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Abstract

This article discusses the estimation methods for parameters of a generalized
inverted exponential distribution with different estimation methods by using
Progressive type-1 interval censored data. In addition to conventional maximum
likelihood estimation, the mid-point method, probability plot method and method of
moments are suggested for parameter estimation. To get maximum likelihood
estimates, we utilize the Newton-Raphson, expectation -maximization and stochastic
expectation-maximization methods. Furthermore, the approximate confidence
intervals for the parameters are obtained via the inverse of the observed information
matrix. The Monte Carlo simulations are used to introduce numerical comparisons of
the proposed estimators. In addition, we use the percentile bootstrapping technique
that is used to calculate confidence intervals. The proposed methodology in a real-life
using the survival times of guinea pigs inoculated with different doses of tubercle
bacilli data are considered to offer the applicability of the suggested methods.

Keywords:Generalized Inverted Exponential Distribution (GIED), Progressive type-
I interval censored, Probability plot, Stochastic expectation- maximization (SEM),
Expectation-maximization(EM).

a3l Jualdl) by o I Al g o) cial aanal) GusSaal) ) asill Jgs JY )
L8\ daalal)

1).\\.33\ e 4‘36‘4.\9,2&9%341\ ?lug ual:u ,lo.ua l.b
ahall 8yl Bpuaid) daals ,aslall 31, ilucaliy)) aui !
aball Dyl B (63 dasls ,lalylly Cigalall agle LIS cilual I ad”

dadal)
patiuly ddhie i Gyla aenall GusSaall o) el cilaledd all Allse Gl 138 als
ol &5 Aadal) Ahed) gl o ) ALYl A0 decald JY) gl e dapaiall bl
el @l e Jpanll . lalead) sl og5all danylag JlainY) Lalada dsylag ol daiall 4 )la
Sl 3dle Ablsdal) aigll adaet 3yl Cladsil alaad Casluly Osudly(ian caslad Alatial a8 calaed)
& saalid) Cilasbeall ddgians GusSaa aladinly Cilaeall Ll 280 i e Jpmall 4 ¢ elly
Vs ¢ goial) vgal A ) ALY A jiaal) ysiall dnae iljlie Jaad DS Siga 5SLaa pladiu)

*Email: Rana413427@gmail.com

250


mailto:Rana413427@gmail.com

Hasan et al. Iragi Journal of Science, 2024, Vol. 65, No.1, pp: 250- 270

D0l el gl bl lae) 5 ¢ Al slal) b da al) damgiall moasil L ABN il Gl aaiind
s iall Gyl gadas 4alSeY macas dlies Judl) Ciliae (g dalie Cilejas daild) Lig

1 Introduction

The generalized inverted exponential distribution (GIED) is a generalization of the
inverted exponential distribution (IED). IED is a continuous transformation of the reciprocal of
the exponential distribution. Specifically, if X is arandom variable that follows the exponential

distribution, then y = % follows an IED with c.d.f. and p.d.f. which are given by
F(y) = e_l/y,y >0,1>0

I

A
f) =?e )L/Y,y >0,1>0

)

respectively. The IED was investigated by many authors, for example [1] , [2]. The IED
can be generalized to include shape parameters and proposed a (GIED). A random variable X
of the GIED with & shape parameter and 4 scale parameter has the following expression of
c.d.f. and p.d.f.

Fo)=1-(1—e )% x>0,a>0,1>0 , L)

”»

fO) =% (- )e 1 x> 0,a>0,2>0 @)

EHl
)

respectively. It can be seen that the hazard function of the GIED
fe) _ a
1-F(x) xZ(eﬂ/x - 1)

can be increased or decreased based on the shape parameter. Also, it is clear that in many
states, this distribution provides a better fit than the Weibull, Gamma, and GED distribution,
for more details, see [3]. The GIED is used in such applications, for example; in sea currents,
horse racing, and wind speeds. For more properties and applications of the GIED, one can refer

to [4][5] [6]-[7]. [8].

In life and reliability testing studies, type-1 and type-Il censoring schemes are more
common. However, it is important in some of these studies that a particular fraction of
individuals may be removed from the experiment at every of several ordered failure times [9].
Clearly, type | and type 1l schemes do not have the ability to permit the removal of units at
points other than the final point of the experiment. Aggarwala [10] proposed the progressive
type | interval censored scheme which can be described as follows. Assume the units of Nare
put on a test at time t, = 0 and each unit is followed until it fails or is censored. Units can be
observed at presenttime t; < t, < --- < t,, , where m is the pre-specified time to the end of
the experiment which means the time axis is divided into intervals [; = [t;_q,t;,j = 1,..m
with t,,is the time when the experimentation finishes. Let d; be the units number which are
failed in I; and rjbe the units number which are removed from the experiment at time ¢;
particularly, if the units of n are put on a test at time t, and d; which are observed at time
t,, at this time ryunits that are not failed are removed from the experiment leaving n; —
d, — ry items still there. At time t,, when other d, items have failed, r, of items that are not
failed are removed from the experiment with leaving n —d, —r, —d, —r, items still
present and the same as for the rest. The experiment terminates after m number of repetitions.
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Finally, at time t,,, the number of the removed items that are not failed is r,, . Note that
n =y, (r;+d;). Figure 1 shows a progressive type | interval censored.

No_.of removals 11 Tm
No. of failures f f f
Tlme tolity b1t

Figure 1: Progressive type | Interval Censored Scheme

Hence, our observations consist of D = {(¢t;,d;,1;);i =1,..,m}. The numbers of
removal items ry,...,7, are expressed as nonnegative integers. Alternatively, the removal
numbers may be set by pre-specified percentages of the surviving units which are reminded as
follows. Let p = (p1,p2, -, Pm) be pre-specified percentages with p,,, = 1 At time t;, [p; X
(number of surviving units at time t;)| from the remaining surviving units are removed
from the experiment where [w] denotes the largest integer, which is smaller than or equal to
w.

