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Abstract

In this paper, a general expression formula for the Boubaker scaling (BS)
operational matrix of the derivative is constructed. Then it is used to study a new
parameterization direct technique for treating calculus of the variation problems
approximately. The calculus of variation problems describe several important
phenomena in mathematical science. The first step in our suggested method is to
express the unknown variables in terms of Boubaker scaling basis functions with
unknown coefficients. Secondly, the operational matrix of the derivative together
with some important properties of the BS are utilized to achieve a non-linear
programming problem in terms of the unknown coefficients. Finally, the unknown
parameters are obtained using the quadratic programming technique. Some
numerical examples are included to confirm the accuracy and applicability of the
suggested direct parameterization method.

Keywords: Operational matrix, Boubaker Scaling Functions, Calculus of variation,
Lagrange multiplier technique, Non-linear programming problem.
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1. Introduction

The calculus of variation problems is attracted by numerous researchers in astrophysics [1]
and engineering [2], they needed to find the minimum or maximum of a special function. The
important role of such subject in engineering and science leads to certain attention for this
kind of problem. In recent years, various methods and algorithms have been employed to
obtain approximate solutions to the calculus of variation problems. Direct methods are a
popular techniques for solving such problems. They are based on direct minimizing the
functional by transforming the original variational problem into a mathematical programming
problem using either the discretization or parameterization techniques. In [3], the authors used
the parameterization technique based on Laguerre and Hermite polynomials to reduce the
original variational problem into a quadratic programming problem. In [4], a variational
iteration method was employed for solving some problems in the calculus of variations. A
numerical approach based on the multi quadratic radial basis functions was presented in [5] in
order to solve problems in the calculus of variation. The authors in [6] illustrated an
approximated method based on the direct minimizing of the functional in the constrained and
unconstrained variational problems with fixed or free endpoint conditions calculus of
variation problems. In the parameterization technique, the variables of the problem are
approximated with a finite length series of Legendre polynomials, Chebyshev polynomials,
etc. with unknown parameters. In the work that is presented in [7], the direct method of
differential transform method was employed for solving certain problems in the calculus of
variations. The authors of [8] solved the variational problems of fixed or moving boundary
conditions by an approximation method based on the operational matrix of integration for
Muntz wavelets. An iterative technique for the approximate solution is applied to the calculus
of variation in [9]. In [10], an efficient numerical technique was investigated for treating a
kind of fractional variational problems using the generalized hat operational matrix direct
method. In addition, the class of approximated methods is based on orthogonal polynomials
named spectral methods in [11]. They are implemented in different techniques such as the
collocation method and the Galerkin method. The authors of [12, 13] extended spectral
techniques based on wavelet bases and a special orthogonal polynomials in order to solve
certain calculus of variation problems. They utilized the second kind of Chebyshev wavelets
and the generalized Veita- Pell polynomials, respectively. Many references are based on
interesting polynomial expansions to approximate the solution of different problems. For
example, new modified Chebyshev polynomials [14], B-spline Polynomials [15], Boubaker
Hybrid Functions [16], Boubaker polynomials [17,18], and Hermite cubic spline functions
[19]. They are applied to solve optimal control problems, fractional Emden-Fowler problems
and fractional calculus of variation. In addition, the Boubaker wavelets were applied in [20]
for the numerical solution of important problems that describe phenomena in mathematical
science and astrophysics, namely the thermal explosions and the stellar structure. The Haar
wavelets, finite difference method and Crank-Nicolson finite difference method are used in
[21-24] for solving some direct and indirect problems. Further, in [25], the Rayleigh-Ritz
method was extended together with operational matrices of different orthogonal polynomials
such as Gegenbauer polynomials, shifted Legendre polynomials and shifted Chebyshev
polynomials of the first, the third and the fourth kinds to solve a certain class for variational
problems. An analytical algorithm based on the Adomian decomposition algorithm utilized in
[26] for solving problems in the calculus of variations. Some other numerical techniques for
the approximate solution of variational problems are found in [27-30]. Recently, the
operational matrix methods have been seen to be useful for approximate treating problems in
variational calculus.
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In this paper, some new properties of the Boubaker scaling functions are first constructed
and then the direct parameterizations method together with operational matrices of the
Boubaker scaling basis functions is proposed to determine an approximate solution to the
calculus of variation problems. The application of the presented method to the calculus of
variation will lead to a nonlinear quadratic programming problem. Then we use the Lagrange
multiplier technique to obtain an algebraic system. In fact, the proposed method is an
improvement of the parameterization technique. The advantage of the proposed method is that
the number of unknown parameters to be determined is less than the other parameterization
techniques.

