 0.7583 0.7814 

0.25 0.7560 0.8056 0.7136 0.7299 0.7339 0.7656 

0.30 0.7171 0.7761 0.6848 0.7080 0.7003 0.7402 

0.35 0.6885 0.7406 0.6588 0.6818 0.6729 0.7098 

0.40 0.6611 0.7098 0.6343 0.6652 0.6471 0.6866 

0.45 0.6248 0.6821 0.5996 0.6400 0.6116 0.6602 

0.50 0.6081 0.6624 0.5881 0.6247 0.5976 0.6429 

0.55 0.5654 0.6201 0.5427 0.5824 0.5535 0.6005 

0.60 0.5410 0.5979 0.5195 0.5616 0.5297 0.5790 

0.65 0.5162 0.5774 0.4958 0.5425 0.0550 0.5592 

0.70 0.4923 0.5483 0.4729 0.5152 0.4821 0.5311 

0.75 0.4526 0.5111 0.4347 0.4801 0.4432 0.4950 

0.80 0.4218 0.4782 0.4052 0.4494 0.4131 0.4632 

 

Table 2: Performance comparison for Yeast-D1 in terms of 𝑅𝑒𝑐𝑎𝑙𝑙𝑁, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑁, and 𝐹𝑁 for 

an average of 30 runs of canonical  EA with 𝑄 model (𝐸𝐴𝑄) against the proposed EA with 

𝑄𝐷 model (𝐸𝐴𝑄𝐷). 

𝑶𝑺 
𝑹𝒆𝒄𝒂𝒍𝒍𝑵 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏𝑵 𝑭𝑵 

𝑬𝑨𝑸 𝑬𝑨𝑸𝑫 𝑬𝑨𝑸 𝑬𝑨𝑸𝑫 𝑬𝑨𝑸 𝑬𝑨𝑸𝑫 

0.10 0.8301 0.8540 0.6905 0.7343 0.7538 0.7894 

0.15 0.8066 0.8229 0.6845 0.7297 0.7404 0.7731 

0.20 0.7647 0.7942 0.6793 0.7269 0.7192 0.7587 

0.25 0.7221 0.7692 0.6714 0.7217 0.6955 0.7445 

0.30 0.6643 0.7391 0.6644 0.7039 0.6540 0.7209 

0.35 0.6351 0.7097 0.6209 0.6844 0.6278 0.6967 

0.40 0.7221 0.6697 0.6714 0.6624 0.6955 0.6659 

0.45 0.5552 0.6332 0.5518 0.6295 0.5535 0.6313 

0.50 0.5273 0.5998 0.5290 0.6013 0.5282 0.6005 

0.55 0.4902 0.5497 0.4902 0.5497 0.4902 0.5497 

0.60 0.4619 0.5189 0.4619 0.5189 0.4619 0.5189 

0.65 0.4408 0.4893 0.4408 0.4893 0.4408 0.4893 
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0.70 0.4138 0.4547 0.4138 0.4547 0.4138 0.4547 

0.75 0.3795 0.4222 0.3795 0.4222 0.3795 0.4222 

0.80 0.3586 0.3992 0.3586 0.3992 0.3586 0.3992 

 

Table 3: Performance comparison for Yeast-D1 in terms of 𝑅𝑒𝑐𝑎𝑙𝑙, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, and 𝐹 for an 

average of 30 runs of topological-based  EA with 𝑄 model (𝐸𝐴𝑇𝑜𝑝−𝑄) against the proposed 

EA with 𝑄𝐷 model (𝐸𝐴𝑇𝑜𝑝−𝑄𝐷). 

