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Abstract:

In this paper, we design a fuzzy neural network to solve fuzzy singularly
perturbed Volterra integro-differential equation by using a High Performance
Training Algorithm such as the Levenberge-Margaurdt (TrianLM) and the sigmoid
function of the hidden units which is the hyperbolic tangent activation function. A
fuzzy trial solution to fuzzy singularly perturbed Volterra integro-differential
equation is written as a sum of two components. The first component meets the
fuzzy requirements, however, it does not have any fuzzy adjustable parameters. The
second component is a feed-forward fuzzy neural network with fuzzy adjustable
parameters. The proposed method is compared with the analytical solutions. We find
that the proposed method has excellent accuracy in findings, a lower error rate, and
faster convergence than other typical methods.

Keywords: Fuzzy Singularly perturbed Volterra integro-differential equations,
Singularly perturbed problems, Volterra integro-differential equations, Fuzzy neural
network, Levenberge-Margaurdt Algorithm.
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1. Introduction:

We use in this article a constructive interference of the artificial intelligence and fuzzy
logic that appear in the form of a fuzzy artificial neural network (FANN). An initial attempts
to construct the artificial intelligence (Al) and neural network concept that is accomplished by
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Werren McCulloach and Walter Pitts in 1943 [1]. In 1949, Donald Hebb developed a
neuropsychological theory and its rule [2] that is known as Hebbian learning [3]. The first
neurocomputer was created in 1950 by Marvin Minsky and Dean Edmonds [4]. We can
consider 1956 as the year of artificial intelligence's birth, when McCarthy, Minsky, Rochester,
and Shavron, Al pioneers conducted a summer symposium on Al at Dartmouth [5], [6].

Many physical and biological problems include the perturbed Volterra integro-differential
and integral equation (see, e.g., [7], [8], [9]). In [10] , the authors provide a survey of
singularly perturbed Volterra integral and integro-differential equations. When the perturbed
parameter approaches zero for singly perturbed situations, the diameter of the boundary layer
narrows.

Nonlinear FSPVIDE plays an important research material in science and engineering. In a
fuzzy framework, these equations provide a usual system to simulate the doubt of energetic
structures in several logical domains such as physics, geography, medicine, biology, applied
mathematics, biophysics, quantum physics, medicine, bio-informatics, and gravity. It is
frequently difficult to discover analytic solutions to these problems. Several mathematicians
have investigated the numerical solutions to fuzzy equations in recent years [11], [12], [13],
[14], [15], [16].

Scientists and engineers have recently conducted extensive research on the Adomian
decomposition method (ADM) that is used to solve nonlinear differential and integral
problems [11]. Adomian [17] invented the ADM for solving several types of functional
equations which is the theme of considerable approximation and analytical study.

In this paper, we consider the numerical discretization of fuzzy singularly perturbed
Volterra integro-differential equations (FSPVIDE) in one and two dimensions, respectively as

follows:
X

V" (x) =F(W,¥',x) +J K(, )P (t)dt X € [a,b]
0

x ry
¥ (x,y) =F(x,y,&,¥(x,y) +f f K(x,y,t,s)¥(t,s)dtds, x,y € [0,X] =[0,Y] .
o Jo

With a fuzzy boundary condition, ¢ is called the perturbation parameter such that 0 < ¢ «
1, F and K are given smooth functions on [0, X], [0, y].

The purpose of this paper is to design a neural system to solve a type of perturbation
problem in the integral equations numerically (FSPVIDE) and to compare it with the exact
solutions.

The paper is structured as follows. In section 2, basic concepts of fuzzy sets are given and
we explain some important definitions. In section 3, a fuzzy integro-differential equation is
discussed, we also explain the general form of the first order fuzzy Volterra integro-
differential equation. Fuzzy Neural Network is given in section 4. In section 5, we describe
the fuzzy neural network architecture that is used in this paper through the structure of FNN.
In section 6, we solve the Fuzzy Singularly Perturbed Volterra integro-differential equation.

An illustration of the method is done in section 8. In section 2, Numerical Results are

presented to illustrate the numerical results of the method by taking two examples. Finally,
we show the most important results of the paper through conclusions in section 9.
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2. Basic concepts of fuzzy sets:
In this section, we provide several fundamental concepts related to fuzzy theory.

