Baanoon and Khild

Sin and Colored Colore

Iraqi Journal of Science, 2023, Vol. 64, No.9, pp: 4613-4621 DOI: 10.24996/ijs.2023.64.9.25

ISSN: 0067-2904

e^{*}-Extending Modules

Hiba R. Baanoon^{1,2}*, Wasan Khild¹

¹Department of Mathematics, College of science, University of Baghdad, Baghdad, Iraq ²Department of Mathematics, College of Education, University of Misan, Misan, Iraq

Received: 15/9/2022 Accepted: 27/10/2022 Published: 30/9/2023

Abstract

This paper aims to introduce the concepts of e^* -closed, e^* -coclosed, and e^* -extending modules as generalizations of the closed, coclossed, and extending modules, respectively. We will prove some properties as when the image of the e*-closed submodule is also e*-closed and when the submodule of the e*-extending module is e*-extending. Under isomorphism, the e*-extending modules are closed. We will study the quotient of e*-closed and e*-extending, the direct sum of e*-closed, and the direct sum of e*-extending.

Keywords: essential submodule, closed submodule, extending modules, e^* -essential submodule, e^* -closed submodule, e^* -coclosed submodule, e^* -extending modules.

المقاسات الموسعة من النمط-*e

هبه ربيع بعنون ^{1,2} , وسن خالد¹ ¹قسم الرياضيات, كلية العلوم, جامعة بغداد, بغداد, العراق ²قسم الرياضيات, كلية التربية, جامعة ميسان, ميسان, العراق

الخلاصة

الهدف من هذه الورقة لتقديم المفاهيم المقاسات الجزئية المغلقة من النمط e^* ، المقاسات الجزئية المغلقة المضادة من النمط e^* والمقاسات الموسعة من النمط e^* كتعميم للمقاسات الجزئية المغلقة، المقاسات الجزئية المغلقة المضادة و المقاسات الموسوعة. سنقدم في هذه الورقة تعريف لهذه المفاهيم مع برهان خواصهم مثل متى ستكون صورة المقاسات الجزئية المغلقة من النمط e^* وأيضا مغلقة من النمط e^* ومتى تكون المقاسات الجزئية من المقاسات الموسعة من النمط e^* هي أيضا معلقة من النمط e^* ومتى المقاسات الجزئية من المقاسات الموسعة من النمط e^* مي أيضا معلقة من النمط e^* ومتى منا المقاسات الجزئية من المقاسات الموسعة من النمط e^* هي أيضا معلقة من النمط e^* ومتى منا مقاسات الجزئية من المقاسات الموسعة من النمط e^* مي أيضا معلقة. سندرس مقاسات القسمة لكل من المقاسات الجزئية المغلقة من النمط e^* و المقاسات الموسعة من النمط e^* مغلقة. سندرس مقاسات القسمة لكل

1. Introduction

In this work *M* is a right module over a ring *R* with identity. E(M) is the injective envelope of *M*. When S + T = M implies T = M for each $T \le M$, *S* is called a small submodule of *M*, symbolized by $S \ll M$. See [1] and [2]. If $S \cap T \neq \{0\}$ for each $0 \neq T \le M$,

^{*}Email: hibabaanoon@uomisan.edu.iq

then S is called an essential submodule of M, see[1] and[3]. A submodule S of module M is closed if S has no proper essential extension, see[3]. If every submodule of a module M is essential in the direct summand, then module is said to be extending. M is an extending module if and only if each of its closed submodules is a direct summand, see [4].

In [5], Ozcan introduced a new type of submodules which defined as $Z^*(M) = \{a \in M \mid aR \text{ is small in } E(M)\}$. If $Z^*(M) = M$, then M is called cosingular. Whilst, in [6], Baanoon and Khalid introduced a class of submodules called e^* -essential. If $S \cap T \neq \{0\}$ for each cosingular T where $0 \neq T \leq M$, S is called an e^* -essential submodule of M, symbolized by $S \leq_{e^*} M$. Also, in [7], the same authors used e^* -essential submodule, called e^* -essential small. If S + T = M implies T = M for each $T \leq_{e^*} M$, S is called an e^* -essential submodule, called e^* -essential small submodule of M symbolized by $S \ll_{e^*} M$. The generalization of the radical submodule which is called e^* -radical denoted by, $Rad_{e^*}(M)$ and defined as the intersection of all e^* -essential maximal submodule of M is e^* -essential small, then M is anointed e^* -hollow, where M is a nonzero module, see [7].