The organization of the present article is as follows: The following section is to list the
Boubaker scaling functions and their important properties. In Section 3, we describe the basic
formulation of the Boubaker scaling direct method which is needed for the development and
the present a clear overview of this method. We illustrate how the proposed method can be
used to transform the original problem into a nonlinear quadratic programming problem based
on the Lagrange multiplier technique. In section 4, the obtained numerical results are reported
and demonstrated the efficiency of the suggested numerical technique is by solving some test
examples. Section 5 ends this work with some conclusions.

2. Preliminaries
2.1 Boubaker Scaling Functions

Scaling functions have been successfully used in many scientific and engineering fields.
Boubaker scaling functions can be defined as follows[31,32]:

k
= k+1, 2n-1 2n
BSnm(t) — {ZZBm(Z t 2n + 1) Skl <t< S+ (1)
0 otherwise,
where n = 1,2, ...,; k can be assumed to be any positive integer, m is the degree of the

Boubaker polynomials and t denotes the time forn =0, 1, ..., M.

Note that a recursive relation that yields the Boubaker polynomials is:

By (t) =t Bjp—1() — Bjr2(t), m> 2, (2)
with Bo(t) = 1, By(t) = t, B,(t) = t? + 2.

Important properties of the Boubaker polynomials are:

B, (0) = 2 cos (m 2 n),n >1,
Bp(=t) = (=1D)™Bp(1).

2.2 Function Approximation

A function f(t) € I? [0, 1] may be expanded as:

f(t) = Z%ozl Z?B:O Cnm BSnm(t)v (3)
where ¢ = (f(£), BSy,m(t)), in which (.,.)represents the inner product in [%[0,1].
Consider the truncated series in Eg. (3), to obtain:

f(®) = Z221 20— Cum BSum (8) = T BS(), (4)
where ¢ and BS(t) are 2¥~1(M + 1) x 1 matrices that are given by:

T
c = [COO yCo1r 2 Com»C10,C11 5 > C1Mm)» CZk—l,O , Czk—l,l ) weny CZk,M] , (5)
BS(t) = [BSOOJ BSO]_, ...,BSOM, BSIO' BSll’ ""BSIM’ BSZkO' Bszkl ...,BSZRM]T- (6)

2.3 Operational Matrix of Derivative
The operational matrix of the derivative for Boubaker scaling functions is derived in this
section.
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The derivative of the vector BS(t) can be obtained as follows:
= BS(t) = DBS(t). 7

First, we choose k =1 and M = 5, then the following scaling Boubaker function can be

evaluated:
1

1 1
0 otherwise

1 1
BS, =BS,;, ={22(4t—-1) 0=t<37

0 otherwise 1
1
> 2
BS; = BS,, = 22 (16t“ —8t+3) OSt<§
0 otherwise "
1
> 3 2
BS, = BS;5 = 22 (64t°> — 48t~ + 16t — 2) 0St<§
q otherwise .
22(256t* — 256t3 +96t> —16t—1) 0<t< 5
BSs = BS14 = .
0 otherwise
1
BS, = BS;s = {25(1025t5 —1280t* + 576t —112t* —4t+3) o<t < 1
0 otherwise 2
1
BS7—BSZOZ{22(1) _St<1
0 otherxivise
1
0 otherwise 1
1
> 2
35923522:{22 (16t° — 24t + 11) ESt<1
0 otherwise

1 1
5 3 2
BS;y = BS,; = {22 (64t° — 144t- + 112t — 30) > <t<1
0 otherwiie
1
5 4 _ 3 2 <
BSy; = BS,, = { 22(256t 768t° + 864t 432t + 79) 5 = t<1