Definition 1 [16]: If U is a collection of substances, then a fuzzy set Ain U is a set of ordered
pairs:

A={U,¢&W):uel,0<Ey0u) <1}

& 4(u) is known as the membership function or grade of membership of u in A , it is also
known as the degree of compatibility or degree of truth, which maps U to the membership
space & 4(u). A is nonfuzzy when & ,(u) contains only the two points 0 and 1 and & 4(u) is
the same as a nonfuzzy set's characteristic function.

Definition 2 [17] : The support of a fuzzy set A, S(A) is the crisp set of all u € U as well
as & 4 (u) >0 and denoted S(A).

Definition 3 [18]: The crisp set of elements from the fuzzy set A at least to the degree 7 is
called the -level set:

A ={ueU:&, ) =1l

A, = {u € U:£4(u) > 7} is called the strong t-level set or the strong T-cut.

Definition 4 [18] : A fuzzy set A is convex if
A(Aug + (1 = Duy) = minféq(wy), §q(u)l ug, up € U, A € [0,1].
Alternatively, a fuzzy set is convex if all its T -level sets are convex.

Definition 5 [19]: A fuzzy number x is entirely determined by an ordered pair of functions
(k! (1),c*(1)), 0 < T < 1, which satisfies the following:

1) k!( 1) is a bounded left continuous non-decreasing function on [0,1].

2) k*(7) is a bounded left continuous function that does not increase. [0,1].

3) k' (1) < k% (1), 0 <7 < 1. The crispy number a is just signified by: k!(7) =k%(1) =a,0<
7 < 1. The set of all the fuzzy numbers is denoted by E* .

Remark (1), [19]:

For subjective = (k! , k%), v = (v}, v*) and C € R, the addition and multiplication by C can
be defined as follows:

1) (k + v)! (r) = k!( 1)+ vi( 7).

2) (k +v)* (7) = k*( 1)+ v*( 7).

3) (Cx)'(7) =Ck!(7), (Cx)*(r) =Ck¥*(1) ,ifC>0forall T € [0,1] .

4) (Cx)'(1) =Cr*(1), (Cx)*(r) =Ck!(7),ifC<O0forall T € [0,1] .

Remark (2), [20]:

The distance function between arbitrary two fuzzy numbers k = (!, k%) andv = (v}, v%) is
given as follows:

1

D (k,v) = [fol(;cl(r) —vi(1)?%dr + fol k*(1) — v*( 1) dT]E.

Definition 6, [19] : The function ¢: R — E! is called a fuzzy function. Also, we call every
function that is defined from A; € E! into A, € E! by a fuzzy function.
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Definition 7, [19]: The fuzzy function ¢: R — E? is said to be continuous if: For an
arbitrary u; € R and € > 0 there exists ana > 0 such that: Ju - u;| < a = D (¢ (u), p(uy)) <
€, where D is the distance function between two fuzzy numbers.

Definition 8, [19]: Let I be the real interval. The t-level set of the fuzzy function ¥: 1 — E;
can be denoted by: [¥(w)]* = [Yf(w), ¥5(w)], x€ 1,7 €[0,1]

The Seikkala derivative W'(u) of the fuzzy function W(X) is defined by:
[P @)]"=[(¥]) (W), (¥2) W] xel, T€[01]

3.Fuzzy integro-differential equations

The first order fuzzy Volterra integro-differential equation is given by
X

W' (x) = F(W, x) + f K(o D@D dt
0
with boundary conditions W(a) = A,¥(b) = B ,where A and B are fuzzy number in E1, K

is the kernel function over the rectangular regionx, t € [a, b] and F is a specified function of x
. If W is a fuzzy function, F(x) is a given fuzzy function and W' is the fuzzy derivative of W,
this equation may only possess a fuzzy solution. Let W(x) = [[W!(x,7)], [¥*(x,7)]] be a
fuzzy solution of the first order of FSPVIDE , therefore, by Definition 5 and Definition8 we
have the equivalent system

W' (O = [F(W, 014+ [ K WD), de |, [W]H(a) = [ALL [¥']4(a) = [A]%,

e[W' (O = [F(P, 0% + [T [KCe, DY (D]¥dt |, [W]1L(b) = [B]L [¥']4(b) = [B]Y,

for T € [0,1]. Suppose K (x, t) is continuous in [0,1] and changes its sign in finite points
for fix t.

