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Abstract  

     In this paper, we introduce new definitions of the 𝑳𝑷- spaces, 𝟏 ≤ 𝑷 ≤ ∞, namely 

the  𝑳𝑷(ℝ𝒏, ℍ𝑵) - spaces, 𝟏 ≤ 𝑷 ≤ ∞. Here, 𝑛 and 𝑁 are natural numbers that are 

not necessarily equal, such that 𝑛, 𝑁 ≥ 1. The space ℝ𝑛 refers to the n-dimensional 

Euclidean space, ℍ refers to the quaternions set and ℍ𝑁 refers to the N-dimensional 

quaternionic space. Furthermore, we establish and prove some properties of their 

elements. These elements are quaternion-valued N-vector functions defined on ℝ𝒏, 

and the 𝑳𝑷 spaces  have never been introduced in this way before.  

 

Keywords: Hamiltonian skew field of quaternions, Quaternion N-vectors, 

Quaternion-valued functions, 𝐿p(ℝ𝑛, ℍ𝑁) spaces, 𝐿∞(ℝ𝑛, ℍ𝑁) space.  

 

 𝑵ذو البعد رباعيةال فضاءالمركباتالى  𝒏بعد المن الفضاء الحقيقي ذو لدوال  𝑳𝑷 فضاءات
 

البوكرده*, محمد خلف عبد الله, خلدون سعد غالب حسين علي حسين   
 قسم الرياضيات, كلية العلوم, جامعة البصرة, البصرة, العراق 

 
  الخلاصة 

البحث         هذا  للفضاءات  تعريف   نقدم في  ,   جديد  𝟏 ≤ 𝑷 ≤ ∞ , 𝑳𝑷   تعريف الفضاءات    وهو 
 , 𝑳𝑷(ℝ𝒏, ℍ𝑵)   , 𝟏 ≤ 𝑷 ≤ هما عددان طبيعيان ليس من الضروري أن يتساويان وهما    𝑁و    𝑛  هنا   ∞

,𝑛يحققان   𝑁 ≥ الى  ي  ℝ𝑛  الفضاء .  1 الإقليديشير  البعد    الفضاء  مجموعة    ℍو    𝑛 ذات  الى  تشير 
و   البعد    ℍ𝑁الرباعيات   ذات  المتجهات  فضاء  الى  رباعية.    𝑁تشير  مع    نقدم ذلك    على  علاوةبمركبات 
  𝑁دوال إتجاهية ذات بعد  خصائص العناصر لهذه الفضاءات. هذه العناصر هي عباره عن    البرهان بعض

 لم يسبق أن قدمت بهذا الشكل من قبل. 𝑳𝑷, وإن الفضاءات   ℝ𝑛بمركبات رباعية وهي معرفة على  
 

1. Introduction   

     There have been a vast number of studies on the real quaternions set ℍ (which is 

sometimes called the Hamiltonian skew field of quaternions) since it has been introduced for 

the first time in 1843 by W. R. Hamilton   [1] and [2]. Technological improvements have been 

provided when the real quaternions are put into practice and it has been studied in different 

areas like geometry, algebra, computer-aided design, and physics.   
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    One of the recent papers in this regard is the paper M. J. Saadan et al. [3] in which among 

other interesting results, the spaces 𝐿p(G2, ℍ) and 𝐿∞(G2, ℍ) have been defined for the 

quaternion-valued functions 𝑢: G2 ⟶ℍ, where G is a locally compact abelian group. Also, in 

[4]  quaternion-valued positive definite functions have been studied on the countable real 

Hilbertian nuclear spaces, locally compact abelian groups and on the linear space of all real 

numerical sequences ℝ𝑀 = {(𝑥1, ⋯ , 𝑥𝑑 , ⋯ ): 𝑥𝑑 ∈ ℝ} endowed with the Tychonoff topology. 

On the other hand, in [5] the module structure of the N-dimensional quaternionic space ℍ𝑁 

has been created with other interesting results. The idea of this paper is inspired by the results 

of all the interesting papers mentioned above. 

 

     Although the majority of scientific studies are on real space, when the concept of raising 

the dimension of the space is considered, the approaches of this work would be different. To 

explain this statement, consider a limit problem, then the offered solution by the N-vectors 

approximations is more rational in this case. Hence, the need arises to study N-dimensional 

spaces like the space ℍ𝑁 and the N-dimensional vector valued functions like the quaternion-

valued N-vector functions.  

