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Abstract:

In this article, we investigate the heat transfer on nanoparticles Jeffrey Hamel flow
problem between two rigid plane walls. Water is used as a main fluid using four
different types of nanoparticles, namely aluminum, cuprous, titanium, and silver. The
results of nonlinear transformational equations with boundary conditions are solved
analytically and numerically. The perturbation iteration scheme (PIS) is used for the
analytic solution, while for determining the numerical results, the Rang-Kutta of the
four-order scheme (RK4S) is used. The effects on the behavior of non-dimensional
velocity and temperature distributions are presented in the form of tables and graphs
for different values of emerging physical parameters (Reynolds number, Prandtl
number, Eckert number and open angles).The solid component of nanoparticles has
an influence on the heat transfer and flow characteristics that is more visible when
compared to other types of particles. The temperature distribution increases with the
increase of the Reynolds number, Bruntel number, Eckert number, but the velocity
distribution decreases with the increase of the Reynolds number. Finally, the obtained
findings demonstrate PIS efficacy, accuracy, and convenience in solving the problem
of nanofluid flow.

Keyword: Jeffrey Hamel, Magnetohydrodynamics, Nanofluid flow, Nanoparticles,
Non-Parallel plates, Perturbation iteration scheme.
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1. Introduction:

The presented manuscript deals with the study of the nanoparticles, their behavior, and the
way they flow in different conditions by examining the changes that occur in each of the speed
and temperature profiles when changing physical parameters and looking at the changes that
occur. Nanofluid can be employed in a variety of technical applications in many industries,
including electricity, and transportation, it relies on fluid heating and cooling. The cooling of
any type of high energy gadget requires effective cooling solutions because of their poor heat
transfer qualities. These qualities are commonly used to heat transfer fluids including water,
ethylene glycol, and motor oil which have restricted heat transfer properties. The heat
conductivities of metals can be up to three times greater than fluids, therefore the combining of
two different compounds forms a heat transfer medium that behaves like a fluid, but it possesses
the thermal conductivity of a metal which is naturally attractive. Jeffry and Hamel [1] were the
most notable scientists who worked on nanofluid that involved the flow of incompressible
nanofluid via mathematically diverging and converging channels. Recently, there are a
significant, effective, and rising interest in nanofluidic analytical research. The solution to the
Jeffery-Hamel flow problem is additional strategies. Nanofluid researcher Choi [2] was the first
to use the term nanofluid. Bachok and Ishak [3] investigated the numerical heat transmission
and flow properties pertaining to a nanofluid across a moving plate and they discovered that
including nanoparticles in the base of fluid water increases friction coefficient and Nusselt
number and thermal conduction. Kuznetsov and Nield [4] studied the effect of nanoparticles on
the flow of a natural convection boundary layer through a vertical plate by taking Brownian
motion and thermophoresis into account. Nadeem et al [5] studied solutions for the boundary
layer flow in the vicinity of the stagnation point towards a stretched sheet. Rana and Bhargava
[6] studied the effect of Brownian motion and thermophoresis on the natural convection of a
nanofluid across a nonlinear sheet stretches by means of numerical methods. Moradi [7]
investigated the heat transfer and viscous dissipation effects on the Jeffery-Hamel nanofluids.
Many analytical approaches [8]- [30]have been created in recent years to tackle the majority of
the scientific problem and phenomena faced in solving nonlinear ordinary differential
equations. One of these approaches is the perturbation iterative scheme (PIS) [9], [10],
[23]which has recently been used to solve many kinds of nonlinear problems [26]. In this study,
a perturbation iterative scheme has been applied to find approximate analytical solutions to the
nonlinear differential problems that govern Jeffrey-Hamel flow regarding heat transfer and
viscous dissipation in nanofluids. The effect of active parameters such as nanoparticle volume
friction, opening angle, Reynolds number, Prandtl number and Eckert number on velocity and
temperature boundary layer thicknesses [31] have been examined [24]. Analytical approximate
solutions are given and compared with Range-Kutta of fourth order scheme(RK4S),
Differential Transformation method (DTM) [7], Homotopy Perturbation method (HPM) [8],
Optimal Homotopy Asymptotic method (OHAM) [9], Spectral-Homotopy Analysis method
(SHAM) [10], and Homotopy Analysis method(HAM) [11]. The results of the aforementioned
are displayed in the tables and graphics. It can be said that the perturbation iteration scheme
(P1S) is a simplified and acceptable method to reach approximate analytical solutions which are
very similar to the most of methods that are used in the previous literature. In addition, this
method has not been previously worked on nanoparticles in the Jeffrey Hamel equation,
however, it met with approval and wide agreement.
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2. Mathematical formulation:

Consider two-dimensional incompressible conductive viscous nanofluids flow between two
rigid plane walls that meet at an angle of 2y . The water is the base fluid that contains several
types of nanoparticles, namely Cu, Al,05, Ag, and TiO,. The velocity is completely radial
and relies on r and 6, so that V = (ii(r,6),0). It is possible to describe the Jeffery-Hamel
problem and the method of fluid flow on parallel walls geometrically as in Figure 1. The
problem contains continuity, motion, and energy equations by taking the viscous dissipation.
The statements of governing equations are defined as follows [8]:

A0 =0 | =
T a0, o
0 =l 5 G G G X

Where i is the velocity in the radial direction, P is the fluid pressure, p,¢ denotes the
nanofluid viscosity coefficient density, and o, ¢ is the thermal diffusivity. The dynamic
viscosity that is effective p,r and the effective density is p, s, the nanofluid is calculated as
follows:

. Pns= (1 —@)ps+ @ps ,

Ke

b Unf = (1—@)25

* (PCons= (1 —@)(PO)¢+ @(pC)s ,

® Unf = KKL: )

o Knf _ (Ks+2Kg)-29(Kf—Ks) 5)

Kf - (Ks+2Kp)+2@(Kf—Ks)

The solid volume fraction of nanofluid is denoted by ¢, (pCp)rlf is the heat capacity of
the nanofluid, where (pCp)f and (pCp)S is the heat capacity of the base fluid and the solid

fractional, respectively, K, ¢ is the thermal conductivity of the nanofluid, K; and K are the
thermal conductivity of the base fluid and the solid of fraction, respectively. The p;and pg are
the densities of the base fluid and the solid fractions, respectively. If ug = 0 for purely radial

flow, the velocity parameter can get from Eq.(1) by product both sides by (g) # 0 and then
integration for r and put the integration constant for 0:

a(ru)

o (rii) = 0, ri(r, 0) = A(0). (6)
Also, derivative Egs. (2) and (3) with respect to 6 and r, respectively. We get:
u(o%n) L ouou _ 1 0%P | pne[ 93U 1970 10% , 100
9020 " oroe rsOr a0 + P [6r2 90 rdrae rzoed | r2 ae]’ )

1 a%p 1 0P  2un¢ 0°T 4p, 5 00 -0 8

PnfrOrd8  pner200  pngr?drod | pariol ®
After arrangement Egs. (7) and (8) by adding the following equation which is given as:

ti(9%1) _I_@@ unf[ °n 19%m | 19% a0 )

drdo dr 00 Pnf
Since:

arz2ge raorae ' r29e3 a6l
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o)

h(n) = i(r,0) = %h(u), n=-,

<@

also,
Tl =0, T(r,0)=T,0(n).

Now, find the partial derivative of Eqs (9) and (4) by using Egs. (10) and (11):
9t _ uc (dn(0) 0%U _ uc d*h(w) 0% _ uc d3h00)

0 yr( du ) 802~ y2r ~ du2 ) 803~ y3r“ dud )
02U _ -uc ,dh(n) ou _ -uc 0%U _ 2uc
aroe  yr2 ( dn ) ar  r2 h(%) arz fl(}t)
%u _ 2uc dh(w) aT T _ Ty ,dO()
Orzae_yr3(du) ar =0 69_y(du)
T ICN T _
902~ y2 N du2 arz

Substituting Eqg. (10) into Eqgs (9) and (4), we get

uC ( ) —Uc dh(x)+ uC ( )uc dh(n) M[Z&dh(n)_l(—uc dh(x))_l_
yrz dn yr dux Pnf yrs du r “yr2 du
1 ue d3a() 1 uc da(x)
r2 y3r dud r2yr dn 1,

after simplifying the last equation we get:
_ 2uc? ( ) da(xn) _ Bnf [ﬂ da(xn) uc d3h(x)]

(10)

(11)

(12)

(13)

(14)

yr3 dn pnf yrd dn v3r3  dud
Now, product both sides by ( T f;tO) and by using Eg. (5) to get the following:
pnf
T+ 27R(1 - 9) + ) (1 - 9)25h(0) T+ 42 .