4.Fuzzy Neural Network(FNN) [21]

An FNN is a learning machine which is also known as a neuro-fuzzy system that describes
the parameters of a fuzzy system by using neural network approximation techniques.
There are some things in common between the neural networks and neuro-fuzzy systems.
They are used to solve a problem, for example, pattern recognition, regression, or density
estimation, if there is no mathematical model of the problem. They only have specific
disadvantages and advantages that are almost entirely eliminated by accomplishing both
notions.

Neural networks can only be used if the problem is stated by a large enough number of
observed examples. These observations are used to train the black box if there is no required
prior knowledge of the issue. On the other hand, it is difficult to extract comprehensible rules
from the structure of the neural network.

A fuzzy system, on the other hand, requires language rules rather than acquiring examples
as prior knowledge. In addition, the input and output variables must be linguistically
characterized. If the knowledge is partial, incorrect, or contradicting, the fuzzy system must
be tweaked. Because there is no formal approach, tweaking is done heuristically. This is
frequently time-consuming and error-prone.

If all of the variable parameters (weights and biases) are fuzzy numbers, the FNN is said to
be completely FNN; otherwise, it is said to be partially FNN. Figure 1 depicts FNN with an
input layer, a single hidden layer, and an output layer as a basic structural architecture for the
sake of this study.
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Figure 1: The FNN

5. Structure of FNN

To explain the structure of FNNs for a design consisting of three layers with n of input
units, m of hidden units, and s of output boards. Thus, the dimension of the fuzzy neural
network is (n x m x s). Target vector, connection weights and biases are fuzzy numbers and
the input vector is a real number.

The model's architecture demonstrates how FNN changes the n inputs (xq, x5, ... X;, ... Xp,)
into ([Outl] [Outz] [Outk] eor [ Ot ]) which outputs are fuzzy throughout the m
neurons ([szl] [szz] [ ld] oer [Hiap, ] ) which outputs are fuzzy such that [&;]_
and [gy], are the fuzzy biases for the [Hid].L, [Outk]T respectively, [wji]T are the fuzzy
weight connecting crisp neuron x; to fuzzy neuron [lej]T , and [wk]-]Tare the fuzzy weight
connecting [Hidi]r to [Outk]T- And 0 the hyperbolic tangent transfer function:® (x) = tanh(x),
and © '(x) =1 - 0 %(x).

Input unit
x=x;, 1=123,..,n
Hidden unit:

[Hldj [[Hldf [H‘df] ] @ ) - [( [ efj] > ([Netj] )] o
[Netj] =Xi= 1Xl[’wjl] [fr]

Mo ] =5 + 8]

Output unit :

[Outk]_[ [[Outk utk] ] - ([neﬂ}(] ) - [(G)[Netk]_l[)!@ ([Netk]j)]l k =
1,2,3,..,s
Where

[Netk]i = <2jea[wkj]lf [Hidj]i + Zij[ij]i [Hidj]:> + [grlt
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[Netk]: = <Zjec[vkj]: [Hidj]j + Zjed[wkj]j [Hidj]_l) + [gi ¥
for [Hidj]u > [ id ]i >0 ,where

a —{ [wk]] O} b= {j : [vkj]i < O} , ¢ = {j : [ij]: > 0}, d= {j : [ij]i < 0}

6.Solving Fuzzy Singularly Perturbed Volterra integro-differential equation.
6.1. Solving FSPVIDE(One dimension).