In the paper, we utilize different estimation processes for estimating the parameters of the
GIED based on progressive type | interval censored. The remainder of the paper is arranged as
follows. In Section 2, we obtain the maximum likelihood function estimators (MLES) of the
unknown parameters « and A.The standard errors for the MLEs and approximated 95%
confidence intervals for the parameters are computed as well using the inverse of the observed
information matrix. Further, the computing of the MLE using EM and stochastic EM algorithms
is also investigated. The nonparametric bootstrap percentile technique is utilized to construct
95% confidence intervals of unknown parameters. The midpoint approximation method,
probability plot and method of moments are studied in Sections 3, 4 and 5, respectively. A
Monte Carlo simulation study is prepared in Section 6, which supplies a comparison of all the
estimation procedures in terms of their biases, estimated standard errors, sampled standard error
mean square errors, lengths of 95% confidence intervals and empirical 95% coverage
probabilities. An analysis of a real data set is presented in Section 7. Finally, a conclusion is
given in Section 8.

2 The Maximum likelihood estimation
Based on the observed progressive, type | interval censored sample D = {(¢t;, d;,1;);i =

1, ...,m} , the likelihood function of @ and A is written as
m

Lo, D) o [ [1P(e) = FCe1 [1 = F(eT
i=1
I —e Tu)® — (1 —e Ty o (1 Ty

3)

with corresponding log-likelihood function
m g _ _A/tl-_l a _ (1 _ /tl a _ _A/ti
[(a,AID) x )%, d; log (1 —e ) 1—e Y )+aYit,rilog|l—e 4)
Let,fori=1,..,m
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—A/ ‘ —/1/ '
Aj=(1—-e "ti)* —(1-e '4)* ®)
_A/
Bi =1-—e¢ i (6)
Then log-likelihood (4) is expressed as
[(a,AID) & 332, d; log (A;) + aXiZ;7; log(By) ()

The first-order partial derivatives of A; and B; with respect to a and A are obtained by

. -2 -2 Za )
Ai,a = % = (1 —e /ti—1)11 log(l —e /ti_l) — (]_ —e /ti)a lOg(l —e /ti) (8)
"y} ) 4 .,
Al}\ (i';;l — —ti(il e /ti—l(]. — € /ti—l)a_l _ %e /ti(l —e /ti)a—l (9)
; -1
Bi,)\: = % = le /ti (10)

oA t;

and the second-order partial derivatives are given by

Ao = 25 = (log(1 — & Tra))2 (1 — ¢ M)~ (log(1 —e T (1 —e T (11)

Aggn =28 te'%—l (1 —e M )a 11+ alog (1—e Vo)l (12)

A = ‘;2;21' _ - (tl : (e /tl 1)2((1—e /tl 1)@2 tl_l - /tl 1 (1—e /tl 1)1y
e Y (B S T ¢
By := Zzii = t%z e u (14)

Hence, the first and the second order partial derivatives of the log-likelihoodEq. (7) with

respect to a and A can be computed by
ALO(

al (a,2\D)
lyi==—2 =3 d; Z24+ T 7y log (B; ) (15)
al A D AL Bl
=202 = ym g, ’\+a21 it (16)
021 (a,A\D) AjAjqa— Al,o(
laa: = T oaz i=1d; 4,7 (17)
321 (a,A\D) AjAjar—Aio A, Bj,
loa:= T oaon Z:nld %'{'Zl 1Ti B_ll (18)
921 (@, A\D) Ai Ao Ag Bi Bipa—Bip’
l,u —T Z:nld }L:;iz A +a21 17i ;\?2 . (19)

To calculate the MLEs & and /1, for the unknown parameters a and A, we need to

solve the equations [, =0 and [; =0 ,where [, and [; are given in Eq.(15) and
Eqg.(16). It can be seen that there is no closed form of the MLEs. Hence, to obtain the MLEs of
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a and 4, we use a simple numerical procedure, namely the Newton-Raphson method. The
iterative equation is given by

-1

ak+D a®) (l(m l,M) (la>
A(k+1) 2k laa b )

a=a®) 1= 2(0)

or equivalently

(k+1) — k) _ lalaa—lilaa
a a laalan—1%aa |a=a(k),l=l(k) ’ (0)
Llaa—lal
/1(k+1) — )l(k) — Mlaza(k)]L:A(k) ) (21)

laa l)l)l_lza)l

where a®) and A%) are the amounts of « and A at k -th iteration and I, 13, lyq, Loz and
[, are given in Eq.(15),Eq.(16),Eq.(17),Eq.(18) and Eq.(19), respectively. The iteration
procedure continues until convergence that means la®+1 — g®)| 4 |Ak+D) — 3(K)| < ¢ for
some pre-specified € > 0

The standard error of the MLEs can be computed by the inverse of the observed information
matrix. Hence, the estimated standard error of « and A can be calculated by the square root
of the diagonal elements of the inverting of the observed information matrix assessed at (&, 1)
as follows se(@) = —W and se(1) = —m

Where I, ,1,, and I, are given in Eq.(17),Eq.(18) and Eq.(19), respectively, with « and
A are replaced by @ and 21 respectively. The asymptotic normality of the MLE is used to

calculate the approximate confidence intervals for parameters a and A
Subsequently, 100(1 — y)% Wald confidence intervals for « and A are computed by

(@— Zy/zse( a),a+ Zy/zse( @) and (1 — ZV/ZSB( /T),/T + Z]//ZSB( /T)),

respectively, where z, is the upper y —th percentile of the standard normal
distribution.
Next, we calculate the 95% confidence interval for @ and A using the nonparametric
percentile bootstrap (Boot-p) method. Bootstrap methods are extremely used to get confidence
intervals for the parameters. In [11], the authors suggested the Boot-p method which is used to
construct confidence intervals for the parameters in addition to hazard functions and
reliability. To construct the Boot-p confidence interval, one has to follow the next steps.

Step(1):Compute the MLEs& and A under the original progressively type | interval censored

sample D = {(t;,d;,1;);i =1,...,m}

Step(2) : Based on the computed MLEs in Step(1), @ and A generate a bootstrap sample D*

of size m contains of D = {(t;,d;,r});i =1,..,m} using @ and A.

Step(3): Calculate the MLEs, & * and A* under the generated bootstrap sample in Step(2).

Step(4): Reiterate Step(2) and Step(3), for B times, where B is a pre-specified quantity.
Define @ z(x) = G, '(x) where G’ (x) is the empirical cumulative distribution of @*.In a

similar way, we define 4, (x)=G;*(x), where G," (x) is the empirical cumulative distribution
of 21* Now, calculate the approximate 100(1 —y)% bootstrap-p confidence interval of «
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and  as following
@5(/5),—a p(1="/5)) and (A5 ¥ /5), =25 (1 = /). respectively.