Also from Eq. (4) and by substltutlng equation (12) this y|elds
Uc Ty d?0(n) Hn.f ug 2 ug
(Gh00.0) = anf0+ 0+ 75 T80 ] + = [4 2 (h60) + 25 €
by using Eq.(5), i
d4e) n
e = et [y (RGO + (2
Therefore, Eqs (17) becomes as follows:

1 &dze(u) P.E dha(n) _
[(1—<p)+<p(pcp)s][Kf & T a- cp)25(4Y (RCx )) +< ) =0

da(n)

002y,

da(n) o

).

PCp)f
with the following boundary conditions
rO) =1, “2=0, (1) =0, (1) =1, L2 =0,

where R is the Reynolds number P. is the Prandtl number, and E.is the Eckert number.

The Reynolds number can be classified as:
R = UePrY _ UmaxTPrY o ( divergent — channel:y > 0,u. > 0 )
C

ue i onvergent — channel: y < 0,u. < 0/
re(Cple
P. = K—fp .
2
E.= ——.
¢ Tw(cp)f

The skin friction coefficient (Cy) and shear stress (o,,) are defined:

1 0u(r,0)
and o, = =
prmax = Hnf r 026

ﬁl

)
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substituting Eq. (10) into Eq. (23), the skin friction coefficient is:
~ 1 dh(1)

Cr = Re(1—@)25 dx ' (24)
The local Nusselt number N, (heat transfer rate) is:
= rgwle=
Nu="7" 8w = —KnfVT, (25)
the equation above in view of Eq (11) becomes:
N = _1Knf dOQ)
Uy K dr

(26)
Physically, these boundary constraints imply that the maximum velocity values are seen at the
center line (x = 0) . If we consider the velocity profile to be completely developed, then the
rate of velocity is zero at » = 0. The no-slip requirement is also used in fluid dynamics. The
equation of the fluid states that the fluid will have zero pressure at a solid barrier related to the
boundary velocity at all fluid—solid interfaces. The fluid velocity can observe that the solid
boundary border is equal to the solid boundaries.

= 3 ¥ .
=

Figure 1: Diagram of the problem [8].

3. Implementation of Perturbation Iteration Scheme for Solving heat transfer on Jeffery-
Hamel Nanofluid Flow:

The stages of the method of the PIS (1,1) [23] apply to the nonlinear differential equations
to obtain the approximate analytical solutions. The following is an illustration of the auxiliary
perturbation parameter 8 which can be given as follows:

oh(n) 0°h(n %3
Q (h00, 252, 2, 5) = L9 4 25y R[(1 - @) + 9 2]

(1 - 9)*5h(0) L2 + 4572 %") =0, 27)
6h(M) 6 @(M) _ 1 Ky rd?0(x)
(PC p)f
PrEc dh(x)

)255(4Y2(h( )’ + (5Dl =0. (28)

The following are perturbation expansions that only include one correction term:
Anp1 = hn + 8(fc)n, (29)
Ont1 =0, +8(Oc)n , (30)
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substituting Eq. (29), and (30) in Egs. (27), and (28), respectively, then expanding in Taylor
series with first -order derivative with term of (6 = 0) to get:
dh(n) d3a(x)

Qu (RGO (o), (L120)..,0) + 8[Qun, (RGO +

dh(x) d3a(n)

(dh(x)) (( )c)n + Q (dSth)) (( 3 )c)n + QlS] = 0’ (31)
Qo (RO (22, (229),.,0) + 8[Qaagen, (RGOn +
Q, ancn, ((‘”‘(’”) n Qe (G2 )0+ Qusl = 0, (32)

from Eqs. (27), and (28), the following derivatives:
Qi(heoy, = 26YR[(1 — @) + @E—i](l @)* S(dh(m) :
Q. ane, = 26YR [(1 — @)+ cpﬁ] (1 - @*5(h())_+ 48y?,