 

     The main object of the study in this paper is the quaternion-valued N-vector functions  

𝑢:ℝ𝑛 ⟶ℍ𝑁, where the natural numbers 𝑛,𝑁 ≥ 1 are not necessarily equal. The crucial goal 

of the study is to define the 𝑳𝑷(ℝ𝒏, ℍ𝑵) – spaces, 𝟏 ≤ 𝑷 ≤ ∞, and to analyze some of the 

most important concepts of these spaces. Here, ℝ𝑛 refers to the real n-vector space ℝ𝑛 =
ℝ ×ℝ ×⋯× ℝ⏟          

𝑛−𝑡𝑖𝑚𝑒𝑠

, ℍ refers to the real quaternions set, and ℍ𝑁 refers to the N-dimensional 

quaternionic space (quaternionic N-vector space) ℍ𝑁 = ℍ×ℍ ×⋯×ℍ⏟          
𝑁−𝑡𝑖𝑚𝑒𝑠

, the details will be 

included in the preliminaries in the next section. 

 

     The authors in this paper followed the same strategy of [6] and [7]  for referring to the 

modulus of a space 𝕩 (as an example) by ‖∙‖𝕩 due to the different algebraic systems that are 

used in this work and to make the clearness to the reader for which modulus and for which 

space. The absolute value for a real number will be denoted by |∙|ℝ.  

  

2. Preliminaries 

     This section will be devoted to summaries of the background of the topic under 

consideration. We also present the most important basics that are needed throughout this 

work. References will be given to direct the reader to more details. 

 

2.1 The real quaternion space ℍ 

    The most popular definition of the real quaternions set ℍ is given in the following form:  

ℍ = {𝑞 |𝑞 = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘, 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ}, 
with the following properties for 𝑖, 𝑗 and 𝑘 which are called Hamilton’s multiplication rules: 

𝑖 ∙ 𝑗 = −𝑗 ∙ 𝑖 = 𝑘, 𝑗 ∙ 𝑘 = −𝑘 ∙ 𝑗 = 𝑖, 𝑘 ∙ 𝑖 = −𝑖 ∙ 𝑘 = 𝑗 and  𝑗2 = 𝑘2 = 𝑖2 = 𝑖𝑗𝑘 = −1. 

 

     Actually, each quaternion element, for example, 𝑞 = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘 can be written as a 

sum of two parts, one of them is called the scalar part or the real part and is denoted by 𝑆𝑐(𝑞) 
or simply 𝑆𝑞, in this case, 𝑆𝑞 = 𝑎. Other elements are called the vector, spatial, or pure part 

which are denoted by 𝑉𝑒𝑐(𝑞) or simply 𝑉𝑞, in this case, 𝑉𝑞 = 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘. Therefore, 𝑞 =

𝑆𝑞 + 𝑉𝑞. The conjugate of the quaternion 𝑞 is �̅� = 𝑆𝑞 − 𝑉𝑞, and the modulus ‖𝑞‖ℍ of a 

quaternion 𝑞 is defined by ‖𝑞‖ℍ = √𝑞�̅� = √𝑎2 + 𝑏2 + 𝑐2 + 𝑑2. We refer the reader to  [5], 

[8], [9], [10], [11], [12], and [13] for more interesting  details , properties and results 
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regarding  the quaternions  and  the algebraic operations such as the addition and the 

multiplication of two quaternion elements, and also the multiplication of a quaternion element 

by a real scalar.  The above typical representation of the quaternions will be used in this 

paper, However,  the quaternion numbers can also be represented in a matrix form. Assume 

that 𝐼 is 4 × 4 identity matrix, and assume that 𝐻, 𝐽, 𝐾 are 4 × 4 real matrices. The typical 

quaternion can be rewritten in the following matrix form: 

𝑄 = 𝑎𝐼 + 𝑏𝐻 + 𝑐𝐽 + 𝑑𝐾, 
where the matrices 𝐼, 𝐻, 𝐽, and 𝐾 satisfy the Hamiltonian conditions. For more details about 

the matrix form, we refer the reader to [14]. 

 

2.2 The N-dimensional quaternionic space ℍ𝑵 

     Let ℍ𝑁  be the N-dimensional quaternions set which is the set of all real quaternion N-

vectors. It is defined as follows:  

ℍ𝑁 = ℍ ×ℍ ×⋯×ℍ⏟          
𝑁−𝑡𝑖𝑚𝑒𝑠

, 

and is represented by the following set: 

ℍ𝑁 = {�⃗� = (𝑞1, 𝑞2, ⋯ , 𝑞𝑁)|𝑞1, 𝑞2, ⋯ , 𝑞𝑁 ∈ ℍ}. 
 

     Since 𝑞𝑙 ∈ ℍ for all 𝑙 = 1,2,⋯ ,𝑁 this means it can be written as 𝑞𝑙 = 𝑆𝑞𝑙 + 𝑉𝑞𝑙. 