2.1 The EM Algorithm

It can be seen that utilizing the Newton-Raphson method to compute the MLES requires the
computation of the second derivatives of the associated log-likelihood. In this subsection, we
propose the EM algorithm to avoid such computations for obtaining the MLEs of a and A. The
EM algorithm suggested by [12] is a very powerful technique used in parameter estimation
under incomplete or missing information data. The EM algorithm contains of two main steps;
the expectation step (E-step) and Maximization step (M-step). In the E-step, we calculate the
conditional expectation of the complete log-likelihood function condition on the observed
values and in the M-step, we maximize the resulting function with respect to the unknown
parameters. Now, we define Z;;,j = 1,..,d; to represent the complete survival times by
subintervals I; = [t;_;,t;) and we also define Wy, k =1,...,r; to represent the complete
survival times of those withdrawn items at t; where i=1,..,m Using Z =
(Z11)++1Zma,,) and W = (Wyy,.., Wy, ) the complete log-likelihood function can be
expressed by

m 4 T
(@, 2\Z,W) < Y () 10g (£(Z;)) + ) 1og(f (W)
j=1 k=1

= nlog(a) + nlog(1) — 2 %1% 12 log(Z) - 2% ﬁ1ZR1110g(WU<)
-2
—A%is 121 1(1/2 ) PHATD) ( /W )+(0£—1)Z 12 10g< /zij>
+(O(_1)ZL 1 Lug= 110g(1—e_ /Wlk) 22)

Now, for i=1,2,---,m, the following conditional expectations , define

Eyyi(a,2) = E(log(X)\ti-1 <X < t;) = =y =y (23)
(1-e 'ti-1)@—(1-e ‘ti)x
al fto_o log(x)x2e ¥ (1-e~A)a—1gy
Ezqi(a, ) = E(log(X)\t; <X) = : =y (24)
(1-e 't
alftt_i x—3e—1x(1_e—lx)a—1dx
Eppi(a,)) =EX N\t <X <t;) = — ) (25)
(1-e /ti—l)a -(1-e /ti)a
1 al ftoo x"3e~ M (1—emAya-1gy
Eypi(a, 1) =EXT\t; <X) = : =) (26)
(1-e 'tiye
_ /lft.i 1 (1_ _A/x) -2 —AX(l_ —lX)(x—ld
Eysi(a2) = E(log(1 — e Pi\tiy <X g ) ==t o 0 = @)

=y =)
(- ticnya_(1-¢ 'tiya
-2
al ftolo log(1—e /X)x‘ze‘)‘x(l—e‘lx)"“ldx

Eysi(a,2) = E (log(1 - e O\ <X )= —
(1-e Ttiya

(28) Then the conditional expectation of the complete log-likelihood function 1°, which is

given the observed values, D, is written as
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E(l°(a,A\Z,W)\D) = nlog(a) + nlog(1) — 2 Zﬁ1 d; Eqqi(a, 1) — 2 Zﬁ1 1i Ez1i(a, 1)
=AYy diEi(a,A)-AXL 1 Epi(a,A) + (o —
1 2?;1 d; Ey3i(a, 1)
+(a—1) XZi1 Epzi(a, 1). (29)

By computing the first partial derivatives of the log-likelihood function with respect to
unknown parameters « and A and by equating the resulted equations with zero, we obtain

n

a=— (30)

Yt diE13i(@A)+ X 7 Exzi(ad)

n
Yty diE12i(@A)+ X 7 Expi(ad)

A=—

(31)

Therefore, the EM algorithm works as follows. Setas  a© and A
Be the initial values of « and A ,respectively.

Step(i) At k-th iteration, let (a®,1%)) be an estimate of (a, 1).

Step(ii) Using the expressions (25)-(28), compute E;, (@®,15),  E,, (a®, 1),
Eiz (@®, 25 and E,; (a®, 1)) where a and 2 are replaced by a® and 2%,
respectively.

Step(iii) Using Eq.(30) and Eq.(31) to compute a®*1 and A®*+D

Step(iv)If | a0 — Ak — ()| < ¢ | for some pre-specified quantity &, then set
a®*D and A**+D as the MLEs of a and A Otherwise, put k =k + 1 and go to
Step(ii).

2.2 The Stochastic EM Algorithm

The Stochastic EM algorithm (SEM) is an alternative method of the EM algorithm where
the expectation in the E-step is calculated using Monte Carlo simulations. It is useful for cases
when the E-step is hard to calculate exactly. The approximating of the E-step in the EM
algorithm by the Monte-Carlo technique was first proposed by [13]. As mentioned by [14],
the approximations have more time-consuming. Later, in [15] the authors modified their idea
by replacing the E-step with a stochastic step through the simulation technique. For more details
about SEM, see for example, [16], [17], [18].

The main idea of the SEM method can be described as follows. Observe that the
conditional survival functionsof X a <X < b can be written as

S <5 - PO~ a <158 - 2

(32)

Now, we state the procedure for simulating random variate from the GIED in the interval [a, b].
Let u: U(0,1). Observe that, by solving the expression

(1=e™) - (1-eh)
(1-e ) = (1= )"
with respectto t , we obtain

- TR - 33
‘ log[l—[u((l—e_a/a)a—<1—e_l/b) >+(1—e_l/b) ] (33)
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Note that, when b approaches to oo the above expression reduces to t =

-1 1
@ . 34
log (1—[u(( 1-¢*a) )]%) (34)

Now, we first generate independent d; number of samples Z;;,i=12,..,m;j =
1, ...,d; from the conditional survival function given in Eq.(32) with a and b are substituted
by t;_, and t;, respectively. Next, we generate r; number of samples of W;;,i=
1,2,..,m;j =1,..,r; from the conditional survival function given in Eq.(32) with a is
replaced by t;. Using these simulated samples, EQ.(30) and Eq.(31) reduce to
n
a =

m ydi _A/Z‘ i m y'i _A/W' - (35)
s, 28 log (1-e /Z)4Em, 1 log (1-e /Vi)

n

X, 3 log (Vg )+, XY log (Vi)

(36)
Therefore, the SEM algorithm works as follows. Set «(® and 1(® be the initial values
of a and A, respectively.