1( dn )n
0, = L
Ql(ddié o
s dha(n) dh(x)
Qus = 2YR[(1 = @) + @ £(1 = @) (h())a (g n + 4V (g (33)
1 P.E. dh( )
Qzs = o [z (Y2 ((RGO)n)? + (5] =
p)f
_ 1 P+Ec 2
QZ(h(u))n = [(1_(p)+(p((pcp)s] [(1_(p)2_5 (88y“(h())nl,
PCp)f
_ 1 PEc dh(x)
Qz(df(!i:{))n [(1— (p)+(p(pc9)s] [(1 (9)25( ( )n)]
n. /Kf
Q da2eco, = T (34)
2 [1-)+ oo

The following nonlinear ordinary differential equations are obtained by computing all
derivatives at (6 = 0) and inserting the results into Egs. (31) and (32),

d3h(x) d3h(0) s
(5D =5 Caan = 2VRI(L— 9) + 9]
dh(») dh( )
(1= @)** (ROOIn (5 I + 4Y* (5 i (35)
d2e(xn) 1 1& d oM,
(( dn? )c)n - [(1_ ) 'pjf:p))_;][s Kf dn2 )Il
_ PrEc da(n)
e (Y2 (R0O)? + (G, (36)
Assume that the initial conditions,
ho() =1, + Ty + %2%2, (37)
0,(n) =4, + 11, (38)
where:
dh d?hn
R(0) = T, Sl=T =,
0(0) = £, LB — g, (39)
From the boundary conditions of Eq. (19):
ho =1+ Zy2, (40)
0, =4, (41)

The prerequisite condition for solving the problem using t, and ¢, is unknown. The
analytical approximate solutions of Egs. (15) and (18), at » = 1 may be used to derive the
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values of t, and ¢,.The analytical approximate solutions to the following equations are
obtained by creating the iteration scheme:
-1 s 1 1
hy =142+ (5Y[(1 = @) + @ 211 = @) Rty — 2y’ to)ut — oyRidt. (42)
_ o 2y? 2 1 PE(4Y*10+13) 4 1 Y?P E¢
0, =74 (1-@+P@)(1-¢)2> FrEcn 12 (1-@+P@)(1-@)?> 30 (1-@+P@)(1-p)?>
ho =142 + (5Y[(1 - 9) + 0 2](1 - 9)* Ry
— eV + (V[ = ) + 0 2](1 — 9)* K, +
6 180 of
1.2 ps]? 592 1.3 Ps
SV A= @)+ 2] (1 - @, + £V -0 + 02

(1= @)* R, — ov[(1 = @) + 9 21(1 — )R +

2ub. (43)

-1

1 1 RE
SV (V' RGT o |[1—0) + 02| (1 - )Ty R

+ o= 9) + 02101 = 9P IR + (vt [(1— ) + 2]

280 pf 12960
. \Sep2.2 _ _ 1 3 _ Ps . N\25p.2 4 1 .5 _
(1= @Rt — oV [A— @) + (1 — @) Rz + 2oy [(1 - @)
Ps1/1 _ (\25p~2 _ L 5701 _ Ps101 _ () 2-56p~2 2
o 11— @) Ry — oy (L — @) + @ 211 — @)= R + ooy

s 1 s
[1—o) + (p‘;—f]Z(l — @) RT3 — my3[(1 — )+ (p?)_f]3(1 — )7 SR

1 4101 — Ps12¢1 _ (0\59R22Y,,10 1 4req _ Psq2
V(1= 9) + 9 EP2(1 — @) RENY + (155 v (1 — ) + 0]
1

— \5R2.3 _ 31(1 — Ps1371 _ (0)7-5973 3 __1 a4
(1= @)%t — oV [A - @) + o717 (1 — )7 R°1; prrra
S 1 S

(1= ) + P (1= @) RPD'? — = y*[(1 = @) + ¢ TP
(1 - @) R, (44)

0. = ¢ 4y2P.E, 5 1 PrEc(4y?1o+13)K 5
2700 (1-g+Pe)(1-9)25 T 3 (1-+P@)Z(1-()?S
_ 1 PrEc(4y*10+13) %4_1 Y?P:EcK .