To solve any FSPVIDE for one dimension with boundary condition (BC) by FNN, we
reflect a three-layered neural networks with one unit entry x, one hidden layer with m hidden
units (neurons), and one linear output unit, resulting in an FNN dimension of (1 x m x 1). As
it is shown in Figure 2. In this paper, we take the number of hidden layer neurons as five, in
other words, m=5. The input - output each unit of our neural network can be rewritten for T —
level set as follows :

Input unit :
X=X
Hidden unit:
[H‘dj [[Hldj [sz]] ]= [(G) [Netj] ) ([Netl] )]
Where

l u u u
L e R ) W [P0 B P R PR
Output unit :
[Out]r = [[Out]é» [Out]g]
Where

[Ouclt = (Zjealvi]. [HiaTG ], + Zjenlvi], [Hidj]:)
[0w:]¥ = (ZJEC[W [ ld]] +Z]€d[w] [ ‘df]i)

for [Hid]]u 2[ id] >0 ,Where
a={is [l 20} b={j: [v], <o} e={j:[wl =0} L a={j: [v] <o
Hidden unit
o
1041, | ke
Input unit | output unit
X oLl o U —— )

Wm]r

Bias unit

Figure 2: The (1xmx1)Feed forward FNN
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6.2. Solution of two-dimensional FSVIDE

To solve two dimensions of FSPVIDE using FNN, we reflect the 3 layers of the neural
network with two unit entries x and y, one hidden layer consisting of m unit and one unit
output 0,,;(x,y). Here, the dimension of FFNN (2xmx1) is shown in Figure 3. In this paper,
we take the number of hidden layer neurons as seven, in other words, m=7. Also, the input -
output each unit of our neural network can be rewritten for T — level set as follows:

Input unit :

X=X ,y=y
Hidden unit :

[Hldj [[H‘dj [Hldj ] [0( etj )G)( etj )]
[Mey | = sl + ol + e,

[et, ] = x[wy ] +ylwp] + 6]
Output unit :
[0ucle = [[Ouclt [Out]”]

[Ouelt = ]ea 1] [Hld]] + ZJEb[W']l [Hidf]u
[0u]? = ]EC[ 1] YiealV J] [Hldl]
for [ id j ]u = [Hidj]r 20 ,where :

a={j [yl 20}, b={j: [y]' <0}, e=fj:[w] 20} , a=]

aub={1,23,..m}and cud ={1,23,..m}

—~

: [wj]j < 0}

Hidden unit

Y
A4
. [k
EAR
Input unit fios] - Output unit
" &< @ —¢ [N,
[z, [“’jz],

Input unit
[oncl i e

@

[{'m]r

y

Bias unit O
Figure 3: (2xmx1)Feed forward FFNN

7. Hlustration of the method
Consider the one-dimensional FSPVIDE:

eV (x) = F(W,W,0) + [, K, O¥(®)dt ,  x€[ab] 1)
with boundary condition ¥(a) = A,¥(b) = B, where A and B are fuzzy number in E* with
7 — level sets [A]; = [[A]%, [A]%] and [B], = [[B]%, [B]¥] and & is a small parameter
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satisfying 0 < € < 1 called perturbation parameter, F and K are given smooth functions on
[0, X].
For this problem, the fuzzy trial solution can be written as follows:

[, G, p)], = Al By 4 (x — @) (x = b) [0, (5, 0] )

where 0,:(x,p,€) is the output of feed forward the problem is transformed into a
discretized from

X
min Z F(W,¥', x;,¢) + f K(x;, t,e)P(t)dt , X € [a, b]
X;€D 0
The amount of error that must be minimized is given as follows:
E(p) = X1 (Eir(0) + Eir (1)) (3)
Where
2 e , ; 1
Bl (p,2) = e[ TS [3, 0 W (r), W (10,30, ) + [ K £, W, (0 ]|
(42
2y X, u ! i u
B, 2) = [ [ TS — [Sen FOR G, W G, 0 2) + [ K G 6,0 We(0)de ||
()

where {xi};"=1 are distinct points [a,b], EL, and EY are the least squared errors for the T - level
sets' lower and upper boundaries, respectively.