Therefore, the quaternionic N-vector �⃗� itself can be written as a sum of two N-vectors as in 

the following form: 

�⃗� = 𝑆�⃗⃗� + 𝑉�⃗⃗� , 

where the real N-vector 𝑆�⃗⃗� = (𝑆𝑞1 , 𝑆𝑞2 , ⋯ , 𝑆𝑞𝑁) represents the scalar (real) part of �⃗� and the 

pure (spatial) quaternion N-vector 𝑉�⃗⃗� = (𝑉𝑞1 , 𝑉𝑞2 , ⋯ , 𝑉𝑞𝑁) represents the vector part of �⃗�. 

Consequently, the conjugate of the quaternionic n-vector �⃗� is: 

�̅⃗� = 𝑆�⃗⃗� − 𝑉�⃗⃗�. 

 

     The set of all pure (spatial) quaternionic N-vectors ℍ𝑝
𝑁 (where 𝑝 comes from the word 

‘‘pure’’) can be defined as the set of all vector parts of the quaternionic N-vectors of the set 

ℍ𝑁: 

ℍ𝑝
𝑁 = {𝑉�⃗⃗� = (𝑉𝑞1 , 𝑉𝑞2 , ⋯ , 𝑉𝑞𝑁)|�⃗� ∈ ℍ

𝑁}. 

 

     The modulus of N-dimensional quaternion vector �⃗� = (𝑞1, 𝑞2, ⋯ , 𝑞𝑁) in the vector space 

ℍ𝑁 defined in [5] by ‖�⃗�‖ℍ𝑁 = √∑ ‖𝑞𝑙‖ℍ
2𝑁

𝑙=1 . To understand the vector space structure of N-

dimensional quaternionic space over real space. We recommend the reader to see[5].  Among 

other interesting results, an inner product function and a norm function have been defined on 

the N-dimensional quaternionic space. The analysis concepts of the quaternionic N-vector 

valued functions such as limits, continuity, and the derivatives have been discussed and 

described in there considering the component-wise metric on ℍ𝑁 . 

 

3. The 𝑳𝑷 and 𝑳∞- spaces of quaternion-valued N-vector functions on ℝ𝒏 

     This section contains the main results of this paper. We start with introducing the 

definitions of the quaternion-valued N-vector functions, 𝐿p(ℝ𝑛, ℍ𝑁) - spaces and 

𝐿∞(ℝ𝑛, ℍ𝑁) - space. To the best of our knowledge, these definitions are not introduced before 

in the sense of ℍ𝑁. After that, some properties of the functions that belong to these spaces 

will be discussed clearly.  
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3.1 Definition (Quaternion-valued N-vector functions on ℝ𝒏) 

     Let 𝑛 and 𝑁 be the natural numbers that are not necessarily equal, such that 𝑛,𝑁 ≥ 1. 

Consider the Euclidean real n-vector space ℝ𝑛 = ℝ × ℝ×⋯× ℝ⏟          
𝑛−𝑡𝑖𝑚𝑒𝑠

, and the quaternionic N-

vector space ℍ𝑁 = ℍ ×ℍ ×⋯×ℍ⏟          
𝑁−𝑡𝑖𝑚𝑒𝑠

. If 𝑢 is a function from ℝ𝑛 to ℍ𝑁, i.e., 𝑢:ℝ𝑛 ⟶ℍ𝑁. 

Then 𝑢 is called a quaternion-valued N-vector function on ℝ𝑛. 

 

3.2 Definition (𝑳𝐩(ℝ𝒏, ℍ𝑵) - spaces, 𝟏 ≤ 𝒑 < ∞) 

     Let 𝑛 and 𝑁 be the natural numbers that are not necessarily equal, such that 𝑛,𝑁 ≥ 1. 

Consider the n-dimensional Euclidean space ℝ𝑛, and the N-dimensional quaternionic space 

ℍ𝑁. We define the spaces 𝐿p(ℝ𝑛, ℍ𝑁) for 1 ≤ 𝑝 < ∞   as follows: 

𝐿p(ℝ𝑛, ℍ𝑁) = {𝑢 ∶  ℝ𝑛 ⟶ℍ𝑁|𝑢 𝑖𝑠 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒 𝑜𝑛 ℝ𝑛, 𝑎𝑛𝑑 ‖𝑢‖𝐿p(ℝ𝑛,ℍ𝑁) < ∞}, 

where: 

‖𝑢‖𝐿p(ℝ𝑛,ℍ𝑁) = (∫ ‖𝑢(x)‖
ℍ𝑁
𝑝
𝑑x

ℝ𝑛
)

1

𝑝
. 