6 (1-@+P@)(1-@)25 5 (1-@+P@)2(1-¢)25 °

2 Y4PrEc 1 YZPrEc 2 YZPrEc 2

_2 1 1 2 _ 2
5 G0 P -9 © T 15 a-erre)a—ps © T 15 YPrEcTo ~ 5 oirea—ges 0¥

1428 5 2 1428 5 2 1428 y*PEc 2 357 3

P.E. Rt + ——vy“P.E .15 — 15 — ——YP.E SRt
[1200000y rEe?To T 235000 ¥ "0 T 150000 (1-@p+Pp)(1—@)25 © 200000 Y THctTo
357 P E¢

Y )25 _ 2. 2_~2].8
+20000(1—(p+P(p)(1—(p)2'5( 3(1 ¢ +Pe)(1 - @) yRT, 3V TO)]K +

1 .3 3, 2 V2PrEc Ll 25 1,212
5705 Y PrEciRTO+45(1_(p+P(p)(1_(p)2,5( S (1= +Pe)(1 = @)*?yRt, — —A°1,)

1 2 1
— 5755 (1= @+ P)(1 = @)**¥y?RER?* T — = V*RETo ' + [——
1 1
(1- @ +Pe)(1 - @)* V*RERT; — ——V RETE + (1 — ¢ + Pg)

(1 — @)?5y?P.E R2t4n!? — [0.001526251526% VAPER2T4 4, (45)

1 y2P.ER
45 (1-@+P@)2 ©

w4 [

6

4. Results and discussions:

The PIS is used to get an approximate analytic solution to the nonlinear differential
governing equations (15) and (18) with the required boundary conditions in Eq. (19). The
fourth-order Runge-Kutta Scheme is also used to solve the problem numerically. Table 1 shows
the thermo-physical properties of four distinct kinds of nanoparticles. Discussions of various
flow parameters, namely volume fraction, Reynolds number, open angle, Prandtl number, and
Eckert number according to the velocity profile (%) and temperature distribution ©(») are
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included. The convergence of values T, is clearly shown in Tables 2 and 3. In Table 4, the PIS
findings are presented and compared to DTM [7],HPM [8], OHAM [9], SHAM [10], and HAM
[11]. The results are totally compatible in this table. Tables 5-12 present the nanomaterials and
the influence of the velocity and temperature profiles of the channel convergence and
divergence, which shows the result that the solutions are compatible compared to Range-Kutta
of the fourth order. Table 13 shows the numerical values of the skin friction coefficient for
different values of Reynolds number and solid volume fraction for the three types of
nanoparticles at the convergent and divergent channels, which results in incongruity in the
values and contrast with other methods as we have seen. Tables 14-16 show variation in the
Nusselt number with varying open angles, Prandtl number and Eckert number in both converge
and diverge channels, when varying the Prandtl number and the Eckert number, we found that
the values are growing in both converge and divergent channel. However, if we vary the angle,
there is a rising in the convergent channel and in the divergent channel, the values are
decreasing. Finally, in Table 17, we discussed the effect of the nanoparticle on the critical
Reynolds numbers in the divergent channel, this precision establishes the validity of the
problem and demonstrates a high level of the engineering precision. Illustrating the impacts of
key factors leads to determine how these variables that affect the fluid.

Table 1: Thermos Ehxsical Erogerties of nanofluids and nanoEarticIes |22|

Material p(kg/m?) C,(j/kgk)

Clear water 997.1 4179 0.613
Ag 10500 235 429
Cu 8933 385 400
3970 765 40

4250 686.2 8.9538

Table 2: The convergence values for the nanoparticles materials when ¢ = 0.02

y=5°

T2
Ag Cu TiO, Al,04
-2.2969835 -2.2885436 -2.2635654 -2.2620835
-2.2862095 -2.2783414 -2.2549735 -2.2535832
-2.2864504 -2.2785635 -2.2551454 -2.2537525
-2.2864471 -2.2785606 -2.2551433 -2.2537504
-2.2864471 -2.2785606 -2.2551434 -2.2537504