Step(i)At k-th iteration, let (a®,1%9) be the estimate of (a, 1).

Step(ii)Using the expression (33), simulate Z;; = Z;;(a®,A®),i=1,..,m;j =1,..,4;
and using the expression (34), simulate W;; = W;;j(a®,A®),i=1,..,m;j=1,..,n
where « and A arereplacedby a® and A%, respectively.

Step(iii) Using Eq.(35) and Eq.(36) to compute a**1 and A¢k+1)

Step(iv)If |a®k+D — g®)| 4+ [A%+D) — 30| < ¢, for some pre-specified quantity e, then
put a®*D and A*+D  as the MLEs of « and 1 . Otherwise, put k =k + 1 and go to
Step(ii).

2.3 The Midpoint Approximation Method

In this subsection, we estimate the unknown parameters of the GIED using the midpoint
approximation method. The main thought of this method is to approximate the data of the
progressive type | interval censored by type | censored. We assume that d; number of failures
is noticed at the center a; = (t;_q,t;)/2 of i-th interval (t;_;,t;] and too r;  number of
units are censored at the inspection time t;,i = 1,2, ..., m. The log-likelihood function of «
and A based on this type of observations is written as
I™(a, Aldata) = ¥7%,[ d; log [f(a;) + r;log[1 — F(t;)]]

=log () XiZ;d; +1ogM) X2 d; —2%X2,d; log (o) —AX2:d; /ay

“Ma, M.
+(a—-1D) Y2 dilog(l—e @)+ a2 r;log(l—e ’%).
(37)

After that, we need to resolve the following system of equations to get the midpoint
estimates of unknown parameters

: -A -A
S+ M dilog (1—e /a) + X rilog(1—e /t) =0 (38)
and
m i m i m die_}\/ai/ai m i e_h/ti/ti
Zi=17 - Zi=1; +(a@—-1) Zi=1# + azizl——h/t = 0. (39)
i —e /4§ 1—e i
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The likelihood EQq.(38) and Eq.(39) cannot be solved analytically because of their
nonlinear nature. Therefore, we may adopt a numerical method ,Newton-Raphson method ,to
get the estimates of a and A.

3 The estimation using Probability Plot

Let (r;,d;,t;),i=1,..,m, with n=Y",(d;yr;) be a progressive type | interval
censored sample from a GIED. The cumulative distribution function at t; is estimated under
this sample as follows:

Ft)=1-I-,(1 -5, (40)

where

dj )
j—1—]; = 1, e, M.
n—=33_,(dr+7k)

A

p; =

Estimating the parameters using the probability plot method can be performed by finding
the amounts of @« and A that minimize the function

5= ) (F(t)-F (&)Y

=Y - - ye-F @)
i=1

L

So, we want to find the solution the following system of equations S—Z =0 and Z—i = 0 where

=2y (1= (1= M- Fe)) - e Motoga - M
i=1

da

as = A A 1 A

_ = = _ _ _/ti oa_ i _ _/ti a-1 _/ti

— ZaZ <1 (1-¢ Ty —F (tl)> (1 —e Tyt e
L=

These estimates are computed numerically by some nonlinear optimization technique.

4 Method of moments estimation
The k th population moment of a GIED with pdf that is given in Eq.(2) has not an explicit
form and can be computed by

Ea,)l(Xk) = al foooxk_ze_h/x (1 — e_)t/x)a—ldx
= kfooo xk—l (1 _ e_}\/x)(l dx,k € I+,

where I* is the set of positive integers. Substituting w = e /x in the above integral gives
us

1(1-w)* 1
Eqa(X") = ad*(=1)* [ E=0 dw

Clearly, the above integral converges if «>k. Therefore, we consider the moments with
negative integer powers. Let Y =1/X. Then Y follows general exponential distribution and
consequently

Eqi(X™1) = Eqp(Y) = (e +1) —9(1))/2
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) , 1 1 2
Faa(X2) = Eqp(V?) = (D) — yi(a + 1) - LEED VDT

where 1 is the digamma function and 1 is its derivative, see [19] . Now, the k_th negative
population moment of a doubly truncated GIED distribution in the interval [a,b),0 < a <b
can be given by

fpx

F(b;a,A) — F(a;a, 1)

aA(X kIX € [a b])

_ad ff x~k=2 ¢y (1—e_A/X)D‘_1dx (41)
(- Maya (- Ipye

By equating the first negative sample moments and the second with the moments of the

corresponding population, we obtain the following two equations

(a+1)-9(1) 1 - -
Qe D) = 2[5 diBaalX 7YX € [tioy, t;1] + Bty 1iEqalX 71X € [t;,00)] ]

(42)

and

PO 3 _ 2 =
YD) —y(a+1) Az(lp(“l) ¥) =% [Z diEg[X72|X € [tiy, t;]]

+Zﬁ1 riEa/l[ 2|X E tlloo) ] (43)

Since we can not obtain the closed form of the solution to Eq.(42) and Eq.(43) , we can employ
the iterative procedure as follows. Set a(® and A as initial values of a and A.
Step(i) At k -th iteration, let («®,) be an estimate of (a, 1).
Step(ii) Compute a®*V by solving the following equation for «
n(A®y(a + 1) —p(1))?
YD) —Yla+1) - @Wla+1)—p(1))?

(X diE (k) 5 (k) (Xt x€elt;i_q,t;1]+22, TiE (k) 2 (0 [X “Lxelt;,00)])?

P diE 0 400 [XT2[XElti, G 1R TE k) 400 [X 2 IXELt;,0)]

Step(iii)Compute 1%9, using
A0+ = n@(a®M +1) (D)
Zﬁl diEa,(kH)l;L(k) 1|X € [t;_1,t ]] +Zl 1 HE gy, A [X7HX € [t;, )]

Step(iv) If [a®) — @+ D] + |2®) — 2+D| < ¢, for & pre-specified quantity, set a®+1)
and A%+D as the method of moments estimators of a and A . Otherwise, put k = k + 1
and go to Steps(ii).