To drive the minimized error function of problem (1):
From (2), we can find :

(¥, P = ”[A]f,‘i;“ﬂ* PPy L (- (= D) [0w (P ©)
[, (x, p)J = 2AEmalele | PIIAR 4y 0) (x— B)[04c (P, )1 )
Then we get :
Al B 4 (x— @) (x— b) DEPI . (25— (@4 D)[OwCxp Ol ()
Arelepllt _ BIEIE 4 (x — a)(x — b) —d[out("“) + (25— (@ + D) [0wxp O (9)
We have :
[ ;‘;g(")] = (x— a)(x — b) TP 4 (55 — (a + b)) UL 4 970 (x,p, )],
(10)
[%;f‘) = (x — a)(x — b) TP 4 55y — (q+ b)) LELIE 4 910, (xp, )Y
(11)

Then(4) and (5)can be rewritten as :
Ei(p,€) =
[(xl —a)(x; — b) L0l | 55y,  (a + b)) LR | [ ut<xi,p, &)l -
L (x, Aty [0 ];_L’” i + (% = ) = D)0y (i, . 1L, 0 — Q) (x -
p) Wubup e 4 (25, — (a4 b))[0e (xirp, L + [ K (i s)‘Pt(t)dt )]2 (12)
E¥(p,e) = [(xl a)(x; — b)M + 2(2xl —(a+ b))M +

b[Al¥-al[B]} | [BI¥-[Al}
2[ 0 (i, p, )Y — < F (ot === —

Ah

Xi+
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(1 — @) — B[O G p, 12 ZETAE |y — 0 (x, — ) Aol (5,

(a -+ b)) [0y Ceop, T2 + [ K xiy t, ), ()| (13)

To illustrate the solution to the two-dimensional FSPVIDE, we consider the first order
FSPVIDE

Wy (x,y) = F(x,y,6,P(x,y) + fox foy K(x,y,t,s)¥(t,s)dtds, x,y € [0,x].[0,y].  (14)

where ¢ is a small parameter that satisfies 0 < € << 1 and called perturbation parameter,
F and K are given smooth functions on [0, X]. [0, Y], they are given by the Dirichiet fuzzy
BCs for x,y € [0,1]
¥(0,y) =Fo(y), ¥(L,y) = F1(y), ¥(x0) = Go(x) and ¥(x,1) = G1(x)
Fo(y),F1(¥),Go(x) and G, (x) are fuzzy numbers or fuzzy functions with = —level set:
[Fo]z = [Fs (), F& O, [FiN)]e = [Fiy), Fi*(»)]
[Go ()] = [G6(x), G5 (0], [G:(N]: = [G1 (), 61 ()]

The fuzzy trial solution

[We (2] = [[Wi )], [WE (% 9)]e] (15)
[P (x )]z = [Ax )]: +xy(1 =01 = )[04 (x,y, )]t (16)
[Pex0]F = [AG T +xy(1 = x)(1 = ) [0y (x, v, E)]7 (17)

where[A(x, ¥)]L and[A(x, y)]¥ are chosen so as to satisfy the following fuzzy BCs
[AG Y = 1= 0FS) +xFL ) + (1 - y) |64 — [(1 - x)65(0) +xG5 (D] | +

y [6100 = [(1 = 0610) + x6L (D] (18)

[A Y = (1 —)FEQ) +xFEO) + (1 — »)[GEE) — [(1 — 068 0) + xG&(D]] +

y[G ) — [(1 —x)G¥(0) + xGH(1)]] (19)

The minimized error function will be :

E(p) = X7_,(Ei,(p) + Ef (p)), p is parimeter (20)
El(p. &) = ,

[e [ 5 PGy, xyie) + [ K Gyt W (e, s)dtds ]l] (21)
Eiz(p, &) =

[a [ 5, e POty %o yi) + 3 [ K Gyt )W, (6, 5)deds ]”] (22)

8. Numerical Results
In this section, we give illustrations of programs built in MATLAB 7.11 that exemplify the
behavior and characteristics of the suggested design.

An FNN is employed with one input unit for solving one dimensional FSPVIDE and two
input units for solving two dimensions of the FSPVIDE, one hidden layer with five units for
solving one dimension and seven hidden units for solving two dimensions, and one linear
output unit. The hyperbolic tangent activation function is the sigmoid activation function of
each buried unit.

To calculate the accuracy of the method, we use the absolute value between the
approximate and exact values such that [W,(x)], is the analytic solution.

[EG]L = [[Pr()]: — [P (X)L (23)

[EG)]T = [[Pe®)]7 = [P (RI7]. (24)
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We give figures exhibiting the associated error [[E(x)]. together at the little places (training
points) that are used for training and at several added points (test points) within the domain of
each equation to illustrate the properties of the solution supplied by the suggested design.