𝑶𝑺 
𝑹𝒆𝒄𝒂𝒍𝒍 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝑭 

𝑬𝑨𝑻𝒐𝒑−𝑸 𝑬𝑨𝑻𝒐𝒑−𝑸𝑫 𝑬𝑨𝑻𝒐𝒑−𝑸 𝑬𝑨𝑻𝒐𝒑−𝑸𝑫 𝑬𝑨𝑻𝒐𝒑−𝑸 𝑬𝑨𝑻𝒐𝒑−𝑸𝑫 

0.10 0.8239 0.9496 0.7783 0.7764 0.8000 0.8542 

0.15 0.7496 0.9064 0.7370 0.7433 0.7428 0.8167 

0.20 0.6906 0.8650 0.7348 0.7425 0.7116 0.7989 

0.25 0.6427 0.8355 0.7247 0.7413 0.6809 0.7854 

0.30 0.6145 0.8021 0.7090 0.7388 0.6582 0.7690 

0.35 0.5966 0.7812 0.6979 0.7313 0.6431 0.7553 

0.40 0.5701 0.7620 0.6867 0.7293 0.6228 0.7451 

0.45 0.5436 0.7496 0.6681 0.7242 0.5993 0.7366 

0.50 0.5329 0.7231 0.6576 0.6999 0.5885 0.7112 

0.55 0.5197 0.7077 0.6427 0.65850 0.5745 0.6960 

0.60 0.5141 0.6987 0.6358 0.6762 0.5683 0.6872 

0.65 0.5030 0.6795 0.6220 0.6576 0.5560 0.6682 

0.70 0.4983 0.6675 0.6162 0.6459 0.5508 0.6564 

0.75 0.4714 0.6222 0.5830 0.6022 0.5211 0.6119 

0.80 0.4449 0.5893 0.5502 0.5704 0.4918 0.5796 

 

Table 4: Performance comparison for Yeast-D1 in terms of 𝑅𝑒𝑐𝑎𝑙𝑙𝑁, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑁, and 𝐹𝑁 for 

an average of 30 runs of the topological-based  EA with 𝑄 model (𝐸𝐴𝑇𝑜𝑝−𝑄) against the 

proposed EA with 𝑄𝐷 model (𝐸𝐴𝑇𝑜𝑝−𝑄𝐷). 

𝑶𝑺 
𝑅𝑒𝑐𝑎𝑙𝑙𝑁 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑁 𝑭𝑵 

𝑬𝑨𝑻𝒐𝒑−𝑸 𝑬𝑨𝑻𝒐𝒑−𝑸𝑫 𝑬𝑨𝑻𝒐𝒑−𝑸 𝑬𝑨𝑻𝒐𝒑−𝑸𝑫 𝑬𝑨𝑻𝒐𝒑−𝑸 𝑬𝑨𝑻𝒐𝒑−𝑸𝑫 

0.10 0.8556 0.9441 0.6274 0.7893 0.7238 0.8597 

0.15 0.8058 0.9042 0.6237 0.7854 0.7028 0.8406 

0.20 0.7518 0.8786 0.6219 0.7853 0.6803 0.8293 

0.25 0.6715 0.8523 0.6021 0.7844 0.6345 0.8169 

0.30 0.6067 0.8174 0.5630 0.7825 0.5839 0.7995 

0.35 0.5841 0.8054 0.5451 0.7787 0.5638 0.7918 

0.40 0.5436 0.7804 0.5270 0.7749 0.5350 0.7777 

0.45 0.4931 0.7629 0.4880 0.7620 0.4905 0.7624 

0.50 0.4765 0.6927 0.4735 0.6927 0.4750 0.6927 

0.55 0.4568 0.6741 0.4568 0.6741 0.4568 0.6741 

0.60 0.4507 0.6595 0.4507 0.6595 0.4507 0.6595 

0.65 0.4310 0.6229 0.4310 0.6229 0.4310 0.6229 

0.70 0.4263 0.6062 0.4263 0.6062 0.4263 0.6062 

0.75 0.4009 0.5403 0.4009 0.5403 0.4009 0.5403 
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0.80 0.3796 0.5201 0.3796 0.5201 0.3796 0.5201 

 

 

 

Table 5: Performance comparison for Yeast-D2 in terms of 𝑅𝑒𝑐𝑎𝑙𝑙, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, and 𝐹 for an 

average of 30 runs of canonical  EA with 𝑄 model (𝐸𝐴𝑄) against the proposed EA with 𝑄𝐷 

model (𝐸𝐴𝑄𝐷). 