0 otherwise
BS]_Z = BSZS =

1 1
22(1024 t°> — 3840t* + 5696t3 — 4176t% + 1500t — 207) > <t<l1

0 otherwise

So, after differentiate the above equations, one can get for 0 < t < %:

285 — 0, 28%2 = 4pg, 285 = gps, 5% = _20Bs, + 12BS,,
dt dt dt dt
dBSs dBS,

——= = —16BS, + 16BS,, —= = 52BS; — 12BS; + 20BS;.
and for% < t < 1, one can obtain:
dBS, dBS, dBS; dBS, dBS, dBS; dBSy, dBS,
dt dt’ dt dt’ dt  dt ' dt = dt’
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dBS;; _dBSs dBS;, dBSs

dt  dt ' dt ~ dt
Due to the support of BS;,i = 1,2, ...,12.
The matrix D can be formulated as follows:

D= [g g],m:O,l,...,M, n= 1,2,...,2’('1' = (n+1)(M+1)+(m+1),Where

0 0 0 0 0 O
1 0 0O 0 0 O
0 2 0 0 0 O
F=4_5 0o 3 0 0 of
0O -4 0 4 0 O
13 0 -3 0 5 o
The new scalar Boubaker functions operational matrix of the derivative is introduced in

Theorem (1).

Theorem (1):
Suppose that BS(t) is the scalar Boubaker vector defined in Eq.(7). The derivative of
BS(t) can be represented by

dBS(t)
- =D BS®),

Where the matrix D is the operational matrix of the derivative with dimension 2¥(M +
1)defined as below:

F O 0
p={7 T 7 9L
0o 0 F
Note that the matrix F is of dimension (M + 1) X (M + 1), its elements are defined as below:
[ —
=) J=1
. _ ok+1 (-1 (Zfi—1,2 +fi—2,1) j=1
fij =2 N )
(fierjor + fierjo1 = fimzj) E>Jjandij>1
0 j>i

Proof:

Using the Boubaker polynomials into [0, 1], then the r™ element of vector BS(t) can be
written as:

BS.(0) = BSyn(0) = 228, (261t — 2n + 1), )

for 21 "_and BS,(t) = 0 outside the interval t € [2" 12 ]

2k+1 Stsom 2k+1 k+1 7’ ok+1 ]’

wherer=n+1)(M+1D)+(m+1),m=0,1,..,M, n=1,2,..., 2%, Differentiate Eq.(9)
yields:

koo
d"i—:“) = 22.2B, (2K*1t — 2n + 1). (10)
-1 2n
for 2k+1 S t S 2k+1°
The scalar Boubaker function expansion becomes:
dBS ( ) n(M+1)
t
d; = aiBSi(t).
i=(n+1)(M+1)+1

dBSy(t) dBSr(t)

Since we have = 0, this implies that ——— = 0 for:
r=1,M+1),2(M+1)+1,..,2F - 1)(M+1)+1.
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This means that the first row in matrix F will be zero. By substituting the following derivative
of Boubaker polynomials,

dB,, l
(t)= Z e;jB;(t),

dt .
j=1
(i—j)even
[ i=j
(2 =1
where: ¢;; = 177 ( ei‘1’2+ei‘2'1). ]._ o (11)
(ei-1,j-1+ €i1j+1 — €i-2;) i>jandi,j>1
0 j>i
Now, for 2= pyaey l<t< Yy

Expandmg Eq.(11) in scalar Boubaker basis, yields:

i

dBS,.(t)
T = 2k+1 Z el-jBSj(t).
j=1
(i—j)even
This is the desired result.

Corollary: The operational matrix for n™ derivatives can be defined as %BS(t) =
D™BS(t).

2.4 The Product Operation Matrix for Scalar BoubakerFunction
The product property of two scalar Boubaker bases may be applied to find the approximate
solution of differential and integral equations.
The following property of the product of two Boubaker scaling function vectors can be
written as below:
BS(t) BST(t)C = CBS(t), (12)
where C is defined in Eq. (5) and C is a m X m matrix.

