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Abstract

In this paper, some conditions to guarantee the existence of bounded solution to
the second order multi delayed arguments differential equation are given. The
Krasnoselskii theorem used to the Lebesgue’s dominated convergence and fixed point
to obtain some new sufficient conditions for existence of solutions. Some important
lemmas are established that are useful to prove the main results for oscillatory
property. We also submitted some sufficient conditions to ensure the oscillation
criteria of bounded solutions to the same equation.
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1. Introduction

The field of differential equations is centered on the study of many other research fields,
namely the study of analytical and numerical methods [1,2]. The existence of the solutions plays
an important role in field of differential equations [3,4]. Furthermore, the considerations of the
stability of the solution, the theory of oscillation and the asymptotic behavior of solutions are
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also significant issue in this field [5-7]. There are variety applications of differential equations
in different science fields, such as physics, engineering, biology and many other scientific
disciplines. [8,9].

Y. Liu J. Zhang J. Yan [10] investigated the existence of oscillatory solutions for a forced
second order nonlinear delay differential equations:

A
;E (a;(f)w( X(E))) Z I, (E,X(gc(f))) = (%)

c=1
Where T, € C([£), ) X R, R), g.(§) <&, 5liﬁrlg)gg('f) =ow,¢=1,..,4¢P € C'(RR)

In[11] Y. Liu, J. Zhang and J. Yan considered the existence of oscillatory solutions
for the nonlinear second order delay differential equations
with the perturbed term:

M( (E)tl)( X(E)>>+ [o€orGe -0 =r@, ¢4
l

Where a(§) € C1([&g, ), RT), @ € C([&y, ) X [[,m],R), 7 € C([&, ), R), such that
I € C([&p, ), R), Y € CL(R,R), where p(u) is increasing function for all u e R, P!
satisfies the local Lipischitz condition.

The researchers J. Dzurina and |. Jadlovska in [12] studied the second-order half-linear delay
differential equation:

d% (a(é) (%X(f))w) + 1(E)x*(x(&)) = 0, where w > 0 is a quotient of positive odd integer
numbers, a,t € C([&, ), (0,0))and 7 € C([&, ), (0,20)) with (&) <&, n(§) <§,

7(§) > 0.
B. Baculikov4, B. Sudha, K. Thangavelu and E. Thandapani in [13] dealt with oscillation of a
second order delay differential equations with a nonlinear nonpositive neutral term:

da
7 (r(f) 7 (1® - a(f))(‘”(f(f)))) +bEOX (M) = 0,8 §> 0

subject to the following conditions:

1) 0 <w<1,and ¢ are ratio of odd positive integers;
2) 1 €CH([&, ), (0,)),ab € C([§,2),(0,0),0< a) <p<LVE=§

3)  TeC([&),0),R),m e C([&,0),R),T(€) <& m(&) <& 1(8)>0,1(8)>
O'g“l?o 7(§) = gligg n(§) =

In this paper, we focus on existence and oscillatory solution to the second order non-linear
DDEs with Multiple delays:

A

d2
7 ® == a@re(x(®)) +3 Z b (6. (7)) (1.1)
¢=1
During this work we will impose the following hypotheses
(i) C(H4, H,) denotes to the set for all functions that are continuous; f: H; = H, with

the supremum norm ||. ||.
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(i) We suppose thata., b, € C(R*,R*),(¢c = 1,2,..,n)and the functionsz,: R* —
R+ are differentiable with 7.(t) — oo as & — oo,

(iii) The functions y.(x) and I (1, x) are continuous and the second function satisfies Lipschitz
condition in . That is, there are positive constants M. (¢ = 1,2, ..., 4), such that

LX) —T.EY | <Mdx—vl ¢=1,2,..1,

The solution y(&) satisfies Eq.(1.1) foré > &,. We say that solution y(¢) is a
nonoscillatory solution if it is eventually negative or eventually positive, so there exists &, >
&, such that y(&) >0 or y(&) <0 for all ¢ > &,, otherwise the solution is said to be
oscillatory [6].

We need the following lemma and theorem in the main results of second section.

Lemma 1.1: [14] ( Krasnoselskii Fixed Point Theorem).

In Banach space X with O is closed convex and bounded subset in X, if S;, S,:0 — X,3
Six + S,y € O,Vy,y € O.IfS; is mapping with contractive feature and S, is a completely
continuous mapping, then S;x + S,y = x is asolution on O.

