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Abstract

In this article, we investigate a mathematical fractional model of tuberculosis that
takes into account vaccination as a possible way to treat the disease. We use an in-
host tuberculosis fractional model that shows how Macrophages and Mycobacterium
tuberculosis interact to knowledge of how vaccination treatments affect macrophages
that have not been infected. The existence of optimal control is proven. The
Hamiltonian function and the maximum principle of the Pontryagin are used to
describe the optimal control. In addition, we use the theory of optimal control to
develop an algorithm that leads to choosing the best vaccination plan. The best
numerical solutions have been discovered using the forward and backward fractional
Euler method.

Keywords: Tuberculosis fractional model, Hamiltonian function, Optimal control,
Pontryagin's maximum principle.
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1. Introduction

Tuberculosis is an infectious disease with a high death rate in many countries. It is caused
by an agent called Mycobacterium tuberculosis. Tuberculosis is still one of the leading causes
of death in the world today. According to the World Health Organization's 2019 Global
Tuberculosis Report [1], eight countries are responsible for two-thirds of the total number of
TB cases worldwide: India (27%), China (9%), Indonesia (8%), the Philippines (6%), Pakistan
(6%), and Nigeria (4%).
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The bacteria that cause tuberculosis is called Mycobacterium tuberculosis, it attacks mainly
the alveolar macrophages [2]. When Mycobacterium tuberculosis bacteria are presented, the
immune system responds by forming granulomas of immune cells called macrophages, which
are in charge of managing and separating the pathogens that infect the lungs. Several organs in
a person's body have macrophages. These cells are where Mycobacterium tuberculosis grows
and stays alive [3, 4]. The bacteria that causes tuberculosis is called Mycobacterium
tuberculosis, that is eaten by macrophages, which then lock the bacteria away in cellular
compartments where they cannot come back. Antibiotics and chemotherapy have become
powerful tools for getting rid of the disease since the 20th century. Most TB-related deaths can
be stopped if they are early caught and treated well, which saved about 54 million lives between
2000 and 2017 [5].

Over the past few decades, mathematical models have become increasingly important in the
fight against the disease. The dynamic system can be used to explain how tuberculosis spreads.
When studying tuberculosis, complex network models are used to show how complicated the
disease is because of its topology. Five different complex network models have been made to
help understand how the disease spreads and help get rid of it [6]. Data fitting provides a good
balance of theoretical analysis and practical situations. Population growth, randomness, contact
clustering, and age structure have all been studied to see how they affect tuberculosis dynamics
[7]. There are now several studies on tuberculosis that have been studied through various factors
such as fast and slow progression [8], drug-resistant strains [9], reinfection [10, 11], co-
infection [12], migration and seasonality [13, 14]. The model developed with isolation [15],
treatment [16], immunization [17] or a combination of various control strategies [18, 19, 20] is
discussed for the prevention of tuberculosis. On the other hand, the effect will be enhanced if
people take the initiative to increase their awareness of prevention and control. Das et al. [21]
investigate the effect of widespread media awareness on the transmission dynamics of
tuberculosis and provide the optimal control strategy with the lowest cost. The optimal control
theory is applied in a variety of fields, such as the design of therapy [22], the optimal control of
the disease among animals [23], and the best tuberculosis prevention strategy [24, 25], in order
to improve control. Additionally, the theory and application of fractional calculus have been
extensively utilized in order to model dynamic processes in a variety of fields, including but
not limited to the fields of science and engineering [26, 27, 28]. Fractional order derivatives
have an important property known as the memory effect. This study aims to identify the
therapeutic approaches in a fractional within-host tuberculosis model and use Pontryagin's
maximum principle to find the best control function.

The rest of this article is organized as follows. In section two, we give a general formulation
of the tuberculosis fractional model, and we use the maximum Ponntryagin principle to infer
the necessary conditions. In section three, we discuss the numerical results. Finally, section four
summarizes the conclusions.