As in[8], we will use e^* -essential and e^* -essential small submodules to present a new generalization of closed, coclosed submodules and extending modules. Namely e^* -closed submodules, e^* -coclosed submodules, and e^* -extending modules, respectively. Moreover, we will prove the main properties of these concepts.

Now, let us present the following proposition that is crucial to our work.

Proposition 1.1. Assume that *M* is a module, $\{L_{\alpha}\}_{\alpha \in \Lambda}$ is the collection of *M*'s independent submodules, and $L_{\alpha} \leq_{e^*} L'_{\alpha}$ for each $\alpha \in \Lambda$, where L'_{α} is a submodule of *M* for each $\alpha \in \Lambda$. Then $\bigoplus_{\alpha \in \Lambda} L_{\alpha} \leq_{e^*} \bigoplus_{\alpha \in \Lambda} L'_{\alpha}$.

Proof. First, consider the case when the index set consists two members $\{L_1, L_2\}$, then by proposition 4 in[6], $L_1 \oplus L_2 \leq_{e^*} L'_1 \oplus L'_2$. Suppose that the result is correct for an index of m-1 items. Now, let $\{L_1, L_2, ..., L_m\}$ be independent family of submodules of M with $L_i \leq_{e^*} L'_i$ for each i = 1, ..., m. By the previous case we have $\bigoplus_{i=1}^{m-1} L_i \leq_{e^*} \bigoplus_{i=1}^{m-1} L'_i$. Since $L_m \leq_{e^*} L_m'$, we get $\bigoplus_i^m L_i \leq_{e^*} \bigoplus_i^m L_i'$. Finally, let $\{L_\alpha\}_{\alpha \in \Lambda}$ be the independent family of submodules of *M* and $L_{\alpha} \leq_{e^*} L'_{\alpha}$ for each $\alpha \in \Lambda$, let *S* be a non-zero cosingular of $\bigoplus_{\alpha \in \Lambda} L'_{\alpha}$. So S contains a nonzero element which belong to $L'_{\alpha(1)} \oplus ... \oplus L'_{\alpha(m)}$ for some $\alpha(i)$. As a result $0 \neq S \cap (L'_{\alpha(1)} \oplus ... \oplus L'_{\alpha(m)}) \leq S$, the submodule of cosingular is cosingular[5], so $S \cap \left(L'_{\alpha(1)} \oplus \dots \oplus L'_{\alpha(m)} \right)$ is submodule. a nonzero cosingular Since $\begin{array}{l} L_{\alpha(1)} \bigoplus ... \bigoplus L_{\alpha(m)} \leq_{e^*} L'_{\alpha(1)} \bigoplus ... \bigoplus L'_{\alpha(m)} & ... & \text{Hence,} \quad S \cap \left(L'_{\alpha(1)} \bigoplus ... \bigoplus L'_{\alpha(m)}\right) \cap \\ \left(L_{\alpha(1)} \bigoplus ... \bigoplus L_{\alpha(m)}\right) \neq 0 \quad \text{and} \quad \text{consequently} \quad S \cap \bigoplus_{\alpha \in \Lambda} L_{\alpha} \neq 0 & . \end{array}$ $\bigoplus_{\alpha \in \Lambda} L_{\alpha} \leq_{e^*} \bigoplus_{\alpha \in \Lambda} L'_{\alpha}.$

2. e*-Closed submodules

In this section, we will prove some properties of e*-closed, as introduce in [5].

Definition 2.1 [6]

A submodule S of a module M is *e**-*closed* in M, if S has no proper e*-essential extension, (symbolized by $S \leq_{e*c} M$).

Definition 2.2

Suppose that S_1 and S_2 are submodules of a module M. Then S_2 is called *e*-closure* of S_1 if S_1 is e*-essential in S_2 and S_2 is e*-closed in M. For example, in the \mathbb{Z} -module \mathbb{Z}_{12} , we have that $\langle \overline{3} \rangle$ is e*-closure of $\langle \overline{6} \rangle$, since $\langle \overline{6} \rangle$ is e*-essential in $\langle \overline{3} \rangle$ and $\langle \overline{3} \rangle$ is e*-closed in M.

Examples and Remarks 2.3

1- For any cosingular module M, $\{0\}$ is e*-closed, if $\{0\} \leq_{e^*} B \leq M$, then $\{0\} \cap B = \{0\}$ and $B = \{0\}$ (submodule of cosingular module is cosingular [4]). When M is not a cosingular module, that is not generally true. For instance, the \mathbb{Z}_6 -module \mathbb{Z}_6 , $\{\overline{0}\}$ is not e*-closed since $\{\overline{0}\} \leq_{e^*} \mathbb{Z}_6$.