5 Simulation

In this section, a simulation study behaves in order to scout the performance of the
proposed methods to estimate the GIED parameters based on progressive type | interval
censored data. the parameter values and sample sizes are considered as (a, 1) =
(0.5,0.5), (1.5,1) , respectively, for n = 25,50,100 and we consider m = 5 for all the cases.
Four different progressives type | interval censored schemes are adopted here, namely
p;. = (0.25,0.25,0.5,0.5,1)
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p; = (0.5,0.5,0.25,0.25,1)
p3 = (0!010;0;1)
ps = (0.25,0,0,0,1).

The above schemes are picked to specify the surviving units percentage to be withdrawn
at the censoring and monitoring points. Observe that, in Scheme 1, in the first two intervals the
removal is lighter as compared to the last two intervals and in Scheme 2 is the reverse scenario
of Scheme 1. Moreover, in Scheme 3, there is no removal done prior to termination which is a
case similar to conventional type | interval censored. In Scheme 4, we conduct the removal at
the left-most and right-most ends.

Data is simulated by employing an algorithm proposed by [20] to generate a number of
failures d4, d,, ...,d,, in every interval (t;_q, t;], for i =1,...,m from the sample of size
n. The data generation algorithm is described as follows. Given n,m and p = (py, ..-, Pm)
where 0 <p;, <1 andp, =1

Step (i)Generate t*;,.., t*, from GIED (a,A) using t*; = A

_—log(l—Uil /a) ,  where
U;:U(0,1).

Step(ii)Arrange t*;,.., t%, ast; <t, < - < tim.

Step(iii)Compute F; = F(t;),i = 1, ..., m using (1).

Step(iv)Set dy =1y =F, =0 and i = 1.

Step(v)Generate d;|(do, ..., di—1,7o, ..., Ti—1):binomial (n — X525(d; + 17 ), q;), Where g; =
Fi—Fi_4

1-Fj_q '

Step(vi) Compute 7; = [p;(n — Xi-od; — X'Z57;)], where x]indicates the largest integer
not greater than x.

Step(vii) If i <m, replace i by i+ 1 and go to Step(v). Otherwise, stop.

For the bootstrap confidence intervals, the size of the bootstrap samples is taken to be
5000.
At each iteration, we estimate the parameters using the MLE via Newton-Raphson, EM and
SEM, probability plot (PP), mid-point (MP) and method of moments (MM) methods. For each
of these methods, we have computed the absolute average bias (Bias), the root mean square
error (RMSE), the sample standard deviation (SSE), the estimated standard deviation (ESE) via
the observed information matrix. Moreover, we have evaluated the widths (Len) of 95% Wald's
confidence intervals by using the observed information matrix (Cl) and 95% Boot-p (BT)
confidence intervals with their empirical coverage probabilities (CP). The process for the
estimation is repeated 1000 times and the results of the estimation are reported in Tables 1-7.
From Tables 1-6, it is observed that the Bias For every estimators, in general, it is rationally
small which references that the estimated values are close to the true parameter values.
However, the MP method, as expected, presents more bias estimates than the other methods. In
addition, the SEM algorithm performs worse than NR and EM based on this aspect. Clearly,
the RMSE of MP is higher than that of the other methods. Moreover, the values of SSE and
ESE of NR and EM methods are close, especially for large n. This indicates that ESE based
on the inverse of the observed information matrix is considered as a reasonable estimate of the
SSE. As expected, the Bias, RMSE, SSE an ESE of all estimators are decreasing when are
increasing sample sizes for every case. With respect to the 95% confidence interval, from
Table 7, the length of the confidence intervals is decreasing when is increasing the value of the
sample size. Moreover, the empirical coverage probabilities of 95% confidence intervals (CP)
are very close to the nominal level for every case. Subsequently, the performances of all
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proposed methods except for the MP method are satisfying in terms of the biases and standard
errors of the estimates.

Table 1: Simulation results of the proposed methods of estimation for n =25

--

Sl - Metho Bias RMSE ESE SSE Bias RMSE ESE

NR 0.459 1.717 1.026 1.228 0.162 0.277 0.501 0.501
EM 0.460 1.713 1.027 1.226 0.163 0.276 0.502 0.499
SEM 0.685 1.734 1.201 1.125 0.317 0.255 0.571 0.394

PP 0.406 1.661 = = 0.142 0.272 = =
MM 0.369 1.495 = = 0.117 0.264 = =
MP 2.287 10.578 = = 0.195 0.078 = =

NR 0.782 3.768 1.622 1.778 0.222 0.417 0.619 0.607
EM 0.784 3.745 1.623 1.770 0.225 0.411 0.622 0.601
SEM 1.067 3.795 1.623 1.631 0.400 0.391 0.601 0.480

2R 0.726 4.450 - - 0.189 0.448 - -
MM 0.639 3.100 = = 0.162 0.388 = =
MP 1.842 7.026 = = 0.209 0.071 = =

NR 0.387 1.269 0.817 1.059 0.132 0.244 0.439 0.476
EM 0.387 1.267 0.817 1.058 0.132 0.244 0.439 0.476
SEM 0.592 1.361 0.926 1.006 0.275 0.219 0.487 0.379

2R 0.384 1.507 - - 0.119 0.266 - -
MM 0.349 1.268 = = 0.104 0.259 = =
MP 2.969 15.731 = = 0.214 0.089 = =

NR 0.453 1777 0.970 1.254 0.160 0.268 0.477 0.493
EM 0.453 1.774 0.971 1.253 0.160 0.267 0.478 0.492
SEM 0.675 1.878 1.113 1.193 0.313 0.254 0.532 0.396

PP 0.386 1.824 = = 0.127 0.273 = =
MM 0.339 1.343 - - 0.106 0.256 - -
MP 2.642 12.356 = = 0.247 0.103 = =

Table 2: Simulation results of the proposed methods of estimation for n =50

--

Segls  Method Bias RMSE ESE SSE Bias RMSE ESE
me

NR 0.228 0.543 0.620 0.701 0.088 0.139 0.349 0.363
EM 0.229 0.542 0.621 0.700 0.088 0.138 0.349 0.361

SEM 0.427 0.532 0.621 0.592 0.219 0.118 0.349 0.265
[P 0.199 0.565 - - 0.073 0.141 - -
MM 0.204 0.556 - - 0.071 0.149 - -
MP 1.673 4.714 - - 0.143 0.040 - -
NR 0.311 1.042 0.860 0.973 0.093 0.188 0.420 0.424
EM 0.312 1.031 0.860 0.967 0.094 0.186 0.421 0.421
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P2 SEM 0.555 1.010 0.860 0.838 0.246 0.157 0.421 0.311
PP 0.253 1.001 = = = = 0.069 0.186
MM 0.259 1.020 = = 0.063 0.193 = =
MP 1.340 2.827 = = 0.167 0.041 = =
NR 0.156 0.305 0.468 0.530 0.069 0.100 0.299 0.309
EM 0.156 0.304 0.468 0.530 0.069 0.100 0.299 0.309