2. The optimal control problem of the tuberculosis fractional model

Fractional optimal control theory is a widely used method for determining the extreme value
of a dynamically variable objective function. In this section, fractional optimal control theory
is used to determine the best vaccination as a function of time. There are many interesting
definitions of fractional derivatives in fractional calculus [29], but for this purpose, we will use
the famous Caputo derivatives due to their advantage on initial value problems.
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Definition 1 [29] The Riemann-Liouville fractional integral of order 0 <« <1, t >0 is defined
by

IR = [ ) (1)
) (t—x)"
Definition 2 [29] Letn—1< a <n, the Caputo fractional derivative of order « is given by
1 t f"(x)
‘D*f(t) = dx 2
© '(n—-a) IO (t—x)* " @

The fractional tuberculosis model is presented as a system of fractional differential equations
as follows.

thaMu :Aa_luaMu_ﬂ I\/Iu B,
1+ pB

ngMi:—ﬂ M, B-c*M, - KM,
1+ pB 1+ &M,

°D“B=rc“M, —y“M B —d“B.

(3)

Where 0 <« <1. In fact, some biological constants in model (3) have been powered to alpha
(the fractional order) in order to unify the time unit on both sides of each equation. The within-
host tuberculosis fractional model (3) consists of three components: uninfected macrophages

(M,), infected macrophages(M;), and mycobacterium tuberculosis bacteria(B). Table 1
describes the parameters of the tuberculosis fractional model.

Table 1: parameters used in the tuberculosis fractional model and their meaning

The constant production rate of M, .

The death rate of healthy macrophages.
The maximum macrophage infection rate.
The inhibition effect.
The rate of macrophage explosion.
The maximum killing rate.
The half-saturation constant.
The average number of the B released by M, .
The mycobacterium tuberculosis bacteria death rate by M, .

The natural mortality rate of B .

To determine the optimal trajectories of M ,, M, and B in response to the optimal strategy,

we now reformulate and analyze an optimal control problem for the model (3). We present a
control function which is denoted by the symbol u(t) , which stands for the amount of effort put

into preventing tuberculosis, such as through vaccination. The control model is presented in the
following format:
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thaMu :Aa_ﬂaMu_(l_U(t))ﬁ Mu B
1+ pB

thaMi:(l_u(t))ﬂ Mu B_CaMi_ k Mi ’ (4)

1+ pB 1+eM,

°DFB =rc“M, —y“M,B—-d“B.

Where 0<u(t) <1 is a control strategy that slows the rate at which macrophages migrate

from uninfected classes to infected classes while curing a portion of uninfected macrophages.
The admissible controls are defined as follows:

W ={u)|0<u<ite[0T, T} ()

The goal is to find the optimal value of the control u(t) so that the state trajectoriesM ,, M,
, and B are solutions of the system (2) with the initial conditions:

M,(0)>0,M,(0)>0,B(0)>0 (6)
and u(t) maximizes the cost function given by:

JW) = [ (M, (1) -M, @) -u* @) dt (7)

Our problem with optimal control is to find the values (M., M;’, B”) that are related to a control
u(t) on the time interval [0, T, ]that satisfies Eq. (4) and the initial condition of Eq. (6), while
also maximizing the cost function of Eq. (7) in a way that ensures that

Ju) = max J (u) (8)
The Hamiltonian functional H is as follows:
H =M, (t) - M, () -u*@®) + p, ;DYM, (t) + p, ;DM (t) + p, ;DB 9)

Then
_4-u@)pM, g

H =M, (0~ M, 0 -u’®) + p,(A° - 4“M
1+pB

1- “M k“M,
oo (UM, oy KM,
1+pB 1+eM,

+ py(rc“M, —y“M B-d*B)

(10)

where p,, p,and p,are the adjoin variables associated with the state variables M_;,M;,B".

In Theorem 1, we summarize the necessary conditions for optimal control u’”(t).