2- Every e*-closed submodule is closed. The opposite need not always be true. For instance, \mathbb{Z}_6 as a \mathbb{Z}_6 -module $\langle \overline{2} \rangle$ is closed in \mathbb{Z}_6 but not e*-closed, see [6].

3- Assume that M is a cosingular module. Then e*-closed and closed submodules coincide.

4- Let the submodule *S* of *M* be e*-closed and e*-essential. Then S = M.

5- Every direct summand of a module *M* is known to be closed in *M*. However, there is no association with direct summand if e*-closed.For instance, in the \mathbb{Z}_6 -module \mathbb{Z}_6 , $\langle \overline{3} \rangle$ is a direct summand of \mathbb{Z}_6 but not an e*-closed submodule.

6- It is not necessary for a module *M*'s intersection of e*-closed submodules to be e*-closed. For instance, in the Z-module $\mathbb{Z} \oplus \mathbb{Z}_2$, let $S_1 = \mathbb{Z} \oplus \{\overline{0}\}$ and $S_2 = \mathbb{Z}(1, \overline{1})$ which are e*-closed submodules in $\mathbb{Z} \oplus \mathbb{Z}_2$, since S_1 and S_2 has no proper e*-essential extension in $\mathbb{Z} \oplus \mathbb{Z}_2$. But $S_1 \cap S_2 = (2, \overline{0})\mathbb{Z} \leq_{e^*} \mathbb{Z} \oplus \{\overline{0}\}$. So $S_1 \cap S_2$ is not e*-closed.

The fundamental characteristics of e*-closed submodules are presented.

Proposition 2.4 [6]

Assume that *M* is a module, if $S_1 \leq S_2 \leq_{e^*} M$ and $S_1 \leq_{e^*C} M$, then $\frac{S_2}{S_1} \leq_{e^*} \frac{M}{S_1}$.

Proposition 2.5 Assume that $g: M \to W'$ is an epimorphism and $S \leq_{e^*C} M$ such that ker $(g) \leq S$. Then $g(S) \leq_{e^*C} W'$.

Proof. Suppose that $L' \leq W'$ with $g(S) \leq_{e^*} L'$. Then $g^{-1}g(S) \leq g^{-1}(L') \leq M$ from proposition 2 in [5] we have $g^{-1}g(S) \leq_{e^*} M$ and from proposition 1 in [5] $g^{-1}g(S) \leq_{e^*} g^{-1}(L')$, since ker $(g) \leq S$, we have $g^{-1}g(S) = Ker(g) + S = S$, so $S \leq_{e^*} g^{-1}(L')$. But S is e*-closed in M; therefore, $S = g^{-1}(L')$ and g(S) = L'. Thus, g(S) is e*-closed in W'.

Corollary 2.6 Under isomorphism, the e*-closed submodule is closed.

Corollary 2.7 Suppose that T_1 and T_2 are submodules of M with $T_1 \le T_2$. If $T_2 \le_{e^*C} M$, then $\frac{T_2}{T_1}$ is e*-closed in $\frac{M}{T_1}$.

Proposition 2.8 Let $S_1 \leq M$. Then *M* has an e*-closed submodule S_2 such that $S_1 \leq_{e^*} S_2$.

Proof. Consider $\Lambda = \{S_3 \leq M | S_1 \leq_{e^*} S_3\}, \Lambda \neq \emptyset$ since $S_1 \in \Lambda$ and every nonempty chain in Λ has an upper-bounded in Λ , hence Λ has a maximal element, say S_2 , according to Zorn's lemma, with $S_1 \leq_{e^*} S_2$. Claim that $S_2 \leq_{e^*C} M$. Assume that there exists $S_2' \leq M$ such that $S_2 \leq_{e^*} S_2'$. Hence $S_1 \leq_{e^*} S_2'$, so $S_2' \in \Lambda$. But S_2 is a maximal element in Λ , hence $S_2 = S_2'$. Thus S_2 is an e*-closed submodule in M.

Proposition 2.9

Suppose that *M* is a module, S_1 and S_2 are submodules of *M* with $S_1 \leq S_2$. If $S_1 \leq_{e^*C} M$, then $S_1 \leq_{e^*C} S_2$.

Proof. Assume that S_1 is an e*-essential submodule of *L*, where *L* is a submodule of S_2 . Since $S_1 \leq_{e^*C} M$. Hence $S_1 = L$. Thus, S_1 is e*-closed in S_2 .

A module *M* is considered chained if either $S_1 \leq S_2$ or $S_2 \leq S_1$ holds true for each of its submodules S_1 and S_2 . See[9].