Theorem 1.2 [15] (The Lebesgue Dominated Convergence Theorem)

Let {p,} be sequence of measurable functions on E and g be integrable function on E with
dominates {p,,} on E such that | p,,(x)| < g(x) ong, foralln.If {p,} = {p} is pointwise a.e.
on E, then p is integrable on E with rllz_mo fE Pn = fE », E is a measurable finite set.

Lemma 1.3 [16]
Let g(t) € C[R,RT],RT = [0, ), a(t), a(t) be continuous strictly increasing functions with
lim;,,0(t) = o0, lim;_ 4, a(t) = oo and a(t) < a(t), for a(t) = t,,

if [ g(t)dt < oo then lim,., [ :((f)) g(s)ds = 0.

2. Existence and Oscillatory Bounded Solutions of differential equation with Delayed
Arguments:

In this section, we introduce new sufficient conditions to ensure that the solution exists and
bounded by two positive functions u and v on [&;, ) of Eq.(1.1), & > &,. The existence of
positive bounded solution is studied, while existence of eventually negative solution can be
found similarly.

Suppose the following conditions to be hold in the included results in this section:
Al. 0y < ac(§),b.(§) < 0y, 01,0, # 0, are constants, ¢ = 1,2,3,...,4

A2.p1x () < v, ()((Tc(f))> < pox (), p1,p, # 0, are constants, ¢ = 1,2,3, ..., 1.
A3y x(€) < T, (f, X (T;(E))) < oy (8), 1 1ty # 0, are constants, ¢ = 1,2,3, ..., A.

Theorem 2.1
Assume that A1- A3 hold, and the bounded functions u, v € C*(N, [0, )), and &; > &, + p:

u(®) su@)andv(@) > v(§), § <& <

$1 (2.1)
w 2

2Py 012 JZU Tg(t) t——v(t) f J Z Tc(t) dtds K
< 0 (2 ;1C_
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2 o 2
(o] o 1

f f z u (Tc(t)) dtds < —0y f z u (rc(t)) dt+o,u(é) | < —K < —o, ¢

& Jsg L= 010> -

¢=1 &=1¢=1
7z Elr (23)

Then Eq.(1.1) has a bounded solution by positive functions u and v.
Proof

LetI(t) = f; [ (rg(t)) dtds and then the condition (2.2) implies that
lim 1)) = lim [ [ 32, v (Tg(t)) dtds = 0. (2.4)

Let (C([$o, %), R), II. |I) such that [[x|| = sup [x($)I, then C([ &, «©), R) is a Banach space.

z &
Let 1{1 c C([&g,0),R) as:
= x(§): x($) € C([§p, ), R) with u(§) < x(§) < v(§),& >}, (2.5)

such that W is closed and convex.
The mappings @, and @,: ¥ = C ([ &, ), R) are defined as:

© 2
(@) (&) = {!; b (DI t)( Tg(t))) , § 7 &
(@10 (&), $oS¢E <&,
® w 2
(@20) (&) = {_! Sf ; as (D (X (Tc(t))> dtds & >4y (2.6)
(2x)(€1) S0 SES &,

¢, and ¢, satisfy eq (1.1) forall y, Y € Wand & > &, then:
By using conditions Al and A2, we have

(@U@ + (@2Y)©) < ot f i (%) dt — a2y f f i (Y (z®)) atds
= |1 &

s ¢=1

© 2 © o )
<01,uzf Z v Tc(t) dt—azplffz Tc(t) dtds
3 3

¢=1 s ¢=

[y

© 2 © 2
< 01.112] Tg(t) 02,01 ( 1.“2J Z(V (Tq(t) dt ——V(f))> = _V(f)
g ¢=1 ¢ ¢=1
<v($)
V¢ € [&y, &1], by using eq.(2.1) and eq.(2.6) we have
(@10)(6) + (92U () = (p10)(&1) + (92Y)(§1)

<v(§) < v(é).
So, V & = &, this implies to :