Theorem 1: There is optimal control U’ (t) corresponding to the optimal solutions M, M.", and
B"that maximize the cost function J(u)over¥ . Moreover, there exist adjoint variables,
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p,,1=12,3 that satisfy ¢ Dr p= a;' where X =(M_,M;,B") with transversality condition
p.(T,) =0, i =1,2,3. Furthermore, the optimal control u"(t) is given by
* ; ( P~ pz)ﬂaM . R
u =min{l, max{0, —Y B }}. 11
max{0, =2 TR B (1)

Proof: By applying the results of fractional optimal control problems in [30, 31], the
Hamiltonian equation (10) will be derived with respectto M, M. and B as follows:

Cpe p, = oH
t =T 1_8M:
d-u®) (2
o —u®)B” . -
=1-pu +(p2_p1)1—*ﬂB - pyy"B
+pB
e . _ OH
t T p2 - aMI*
) (13)
=-1-p,(c” +k—)+ p,rc”
? A+sM)?"
o oH
Df s =5
L-u@)p M 49
=(p, - — - ‘M +d“
(P, —py) s pBY. P (7*M, +d%)
And the transversality conditions p,(T,) = p,(T;) = ps(T;) =0.
'i =0, we can find the condition of optimal control as follows:
aH* _0
ou
. ‘M.
A (P LB =0
\ /3 |v| \
u = B 15
(P=P) e 20 B) (15)
Since 0<u” <1 then we can rewrite u”in Eq. (15) as follow
u”(t) = min(L, max(0, (p, — p,) ——4— FM B)). (16)

2(1+ B)

The proof is completed.

3. Numerical results

To illustrate the theoretical findings from the previous section, this section provides some
numerical simulations using Maple software. Using the forward and backward Euler method,
we compute Theorem 1 numerically. The parameter values used in numerical simulations are
shown in Table 2 [2].
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Table 2: parameter values in the tuberculosis fractional model
3500
0.01
0.8x10°®
0.01
0.3
1
30
30
0.125x10°®
0.05

Also, we will use the proposed initial values of the state variables in Table 3 [2].

Table 3: the initial values in the tuberculosis fractional model

M, (0) = 300000
M. (0) = 20
B(0) = 500

To find the optimal vaccination strategy, we construct the following algorithm based on
applying the forward and backward Euler method to solve state Eq. (3) and co-state equations
Eq. (12)-Eq. (14), respectively, and on the optimal control law in Eq. (16). The primary findings
have been graphically illustrated with the help of the results of numerical simulations. The
approximate solution with control and without of M (t), M,(t)and B(t) are displayed in
Figures 1, 2, and 3, respectively. Indeed, each figure includes three different approximate
solutions with and without control corresponding with three different values of « (a =1, 0.9,
and 0.8). While, Figure 4 indicates the behavior of the approximate optimal control solution,
u(t), with three different values of o (a =1, 0.9, and 0.8). These figures demonstrate that the
number of infected macrophages, as well as the population of Mycobacterium tuberculosis
bacteria, is decreasing. In this case, almost no macrophages will be infected by the
Mycobacterium tuberculosis bacteria, and the Mycobacterium tuberculosis bacteria will die out
completely.

Algorithm:
Step 1: Insert the values of fractional order «, and the biological parameters

A, u, B, p.c ke, r,yandd . Also, insert the initial conditions of M, (0),M,(0),B(0) and
terminal conditions p,(N) = p,(N) = p,(N)=0.

-
Step 2: Suppose the time interval is [0,T,] and compute the step size h :Wf’ where N is

positive integer number.
Step 3: Set u(xh) =0, forall x=0,12,...,N.