Proposition 2.10 Assume that *M* is a chained module, T_1 and T_2 are submodules of *M* with $T_1 \leq T_2$. If $T_1 \leq_{e^*C} T_2$ and $T_2 \leq_{e^*C} M$, then $T_1 \leq_{e^*C} M$.

Proof. Suppose that $U \le M$ with T_1 is the e^{*}-essential submodule of U. By the hypothesis has two cases:

Case I: If $U \le T_2$ since T_1 is e*-closed in T_2 . Hence $T_1 = U$. Thus, T_1 is e*-closed in M. Case II: If $T_2 \le U$ since T_1 is an e*-essential submodule of U. Hence T_1 is the e*-essential submodule of T_2 and T_2 is the e*-essential submodule of U. But T_1 is e*-closed in T_2 and T_2 is e*-closed in M; therefore, $T_1 = T_2 = U$. Thus, T_1 is e*-closed in M.

The following proposition proves that the direct sum of e*-closed submodules is an e*-closed submodule.

Proposition 2.11 Suppose that W_1 and W_2 are modules with $T_1 \leq W_1$ and $T_2 \leq W_2$. If $T_1 \leq_{e^*C} W_1$ and $T_2 \leq_{e^*C} W_2$, then $T_1 \oplus T_2 \leq_{e^*C} W_1 \oplus W_2$.

Proof. Let $T_1 \oplus T_2 \leq_{e^*} U_1 \oplus U_2$, where $U_1 \leq W_1$ and $U_2 \leq W_2$. Consider the inclusion maps $i_1: U_1 \to U_1 \oplus U_2$ and $i_2: U_2 \to U_1 \oplus U_2$. Since $T_1 \oplus T_2 \leq_{e^*} U_1 \oplus U_2$, then $i_1^{-1}(T_1 \oplus T_2) \leq_{e^*} i_1^{-1}(U_1 \oplus U_2)$ and $i_2^{-1}(T_1 \oplus T_2) \leq_{e^*} i_2^{-1}(U_1 \oplus U_2)$. $i_1^{-1}(T_1 \oplus T_2) = \{u_1 \in U_1 \mid i_1(u_1) = u_1 \in T_1 \oplus T_2\} = T_1$, $i_1^{-1}(U_1 \oplus U_2) = U_1$, $i_2^{-1}(T_1 \oplus T_2) = T_2$ and $i_2^{-1}(U_1 \oplus U_2) = U_2$. But $T_1 \leq_{e^*C} W_1$ and $T_2 \leq_{e^*C} W_2$. Hence $T_1 = U_1$ and $T_2 = U_2$. Thus, $T_1 \oplus T_2 \leq_{e^*C} W_1 \oplus W_2$.

3. e*-Coclosed submodules

In this section, we will introduce a new concept which is a generalization of coclosed, and prove some properties as in [10] and [11].

Definition 3.1 [7]

Let $T \leq S$ be submodules of M. When $\frac{S}{T} \ll_{e^*} \frac{M}{T}$ implies that S = T. S is said to be an e^* coclosed submodule of M (symbolized by $S \leq_{e^*cc} M$).

Examples and Remarks 3.2

1. Every e^* -coclosed submodule is coclosed.

Let *M* be a module, *S* be an e^* -coclosed submodule of *M*, and *T* a submodule of *S* such that $\frac{s}{T} \ll \frac{M}{T}$. Every small is e^* -essential small. As a result, $\frac{s}{T} \ll_{e^*} \frac{M}{T}$, because *S* is an e^* -coclosed. Thus, S = T and *S* is a coclosed submodule of *M*.

2. The opposite of (1) need not always be accurate. For instance, the only proper submodule of $\langle \overline{3} \rangle$ in \mathbb{Z}_6 as a \mathbb{Z} -module is $\langle \overline{0} \rangle$, $\frac{\langle \overline{3} \rangle}{\langle \overline{0} \rangle} \simeq \langle \overline{3} \rangle$, and $\frac{\mathbb{Z}_6}{\langle \overline{0} \rangle} \simeq \mathbb{Z}_6$. So $\langle \overline{3} \rangle$ is cocolosed in \mathbb{Z}_6 , but it is not e^* -coclosed in \mathbb{Z}_6 .

3. In \mathbb{Z}_6 as a \mathbb{Z}_6 -module, $\langle \overline{2} \rangle$ is e^* -coclosed in \mathbb{Z}_6 . Since the only proper submodule of $\langle \overline{2} \rangle$ is $\langle \overline{0} \rangle$, $\frac{\langle \overline{2} \rangle}{\langle \overline{0} \rangle} \simeq \langle \overline{2} \rangle$, and $\frac{\mathbb{Z}_6}{\langle \overline{0} \rangle} \simeq \mathbb{Z}_6$. $\langle \overline{2} \rangle$ is not an e^* -essential small submodule of \mathbb{Z}_6 .