4672



Jaddoa and Sharba Iragi Journal of Science, 2023, Vol. 64, No. 9, pp: 4669- 4686

o (p10)(9) + ((on%/%gf%
f > be(or (12 (z0) ) at - f f > a0 (Y (1)) dt s
§ ¢=1 s ¢=1
>02u1f i X rg(t) dt — g0, ffi Tc(t) dtds
¢ ¢=1 & s ¢=1
® 2 w o 2
>02u1.f u(rg(t) dt—alpszz Tc(t) dtds
¢ ¢=1 & s ¢=1

® 2
7 021y fz T(;(t) dt 01p2K
0 2 : ;_ © 2
>0'2.U1f Z U(Tg(t)) dt‘|‘0'1P2 <—02# fz T (1) dt+02u(€)> 7 u($)
: i1
3

S
], by using eq.(2.1) and eq.(2.6) we get:
(@106 + (@2Y)(E) = (e10)(§1) + (02 Y)(§1)

7 u(éy) > ud) (2.7)
So,p1x+p,YEeW,Vy,YyeW,xy>TY. Now, we have to prove that ¢, is contraction
mappingon .V x, Y € Wfor & > &;:
lo1x — @Yl = 5up|((P1x)(f) = (1Y)

fooi b, (12 (x,(0) ) fz b T, (1Y (7)) )

= sup
XL 3 s =
o 2 © 2
o1 — @yl < Sup |01 # fo Te(®)dt— oy py fz y(rg(t))dt
§=1¢=1 § ¢=1

< sup

e 01 W fiv(TC(t)) dt — o, ,ulfooz u(TC(t)) dt
1 N ¢

¢
By equation (2.5) and Al, we have

sup
§%6 £21 =1 =1
o o 2
< sup |0y Uy va(Tc(t)) dt — o, ,ulf Z u(rg(t)) dt
§ =6 £21 =1 F o=l
1
éigp o, Kpy + —V(E) 01 Kp, — qu(€)|
1
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< sup —v(f) ——u(f)‘
tf>51
sg;q Iv(f) —u(®| < sup l)((f) y(f)l)
< Mlix -yl (2.8)
Where , M =Giz

Also, for & € [&,, &1].
loix — @Yl = sup [(@r )@ — (@YD

0=¢E <&,
= sup [(@0)(€1) — (@1 Y (DI

tost Sty

© 2
= sup Jz bo(OT; (&2 (2 0)) !; b Ty (1Y (1(0) ) at
o © 2
< |01 b2 fZX(Tg(t))dt— 03 l«llfz Y Tq(t)
&1=16=1 & ¢=1
w 3 ©
< |01 K2 fzv(‘fg(t) — Oz g f Z u Tq(t)
§1=16=1 §1=1¢6=1

By equation (2.5) and Al, we have

o 2 © 2
01 Uz f (Tc(t) — Ol f Z u Tg(t)
§1=16=1 ¢ 1=1¢=1
o 2 © 2
< |01 U2 J Z v (Tg(t) — 02l J Z u Tg‘(t)
1=1¢=1 &1=1¢6=1
By condition (2.1) we have.
< |02 Kp; + Uizv(fﬂ — 0y Kp, — Uzu(sz1)|
S sup |01 Kp, + év(s‘) — 01 Kp; — crzu(f)|
- Uzu(f)|
=Fwa—ima
= sup — Iv(s‘) —u(®)l = S, Ix(f) Yl
<Mlx =Yl (2.9)
Where , M = Ui . This implies that
lerx — @1 Yll < Mllx — Yl (2.10)
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Thus, ¢, is mapping with contractive property on ¥. Now, we have to prove that ¢, has
completely property to continuous mapping. First of all, we need to show that ¢, is continuous
mapping.

Let y, = xx (&) € W. Since Wis closed, thus y, (&) tend to (&) as k — oo, y(§) € W. For & >
&, , yield:
1(@2x1:) () — (@20l = supl(cpzxk)(f) — (920 (©)I

/1

< sup fw fw ag (t)yg Xk (Tc(t)) dtds+ f f i a (t)yg( (T,ﬁ)))dtds
#¢ § s ¢=1 s ¢=1
ii?p —aszz Ye )(k rc(t))>dtds
> 2 c=100 .
+ alsz YelX rc(t) >dtds
§ 5 =1
i:?lp 1!!2;]/(()(,( () )dtds
azjfiyc Tg(t) )dtds
£ 5 ¢=1
< sup O_lpszi: (xk Tg‘(t))) dtds — Gzpljji (X(Tc(f)»dtds
& & s ¢= § s ¢=1