Step 4: Compute the coefficients C, . as follows:
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C,. =

T (a+1)
Step 5: Compute the coefficients B, , as follows:
B. © =

T (a+1)
Step 6: For all x=1,2,...,N, compute M,(xh), M, (xh), and B(xh) by applying the forward
fractional Euler method [32] as follows:

M, (k) = M, @)+ 5B, [A" — "M, (j) - &= “1(1"”5(“}:')““) B(in,

(j+1-%)" —(j—x)*), forall j=x,..N-1,and x=0,..,N -1.

(k- ) —(x— j-1)*), forall j=0,1..x-1,and x=12,..,N.

M, () =M, (©)+ B, [ “fih)’g(“:)“h)suh) c M(Jh)—kMT((‘“h))]

K—1
B(xh) =B(0)+>_B, [rc“M,(jh)—»“M, (jh)B(jh)—d“B(jh)].

j=0
Step 7: For allk=N-1,N-2,...,0, compute p,(xh), p,(xh) , and p,(xh)by applying the
backward fractional Euler method as follows:

(1 u((j +1h))5*

p,(xh) = p,(T;) - ,ZK: C, . [L—p.((J+Dh)x + (p,((J +1)h) - pl((J+1)h)) 2B (j+)h) B ((j+1h)
- py*B((j+Dh)]
(B . 3 K . o
p,(xh) = pz(Tf)—j:ZKC,-,K[—l— p,((J+Dh)(c +(l+gMi*((j+1)h))2)+ P ((J+Dh)r“c”]

(A-u((i +Dh)B“M, ((j +Dh)
L+ p B ((j+Dh))*

pa(ch) = Po(T) = 3 C; (P2 ((+D) ~ Pu((T + D)

= p:((i+ DM, ((j +1)h)—d*)]
Step 8: Apply the optimal control law to compute u(xh) for all x =1,2,..., N as follows:
2(1+ p B (xh))
Step 9: If the stopping criterion (the absolute value of optimal control of the current and the
previous iterations) is held, then the algorithm ends, else return to Step 4.

u” (xh) = min(1, max(0,
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Figure 1: The uninfected macrophages with and without control.
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Figure 2: The infected macrophages with and without control.
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Figure 3: The mycobacterium tuberculosis bacteria with and without control.
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Figure 4: The optimal control.

However, according to Theorem 1, we prove that in Equation (11), there is optimal control.
That is to say, the value of the cost function corresponding to the optimal control in Equation
(11) will be the maximum value (the optimal solution). Therefore, the value of the cost function
corresponding with any arbitrary control will be certainly greater than the optimal solution. See
the following illustrated tables to confirm our result:

Table 4: The value of the cost function for different control u(t) for a=1.

Some control variable The value of the cost functions

The optimal control which is given in Eq. 6.576060533x10’
(11)

6.575908208x10’
6.576007315x10’
6.576029727 x10’
6.576052718x10’
6.576021579x10’
6.575910458 %10’
6.575929430x10’
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Table 5: The value of the cost function for different control u(t) for «=029.
Some control variable

The optimal control which given in Eq. (11) 3.732470389x10’
3.731842731x10’
3.732199779 %10’
3.732326311x10’
3.732469753x10’
3.732286912 %10’

3.731851578x10’
3.731996206 x10’

Table 6: The value of the cost function for different control u(t) for a=0.38.

Some control variable The value of the cost functions

The optimal control which given in Eq. (11) 2.977634641x10’
2.975186035x10’
2.976477957 x10
2.976980129x10’
2.977634592 %10’
2.976824325x10’
2.975221574x10’
2.975806232 %10’

4 Conclusions

This research introduces the in-host tuberculosis fractional model. The goal of this paper is
to build an algorithm for solving the tuberculosis fractional model. Also, the fractional-order
optimal necessary conditions were derived using the Pontryagin maximum principle. We used
the forward and backward Euler methods to get the optimal solution. The numerical simulation
was done by using the optimization technique in Maple 20 to study the behavior of how the
combination of control u(t) affects the proposed model. Also, we studied the effect of the order

of the fractional derivative (the memory property of fractional derivatives) on this model.
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