4. In \mathbb{Z} as a \mathbb{Z} -module, $2\mathbb{Z}$ is not e^* -coclosed submodule of \mathbb{Z} . Since there is a proper submodule $4\mathbb{Z}$ of $2\mathbb{Z}$, $\frac{2\mathbb{Z}}{4\mathbb{Z}} \simeq \langle \overline{2} \rangle$, and $\frac{\mathbb{Z}}{4\mathbb{Z}} \simeq \mathbb{Z}_4$. $\langle \overline{2} \rangle$ is an e^* -essential small submodule of \mathbb{Z}_4 .

5. Direct summand of a module need not be e^* -coclosed. For instance, the submodule $\langle \overline{3} \rangle$ is a direct summand of \mathbb{Z}_6 as a \mathbb{Z} -module, but it is not e^* -coclosed in \mathbb{Z}_6 .

6. Let *M* be an e^* -hollow module. Then *M* has only one proper e^* -coclosed, which is a zero submodule. Let *T* be a proper submodule of *M*. Then $T \ll_{e^*} M$ and so $\frac{T}{\{0\}} \ll_{e^*} \frac{M}{\{0\}}$. Thus, if *T* is e^* -coclosed in *M*, then $T = \{0\}$.

The next proposition gives the basic properties of e^* -coclosed submodules.

Proposition 3.3 Let *M* be a module and let $A_1 \le A_2 \le M$. 1) If A_2 is e^* -coclosed in *M*, then $\frac{A_2}{A_1}$ is e^* -coclosed in $\frac{M}{A_1}$. 2) If $A_1 \ll A_2$ and $\frac{A_2}{A_1}$ is e^* -coclosed in $\frac{M}{A_1}$, then A_2 is e^* -coclosed in *M*. 3) If A_1 is e^* -coclosed in *M*, then A_1 is e^* -coclosed in A_2 .

Proof.

1) Let $\frac{L}{A_1} \leq \frac{A_2}{A_1}$ such that $\frac{A_2/A_1}{L/A_1} \ll_{e^*} \frac{M/A_1}{L/A_1}$ by (the second isomorphism theorem), $\frac{A_2/A_1}{L/A_1} \simeq \frac{A_2}{L}$ and $\frac{M/A_1}{L/A_1} \simeq \frac{M}{L}$. As a result, $\frac{A_2}{L} \ll_{e^*} \frac{M}{L}$, since A_2 is e^* -coclosed in M. Thus, $A_2 = L$ and $\frac{L}{A_1} = \frac{A_2}{A_1}$. Therefore, $\frac{A_2}{A_1}$ is e^* -coclosed in $\frac{M}{A_1}$. 2) Suppose that $L \leq A_2$ such that $\frac{A_2}{L} \ll_{e^*} \frac{M}{L}$. Define $\lambda: \frac{M}{L} \longrightarrow \frac{M}{L+A_1}$ by $\lambda(m+L) = m+L+A_1$ for each $m \in M$. Easley sees that λ is an epimorphism, so by proposition 3 in [7], $\frac{A_2}{L+A_1} \simeq \frac{A_2/A_1}{L+A_1/A_1} \ll_{e^*} \frac{M/A_1}{L+A_1/A_1} \simeq \frac{M}{L+A_1}$. Since $\frac{A_2}{A_1}$ is e^* -coclosed in $\frac{M}{A_1}$, so $\frac{L+A_1}{A_1} = \frac{A_2}{A_1}$ and $A_2 = L + A_1$. Since $A_1 \ll A_2$; thus $A_2 = L$. Therefore, A_2 is e^* -coclosed in M. 3) Let $L \leq A_1$ such that $\frac{A_1}{L} \ll_{e^*} \frac{A_2}{L} \leq \frac{M}{L}$ So by proposition 1 in [7], $\frac{A_1}{L} \ll_{e^*} \frac{M}{L}$. Since A_1 is e^* -coclosed in A_2 .

Proposition 3.4 Let $M = M_1 \bigoplus M_2$ be a module, and $A \leq_{e^*cc} M_1$. Then $A \leq_{e^*cc} M$.