𝑶𝑺 
𝑹𝒆𝒄𝒂𝒍𝒍 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝑭 

𝑬𝑨𝑸 𝑬𝑨𝑸𝑫 𝑬𝑨𝑸 𝑬𝑨𝑸𝑫 𝑬𝑨𝑸 𝑬𝑨𝑸𝑫 

0.10 0.9533 0.9709 0.6083 0.6175 0.7425 0.7547 

0.15 0.8884 0.9113 0.5716 0.5822 0.6953 0.7103 

0.20 0.8171 0.8449 0.5376 0.5521 0.6482 0.6676 

0.25 0.7482 0.7736 0.4825 0.5003 0.5864 0.6074 

0.30 0.6709 0.7009 0.4578 0.4760 0.5439 0.5667 

0.35 0.6007 0.6353 0.4260 0.4443 0.4981 0.5227 

0.40 0.5549 0.5909 0.4058 0.4279 0.4684 0.4961 

0.45 0.4913 0.5236 0.3722 0.3969 0.4233 0.4513 

0.50 0.4709 0.4991 0.3657 0.3886 0.4114 0.4368 

0.55 0.4029 0.4240 0.3221 0.3406 0.3577 0.3775 

0.60 0.3669 0.3853 0.3018 0.3196 0.3309 0.3492 

0.65 0.3207 0.3413 0.2770 0.2990 0.2969 0.3185 

0.70 0.2653 0.2904 0.2414 0.2632 0.2525 0.2760 

0.75 0.2296 0.2584 0.2106 0.2369 0.2194 0.2470 

0.80 0.1978 0.2211 0.1882 0.2124 0.1927 0.2165 

 

Table 6: Performance comparison for Yeast-D2 in terms of 𝑅𝑒𝑐𝑎𝑙𝑙𝑁, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑁, and 𝐹𝑁 for 

an average of 30 runs of canonical  EA with 𝑄 model (𝐸𝐴𝑄) against the proposed EA with 

𝑄𝐷 model (𝐸𝐴𝑄𝐷). 

𝑶𝑺 
𝑹𝒆𝒄𝒂𝒍𝒍𝑵 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏𝑵 𝑭𝑵 

𝑬𝑨𝑪𝒂𝒏𝑸 𝑬𝑨𝑪𝒂𝒏𝑸𝑫 𝑬𝑨𝑪𝒂𝒏𝑸 𝑬𝑨𝑪𝒂𝒏𝑸𝑫 𝑬𝑨𝑪𝒂𝒏𝑸 𝑬𝑨𝑪𝒂𝒏𝑸𝑫 

0.10 0.5738 0.5538 0.7033 0.7217 0.6317 0.6265 

0.15 0.5532 0.5395 0.6931 0.7113 0.6150 0.6134 

0.20 0.5219 0.5051 0.6772 0.6955 0.5892 0.5849 

0.25 0.4853 0.4728 0.6530 0.6684 0.5565 0.5536 

0.30 0.4344 0.4386 0.6248 0.6415 0.5123 0.5207 

0.35 0.3920 0.4103 0.5986 0.6184 0.4735 0.4930 

0.40 0.3474 0.3703 0.5537 0.5864 0.4266 0.4537 

0.45 0.3078 0.3314 0.5175 0.5542 0.3858 0.4146 

0.50 0.2791 0.3005 0.4999 0.5323 0.3580 0.3839 

0.55 0.2450 0.2505 0.4681 0.4873 0.3215 0.3305 

0.60 0.2189 0.2247 0.4372 0.4571 0.2914 0.3009 

0.65 0.1922 0.1980 0.3977 0.4215 0.2588 0.2689 

0.70 0.1463 0.1618 0.3393 0.3752 0.2040 0.2256 

0.75 0.1253 0.1445 0.2955 0.3401 0.1756 0.2025 

0.80 0.1043 0.1188 0.2532 0.2880 0.1476 0.1679 
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Table 7: Performance comparison for Yeast-D2 in terms of 𝑅𝑒𝑐𝑎𝑙𝑙, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, and 𝐹 for an 

average of 30 runs of topological-based  EA with 𝑄 model (𝐸𝐴𝑇𝑜𝑝−𝑄) against the proposed 

EA with 𝑄𝐷 model (𝐸𝐴𝑇𝑜𝑝−𝑄𝐷). 