Since the entries of vector BS(t) are the interval [

Therefore; BS,,;, BS;x = 0,n # [, we also have:
i—1
BS1(OBS1() = BS, 21(8) = 2BS10(8) +4 ) BS,0.10(8),
k=1
BS1()BS1;(t) = BS1,14j(t) + BSyji (8) + 4 Zper T BS iy o (B).
In general,
BSni(t)BSnj(t) BSTll+](t) + BSTl|l j|(t) + 4Zmln(l]) 1B'Snl+j—2k(t)v
and
BSni(t)BSni(t) = BSn,Zi(t) ZBSnO(t) + 42 BSn 2(i— k)(t)
The product BS(t) BST (t) with M=2, k=2 can be defined as

] and zero outside this interval.

k+1 7 yk+1

BS, 0
BS(t) BST(t) = ( O le),
where:
BS;, — 2BS;, BS;; + BSj BS;, + BS;,
BS; = | BS;3 + BS;y  BSi + 4BS;; — 2BS;, BS;3 + BSiy
BS;s + BS;, BS;3 + BSj BS;s + 4BS;, + 4BS;, — 2BS;,
for i=1, 2.

Therefore; the 6x6 matrix C in Eq.(12) can be defined as:
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c O
t= (0 C1>’
where ¢;, 1I=0,1, are 3x3 matrices given by:
Ciz — 2¢jo Ciz T Cix Ciqg + Ci2
Ci=|cCiz+cin Ciat4cir—2¢ Ciz + Ciq ]
Cig + Ciz Ciz + Cix Cig T 4Ciy +4Cip — 2¢5

3. Direct Algorithm for Solving Calculus of Variation Problem Using BS(t)
Consider the following variation problem:

J(x®) = f; (F(2 @), #2(1), g %, 6) ) dit, (13)
together with the points:

x(0) = a;,x(1) = a,. (14)
Approximating the variable x(t) using BS(t), gives:

x(t) = aTBS(t), (15)

where a = [a4, ay, ..., ay]",is (N + 1) x 1 vector of unknown parameters, then x(t) can be
expressed as:

x(t) = a"BS(¢b), (16)
where BS(t) is the derivative vector of BS(t).
The obtained functional Jis a nonlinear mathematical programming problem of unknown
parameters a4, a,, ..., ay after substituting Egs. (15-16) into Eq. (13) as follows
J(x(®) = fol(F(aTBS(t)BS(t)Ta, a’BS(t)BS(t)"a), g(a"BS(t),a” BS(t), t))dt (17)
Equation (17) can be simplified to:

17 T

](x(t)) =-a Ha + c'a,

where H = 2 [ F(BS(t)BS()T, BS(t)BS(8)T) dt,

c’ = ] g(a"BS(t),a"BS(¢), t) dt.
0

Both Eqg. (5) and Eq. (14) give
x(0) = a’BS(0) = ay, x(1) = a"™BS(1) = a,.
Finally, the obtained quadratic programming problem may be rewritten as below:

1
J(x) = EaTHa +cTaq,

subjectto Fa — b = 0.

BST(0) a;
where F = [BST(l) , b= [az]'
Notethat:  BS(0) = [V2 —v2 3vV2 —2v2 —v2 ..],
and BS(1) = [v2 3V2 11W2 30v2 79V2 .|
Using the Lagrange multiplier technique, one can obtain the optimal values of the unknown
parameters a*:

a*=—-H 'c+H 'FT(FH'FT)~"Y(FH 'c + b),

4. Numerical Examples
Example 1: Consider the time-varying functional as below:

Min ] (x(t)) = [, (2(8) + t2 (t) + 2 ())dt , (18)
together with the conditions
x(0) = 0and x(1) = 0.25, (19)

2—e o = e—2e2
4(e2-1)" "2 7 4(e2-1

where x(t) = 0.5 + a;et + ayet, a; = ) represents the exact solution.
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Eqgs (18-19) can be simplified to the following nonlinear mathematical programming problem
1
J(x(t)) = EaTHa + cTa,
subjectto Fa — b = 0.
where:
H =2 [ [(BS()BS(T) + BS(t)BS(t)T]dt,

cT = [[tBS()Tdt, F = [g ? E(B:] b= [ogs]'
he

optimal unknown vector

a =[0.08590739 0.05835338 —0.00888302 0.00045286 — 0.00000080].
The numerical results are illustrated in Table 1 and Figure 1 with k = 1 and M = 5 compared
with the exact solution.