Proof. Let $A' \leq A$ such that $\frac{A}{A'} \ll_{e^*} \frac{M}{A'} = \frac{M_1 \oplus M_2}{A'}$. Hence $\frac{A}{A'} \ll_{e^*} \frac{M_1}{A'} \oplus \frac{A' \oplus M_2}{A'}$. So $\frac{A}{A'} \ll_{e^*} \frac{M_1}{A'}$ by corollary 1 in [7]. Since $A \leq_{e^*cc} M_1$. Therefore, A' = A and $A \leq_{e^*cc} M$.

Proposition 3.5 Let *M* be a module and *A* a nonzero submodule of *M*. If $A \leq_{e^*cc} M$, then *A* is not e^* -essential small in *M*.

Proof. Assume A is e^* -essential small in M and $A \leq_{e^*cc} M$. Because $\{0\} \leq A$ and $A \approx \frac{A}{\{0\}} \ll_{e^*} \frac{M}{\{0\}} \approx M$. Then $A = \{0\}$ which is a contradiction. Therefore, A is not an e^* -essential small in M.

4. e*-Extending modules.

We will present a new idea in this part, a generalization of the extending module as in [12], [13] and [14].

Definition 4.1 If every submodule of a module M is e*-essential in a direct summand, the module is said to be *e**-*extending*.

Remarks and Examples 4.2

1. Each extending is an e*-extending module.

2. If M is a cosingular module, then e^{*}-extending and extending modules are coincide.

3. The polynomial ring $R = \mathbb{Z}[x]$ is a commutative Noetherian domain such that $W = \mathbb{Z}[x] \oplus \mathbb{Z}[x]$ as *R*-module is not extending [4]. Since $\mathbb{Z}[x]$ is a commutative domain which not filed so by Theorem 2.10, [5] *R* is a right cosingular ring and by Corollary 2.7, [5] any right *R*-module is cosingular module. Hence *W* is cosingular *R*-module, from (2) *W* is not e*-extending.

4. The direct sum of e*-extending not e*-extending. For instance, the $\mathbb{Z}[x]$ -module $\mathbb{Z}[x]$ is e*-extending because $\mathbb{Z}[x]$ is an integral domain, every non-zero ideal in the integral domain is essential [3], so $\mathbb{Z}[x]$ is extending, hence by (1), $\mathbb{Z}[x]$ is e*-extending. But $\mathbb{Z}[x] \oplus \mathbb{Z}[x]$ as $\mathbb{Z}[x]$ -module not e*-extending.

5. Assume *P* is a prime number. Then the \mathbb{Z} -module $\mathbb{Z}_p \oplus \mathbb{Z}_{p^2}$ is e*-extending module.

The fundamental characteristics of e*-extending modules are then presented.

Proposition 4.3 If the module M is an indecomposable, then M is e*-extending if and only if each of its nonzero cyclic submodules is e*-essential in M.

Proof. (\Rightarrow) Clear.

(⇐) Suppose that *S* is a non-zero submodule and $0 \neq s \in S$. Hence *sR* is e*-essential in *M*. Because $sR \leq S \leq M$, hence $S \leq_{e^*} M$. Therefore, *M* is e*-extending.

The following shows under which condition makes the e*-extending hereditary property.

Proposition 4.4 If M is an e*-extending module and S is a submodule of M such that the intersection of S with any direct summand of M is a direct summand of S, then S is an e*-extending module.

Proof. Let *L* be a submodule of *S*, because *M* is an e*-extending. There exists a direct summand S_1 of *M*, with $L \leq_{e^*} S_1$. By the hypothesis, $S \cap S_1$ is a direct summand of *S* and $L = L \cap S \leq_{e^*} S_1 \cap S$. Thus, *S* is an e*-extending module.

Recall that a module *M* is called duo, if every submodule of *M* is fully invariant, see [15]. Recall that a module *M* is called distributive if its lattice of submodules is a distributive lattice, that is, $A \cap (B + C) = (A \cap B) + (A \cap C)$ for any submodules *A*, *B* and *C* of *M*. See [16].

Proposition 4.5 If M is a duo (or distributive) e*-extending module, then each submodule of M is e*-extending.

Proof. Let *S* be a submodule of *M* and *S*₁ be a submodule of *S*; because *M* is an e*-extending. There exists a direct summand *L* of *M*, with $S_1 \leq_{e^*} L$, $M = L \oplus L'$. $S = S \cap M = S \cap (L \oplus L')$, but *M* is a duo (distributive), $S = (S \cap L) \oplus (S \cap L')$. So, $S \cap L$ is a direct summand of *S* and $S_1 = S_1 \cap S \leq_{e^*} S \cap L$. Thus, *S* is an e*-extending module.

The next proposition gives the characterization of e*-extending modules.