 

3.3 Definition (𝑳∞(ℝ𝒏, ℍ𝑵) - space) 

     Let 𝑛 and 𝑁 be the natural numbers that are not necessarily equal, such that 𝑛,𝑁 ≥ 1. 

Consider the n-dimensional Euclidean space ℝ𝑛, and the N-dimensional quaternionic space 

ℍ𝑁. We define the space 𝑳∞(ℝ𝒏, ℍ𝑵) in the following form: 

𝐿∞(ℝ𝑛, ℍ𝑁) = {𝑢 ∶  ℝ𝑛 ⟶ℍ𝑁|𝑢 𝑖𝑠 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒  𝑜𝑛 ℝ𝑛, 𝑎𝑛𝑑 ‖𝑢‖𝐿∞(ℝ𝑛,ℍ𝑁) < ∞}, 

where: 
‖𝑢‖𝐿∞(ℝ𝑛,ℍ𝑁) = ess sup

x∈ℝ𝑛
‖𝑢(x)‖ℍ𝑁. 

 

After defining the 𝐿p(ℝ𝑛, ℍ𝑁) - spaces, 1 ≤ p ≤ ∞, we will state and prove the following 

theorem. 

 

3.4 Theorem  

     Let 𝑢 ∶  ℝ𝑛 ⟶ℍ𝑁 be a quaternion-valued N-vector function, which means for all x ∈ ℝ𝑛 

there exist quaternions 𝑢𝑡 ∈ ℍ, 𝑡 = 1,2,3,⋯ ,𝑁 such that 𝑢(x) = (𝑢1, 𝑢2, ⋯ , 𝑢𝑁), which also 

means for every fixed 𝑡 there exist  𝑢𝑡,𝑠 ∈ ℝ, 𝑠 = 0,1,2,3 such that 𝑢𝑡 = 𝑢𝑡,0 + 𝑢𝑡,1𝑖 + 𝑢𝑡,2𝑗 +
𝑢𝑡,3𝑘. If  𝑢 is a measurable function, then for 1 ≤ 𝑝 ≤ ∞ the following statements are 

equivalent: 

I. The quaternion-valued N-vector function 𝑢 ∶  ℝ𝑛 ⟶ℍ𝑁 is an element of the space 

𝐿p(ℝ𝑛, ℍ𝑁), i.e., 𝑢 ∈ 𝐿p(ℝ𝑛, ℍ𝑁). 
II. The components 𝑢𝑡 ∈ 𝐿

p(ℝ𝑛, ℍ),  ∀𝑡 = 1,2,3,⋯ ,𝑁. 

III. For all 𝑡 = 1,2,3,⋯ ,𝑁, the components 𝑢𝑡,𝑠 ∈ 𝐿
p(ℝ𝑛, ℝ), ∀𝑠 = 0,1,2,3. 

 Proof  

  First, we prove for 1 ≤ 𝑝 < ∞,   

  We assume that I  is satisfied and prove II. Suppose that 𝑢 ∈ 𝐿p(ℝ𝑛, ℍ𝑁). This means 

‖𝑢‖𝐿p(ℝ𝑛,ℍ𝑁) < ∞. Note that: 

‖𝑢𝑡(x)‖ℍ ≤ ‖𝑢(x)‖ℍ𝑁  , ∀𝑡 = 1,2,3,⋯ ,𝑁. Hence, 

‖𝑢𝑡‖𝐿p(ℝ𝑛,ℍ)
𝑝 = ∫ ‖𝑢𝑡(x)‖ℍ

𝑝𝑑x
ℝ𝑛

≤ ∫ ‖𝑢(x)‖
ℍ𝑁
𝑝
𝑑x

ℝ𝑛
= ‖𝑢‖

𝐿p(ℝ𝑛,ℍ𝑁)

𝑝
< ∞. 

Therefore,  𝑢𝑡 ∈ 𝐿
p(ℝ𝑛, ℍ),  ∀𝑡 = 1,2,3,⋯ ,𝑁. 