𝑶𝑺 
𝑹𝒆𝒄𝒂𝒍𝒍 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝑭 

𝑬𝑨𝑻𝒐𝒑−𝑸 𝑬𝑨𝑻𝒐𝒑−𝑸𝑫 𝑬𝑨𝑻𝒐𝒑−𝑸 𝑬𝑨𝑻𝒐𝒑−𝑸𝑫 𝑬𝑨𝑻𝒐𝒑−𝑸 𝑬𝑨𝑻𝒐𝒑−𝑸𝑫 

0.10 0.9038 0.9853 0.5899 0.6183 0.7137 0.7597 

0.15 0.8098 0.9318 0.5730 0.5906 0.6709 0.7229 

0.20 0.7318 0.8624 0.5495 0.5674 0.6275 0.6843 

0.25 0.6707 0.7987 0.5022 0.5098 0.5741 0.6222 

0.30 0.6093 0.7327 0.4970 0.4997 0.5472 0.5940 

0.35 0.5349 0.6684 0.4714 0.4764 0.5007 0.5562 

0.40 0.4951 0.6216 0.4535 0.4593 0.4730 0.5281 

0.45 0.4284 0.5520 0.4186 0.4289 0.4230 0.4825 

0.50 0.4076 0.5271 0.4084 0.4212 0.4075 0.4681 

0.55 0.3673 0.4569 0.3818 0.3827 0.3742 0.4163 

0.60 0.3373 0.4222 0.3625 0.3646 0.3492 0.3911 

0.65 0.3053 0.3807 0.3441 0.3446 0.3233 0.3616 

0.70 0.2562 0.3062 0.3082 0.2958 0.2797 0.3008 

0.75 0.2420 0.2909 0.2931 0.2840 0.2650 0.2873 

0.80 0.2298 0.2618 0.2788 0.2618 0.2519 0.2617 

 

Table 8: Performance comparison for Yeast-D2 in terms of 𝑅𝑒𝑐𝑎𝑙𝑙𝑁, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑁, and 𝐹𝑁 for 

an average of 30 runs of topological-based  EA with 𝑄 model (𝐸𝐴𝑇𝑜𝑝−𝑄) against the proposed 

EA with 𝑄𝐷 model (𝐸𝐴𝑇𝑜𝑝−𝑄𝐷). 

𝑶𝑺 
𝑹𝒆𝒄𝒂𝒍𝒍𝑵 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏𝑵 𝑭𝑵 

𝑬𝑨𝑻𝒐𝒑−𝑸 𝑬𝑨𝑻𝒐𝒑−𝑸𝑫 𝑬𝑨𝑻𝒐𝒑−𝑸 𝑬𝑨𝑻𝒐𝒑−𝑸𝑫 𝑬𝑨𝑻𝒐𝒑−𝑸 𝑬𝑨𝑻𝒐𝒑−𝑸𝑫 

0.10 0.6090 0.5878 0.6812 0.7506 0.6427 0.6592 

0.15 0.5753 0.5764 0.6785 0.7448 0.6223 0.6498 

0.20 0.5423 0.5427 0.6689 0.7364 0.5987 0.6247 

0.25 0.5021 0.5125 0.6508 0.7151 0.5666 0.5970 

0.30 0.4587 0.4855 0.6224 0.7051 0.5276 0.5750 

0.35 0.3981 0.4598 0.5997 0.6817 0.4778 0.5491 

0.40 0.3544 0.4183 0.5636 0.6535 0.4345 0.5100 

0.45 0.2974 0.3710 0.5157 0.6255 0.3767 0.4657 

0.50 0.2637 0.3390 0.4854 0.6068 0.3409 0.4349 

0.55 0.2410 0.2968 0.4686 0.5786 0.3178 0.3922 

0.60 0.2161 0.2679 0.4458 0.5568 0.2905 0.3616 

0.65 0.1884 0.2430 0.4209 0.5272 0.2599 0.3325 

0.70 0.1551 0.1842 0.3858 0.4608 0.2212 0.2631 

0.75 0.1408 0.1730 0.3490 0.4347 0.2005 0.2474 

0.80 0.1273 0.1490 0.3144 0.3756 0.1811 0.2133 
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Table 9: Performance comparison for Yeast-D1 in terms of 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦,  𝑃𝑃𝑉, and 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 for the tested EA-based complex detection approaches for PPI Yeast-D1.  

𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 𝑷𝑷𝑽 𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚 

𝑬𝑨𝑸 𝑬𝑨𝑸𝑫 𝑬𝑨𝑸 𝑬𝑨𝑸𝑫 𝑬𝑨𝑸 𝑬𝑨𝑸𝑫 

0.9082 0.8937 0.6925 0.7363 0.7928 0.8109 

𝑬𝑨𝑻𝒐𝒑−𝑸 𝑬𝑨𝑻𝒐𝒑−𝑸𝑫 𝑬𝑨𝑻𝒐𝒑𝑸 𝑬𝑨𝑻𝒐𝒑𝑸𝑫 𝑬𝑨𝑻𝒐𝒑𝑸 𝑬𝑨𝑻𝒐𝒑𝑸𝑫 

0.9782 0.9646 0.6277 0.7904 0.7834 0.8732 

 

Table 10: Performance comparison for Yeast-D2 in terms of 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦,  𝑃𝑃𝑉, and 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 for the tested EA-based complex detection approaches for PPI Yeast-D2.  

𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 𝑷𝑷𝑽 𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚 

𝑬𝑨𝑸 𝑬𝑨𝑸𝑫 𝑬𝑨𝑸 𝑬𝑨𝑸𝑫 𝑬𝑨𝑸 𝑬𝑨𝑸𝑫 

0.5933 0.5648 0.3015 0.2912 0.4229 0.4055 

𝑬𝑨𝑻𝒐𝒑−𝑸 𝑬𝑨𝑻𝒐𝒑−𝑸𝑫 𝑬𝑨𝑻𝒐𝒑𝑸 𝑬𝑨𝑻𝒐𝒑𝑸𝑫 𝑬𝑨𝑻𝒐𝒑𝑸 𝑬𝑨𝑻𝒐𝒑𝑸𝑫 

0.6567 0.5933 0.2775 0.3015 0.4269 0.4229 

 

6. Conclusions 

     The results in the tables reflect that the higher recall values obtained by the proposed 

algorithm in both versions of the neighbor-based mutation and the topological-based mutation 

mean that the proposed algorithm predicts a higher number of true complexes of all the true 

complexes in the benchmark dataset. Further, the results in the tables reveal high values of 

precision obtained by the proposed algorithm, again in both of its two versions. This implies a 

more reliable detection, as the detected complex structures are self-possessed with a high 

fraction of correct neighboring proteins belonging to the true complexes while simultaneously 

filtering out more false complex structures. Also revealed by the results is the ability of the 

proposed algorithm in both its versions to handle more compromise between the contradictory 

intentions of recall and precision. This can be seen from the higher values achieved by their 

harmonic mean of 𝐹 score at both complex and protein levels. 

 

     In this paper, the problem of complex detection in PPI networks has been redefined as an 

EA-based optimization problem. The adopted quality function is modularity density, where 

the main interest is to compare the effectiveness of the proposed EA with modularity density 

against the canonical EA with modularity function. Moreover, the investigation considers two 

forms of mutation operator. These are the neighbor-based mutation operator and the 

topological-based mutation operator. The evaluation is performed using two yeast 

saccharomyces cerevisiae PPINs. The experimental results demonstrated the ability of the EA 

modularity density and the topological-based mutation operator to outperform the canonical 

EA with a neighbor-based mutation operator. Both the proposed 𝐸𝐴𝑄𝐷 and 𝐸𝐴𝑇𝑜𝑝−𝑄𝐷 achieve 

higher values for 𝑟𝑒𝑐𝑎𝑙𝑙 and 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 at both complex and protein levels than the 

counterpart EA with modularity. More importantly, the algorithms can handle more 

compromise between the competing aims of 𝑟𝑒𝑐𝑎𝑙𝑙 and 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. This is proved by the 

improved values obtained by their harmonic mean of 𝐹 score, again, at both complex and 

protein levels (i.e. 𝐹 and 𝐹𝑁).  

 

     However, the results of 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦,  𝑃𝑃𝑉, and 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 indicated the need for further 

fruitful design issues. This opens the door for further ramifications to improve the detection 

ability of the proposed evolutionary-based complex detection algorithms. This would be 
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possible by playing with other fruitful information in the proteins. The additional information 

could be injected into the algorithm’s design. One of the essential pieces of information is the 

gene ontology (GO) and its role in identifying the functional, rather than topological, 

similarities between protein pairs.    
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