Table 3: The convergence values for the nanoparticles materials when ¢ = 0.02

Ag Cu TiO, Al0;
-1.7652708 -1.7710062 -1.7883277 -1.7893721
-1.7575697 -1.7636892 -1.7821083 -1.7832159
-1.7574089 -1.7635406 -1.7819925 -1.7831019
-1.7574067 -1.7635386 -1.7819911 -1.7831005
-1.7574067 -1.7635386 -1.7819911 -1.7831005
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Table 4: The results of PIS for A(») and compare with numerical methods when R=50 and

y=5°

n

Table 6: The results of PIS for 71(») and ©(») of TiO, wheny = 1°,

0.00
0.20
0.40
0.60
0.80

0.00
0.20
0.40
0.60
0.80

Table 8: The results of PIS for A(x)and ©(#) of Agwheny = 1°,

0.00
0.20
0.40
0.60
0.80

PIS

1.0000000000
0.9824360735
0.9312441309
0.8506474490
0.7468472398
0.6270205474
0.4983150189
0.3670440934
0.2381851869
0.1151819641
0.0000000000

HPMIS]

1.0000000000
0.9824314771
0.9312268428
0.8506123257
0.7467931374
0.6269505503
0.4982362037
0.3669671316
0.2381237540
0.1151516618
0.0000000000

OHAM[9]

1.00000000
0.98251808
0.93156588
0.85138150
0.74826039
0.62953865
0.50242894
0.37293383
0.24508197
0.12071560
0.00000010

SHAM[10]

1.000000
0.982431
0.931226
0.850611
0.746791
0.626848
0.498234
0.366966
0.238124
0.115152
0.000000

DTM[7]

1.000000
0.982431
0.931226
0.850611
0.746791
0.626948
0.498234
0.366966
0.238124
0.115152
0.000000

Table 5: The results of PIS for 2(x) and ©(») of Cuwheny = 1°,

p=0.04

h(0)
1.0000000000
0.9598906079
0.8396283565
0.6393949783
0.3594398924

RK4S

1.0000000000
0.9598906105
0.8396283491
0.6393948180
0.3594391035

0()
1.000374384
1.000373949
1.000367660
1.000340552
1.000267690

RK4S

1.000374384
1.000373858
1.000366257
1.000333545
1.000245772

h()
1.0000000000
0.9599056675
0.8396794570
0.6394779859
0.3595164696

RK4S

1.00000000
0.9599056696
0.8396794528
0.6394778697
0.3595158875

0(n)

1.000375989
1.000375540
1.000369042
1.000341035
1.000265759

RK4S

1.000375989
1.000375452
1.000367678
1.000334213
1.000244396

R =
h(n)
1.0000000000
0.9599065675
0.8396825114

0.6394829476
0.3595210469

RK4S

1.000000000
0.9599065698
0.8396825075
0.6394828339
0.3595204763

R =

(1)

1.000375531
1.000375094
1.000368743
1.000341376
1.000267818

Table 7: The results of PIS for A(») and ©(») of Al,0; wheny = 1°,¢=0.04

RK4S

1.000375531
1.000375004
1.000367390
1.000334612
1.000246637

A(x)
10000000000
0.9598855669
0.8396112513
0.6393671939
0.3594142621

RK4S
1.0000000000
0.9599192950
0.8397256918
0.6395530144
0.3595853457

o(n)
1.000378034
1.000377595

1.000371244
1.000343875
1.000270305

p=0.04

RK4S
1.000386668
1.000386161
1.000378823
1.000347230
1.000262418
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Table 9: The results of PIS for A(»)and ©(») of Cu wheny = —1°,¢=0.04

R=1

R=1

h(%) RK4S o) RK4S
0.00 1.0000000000 1.0000000000 1.000370267 1.000370267
0.20 0.9601011710 0.9601011681 1.000369837 1.000369748
0.40 0.8403429937 0.8403429665 1.000363616 1.000362216
0.60 0.6405562611 0.6405560746 1.000336806 1.000329726
0.80 0.3605118416 0.3605110826 1.000264745 1.000242260
Table 10 : The results of PIS for #A(x) and ©(») of Al,0; wheny = —1°,¢=0.04

(%) RK4S 1) RK4S
0.00 1.0000000000 1.0000000000 1.000372021 1.000372021
0.20 0.9600720270 0.9600853290 1.000371586 1.000371498
0.40 0.8402359899 0.8402892035 1.000365291 1.000363942
0.60 0.6403490232 0.6404687182 1.000338162 1.000331354
0.80 0.3602179793 0.3604305663 1.000265243 1.000243641