Example 1: Consider the FSPVIDE
W' (x) = C%(36 —5x%) + %fox(xz +s2)W¥(s,x)ds
[0,0], w(1) = [t5 + 21,6 — 373]
0<e<<1l,r€][01].
The exact solution is given as follows [22]:
Wl = @® +20)x° ,  [P@IF = (6 —37%)x*
Then the fuzzy trial solution for this example is :
[Pe(0)]. = [r° + 27,6 — 30%]x + x(x — D[0w:(x,p, )]
where  0,:(x,p,€) the output of the feed forward . From the fuzzy trial solution, we have
[lpt(x)]‘lr = _TS + 2tx + X(X - 1) [Out(xﬂ b, 3))]%’
[P (O0]F = 6 — 30 + x(x — D[0ye (x, p, )Y
The error function which must be minimized is given as :
E(p) = X7, (EL(p) + EL(p))
Where

2w (x;p)]" 1 0x;
Ei:(p,€) = [s [ |~ [Exen(® + 2007 - (36 = 55, + 5 [ +

with fuzzy B.C W(0) =
and € =[(t°+21)x3,(6—313)x3 ,0<s<x<1

112

SHW,(s, x)ds] ]
T

Ei(p. &) = ,

a2, (x;,p) 1" 1 (x; u

[s [%L — [ineu(f) —3t3)x;3 é(36 —5x;*) + Efoxl(x2 + sH)W,(s,x)ds ]T]

The error function that must be minimized for this state is simple to evaluate:

E =X (Ej +E).

The following tables and figures show the approximate solution and its comparison with

the exact solution for a set of training points for the proposed network. The errors in the tables
show the accuracy and speed of convergence of the proposed method.

Table 1: Exact and FNN solutions of example 1, e =10° 7 = 0.7
input Exact solution ¥, (x) Solution of FFNN W, (at)

X [¥a(0l7 R A [¥: (017 R AN

0 0.000000000000 0.000000000000 0.000000000000
0.1 0.001568070000 0.004971000000 0.001568050000
0.2 0.012544560000 0.039768000000 0.012544580000
0.3 0.042337890000 0.134217000000 0.042337679000
0.4 0.100356480000 0.318144000000 0.100356460000
0.5 0.196008750000 0.621375000000 0.196008759654
0.6 0.338703120000 1.073736000000 0.338703129800
0.7 0.537848010000 1.705053000000 0.537848010001
0.8 0.802851840000 2.545152000000 0.802851843400
0.9 1.143123030000 3.623859000000 1.143123038700

1 1.568070000000 4.971000000000 1.568070000000
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Table 2: Accurateness of solutions of example 1, e =10°,7 = 0.7
The error [E(x)]r = |[q’a()()].[ — q’t(“)]rl

[ECG0)]? [EG)]7

0
2E-08
2E-08

2.11E-07
2E-08
9.654E-09
9.8E-09
5.40235E-13
3.4E-09
8.7E-09
0
MSE=4.56339E-14

Table 3: Exact and FNN solution of example 1, £ =10°, x = 0.5
input Exact solution W, (x) Solution of FFNN W, (at)

T [Ya (017 RACIIE KA} (W07

0 0.000000000000 0.750000000000 0.000000000000
0.1 0.025001250000 0.749625000000 0.025001244300
0.2 0.050040000000 0.747000000000 0.050906654900
0.3 0.075303750000 0.739875000000 0.075303743000
0.4 0.101280000000 0.726000000000 0.101230000000
0.5 0.128906250000 0.703125000000 0.128906303000
0.6 0.159720000000 0.669000000000 0.159727500000
0.7 0.196008750000 0.621375000000 0.196008320000
0.8 0.240960000000 0.558000000000 0.240970080000
0.9 0.298811250000 0.476625000000 0.298811290000

1 0.375000000000 0.375000000000 0.375000000000

0

[EG]?