- SEM 0.311 0.288 0.522 0.438 0.183 0.086 0.324 0.230
PP 0.139 0.355 = = 0.057 0.106 = =
MM 0.133 0.339 = = 0.051 0.112 = -
MP 2.255 7.432 = = 0.168 0.050 = =
NR 0.188 0.504 0.553 0.685 0.061 0.117 0.322 0.336
EM 0.188 0.503 0.553 0.684 0.062 0.116 0.322 0.336

- SEM 0.385 0.505 0.635 0.598 0.195 0.097 0.354 0.243
2R 0.181 0.638 - - 0.052 0.128 - -
MM 0.169 0.546 - - 0.045 0.129 - -
MP 2.118 6.760 = = = = 0.203 0.065

Table 3: Simulation results of the proposed methods of estimation for n = 100

) D O

Sl | Method Bias RMSE SSE Bias RMSE
NR 0.087 0.171 0.397 0.404 0.033 0.064 0.244 0.251
EM 0.087 0.170 0.397 0.403 0.034 0.064 0.244 0.250
SEM 0.268 0.168 0.461 0.311 0.153 0.053 0.267 0.172
PP 0.076 0.190 - - 0.027 0.065 - -
MM 0.088 0.208 - - 0.029 0.073 - -
MP 1.326 2.250 - - 0.110 0.020 - -
NR 0.145 0.393 0.540 0.610 0.044 0.088 0.294 0.294
EM 0.146 0.388 0.540 0.606 0.045 0.087 0.295 0.291
SEM 0.354 0.378 0.661 0.503 0.177 0.075 0.338 0.210
PP 0.111 0.390 - - 0.028 0.087 - -
MM 0.121 0.417 - - 0.028 0.097 - -
MP 1.162 1.824 - - 0.148 0.029 - -
NR 0.065 0.108 0.304 0.322 0.034 0.045 0.208 0.210
EM 0.065 0.107 0.303 0.321 0.034 0.045 0.208 0.210
SEM 0.196 0.104 0.336 0.257 0.127 0.040 0.222 0.156
PP 0.060 0.128 - - 0.030 0.049 - -
MM 0.056 0.134 - - 0.025 0.053 - -
MP 1.929 4.510 - - 0.142 0.030 - -
NR 0.093 0.156 0.357 0.384 0.036 0.057 0.225 0.236
EM 0.093 0.156 0.357 0.384 0.036 0.057 0.225 0.236
SEM 0.241 0.150 0.399 0.303 0.138 0.050 0.241 0.178
PP 0.077 0.171 - - 0.027 0.058 - -
MM 0.073 0.174 - - 0.021 0.062 - -
MP 1.848 4.199 - - 0.187 0.047 - -
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Table 4: Simulation results of the proposed methods of estimation for n = 25

[ ases [ ases
Sy - Method Bias RMSE ESE SSE Bias RMSE ESE SSE

NR 0.086 0089 0269 028 0104 0152  0.374 0.376
EM 0.090 008 0271 0284 0108 0151  0.377 0.373

e SEM 0.178 0.095 0.269 0.252 0.229 0.151 0.374 0.315
PP 0.103 0.110 = = 0.136 0.207 = =
MM 0.087 0.111 = = 0.095 0.158 = >
MP 0.416 0.361 = = 0.285 0.100 = =

NR 0.197 0.352 0.411 0.560 0.190 0.271 0.449 0.485
EM 0.207 0.351 0.417 0.555 0.202 0.269 0.457 0.478
SEM 0.292 0.372 0.417 0.536 0.312 0.275 0.457 0.422

PP 0.216 0.807 - - 0.240 1.016 - -
MM 0.180 0.321 - - 0.171 0.264 - -
MP 0.542 0.613 - - 0.382 0.174 - -

NR 0.049 0.038 0.183 0.189 0.078 0.109 0.312 0.321
EM 0.049 0.038 0.183 0.189 0.078 0.109 0.312 0.320

e SEM 0.114 0.040 0.212 0.165 0.178 0.097 0.368 0.255
PP 0.051 0.043 - - 0.085 0.123 - -
MM 0.051 0.053 - - 0.072 0.122 - -
MP 0.367 0.272 - - 0.227 0.068 - -

NR 0.064 0.058 0.213 0.233 0.102 0.127 0.336 0.341
EM 0.066 0.058 0.214 0.232 0.104 0.126 0.337 0.340

- SEM 0.140 0.061 0.253 0.203 0.210 0.124 0.397 0.283
PP 0.069 0.063 = = 0.115 0.145 = =
MM 0.075 0.082 - - 0.104 0.146 - -
MP 0.398 0.359 = = 0.274 0.097 = =

Table 5: Simulation results of the proposed methods of estimation for n = 50

T aos P aRes

SlelE N | Method Bias RMSE ESE SSE Bias RMSE ESE SSE
NR 0.032 0.034 0.177 0.181 0.050 0.075 0.262 0.269
EM 0.034 0.033 0.178 0.179 0.052 0.074 0.263 0.267
SEM 0.105 0.031 0.214 0.143 0.153 0.065 0.313 0.203
PP 0.035 0.037 - - 0.058 0.094 - -
MM 0.038 0.042 - - 0.052 0.083 - -
MP 0.318 0.162 - - 0.258 0.074 - -
NR 0.071 0.071 0.239 0.258 0.079 0.105 0.307 0.315
EM 0.076 0.069 0.242 0.252 0.085 0.102 0.312 0.307
o2 SEM 0.158 0.073 0.239 0.220 0.195 0.101 0.307 0.250
PP 0.083 0.082 - - 0.104 0.134 - -
MM 0.071 0.081 - - 0.075 0.117 - -
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- MP 0427  0.297 - - 0.348  0.133 - -
AR 0019 0016 0121 0127 0022 0043  0.211 0.207
EM 0019 0016 0122 0126 0022 0043  0.212 0.207
- SEM 0071 0015 0138 0101 0113 0034  0.246 0.147
PP 0019  0.017 - - 0.025  0.047 - -
MM 0020  0.023 - - 0020  0.053 - -
MP 0299  0.136 - - 0.201  0.048 - -
AR 0035 0025 0143 0.155 0049 0057  0.230 0.234
EM 0036 0025 0143 0155 0049 0057  0.230 0.233
o SEM 0091 0025 0.162 0.130 0131 0047  0.262 0.174
PP 0036  0.027 - - 0.053  0.061 - -
MM 0041  0.038 - - 0049  0.072 - -
MP 0342  0.182 - - 0.256  0.075 - -