8

r\/j»

¢=1
up | o4 p2 f 2/1: (vk Tc(t) ) dtds — o,p1 (u (Tg(t))) dtds
(vk (‘L’c (t))) dtds

(v () ) at s

y
Il
=

r\/j»

u (Tc(t)>) dtds — o,p;

(
iiup 0102 joz (v (Tc(t))) dtds —01p;
2

— g —— g =
D 6

)
Il
=

M g M g e g

<su§§1p2 fjoc_l (vk (Tc(t)>) dtds—ffi (v Tc(t) )dtds
< sup o2p; I f i (e (2®)) = (v (50) 1t s
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< sup 0,04 (
IR e

fw f ”k(Tl(t)) ((Tl(t)))]dtds
3

¥ ff[(vk(TZ(t)))_(U(Tz(t)))]dtds 4 e
& s

+ ff[(vk(m(t)))—(v(m(t)))]dtcts ) (2.11)
& s

According to (2.3), and the bounded property of (v (rg(f))), we get

]: Lmi v(ze(t)) dt ds < oo , (2.12)
¢=1

Since|vk (rg(s)) —v (TC(S))l —0,as k tend tow, ¢=1,23,..,1 By dominant
convergence theorem to Lebesgue, it yields:
Jim (| (@20 (&) = (@20 @l = 0 (213)

It reduces that ¢, is continuous mapping.

To prove that @, W is relatively compact, we must accentual that {¢,y : y € W} is uniformly
bounded and equicontinuous on [&,, o], by theorem of Arzeld-Ascoli [17]. From (2.5),
yield {¢,x : x € W} is uniformly bounded.

To secure that {p,x : y € W} is equicontinuous on [&,, o), let y € Wand any ¢ > 0, by
(2.12), so 3 £, > &, large enough:

f:jmv (rg(t)) dtds < Zfal' FER T (2.14)

Then, forany givene > 0and y € O, T, > T; > &,, we have
(@221 (T2) — (@2) (T = sup [(@2xx)(T2) — (@2x) (T

T2 >T1 >t

oo 3 < [(@22:) (T2 | + |(<p2;0(o)g1)l|
ffz a (t))’g Xk (Tc(t)> dtds+ ffz ac (t)yc( (Tc(t))>dtds
T, s ¢=1 P~

o)

._9
Si—3
M*

A o0
Z Ye ()(k Tc(t) dt ds + oy f
T.

1

v (x (z0)) dt s

S 1

1

®© 2
fz Xk Tc(t) dtds + o,p,

¢=1

X Tg(t) dt ds

Vg (Tc (t)) dtds + o,p, v (TC (t)) dtds

@\*8"’*\’8“,?
%) S— 8"/}
1~

Vo
1l
[y

Kn\8h\8\fﬁ
N~

y
Il
=

ﬁ\,gﬁ\s;mg 8
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&
_ = 2.1
<P2012p20_1+P2 12’021 =, (2.15)
Where Ve = ¢;
For yeWandé, < T, < T, <&, we get
(@22 (T2) — (@2) (T = sup  [(S.0)(T2) — (S0 (Ty)|
E1S T1<Tp< .
te 0 e 0
- suwp f f Z as O (x (7)) dt s - f j 2 as O (x (z,®) ) dt s
SIS TI<T< ¢, = T, s ¢=1
1

t>c<00

A
< sup 01 f Z Ye ()( (rg(t))) dtds — o, Ye ()( (Tc(t))> dtds
§1ST1<Ta< 6, =1

=3
%]

y
1l

JuN

S —
01\8
M* M”

< Sup 02P2 j

SIS TI<T< &,

Ye ()( Tc(t) ) dtds

M»

o ¢ 8(/)"8
y
’H\

Yelx Tc(t) )dt ds

o)
Il
=

r\]
,_,_:]% AR

*

B

A
> ¥ (x (7)) dtds = arpy

Ye ()( Tc(t) )dtds

EIS T<T< .

sj
S sup 01P1 f j Z Ve (X (Tg‘(t))) dtds — o1p;
SIS T<TR< ¢, e
N

< Sup 01P1 f
T.