   Now, we assume that I  is satisfied and proveII. Suppose that 𝑢𝑡 ∈ 𝐿
p(ℝ𝑛, ℍ), ∀𝑡 =

1,2,3,⋯ ,𝑁. Therefore, ‖𝑢𝑡‖𝐿p(ℝ𝑛,ℍ) < ∞, ∀𝑡 = 1,2,3,⋯ ,𝑁. Then: 
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‖𝑢‖
𝐿p(ℝ𝑛,ℍ𝑁)

𝑝
= ∫ ‖𝑢(x)‖

ℍ𝑁
𝑝
𝑑x

ℝ𝑛
,  

                          = ∫ (√‖𝑢1(x)‖ℍ
2 + ‖𝑢2(x)‖ℍ

2 +⋯+ ‖𝑢𝑁(x)‖ℍ
2 )

𝑝

𝑑x
ℝ𝑛

, 

                          ≤ ∫ (‖𝑢1(x)‖ℍ + ‖𝑢2(x)‖ℍ +⋯+ ‖𝑢𝑁(x)‖ℍ)
𝑝𝑑x

ℝ𝑛
, 

                         = 𝑁𝑝 ∫ (
1

𝑁
‖𝑢1(x)‖ℍ +

1

𝑁
‖𝑢2(x)‖ℍ +⋯+

1

𝑁
‖𝑢𝑁(x)‖ℍ)

𝑝

𝑑x
ℝ𝑛

, 

                          ≤ 𝑁𝑝 ∫ ((
1

𝑁
‖𝑢1(x)‖ℍ

𝑝 +
1

𝑁
‖𝑢2(x)‖ℍ

𝑝 +⋯+
1

𝑁
‖𝑢𝑁(x)‖ℍ

𝑝 )

1

𝑝
)

𝑝

𝑑x
ℝ𝑛

, 

                         = 𝑁𝑝 ∫ (
1

𝑁
‖𝑢1(x)‖ℍ

𝑝 +
1

𝑁
‖𝑢2(x)‖ℍ

𝑝 +⋯+
1

𝑁
‖𝑢𝑁(x)‖ℍ

𝑝 )𝑑x
ℝ𝑛

, 

                         = 𝑁𝑝−1 ∫ (‖𝑢1(x)‖ℍ
𝑝 + ‖𝑢2(x)‖ℍ

𝑝 +⋯+ ‖𝑢𝑁(x)‖ℍ
𝑝 )𝑑x

ℝ𝑛
, 

                         = 𝑁𝑝−1 (∫ ‖𝑢1(x)‖ℍ
𝑝𝑑x + ∫ ‖𝑢2(x)‖ℍ

𝑝𝑑x +⋯+ ∫ ‖𝑢𝑁(x)‖ℍ
𝑝𝑑x

ℝ𝑛ℝ𝑛ℝ𝑛
), 

                         = 𝑁𝑝−1 (‖𝑢1‖𝐿p(ℝ𝑛,ℍ)
𝑝 + ‖𝑢2‖𝐿p(ℝ𝑛,ℍ)

𝑝 +⋯+ ‖𝑢𝑁‖𝐿p(ℝ𝑛,ℍ)
𝑝 ), 

                         < ∞. 

Hence, I  if and only if II is proved for 1 ≤ 𝑝 < ∞. 

   Now, we assume that II  is satisfied and prove III. Suppose that 𝑢𝑡 ∈ 𝐿
p(ℝ𝑛, ℍ),  ∀𝑡 =

1,2,3,⋯ ,𝑁. Therefore, ‖𝑢𝑡‖𝐿p(ℝ𝑛,ℍ) < ∞, ∀𝑡 = 1,2,3,⋯ ,𝑁. Note that for every fixed 𝑡 ∈
{1,2,3,⋯ , 𝑁} the following holds: 

|𝑢𝑡,𝑠(x)|ℝ ≤
‖𝑢𝑡(x)‖ℍ ,  ∀𝑠 = 0,1,2,3. Hence, 

‖𝑢𝑡‖𝐿p(ℝ𝑛,ℝ)
𝑝 = ∫ |𝑢𝑡,𝑠(x)|ℝ

𝑝
𝑑x

ℝ𝑛
≤ ∫ ‖𝑢𝑡(x)‖ℍ

𝑝𝑑x
ℝ𝑛

= ‖𝑢𝑡‖𝐿p(ℝ𝑛,ℍ)
𝑝 < ∞. 

Therefore, ∀𝑡 = 1,2,3,⋯ ,𝑁, the components 𝑢𝑡,𝑠 ∈ 𝐿
p(ℝ𝑛, ℝ),  ∀𝑠 = 0,1,2,3. 