Table 6: Simulation results of the proposed methods of estimation for n = 100

T eos T s

S{ealEn N | Method Bias RMSE ESE SSE Bias RMSE ESE SSE

NR 0.022 0.017 0.124 0.129 0.029 0.036 0.186 0.187
EM 0.022 0.017 0.124 0.128 0.030 0.035 0.186 0.185
o SEM 0.080 0.017 0.144 0.104 0.113 0.032 0.212 0.140
PP 0.028 0.020 = = 0.041 0.046 = =
MM 0.020 0.020 - - 0.026 0.040 - -
MP 0.305 0.123 - - 0.256 0.070 - -
NR 0.018 0.023 0.158 0.152 0.043 0.216 0.206 0.206
EM 0.019 0.022 0.159 0.149 0.020 0.041 0.217 0.201
o SEM 0.094 0.025 0.193 0.126 0.119 0.038 0.254 0.155
PP 0.021 0.029 = = 0.024 0.058 = =
MM 0.026 0.031 - - 0.024 0.051 - -
MP 0.364 0.169 = = 0.327 0.111 = =
NR 0.009 0.007 0.084 0.086 0.018 0.023 0.150 0.151
EM 0.009 0.007 0.084 0.086 0.018 0.023 0.150 0.150
& SEM 0.052 0.007 0.093 0.066 0.092 0.022 0.168 0.115
PP 0.009 0.008 = = 0.019 0.024 = =
MM 0.012 0.011 = = 0.020 0.029 = =
MP 0.269 0.093 = = 0.192 0.040 = =
NR 0.016 0.011 0.098 0.104 0.025 0.030 0.161 0.172
EM 0.016 0.011 0.098 0.104 0.025 0.030 0.161 0.172
Ps SEM 0.062 0.010 0.109 0.079 0.094 0.024 0.179 0.122
PP 0.017 0.012 = = 0.027 0.032 = =
MM 0.023 0.016 = = 0.031 0.038 = =
MP 0.303 0.118 = = 0.243 0.064 = =
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Table 7: Widths of 95% confidence interval of a and A and their coverage probabilities.

a=1.5 A=1 a=0.5 A=0.5

n Scheme Len CP Len CP Len CP Len CP
Cl | 4.830 97.0 2.265 93.0 1.204 96.0 2.080 94.0

P BT | 5.973 92.8 2.081 94.3 1.440 95.5 1.605 95.7

Cl | 8774 96.0 3.010 92.0 2.008 95.0 2.768 93.0

P2 BT | 7.248 93.3 2.317 935 2.911 92.5 2.035 92.1

) Cl | 3.649 94.0 1.925 92.0 0.770 96.0 1.529 94.0

3

25 BT | 4.908 92,5 1.863 92.9 0.892 955 1.335 95.0
Cl | 4517 96.0 2.122 93.0 0.914 95.0 1.692 93.0

P BT | 5.756 92.0 2.013 93.6 1.139 94.0 1.458 95.0

Cl | 2.644 95.0 1.473 93.0 0.744 96.0 1.226 94.0

P1 BT | 3.294 93.0 1.438 94.0 0.778 96.1 1.050 95.6

Cl | 3.897 96.0 1.837 92.0 1.049 95.0 1.546 92.0

Pz BT | 4.900 93.0 1.716 94.0 1.230 94.2 1.270 94.7

) Cl 1.930 95.0 1.239 93.0 0.493 96.0 0.931 96.0
3

50 BT | 2.373 93.0 1.237 93.0 0.517 94.9 0.853 95.9
Cl 2.327 95.0 1.346 94.0 0.586 95.0 1.025 94.0

P« BT | 3031 | 930 | 1354 | 950 | 0630 | 946 | 0930 | 955

cl | 1618 | 950 | 0992 | 950 | 0504 | 960 | 0797 | 950

Pr I'BT | 1780 | 940 | 0979 | 946 | 0512 | 954 | 0.732 | 96.0

cl | 2270 | 950 | 1219 | 940 | 0656 | 960 | 0961 | 950

P2 |'BT | 2632 | 936 | 1192 | 950 | 0678 | 964 | 0847 | 963

100 Cl | 1219 | 950 | 0837 | 950 | 0334 | 940 | 0624 | 960
P3[BT | 1331 | 941 | 0835 | 942 | 0342 | 940 | 059 | 958

Cl | 1445 | 950 | 0912 | 940 | 0392 | 940 | 0673 | 940

P« I"BT | 1627 | 940 | 0912 | 943 | 0402 | 940 | 0639 | 944

6 Application

In that section, we can analyze a data set as a real life application of the GIED under
progressive type | interval censored observations. The data set can be provided by [21], and it
represents the survival times (in days) of guinea pigs inoculated with different doses of tubercle
bacilli. It can be known that guinea pigs have a high predisposition to human tuberculosis and
for this reason, they are used in this specific study. The regimen number is the common
logarithm of the number of bacillary units in ml. of challenge solution; i.e., regimen
corresponds to bacillary units per ml.  [22]. This data are used to fit the inverse Weibull
distribution. In agreement to regimen 6.6, there are 72 observations listed below:
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12,15,22,24,24,32,32,33,34,38,38,43,44,48,52,53,54,54,55,56,57, 58, 58, 59, 60, 60,
60, 60,61,62,63,65,65,67,68,70,70,72,73,75,76,76,81,83,84,85,87,91,95, 96,98, 99,

109,110,121,127,129,131,143,146,146,175,175, 211, 233, 258, 258, 263, 297,341, 341, 376.
First, we check whether the GIED is suitable for the data based on the complete data set.
We propose three measures for fitting the data set with GIED and these measures are the
Akaikes information criterion (AIC), the Bayesian information criterion (BIC) and the
minimum distance of Kolmogorov-Simrnov (KS). These measures are defined by
AlC = -21(,1|D) + 4.