o
1l
Juy

e T I oy —
P

< sup  01p1 f f Z Ye ()( (Tg(t))) dtds — f Ye ()( (T,;(t))> dtds
SIS T<Tp< &,
T, s ¢=1 T, ¢=1
T, o 2
= 0,01 f f z )((Tc(t)) dtds
T, s ¢=1
Ty oo 2
< 01p1 j j Z v(rg(t)) dtds
T, s ¢=1
Ve
< — (T, — TY).
01P1 2P20'1( 2 1)
Thus there exists §; = prz‘/g , such that
1
I(cpzx)(Tz) — (@20 (T < gif 0<T, —T1 < 6§ (2.16)
Finally, let V(&) = then forany y e ¥, ¢, < T; < T, < &;, by mean value theorem there
exists k; € (Ty,T,) and o, = > 0 such that

'(
1@:20)(T2) = (00T = | (2) (7) = () (@)
= |V(T,) — V(T
= |V’(k1)(T2 — Tl

= V' (kDI(T, —Ty) < ¢,
if 0 < Tz - Tl < 62 < 61. (2.17)

4677



Jaddoa and Sharba Iragi Journal of Science, 2023, Vol. 64, No. 9, pp: 4669- 4686

Hence, @, W is a relatively compact set. By using lemma (1.1), it follows that Eq. (1.1) has
solution that is relatively bounded from below.

Next theorem is generalizing of theorem (2.1). We will show that the solution to Eq. (1.1)
exists and bounded by convergent series Y&_; u. (€) and T, v, (&).

Theorem 2.2
Suppose that A1- A3, Eq.(2,3) hold, and there are convergent series Zc 1 U (6), Zc 1. (8) €

(N,[0,00)), & = EO + p such that
A

A A
Zug(f) Zug(s‘l) and ng(f) ng(fl) §o<E<4 (2.18)
f f z rg(t) dtds (—aluzj z rg(t) )d,t+ A u¢($)>
of (219 =

ffz r,(1)) dt ds > (—azulf Z Tc(t))dHEUC(g))

Then the Eq.(1.1) has a bounded solution by convergent series Z —1uc(8), Zc 1v:.(8) €
ct.
Proof
Let (C([$0, %), R), |l |I) such that || x[| = sup|x(§)], then C([$o, ), R) is a Banach space, let
t>to

Y c C([EO, ) ,‘R) we define ¥ as:

= {x(§):x(§) € C([§0, ), R): u(§) < x(§) < v(§), ¢ * o} (2.20)
Such that Y is a closed and convex. The mappings ¢, and @,: ¥ — C ([&,, ), R) is defined

as:

© 2
(@10 = ! ;bc(ﬂrc(t'?f(fc(t)))dt, £% 6

(@10 (€1, $oE<&y,
© o 2
(0220(8) = ‘! j Z ac s (1 (x5(0) ) at s, et (221)
(@220 (&) $oE<&y,

We are going to prove forany y,Y € ¥,but o, x + 9, Y e Yand Vy, Y € ¥, & = ¢;:
(0@ + (<pz’y)(€)

fZ b, (12 (1, 0) ) dt - ffZ as O, (Y (2®) ) dt s
¢=1 & s ¢=1

S 01 Uy fi X Tg(t) dt - 02,01f Z Y (Tq(t)) dtds
§ §

¢=1 s ¢=1
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© 2 © o ]
<01,uzfz v rg(t) dt—azplffz u Tg(t) dtds
¢ 3

¢=1 s ¢=

Juy

S 0y Hzfi v Tc(t) dt + 0,04 1Pl <—U1llz Lw2v< Tc(t))) dt+iuc(f)>

¢=1 ¢=1 ¢=1
A A
_ Z uc(9) < z v () (2.22)
=1 =1

Let & é [£0,&1], using (2.22) and (2.18) we get:
(p12)(§) + ((Pz)Ly)(f) = ((P1/)1()(f1) + (Y (&)

<D %) <) % ©

¢=1 ¢=1
Moreover, for all¢ > &, it yields:

(p10)() + (<pzy30(s?