   Now, we assume that III  is satisfied and prove II. For every fixed 𝑡 ∈ {1,2,3,⋯ ,𝑁}, 

suppose that 𝑢𝑡,𝑠 ∈ 𝐿
p(ℝ𝑛, ℝ),  ∀𝑠 = 0,1,2,3. Therefore, ‖𝑢𝑡,𝑠‖𝐿p(ℝ𝑛,ℝ) < ∞, ∀𝑠 = 0,1,2,3. 

then: 

‖𝑢𝑡‖𝐿p(ℝ𝑛,ℍ)
𝑝 = ∫ ‖𝑢𝑡(x)‖ℍ

𝑝𝑑x
ℝ𝑛

, 

                          = ∫ (√(𝑢𝑡,0(x))
2
+ (𝑢𝑡,1(x))

2
+ (𝑢𝑡,2(x))

2
+ (𝑢𝑡,3(x))

2
)

𝑝

𝑑x
ℝ𝑛

, 

                          ≤ ∫ (|𝑢𝑡,0(x)|ℝ + |𝑢𝑡,1(x)|ℝ + |𝑢𝑡,2(x)|ℝ + |𝑢𝑡,3(x)|ℝ)
𝑝

𝑑x
ℝ𝑛

, 

                         = 4𝑝 ∫ (
1

4
|𝑢𝑡,0(x)|ℝ +

1

4
|𝑢𝑡,1(x)|ℝ +

1

4
|𝑢𝑡,2(x)|ℝ +

1

4
|𝑢𝑡,3(x)|ℝ)

𝑝

𝑑x
ℝ𝑛

, 

                          ≤ 4𝑝 ∫ ((
1

4
|𝑢𝑡,0(x)|ℝ

𝑝
+
1

4
|𝑢𝑡,1(x)|ℝ

𝑝
+
1

4
|𝑢𝑡,2(x)|ℝ

𝑝
+
1

4
|𝑢𝑡,3(x)|ℝ

𝑝
)

1

𝑝
)

𝑝

𝑑x
ℝ𝑛

, 

                         = 4𝑝 ∫ (
1

4
|𝑢𝑡,0(x)|ℝ

𝑝
+
1

4
|𝑢𝑡,1(x)|ℝ

𝑝
+
1

4
|𝑢𝑡,2(x)|ℝ

𝑝
+
1

4
|𝑢𝑡,3(x)|ℝ

𝑝
)𝑑x

ℝ𝑛
, 

                         = 4𝑝−1 ∫ (|𝑢𝑡,0(x)|ℝ
𝑝
+ |𝑢𝑡,1(x)|ℝ

𝑝
+ |𝑢𝑡,2(x)|ℝ

𝑝
+ |𝑢𝑡,3(x)|ℝ

𝑝
) 𝑑x

ℝ𝑛
, 

                         = 4𝑝−1 (∫ |𝑢𝑡,0(x)|ℝ
𝑝
𝑑x + ∫ |𝑢𝑡,1(x)|ℝ

𝑝
𝑑x + ∫ |𝑢𝑡,2(x)|ℝ

𝑝
𝑑x

ℝ𝑛
+

ℝ𝑛ℝ𝑛

                                         ∫ |𝑢𝑡,3(x)|ℝ
𝑝
𝑑x

ℝ𝑛
), 

                         = 4𝑝−1 (‖𝑢𝑡,0‖𝐿p(ℝ𝑛,ℝ)
𝑝

+ ‖𝑢𝑡,1‖𝐿p(ℝ𝑛,ℝ)
𝑝

+ ‖𝑢𝑡,2‖𝐿p(ℝ𝑛,ℝ)
𝑝

+ ‖𝑢𝑡,3‖𝐿p(ℝ𝑛,ℝ)
𝑝

), 

                         < ∞. 

Hence, II if and only if III is proved for 1 ≤ 𝑝 < ∞.  

Therefore, I ⇔ II ⇔ III proved for 1 ≤ 𝑝 < ∞. 

    Now, we prove for 𝑝 = ∞,   
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    We assume that I  is satisfied and prove III. Suppose that 𝑢 ∈ 𝐿∞(ℝ𝑛, ℍ𝑁). This means 
‖𝑢‖𝐿∞(ℝ𝑛,ℍ𝑁) < ∞. Note that for every fixed 𝑠 ∈ {0,1,2,3}, the definition of ‖𝑢𝑡(x)‖ℍ  and 

the definition of supremum imply: 

|𝑢𝑡,𝑠(x)|ℝ ≤
‖𝑢𝑡(x)‖ℍ ≤ ‖𝑢(x)‖ℍ𝑁 < ∞ , ∀𝑡 = 1,2,3,⋯ , 𝑁.  

Hence, 

‖𝑢𝑡,𝑠‖𝐿∞(ℝ𝑛,ℝ) ≤
‖𝑢‖𝐿∞(ℝ𝑛,ℍ𝑁) < ∞. 

Therefore,  for all 𝑡 = 1,2,3,⋯ , 𝑁, the components 𝑢𝑡,𝑠 ∈ 𝐿
∞(ℝ𝑛, ℝ), ∀𝑠 = 0,1,2,3. 