Proposition 4.6 An *R*-module W is an e*-extending if and only if every e*-closed submodule is a direct summand.

Proof.(\Rightarrow) Let *S* be an e*-closed submodule of *W*. Since *W* is e*-extending; there is a direct summand *L* of *W* with $S \leq_{e^*} L$. But *S* is e*-closed. Hence, S = L. (\Leftarrow) Let *S* be a submodule of *W*. Then, by Proposition 2.8. an e*-closed submodule *L* exists with $S \leq_{e^*} L$. By the hypothesis, *L* is a direct summand. Therefore, *W* is an e*-extending.

Corollary 4.7 Under isomorphism, the e*-extending module is closed. **Proof.** Clear using the corollary 2.6.

The direct summand of the e*-extending module is e*-extending, as shown by the following proposition.

Proposition 4.8 A direct summand of e*-extending module is e*-extending.

Proof. Let *S* be a direct summand of an e*-extending module *W*. There is a submodule *S'* of *W* such that $W = S \oplus S'$. Let *L* be an e*-closed submodule of *S*. Hence, $L \oplus S' \leq_{e^*C} S \oplus S' = W$, since *W* is an e*-extending, so by proposition 4.6. $L \oplus S'$ is a direct summand of *W*, then $W = L \oplus S' \oplus K$, for some submodule *K* of *W*. $S = S \cap W = S \cap (L \oplus S' \oplus K) = (S \cap L) \oplus (S \cap (S' \oplus K)) = L \oplus (S \cap (S' \oplus K))$. Hence, *L* is a direct summand of *S*. Thus, *S* is e*-extending.

Theorem 4.9 Let *W* be an *R*-module. Then the following statements are equivalent.

1.W is e*-extending module.

2. For every submodule S of W, there is a decomposition $W = L \oplus L'$, such that $S \leq L$ and $S + L' \leq_{e^*} W$.

3. For every submodule S of W, there is a decomposition $\frac{W}{S} = \frac{L}{S} \bigoplus \frac{K}{S}$, such that L is a direct summand of W and $K \leq_{e^*} W$.

Proof.

 $1 \Rightarrow 2$) Let *S* be a submodule of *W*, there is a direct summand *L* of *W* such that $S \leq_{e^*} L$, $W = L \oplus L'$ for some $L' \leq W$. By proposition 4 in [6]. $S \oplus L' \leq_{e^*} L \oplus L' = W$. Then $S + L' \leq_{e^*} W$.

 $2 \Rightarrow 3$) Let *S* be a submodule of *W*, there is a decomposition $W = L \oplus L'$, such that $S \le L$ and $S + L' \le_{e^*} W$. $\frac{W}{S} = \frac{L \oplus L'}{S} = \frac{L}{S} + \frac{L' + S}{S}$, Since $L \cap (L' + S) = S$. Hence, $\frac{W}{S} = \frac{L}{S} \oplus \frac{L' + S}{S}$. Put K = L' + S.

 $3 \implies 1$)Let *S* be a submodule of *W*, there is a decomposition $\frac{W}{S} = \frac{L}{S} \bigoplus \frac{K}{S}$, such that *L* is a direct summand of *W* and $K \leq_{e^*} W$. To show that $S \leq_{e^*} L$. Since $K \leq_{e^*} W$, then $S = K \cap L \leq_{e^*} W \cap L = L$. Thus, *W* is e*-extending module.

Proposition 4.10 Let *W* be an e*-extending module and *S* be an e*-closed submodule. Then $\frac{W}{S}$ is an e*-extending module.

Proof. Since *S* is an e*-closed submodule of e*-extending module *W*. Hence *S* is a direct summand of *W*, $W = S \oplus S'$, for some $S' \leq W$. $\frac{W}{s} \simeq S'$ since *S'* is a direct summand of *W*. So by Proposition 4.8. *S'* is e*-extending, and by Corollary 4.7, $\frac{W}{s}$ is an e*-extending module.

Corollary 4.11 Let $f: W \to W'$ be *R*-homomorphism, and *W* e*-extending with kerf is e*closed. Then f(W) is e*-extending.

We present enough requirements for the direct sum of e*-extending modules to be an e*-extending module.

Proposition 4.12 Let $W = W_1 \oplus W_2$ be a distributive module. If W_1 and W_2 are e*-extending modules, then W is e*-extending.