_ ] Z b (DT, (tX(Tc(t)))dt_f

X Tg(t) dt — 010,

'\)8
M1~

as O (Y (1) ) dt ds

(%)
Vo

1l
[y

B

Y (r,; (t)) dt ds

o
1l
Juy

u Tg(t) dt 0102 v(rg(t)) dtds

[ - 8(’1\8

B

Vo
Il
=

M»

=0, Uy joi u (Tg(t)) dt + o1p, Ullpz <—02y1 J:) u ((Tg(t))> dat + i vc(€)>
¢

¢=1 ¢=1 ¢=1
> 0, ,uljoi u(rg(t) — oyl Lmiu< Tg(t))) dt+ivg(f)
& ¢=1 ¢=1 ¢=1
= ivg(f) 7 iug(f) (2.23)
¢=1 ¢=1

Then for & € [&,,&,], using (2.18) and (2.23), we obtain:
(p10)() + (qozl’él)(f) = (40131()(51) + (92Y) (1)

DRADEDRHG

¢=1 ¢=1

Thus, o1 x + 9, Y € ¥,Vy, Y € W. By using similarly steps in theorem (2.1), we conclude
result. By lemma (1.1) there exists yo, € ¥,3 @1x0 + @2X0 = Xo- We realize that y,(t) is a
bounded solution by convergent series Z =1uc(8), ZC 1V:(§) € C! ofthe Eq. (1.1).
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3. Oscillatory of differential equation with Delayed Arguments:

In the present section, we investigate the for oscillatory criteria to Eq. (1.1) and we use some
basic lemmas:

Lemma 3.1 [18]:

Let y € C*[R,R] and y P ()x*1(§) >0, & = &, ¢ € (—,0)

Then the following statements hold

1. If xP (&)is positive for & > &, then (&) is increasing for & > &, and
g1im x©O@) =cfor¢=1-1,1-2,..,0
2. If xP (&)is negative for & > &, then (&) is decreasing for & > &, and

slim x©@E)=—-cofor¢c=1-1,1-2,...,0

Lemma 3.2 [19]:
Assume that

L. If @,9,x,7,0 € C[[§,%),R], 9(&) <0, lim () exist, 0<9,(&) =<1, ()<
e(§) #¢& &= & hm 7(§) = o and

X&) < 9) +191(€) max{y(s):7(§) < s<e()}, §&*& . (3.1)
Then y (&) cannot be positive for & > &; > EO

I 1f ,9,x70€ C[[§ ®);R], 0&) >0, lim () exist, 0<8,(9) <175 <
$,06) &, &> S, lim 7($) = and

X&) = ¢(§) +192(<f) min{y(s): 7(§) < s < e(§)}, ¢ = <o (3.2)
Then (&) cannot be negative for & = & > ¢,

Lemma 3.3 [20]:
Assume that ¥, n € C[R*, R*] are continuous functions such that x(¢) < &,¥'(§) = 0 foré >
&o with flim ¥(&) = oo.

.. '3 1
If fll_)l’g 1nffw(¢,) n(s) ds > = (3.3)

then the inequality x'(¢) + n(f)x(x(f)) < 0 has no eventually positive solution.
Lemma 3.4: Assume that:

A it (wg)
o©=x©-y [ | a0y, (x (1) ) dt s
¢=1 s
A
3

1
And the following assumptions hold:

quw) v (x (%))
@m) x (7:(®)

TE Tc (s))

b (DT, (t, X (Tg(t))) dt  (3.4)

ﬂ'\m ~

H1:9,(8) <

<9:1(6),  p(§) = max {7,($)}

§

H2: Jim inf a (D9, (Ddt ds + f b (D0, (Ddt| > 1

T
If x(&) is eventually positive bounded solution of Eq. (1.1) with(z;*(x.(£)))’ = 0 then:
w (&) is negative non-decreasing function.
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Proof. Assume that a solution y(¢) is a non-oscillatory bounded solution of the Eq.(1.1). So,
suppose that y(&) is eventually positive bounded solution, there is & > &, + p such that

x(&) >0 for &=¢&,.
2 s (5@

%w(f) - %X(f) - z .!- ac(t)yc Tc(t) ) Z bs(£)T (t X(TC(SC)»

¢=1
d? d?
2520 =772

dz?
_ Z | (75 (5 (ED)ve ()( (rg(fc—l(xc(g)))» (5 (£)))’

A
~ a0 (1 () )] - 2. 5o (12 ()
¢=1

From equation (1.1), we obtain that:

@ ==Y 2@ (1(x©))+ dfzb(f)F (6.2 (%))

s
¢=1

= 0. s G (x(re60) 5 (e = as©re (x (w6

=1
A

- d%z e (O (1.2 (20))

dgz @(§) = —Z oo (17 (e EDIve (x(36(©)) @ (3 (€)' <0 (35)
¢=1
So, we conclude that ;—;w(f) <0and d%w(f) is monotone (nonincreasing) function.