    Now, we assume that III  is satisfied and prove II. For every fixed 𝑡 ∈ {1,2,3,⋯ ,𝑁}, 

suppose that 𝑢𝑡,𝑠 ∈ 𝐿
∞(ℝ𝑛, ℝ),  ∀𝑠 = 0,1,2,3. In another way, ‖𝑢𝑡,𝑠‖𝐿∞(ℝ𝑛,ℝ) < ∞, ∀𝑠 =

0,1,2,3.  

    On the other hand, for every fixed 𝑡 ∈ {1,2,3,⋯ , 𝑁}, we have ‖𝑢𝑡‖ℍ
2 = ∑ |𝑢𝑡,𝑠(x)|ℝ

23
𝑠=0 .  

This implies: 

 ‖𝑢𝑡‖ℍ ≤ 4max {|𝑢𝑡,𝑠(x)|ℝ: 𝑠 = 0,1,2,3}, 

               ≤ 4∑ |𝑢𝑡,𝑠(x)|ℝ
3
𝑠=0 .  

Thus, 

 ‖𝑢𝑡‖𝐿∞(ℝ𝑛,ℍ) = ess sup
x∈ℝ𝑛

‖𝑢𝑡(x)‖ℍ, 

                         ≤ 4∑ ess sup
x∈ℝ𝑛

|𝑢𝑡,𝑠(x)|ℝ
3
𝑠=0 , 

                         = 4∑ ‖𝑢𝑡,𝑠‖𝐿∞(ℝ𝑛,ℝ)
3
𝑠=0 , 

                         < ∞. 

Therefore, the components 𝑢𝑡 ∈ 𝐿
p(ℝ𝑛, ℍ),  ∀𝑡 = 1,2,3,⋯ ,𝑁. 

   Now, we assume that II  is satisfied and prove I. Suppose that 𝑢𝑡 ∈ 𝐿
∞(ℝ𝑛, ℍ),  ∀𝑡 =

1,2,3,⋯ ,𝑁. Therefore, ‖𝑢𝑡‖𝐿∞(ℝ𝑛,ℍ) < ∞, ∀𝑡 = 1,2,3,⋯ ,𝑁. 

    On the other hand, we have ‖𝑢‖
ℍ𝑁
2 = ∑ ‖𝑢𝑡‖ℍ

2N
𝑡=1 . Which implies:  

‖𝑢‖ℍ𝑁 ≤ Nmax{‖𝑢𝑡‖ℍ: 𝑡 = 1,2,⋯ , N}, 

               ≤ N∑ ‖𝑢𝑡‖ℍ
N
𝑡=1 .  

Thus, 

 ‖𝑢‖𝐿∞(ℝ𝑛,ℍ𝑁) = ess sup
x∈ℝ𝑛

‖𝑢(x)‖ℍ𝑁, 

                         ≤ N∑ ess sup
x∈ℝ𝑛

‖𝑢𝑡‖ℍ
N
𝑡=1 , 

                         = N∑ ‖𝑢𝑡‖𝐿∞(ℝ𝑛,ℍ)
N
𝑡=1 , 

                         < ∞. 

Therefore, 𝑢 ∈ 𝐿p(ℝ𝑛, ℍ𝑁). 
Hence, I ⇒ III ⇒ II ⇒ I is proved for 𝑝 = ∞.  

This means I ⇔ II ⇔ III is proved for 𝑝 = ∞. 

□ 

3.5 Lemma 

     Every quaternion-valued N-vector 𝑢 = (𝑢1, 𝑢2, ⋯ , 𝑢𝑁) can be written in a complex 

number form as 𝑢 = 𝑈1 + 𝑈2𝑗, where 𝑈1 = 𝐴 + 𝐵𝑖, 𝑈2 = 𝐶 + 𝐷𝑖 and 𝐴, 𝐵, 𝐶, 𝐷 ∈ ℝ𝑁. 

Proof  

    Let 𝑢 ∈ ℍ𝑁. This means it is written as 𝑢 = (𝑢1, 𝑢2, ⋯ , 𝑢𝑁), where 𝑢𝑡 ∈ ℍ, ∀𝑡 =
1,2,3,⋯ ,𝑁. Consequently, for every fixed 𝑡 there exist  𝑢𝑡,𝑠 ∈ ℝ, 𝑠 = 0,1,2,3 such that 𝑢𝑡 =
𝑢𝑡,0 + 𝑢𝑡,1𝑖 + 𝑢𝑡,2𝑗 + 𝑢𝑡,3𝑘. Hence, 𝑢 can be written in the following form: 