Table 11: The results of PIS for A(») and ©(x) of TiO, wheny = —1°,

p=0.04

A(x) RK4S o(») RK4S
0.00 10000000000 1.0000000000 1000372440 1000372440
0.20 0.9600862253 0.9600862229 1.000371995 1.000371908
0.40 0.8402922588 0.8402922376 1000365558 1000364195
0.60 0.6404737867 0.6404736481 1000337815 1000330925
0.80 0.3604356670 0.3604351106 1000263250 1000241379

Table 12: The results of PIS for A(x)and O(x) of Ag

wheny = —1°,

h(n) RK4S 0() RK4S
0.00 1.0000000000 1.0000000000 1.000373679 1.000383565
0.20 0.9601061701 0.9600726854 1.000373245 1.000383061
0.40 0.8403599641 0.8402462881 1.000366967 1.000375772
0.60 0.6405838490 0.6403989861 1.000339912 1.000344335
0.80 0.3605373237 0.3603662792 1.000267190 1.000259738

Table 13 : Numerical values of coefficient skin friction for different values of R and solid
fraction volume for three types of nanoparticle and y = 5°.

Reference [10]

PIS Re‘c[irg]“ce Cu Tio, Al,0, Cu TiO, Al,0,

0181958  -0.181931 0.135745 0.1401575 0.1404253 0.228015 0.236316 0.236812

-0.048962  -0.048809

0.022567  -0.022186 0.035031 0.0388974 0.0391311 0.054721 0.063075 0.063575

0.014416 0.0189198 0.0191634 0.020245 0.028433  0.028929
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Table 14: Variation in N, with varying
R =25E =0.01¢=0.1
. K,rdo(1)
YNy = K du

y=5° y=-5°

0.0934957060 0.006617359722
0.1869914120 0.013234719500
0.2804871179 0.019852079230
0.3739828239 0.026469438950
0.4674785302 0.033086798680

Table 15 : Variation in N” with varying y for Cu.

R =25,P,=0.5¢=0.1E =0.01
g _ Kar do(D)

YNu =5
Y Y
0° 0.03833679214 0° 0.03833679214
2° 0.02034918052 -2° 0.05263417385
4° 0.01046665925 —4° 0.07783864594
6° 0.00335442152 —6° 0.11156570240

Table 16: Variation in N, with varying
R=25,P,=0.5¢=0.1

- K,¢dO(1)

Y = g T dn

y=—5°
0.9349570422 0.0066173599
1.8699140860 0.1323471987
2.8048711300 0.1985207982
3.7398281700 0.2646943973
4.6747852130 0.3308679970

Table 17: The effect of nanoparticles on critical Reynolds numbers in the divergent channel
when y = 5°

@ =0.1

=0
Ag Cu Al,04 Tio,
-0.024902 -0.135720 -0.144161 -0.019163 -0.189198
-0.018192 -0.007012 -0.008602 -0.012684 -0.012433
-0.009106 -0.002543 -0.002776 -0.006684 -0.006445
-0.004075 -0.003458 -0.001749 -0.003156 -0.002938

Figures 2-5 evidence the effect of the different values of the solid volume fraction. It is clear
in both profile velocity and normalized temperature for all four materials Water —
Cu, Water — Ag, Water — Al,05,and Water — TiO, . These figures prove that the increase in
the normalized temperature at all materials with SR = 50,y = 5° and the normalized velocity
decreases in (Cu, Ag) and increases in (Al, 05, TiO,). Figures 6 and 7 show a comparison of the
four materials Ag, Cu, TiO, and Al,05 withR = 50,y = +5°, ¢ = 0.2. These figures indicate
that there are decreasing in the velocity profile and increment normalized temperature in
converge channel, whereas, in the divergent channel increment in velocity profile and
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temperature profile, they are decreasing. Also, Figures 8 and 9 display the behavior of the
velocity profile and normalized temperature for varying open angle and Reynolds number in
the divergent channel, which clearly shows the decrease in the velocity profile, while the profile
temperature is increasing. Figures 10 and 11 illustrate the influences of the different Eckert
numbers.The Prandtl number can be obviously realized that the result is similar to the open
angle and Reynolds number, however, there is difference in the behaviors of the curve’s
velocity that have no effect for several of the Eckert number and the Prandtl number.

1.

0.8
1.84 \
0.6

g N\
Bix) L6 hY

Al x)

0.44

[ 0=0.= = 6=005 — =01 —=—0=02)] [ 6=0.— "= 6=005 — 0=01 ——o=02]

Figure 2: Normalized velocity profile and Normalized temperature with different types of solid
volume fraction for water-Ag nanofluid when R = 50 , y = 5°.