—

is

Table 1: The numerical results with k = 1 and M = 5 for Example 1.

“ 0.00000000 0.00000000 0.00000000
0.04195072 0.04180894 0.00014178
0.07931714 0.07922813 0.00008900
0.11247322 0.11250422 0.00003099
0.14175081 0.14188312 0.00013231
0.16744291 0.16761009 0.00016717
“ 0.18980668 0.18992964 0.00012296
0.20906592 0.20908562 0.00001969
“ 0.22541340 0.22532116 0.00009223
“ 0.23901272 0.23887871 0.00013401
0.25000000 0.25000000 0.00000000

025 —

02— Xe

01—

0.05 [~

Figure 1: Exact and approximate solutions for Example 1.

Example 2:Consider the following time-varying functional:
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1
MinJ(®) = | G20 + 2 (0)de
0
together with the boundary conditions x(0) = 0, x(1) = 1.
t_,-t
Here, x(t) = : °_ is the exact solution.

1_p-1
for this problem we have H = fOI(BS'(t)BS'(t)T +BS(t)BS(t)") dt,
BS(0)T 0
T =0, F = [ :|, = .
0 BS(DT b ]
The optimal unknown vector is: a0=0.14274223, a;=0.15310148, a,=0.00464964,
a3=0.00179430, a;=0.00000107.

The numerical results are listed in Table 2 and plotted in Figure 2 with k =1and M =5
compared with the exact solution.

Table 2: The numerical results with k = 1 and M = 5 for Example 2.

N = N R B
“ 0.00000000 0.00000000
0.08523370 0.08540202 0.00016831
0.171320454 0.17144774 0.00012728
0.259121838 0.25911063 0.00001120
0.349516600 0.34936512 0.00015147
0.443409441 0.44318654 0.00022289
m 0.541740074 0.54155117 0.00018889
0.645492623 0.64543623 0.00005638
m 0.755705480 0.75581985 0.00011437
m 0.873481690 0.87368110 0.00019941
1.000000000 1.00000000 0.00000000

Figure 2: Exact and approximate solutions for Example 2.
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Example 3: Min J(x(t)) = fol(fcz(t) — x2(t))dt,
together with the conditions: x(0) = 0 and x(1) = 1.

For this problem, x(t) = 32t ——represents the exact solution.
In this case, H = [ (BS(t)BS(t)T — BS(©)BS()T) dt,
BS(0)" 0
T = O, F = [ :|, b = .
BS(1)T |
The optimal unknown vector is:
=[0.22112400 0.20572597 0.00654117 — 0.00214508 0.00006468].

Table 3 and Figure 3 show the numerical results with k = 1 and M = 5 compared with the
exact solution.

Table 3: The numerical results with k = 1 and M = 5 for Example 3.

_
[ o0 | 0.00000000 0.00000000
0.11864154 0.11862515 0.00001638
0.23600766 0.23610539 0.00000773
0.35119476 0.35121959 0.00002483
0.46278285 0.46280286 0.00002001
0.56974696 0.56974648 0.00000047
| 06 | 0.67101835 0.67099797 0.00002037
0.76558514 0.76556105 0.00002409
| 08 | 0.85250246 0.85249562 0.00000683
[ 09 | 0.93090186 0.93001783 0.00001596
1.00000000 1.00000000 0.00000000
—

Sostr "

04 -

0.2 L

o 01 02 03 0.4 05 06 07 08 08 1

Figure 3: Exact and approximate solutions for Example 3.

5. Conclusion

A new direct parameterization method is developed for solving problems in the calculus of
variations based on Boubaker scaling basis functions. Some interesting properties are given
concerning the Boubaker scaling function required for the suggested parameterization
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technique, and they are used to transfer the solution computation of calculus of variations
problems to the quadratic programming technique. Consequently, the numerical solution
concurs with the exact solution even with a small number of the Boubaker scaling used in
estimation. The proposed method is applied to some test examples to show the accuracy and
the implementation of the suggested technique.
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