BIC = —21(@,A|D) + 2log (n).
and

KS = supost<o |F(t) — F(ti Q, 7\\)L

where @ and A are the MLEs of « and 2, I is the log-likelihood function that can get it
from Eq.(4), F is the empirical c.d.f. and F is the population c.d.f. given in (1). The values
AIC, BIC and KS of some two-parameter lifetimes distributions, namely; the GIED, BurrXII,
generalized exponential (GExp), Weibull and inverse Weibull (Iweibull) are reported in Table
9. In addition, the curves of the population c.d.f. of GIED, F(t; Q, X), and the empirical c.d.f.
data set, F is depicted in Figure 2. Clearly, from Table 9 and Figure 2, it is shown that the
GIED is the best fitted distribution of the data compared with BurrXIl, GExp, Weibull and
Iweibull distributions.

Next, we estimate a and A, of GIED based on the real data set using the proposed
methodology. For analyzing the above data set,we takem = 5and inspection times t =
(40,90,150,190,220). In addition, we consider the same censoring schemes presented in the
simulation section, namely p4,p,,p3 and p,. According to the censoring schemes, the values
of (dj, r;) within the intervals I, = (0,t;] and [; = (t;_1,t;],i = 1,2, ..., m can be reported
inTable 8.

Table 8: Values of (r;,d;) within each interval 1;,i = 1,2,...,m for the data set

P1 P2 P3 P4
| d r d r d r d r
(0,40] 11 16 11 31 11 0 11 16
(40,90] 20 7 5 13 36 0 20 0
(90,150] 6 1 3 14 0 14 0
(150,190] 3 0 2 0 2 0
(190,220] 2 0 8 1 8

To propose initial values of the parameters, the Cantor plot of the log-likelihood function
under the real data set is plotted and is presented in Figure 3. Table 10 presents the estimates
and standard errors while Table 11 presents the confidence intervals of the parameters, o and
A_for real data sets. From the obtained results, one can see that the values of the MLEs computed

using NR and EM methods are very close except for the censoring scheme p, Similar
conclusion can be observed for the ESE values. With respect to the length of the confidence
intervals, both methods; CI and BT have introduced almost the same lengths except for the
scheme p,.
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Table 9: The values of MLEs, AIC, BIC and KS of real data set

Distribution MLEs (o, A ) AlC BIC KS
GIED (1.435207,86.308831) 155.063097 59.616430 0.088796
BurrXIl (1.37295,0.1) 221.50750 226.06083 0.24498
GExp (152.39614,0.1) 454,18751 458.74084 0.45205
Weibull (0.197891,28.571845) 163.320348 167.873680 0.089201
IWeibull (1.244539,182.158051) 154.737928 159.291260 0.089019
o
o
o _
(o p]
(\J
o _
=
O p—

Figure 2: represents the population CDF and Empirical c.d.f. of GIED. Solid line: population
c.d.f and dashed lines: empirical c.d.f
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Figure 3: Log-likelihood contour plot of the GIED
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Table 10: Estimates of o and  of the real data set.

a A
Scheme Method Estim ESE Estim ESE
NR 1.435 0.438 86.309 18.439
EM 1.432 0.437 86.162 18.419
SEM 1.273 0.372 80.390 17.299
P, PP 1.126 - 71.319 -
MM 1.629 - 92.913 -
MP 0.869 - 36.566 -
NR 0.229 0.119 26.146 17.041
EM 0.298 0.169 34.587 20.960
SEM 0.277 0.149 32.967 19.815
D, PP 0.186 - 18.252 -
MM 0.266 - 30.645 -
MP 0.254 - 27.562 -
NR 2.560 0.582 105.410 16.231
EM 2.557 0.581 105.330 16.218
SEM 2.329 0.515 99.172 15.406
Ds PP 2.647 - 106.016 -
MM 3.085 - 116.689 -
MP 2.528 - 44,583 -
NR 1.969 0.507 100.692 17.731
EM 1.969 0.507 100.659 17.726
SEM 1.972 0.614 89.278 18.562
P, PP 2.070 - 103.790 -
MM 1.996 - 101.449 -
MP 1.574 - 42.313 -

Table 11: 95% Wald's confidence intervals and 95%Boot-p confidence intervals o and  of
the real data set.

Scheme Method a A

b cl (0.789,2.610) (56.781,131.192)
! BT (0.775,2.588) (53.878,130.019)

. cl (0.083,0.632) (7.288,93.800)
2 BT (0.100,0.569) (4.087,65.316)

o cl (1.639,3.998) (77.949,142.546)
° BT (1.644,4.201) (75.553,142.914)

o cl (1.189,3.263) (71.302,142.195)
* BT (1.213,3.306) (68.215,140.461)

7 Concluding remarks

In this article, statistical inference of the unknown parameters of GIED under progressive
type | interval censored data is considered. The MLEs, probability plot, mid-point and method
of moments as well as associated standard error, root mean square error and confidence

268




Hasan et al. Iragi Journal of Science, 2024, Vol. 65, No.1, pp: 250- 270

intervals are obtained. MLEs are obtained by using the Netwon-Raphson method, expectation
minimization (EM) algorithm and stochastic expectation minimization (SEM) algorithm. The
Simulation results showed that all the estimators, except MP method, present reasonably small
amounts of biases and RMSEs. Moreover, the ESE based on the inverse of the observed
information matrix is considered as a reasonable estimate of the SSE for NR and EM methods,
especially for large n. with respect to 95% confidence interval, the length of the confidence
intervals is decreasing when increasing the value of sample size and the estimated CP of 95%
confidence intervals are very close to the nominal level for every case.

In real data analysis, we analyze the survival times of guinea pigs inoculated with different
doses of tubercle bacilli based on the proposed methodology. Fitting the data set with the GIED
is first implemented and then the GIED parameters are estimated based on the proposed
methods.

We hope that the methodologies proposed in this work will be useful to applied
statisticians. It will be entertaining to study the methods of estimation based on hybrid censored
data.The work is in advancement and it will be announced later.
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