1_

0.5

0.6+

g(x) 144 Y
0.4

[ 9=0.— = 0=005 —— =01 ——0=02] [ 0=0—"—6=005——0=01——0=02]

Figure 3: Normalized velocity profile and Normalized temperature with different types of solid
volume fraction for water-Cu nanofluid when R = 50 , y = 5°.
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0 02 04 06 0.8 1
4

[ =0 6=005

6=01—=—15=02] [---- 6=0. 0=0053 6=01——0=02]

Figure 4: Normalized velocity profile and Normalized temperature with different types of
solid volume fraction for water-Al,0; nanofluid when SR =50, y=D5°

1_
0.8
0.6
A x) B x
0.4
0.2
0 02 04 0.6 0.8 1
K X
[ o=0. 6=005 6=01——0=02] R 6=0. 6=005 6=01——0=02]

Figure 5: Normalized velocity profile and Normalized temperature with different types of
solid volume fraction for water-TiO, nanofluid when R = 50 , y = 5°.Q

1
1.025
0.84 1.020
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099354
0= T T T T Y T T T T L T
0 02 04 0.6 0.8 1 0 02 04 0.6 0.8 1
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| """ Ag Cy —— Ti02 — — _4."_“-Oi'| | """ Ag Cy—— 102 —— _4."305‘|

Figure 6: Normalized velocity profile and Normalized temperature for three types
nanoparticles nanofluid when =50 , y=-5°,¢p =0.2.
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0 02 04 06 03 i
[ g Cu—— T102 — — 41203] [ Ag Cu —— Ti02 — — 41203]
Figure 7: Normalized velocity profile and Normalized temperature for three types
nanoparticles nanofluid when =50 , y=5°,E. =0.5.
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Figure 8: Normalized velocity profile and Normalized temperature for Cu nanoparticle
nanofluid when®® =50 , ¢ = 0.2,E. = 0.5
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Figure 9: Normalized velocity profile and Normalized temperature for Cu nanoparticle
nanofluid wheny =5, ¢ =0.2,P. = 0.01,E. = 0.5.

6426



Abdulridah and Jasim Iragi Journal of Science, 2023, Vol. 64, No. 12, pp: 6413- 6430

8 x)

0 2.x10°f 6.x10°8 Lx1 R
#

0.8 1
I3 3

Ec=06——Ec=08] [~ Ec=02 Ec=04

| ----- Er=02 Er=04 Ef=D_6——Ef=D_S|

Figure 10: Normalized velocity profile and Normalized temperature for Cu nanoparticle
nanofluid wheny =3, ¢ = 0.2,P, = 0.01,%R = 30.
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Figure 11: Normalized velocity profile and Normalized temperature for Cu nanoparticle
nanofluid wheny =3, ¢ =0.2,E. =0.5,R =30

Velocity
Al,04 Increment
Tio
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Volume
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Figure 12: The normalized velocity and temperature characteristics of four types of
nanoparticle materials with various volume fractions.
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Figure 13: The normalized velocity and temperature characteristics of nanoparticle Cu.

5.Conclusion

In this work, the impacts of heat transfer on the Jeffery-Hamel nanofluid flow have been
discussed. The collected findings demonstrate that PIS is an extremely handy, convenient,
practical tool and strategy for obtaining a very precise solution to nonlinear problems.
Furthermore, the obtained solutions utilizing the proposed methodology are compared to the
approaches HPM, SHAM, and OHAM. The PIS findings show a high level of agreement with
numerical values. This way gives new solutions that start with imposing new initial conditions
with more constants to get results that have clear convergence and high accuracy which can be
noticed when compared with other numerical methods that were previously studied on the same
model in previous literature. Figures depict the behavior of the fluid velocity and normalized
temperature curves resulting from changes in the physical parameters for various nanoparticle
materials Ag, Cu, Al,05 and TiO, in Figures 12 and 13. The future study of this method is
done by expanding the horizons of working on nanofluids by taking fluids with higher densities.
For example, we can replace water with oil or alcohol, or a mixture between oil and water, and
so on with different nanoparticles to obtain a more complex fluid and an advanced issue that
can be used in various fields.
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