𝑢 = (𝑢1,0 + 𝑢1,1𝑖 + 𝑢1,2𝑗 + 𝑢1,3𝑘, 
           𝑢2,0 + 𝑢2,1𝑖 + 𝑢2,2𝑗 + 𝑢2,3𝑘, 
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                                  ⋮ 
            𝑢𝑁,0 + 𝑢𝑁,1𝑖 + 𝑢𝑁,2𝑗 + 𝑢𝑁,3𝑘), 
This can be also rearranged to the following form: 

𝑢 = (𝑢1,0, 𝑢2,0, ⋯ , 𝑢𝑁,0) + (𝑢1,1, 𝑢2,1, ⋯ , 𝑢𝑁,1)𝑖 + (𝑢1,2, 𝑢2,2, ⋯ , 𝑢𝑁,2)𝑗 +

        (𝑢1,3, 𝑢2,3, ⋯ , 𝑢𝑁,3)𝑘. 

To simplify the last form, assume  𝐴 = (𝑢1,0, 𝑢2,0, ⋯ , 𝑢𝑁,0), 𝐵 = (𝑢1,1, 𝑢2,1, ⋯ , 𝑢𝑁,1), 𝐶 =

(𝑢1,2, 𝑢2,2, ⋯ , 𝑢𝑁,2) and 𝐷 = (𝑢1,3, 𝑢2,3, ⋯ , 𝑢𝑁,3). Hence, 𝑢 is written as follows: 

𝑢 = 𝐴 + 𝐵𝑖 + 𝐶𝑗 + 𝐷𝑘, 

 where 𝐴, 𝐵, 𝐶, 𝐷 ∈ ℝ𝑁.  

Now, by Hamilton’s multiplication rules, specifically, 𝑖𝑗 = 𝑘, 𝑢 can be written in a complex 

number form: 

𝑢 = 𝐴 + 𝐵𝑖 + 𝐶𝑗 + 𝐷𝑘 

    = 𝐴 + 𝐵𝑖 + 𝐶𝑗 + 𝐷𝑖𝑗 
    = (𝐴 + 𝐵𝑖) + (𝐶 + 𝐷𝑖)𝑗 
    = 𝑈1 + 𝑈2𝑗, 
where 𝑈1 = 𝐴 + 𝐵𝑖 and 𝑈2 = 𝐶 + 𝐷𝑖. Note that 𝑈1, 𝑈2 ∈ ℂ

𝑁. 

□ 

3.6 Corollary 

    For any quaternion-valued N-vector function 𝑢(x) = (𝑢1, 𝑢2, ⋯ , 𝑢𝑁), where 𝑢𝑡 ∈ ℍ, ∀𝑡 =
1,2,3,⋯ ,𝑁 (Which means for every fixed 𝑡 there exist  𝑢𝑡,𝑠 ∈ ℝ, 𝑠 = 0,1,2,3 such that 𝑢𝑡 =

𝑢𝑡,0 + 𝑢𝑡,1𝑖 + 𝑢𝑡,2𝑗 + 𝑢𝑡,3𝑘). If 𝑢 ∈ 𝐿p(ℝ𝑛, ℍ𝑁), for 1 ≤ 𝑝 ≤ ∞. Then, 𝑢 can be written as 

𝑢 = 𝑈1 + 𝑈2𝑗, where 𝑈1, 𝑈2 ∈ 𝐿
p(ℝ𝑛, ℂ𝑁). 

Proof  

    The proof of this corollary is a consequence of Lemma (3.5) and Theorem (3.4). 

□ 

3.7 Remark  

     An interesting conclusion of Corollary (3.6), is that the space 𝐶𝑐(ℝ
𝑛, ℍ𝑁) is a dense 

subspace of the space 𝐿p(ℝ𝑛, ℍ𝑁), and the space 𝐶0(ℝ
𝑛, ℍ𝑁) is the closure of the space 

𝐶𝑐(ℝ
𝑛, ℍ𝑁) in the uniform metric. 

 

4. Conclusion 

     In this paper, we introduced the definitions of the 𝐿p(ℝ𝑛, ℍ𝑁), 1 ≤ p ≤ ∞, spaces of 

functions from the n-dimensional real space ℝ𝑛 to the N-dimensional quaternionic space ℍ𝑁, 

where the natural numbers 𝑛,𝑁 ≥ 1 are not necessarily equal. To the best of our knowledge, 

the 𝐿𝑝- spaces for this kind of function have never been introduced before. Also, some 

important properties of the functions in these spaces are established and proved. In future 

studies, one may try to consider these new definitions instead of the previous studies that 

include the 𝐿p- spaces to see and get more important results. For example, it may be used to 

extend the results of [15], and [16]. 
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