Vo)

And w (&) is monotone function. Two cases can be considered:

Casel
fd—gzw'(f) < 0 and —w(f) <0 for & >¢;,thenbylemma 3.1 it follows that 11m w(f) =
—oo and with (3.4) we |mply that hm)((f) = —oo, which is a contradiction.

Case 2:

d_fzw(f) < 0and —w(é’) >0 ,weclaimthatw(§) <0, é = ¢&,.

Otherwise, w (&) > 0, so there exists i > O suchthatw () =y, ¢ =&, = ¢,
Then from (3. 4)

§
x(€)>¢+z [ J T ome (¢ (rt0) i +i [ beor, (1.2 () )
T

¢=1
Since y(&) is bounded then hm infy(§)=¢p, 0<p <

So there is a sequence {g,}, such that lim @, = oo and lim y(@,) = ¢
U—>00 U—>00
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§1(§) = min {z.(§)} and () = max{rc(f)},f =&

x(ny) = min {x($), H:1(ev) << < h(ew)}
So x(my) < x(7c(£))
limn, = o and 11m 1nf)((77u) > @

X)) = v+ Z [7] ) om (x () atas
¢=1 s

Qy
+i f bg(t)r‘g tx Tc(t))) dt

¢=1T

x(eu)>¢+2 [7] T 00,02 () s +2 f bo (D9, (0 (1(0) a

§1T

ev 75t wg(S)
x(e) =y + Z x(1,) { [F] aswsmatds + | bg(t)ﬁz(t)dt}
¢=1 r s T

By taking limit inferior to the both sides of the last inequality as v — oo, it follows that:
@ =Y + ¢ which is a contradiction.

Lemma 3.5: Assume that w(§) is defined as in (3.4) and H1 hold with:
H2: Jim inf £2, [ N (%) (DO, (Ddtds + [ b (t)ﬂz(t)dt] <1

If )((f) is eventually positive bounded solution of Eq. (1.1) with(z;*(¥.(£)))’ < 0 then:

w (&) is positive non-increasing function.

Proof. Assume that a solution y(¢) is a non-oscillatory bounded solution of the Eq.(1.1). So,
suppose that y(¢) is eventually positive bounded solution, there is & = &, + p such that

x(&) >0 for &=¢;.
75 (w5 (§))

A A
_Ew(f) = dsz)((f) Z f “c(t)yc Tc(t))> dt — Z be(9)I (t’X (TC(E)))
d2 _ d2 o -

— Z [ac(‘[c_l('lfc(f))))/c ()( (TC(TEI(X.;(f)))» (s (3§D
— a (O, ()( (Tg(é’))) - d%i bs(§)Ts (W (Tc(é)»

From equation (1.1), we obtain that:
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a2 e

e © = a1 (n®)) +3 Z b1 (6.2 (7))
¢=

1

M»

[ (5 (o @) (x(5(60)) (5 (oY = v (1 () )]

1

- d%i (O (12 (20))

dfz @ (§) = —Z s (25 (v ENYs (x(36(6)) (7 (356 2 0 (3.6)
¢=1
So, we conclude that ;—;w(f) > 0and d%w(f) is monotone (nonincreasing) function.

o
Il

And @ (&) is monotone function. Two cases can be considered:
Casel:

If %w(f) >0 and d%w(f) >0 for & >=¢& bylemma 3.1 it follows that slirgw(f) = o0
and with (3.4) we imply that glrgx(f) = oo, which is a contradiction.