Table 4: Accurateness of solutions of example 3.2, ¢ =10°, x = 0.5
The error [E(X)]r = |[lpa(x)]r — l'Pt(x)]‘tl

[EGO]¥

5.7E-09
0.000866655
7E-09
5E-05
5.3E-08
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7.5E-06
4.3E-07
1.008E-05
4E-08
0
MSE=7.53749E-07

08
T T T T T T T T Exact I_
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Figure 4: Exact and neural solution of example 1, with ¢ =10°, 7 = 0.7

Example 2: In this problem, we consider the following FSPVIDE

x3y3 x3y x2y

¥y (x,y) — foxfg(t + s)W(t,s)dtds = (y—:l)—T—T—T— t22y , X,y €
[0,x].[0,y] ,0<s<x<10<e<<1,7t€[01],withthe Dirichiet fuzzy BCs
[lP(O, y)]‘[ = [010]‘[' [l-p(]_, Y)]r = [(T -11- T)(y + 1)]‘[' [lp(x, 0)]‘[
=[(r—11—-17x]; and [P(x, 1], = [(t — 1,1 — 1)2x];
which has the following exact solution [22]:
Y(x,y)=[t—11—-1](xy+x)

The fuzzy trial solution

[lpt (Xr y)]‘r = [[IIJLg (X, Y)]‘L'J [lpty (X, Y)]T]
Then we get

[Px =&y +0)(@-1D)+A-[x(r-1) - [x(r - D]] + y[2x(z — 1) +
[2x(z - D] +xy(1 - x)(1 = Y)[04(x, ¥, &)1
[Wex ¥ =y +01 —1) + (1= y)[x(1 - 1) = [x*(1 = )] + y[2x(1 - 1) -
[x(1 = D] + xy(1 = ) (1 = P[0y (x,y, )]¥
The minimized error function will be :
E(p) = Xi-,(Ei:(p) + Ef; (p)), p is parimeter.
The following tables and figures show the approximate solution and its comparison with

the analytical solution for a set of training points for the proposed network, and the error
tables show the accuracy and speed of convergence of the proposed method.

5862



Al-abrahemee

0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

y

0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Iragi Journal of Science, 2023, Vol. 64, No. 11, pp: 5851- 5865

Table 5: Exact and FNN solution of example 2, ¢ =107 = 0.5

Exact solution ¥, (»)

KA}

0.000000000000

-0.055000000000
-0.120000000000
-0.195000000000
-0.280000000000
-0.375000000000
-0.480000000000
-0.595000000000
-0.720000000000
-0.855000000000
-1.000000000000

[Wa(OI7

0.000000000000
0.075000000000
0.150000000000
0.225000000000
0.300000000000
0.375000000000
0.450000000000
0.525000000000
0.600000000000
0.675000000000
0.750000000000

Solution of FNN W, (»)

[WEol

0.000000000000

-0.055221870000
-0.120004321000
-0.195005432100
-0.280000054300
-0.375000005410
-0.480003219000
-0.595000432100
-0.720005499860
-0.855000432980
-1.000000000000

Table 6: Accurateness of solutions of example 2, ¢ =10 r = 0.5

The error [E(X)], = |[¥.(0)], — $()],]

[EGO]?

0
0.00022187
4.321E-06
5.4321E-06
5.43E-08
5.4096E-09
3.219E-06
4.321E-07
5.49986E-06
4.3298E-07
0
MSE= 4.56428E-09
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Figure 5: Exact and neural solution of example 2, ¢ =10 7 = 0.5

9. Conclusions

In this paper, we used a type of Al, which is within deep learning, by designing an
artificial neural network to find the approximate solution for certain kinds of fuzzy integrative
equations, which are the fuzzy singularly perturbed Volterra integro-differential equations
with one and two variables, this type of equation is of great importance in many applications.
It is often used in the transmission of radiant energy and ripple or oscillation issues.

In this design, three layers, the input and output layer and the hidden layer are used, in
which the number of nodes is either five or seven according to the number of variables with
an activation function of type sigmoid which is the hyperbolic tangent activation function.
The results of this paper are clear through the application of this technique to some examples
with one or two variables through the speed of convergence and the reduction of the error rate
after comparing them to the exact solutions.

It is possible that there are some future works for this paper by changing the structure of the
neural network or changing the activation function, or it is possible to apply this technique to
the type of equations in three dimensions.
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