Proof. Let *S* be a submodule of *W*. Since *W* is a distributive module, so $S = S \cap W = S \cap (W_1 \oplus W_2) = (S \cap W_1) \oplus (S \cap W_2)$. Since W_1 and W_2 are e*-extending modules, then there exists a direct summand S_1 of W_1 and S_2 of W_2 such that $S \cap W_1 \leq_{e^*} S_1$ and $S \cap W_2 \leq_{e^*} S_2$. Hence $S \leq_{e^*} S_1 \oplus S_2$, where $S_1 \oplus S_2$ is a direct summand of *W*. Thus, *W* is e*-extending.

Proposition 4.13 Let $W = \bigoplus_{i \in I} W_i$ be an *R*-module. Where W_i is a submodule of *W* for each $i \in I = \{1, ..., n\}$. If W_i is e*-extending for each $i \in I$ and every e*-closed submodule is fully invariant, then *W* is e*-extending.

Proof. Let *S* be e*-closed submodule of *W*. By the hypothesis *S* is a fully invariant. Hence, $S = S \cap W = S \cap (\bigoplus_{i \in I} W_i) = \bigoplus_{i \in I} (S \cap W_i)$. Since W_i is e*-extending with $S \cap W_i \leq W_i$ for each $i \in I$, then there exists a direct summand L_i of W_i for each $i \in I$ such that $S \cap$ $W_i \leq_{e^*} L_i$. Hence, by Proposition 1.1, $= \bigoplus_{i \in I} (S \cap W_i) \leq_{e^*} \bigoplus_{i \in I} L_i$. But *S* is an e*-closed, so $S = \bigoplus_{i \in I} L_i$ is a direct summand of *W*. Therefore, *W* is e*-extending.

5. Conclusions.

We Confirm the following outcomes:

- 1. Under isomorphism, the e*-closed submodule is closed.
- 2. Every submodule is e*-essential in e*-closed.
- 3. The direct sum of e*-closed submodules is e*-closed.
- 4. Every e^* -coclosed submodule is coclosed.
- 5. The direct sum of e*-extending is not e*-extending.
- 6. The direct summand of the e*-extending module is e*-extending.

References

- [1] F. Kash, Modules and rings, London: Academic Press, 1982.
- [2] S. M. Yaseen, "Semiannihilator Small Submodules.," *international Journal of Science and Research* (IJSR), vol. 7, no. 1, pp. 955-958, 2018.
- [3] K. Goodearl, Ring theory: Nonsingular rings and modules, CRC Press, 1976.
- [4] N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbauer, *Extending modules, 1994: Longman Group Limited.*
- [5] A. Ç. Özcan, "Modules with small cyclic submodules in their injective hulls," *Comm. Algebra*, pp. 1575-1589, 4 30 2002.
- [6] H. Baanoon and W. Khalid, "e*-Essential Submodule," *European Journal of Pure and Applied Mathematics*, pp. 224-228, 1 15 2022.
- [7] H. Baanoon and W. Khalid, "e*-Essential small submodules and e*-hollow modules," *European Journal of Pure and Applied Mathematics*, pp. 478-485, 2022.
- [8] D. X. Zhou and X. R. Zhng, "Small-Essential Submodules and Morita Duality," *Southeast Asian Bulletin of Mathematics*, 6 35 2011.
- [9] B. Osofsky, "A construction of nonstandard uniserial modules over valuation domains," *Bulletin* (*New Series*) of the American Mathematical Society, pp. 89-97, 1 25 1991.
- [10] A. Abduljaleel and S. M. Yaseen, "Large-Coessential and Large-Coclosed Submodules," *Iraqi Journal of Science*, vol. 62, no. 11, pp. 4065-40670, 2021.
- [11] F. S. Fandi and S. M. Yaseen, "ET-Coessential and ET-Coclosed submodules," *Iraqi Journal of Science*, vol. 60, no. 12, pp. 2706-2710, 2019.
- [12] Y. M. Sahira and M. M. Tawfeek, "Supplement Extending Modules," *Iraqi Journal of Science*, vol. 56, no. 3B, pp. 2341-2345, 2015.
- [13] Y. A. Qasim and S. M. Yaseen, "On Annihilator-Extending Modules," *Iraqi Journal of Science*, vol. 63, no. 3, pp. 1178-1183, 2022.
- [14] S. M. Yaseen and M. M. Tawfiq, "Y-Supplement Extending Modules," *Gen. Math. Notes.*, vol. 29, no. 2, pp. 48-54, 2015.
- [15] A. Ç. Özcan, A. Harnanci and P. F. Smith, "Duo modules," *Glasgow Mathematical Journal*, vol. 48, no. 3, pp. 533-545, 2006.
- [16] V. Erdogdu, "Distributive Modules," Can. Math. Bull, vol. 30, pp. 248-254, 1987.