Case 2:

—w(«f) > 0 and —w(f) <0 ,weclaimthatw(é) =0, & > &,.

ag?
Otherwise, @w (&) > 0,so thereexisty < Osuchthatw(é) <y, € =& =&

Then from (3. 4)
¢
) < +Z f f (3(s) a (D), (Tc(t))) dtds + fb (DI t)((rc(t))>
T

Since y(&) is bounded then hm infy(§)=¢p, 0<p < x

A
¢=1

So there is a sequence {g,}, such that lim @, = o and lim y(@,) = ¢
U—> 0 U—> 0

f: (&) = min {r,(§)} and (&) = max{r.(§)},§ = &,

X(nu) = max {X(f)'ﬁl(ev) < E < E]Z(Qv)}
So x(my) = x(7,(£))
limn, = coand liminfy(n,) = ¢

X(ev) < ll} N i L@u ]Tzl(rc(s)) ag(t)yg (X (Tg(t))> dt ds
¢=1 s
Qv
+i J bc(t)r‘c tx Tc(t))) dt

¢=1T

X(eu)<¢+z J " | . rc@)ac(t)m(t)x(rg(t) dt ds +Z f by (09 (D (7,(0) dt

¢=1T

Qu T(; Tq(s) o
x(ey) <y +Z x(M) { f f a,(DY;(Ddtds + f b (t)ﬁl(t)dt}

By taking limit |nfer|or to the both sides of the last inequality as v — oo, it follows that:
¢ < Y + ¢ which is a contradiction.
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Theorem 3.1
Assume that all conditions of lemma 3.4 hold and Y (%) is defined as in (3.4) in addition to the
condition:

A § (75 (5e()) A ‘
lim SupZ “ fT fs a (Hdtds + Z 9,() f bc(t)dt}] <1 3.7)
¢= ¢= T

Then every solution to Eq. (1.1) oscillates.

Proof
Assume that a solution y (&) is a non-oscillatory of the Eq. (1.1). So, let y (&) is eventually
positive solution, there is & > &, + §,(8), 2 x(§) >0, & > ¢,.

A e i (ng(s)
x(€)=w(f)+z f j a0 (1 (7c(0) ) dt ds

¢
+§: jb o (6 (z0)) at

¢=1

751 (v(s)) iog
X(€)<w(€)+z f J 7 a0, (150) dt s+ [ b3, (r,0)
T

¢=1

2 3 (TC(S))
x@) w4 Z &) g (2%, 0 XD {f f as(Ddtds +Z f ’ (t)dt}
c=1

¢=1rT
By using lemma (3.2-1) then (&) cannot be positive function on [&5, ) which contradicts to
x(&) > 0.

Theorem 3.2
Assume that all conditions of lemma 3.5 hold and @ (¢) is defined as in (3.4) with ¥.($) <

&,1.(8) <& and (77 (v(£)))' = —a(¢) in addition to the condition:

p) & 809)
jim inf [{ ] jag(rg‘l(xg(t)))ﬁz(Tg‘l(xg(t)))a(t)dtds”2% 3.8)

‘ =1 L\ (8(D) s
Then every solution of Eq. (1.1) oscillates.
Proof
Assume that a solution y () is a non-oscillatory of the Eq. (1.1). So, let (&) be eventually
positive solution, thereis & > & + §,(8), 2 x(§) >0, & =¢;.

Integrating (3.5) from & to §(£),8(¢) > &,%.(6(8)) <&, §‘$¥}o ¥:(6(8)) =0,6=12,..,2

1 6(®
w(5(€)) ——w(é) = Z f a (77 (v ))e (x(wc(®) ) at)at
=1 ¢
i 6(5)

Zo(©) - zza(6) > Z f ag (1 (g (8275 (e (0 ()t
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but from (3.4) x(¢) = @w(é):
1 6

(6(5)) - w(f) = z f “c(fc 1(Tc(t)))ﬁz(Tc_l(Tc(t)))w(xc(t))“(t)dt

8(5)
w((s(g))— w(§)>z (5 (5(5))) f g (5 (o ()02 (22 (3 (B (D)t

2 8(8)
-0 ) (5 6) f g (17 (5 ()82 (77 (3 (1)t

c:
5(5)

w(f) + Z @(55(8(8))) f ag (15 (v (1)) 02 (75 (v (1)) )a(Hdt < 0
By lemma 3.3 then the last inequality has no eventually positive solution.

4. Conclusions

In the main results, we formulated some effective conditions to ensure the existence of
bounded solutions by convergent sequences also by convergent series. Moreover, sufficient
conditions to ensure the oscillation of bounded solution to Eq. (1.1). The obtained conditions
are efficient and perfect to conclude the oscillatory property.
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