Iraqi Journal of Science, 2023, Vol. 64, No. 11, pp: 5716-5743 DOI: 10.24996/ijs.2023.64.11.21





ISSN: 0067-2904

# Effects of Land Uses on Soil Quality of Shwan Sub-basin, Kirkuk Governorate, Northern Iraq

#### Hind Fadhil Al-Gburi<sup>1\*</sup>, Balsam Salim Al-Tawash<sup>1</sup>, Omer Sabah Al–Tamimi<sup>2</sup>, Christoph Schüth<sup>3</sup>

<sup>1</sup>Geology Department, College of Science, University of Baghdad, Baghdad, Iraq <sup>2</sup>Department of Applied Geology, College of Science, University of Kirkuk, Kirkuk, Iraq <sup>3</sup>Institute for Applied Geosciences, Technische Universität Darmstadt, Darmstadt, Germany

Received: 29/8/2022 Accepted: 18/12/2022 Published: 30/11/2023

#### Abstract

Thirty-two soil samples were collected from the study area in October 2020 for geochemical and pollutants investigation of Shwan Sub-basin soil. All soil samples were analysed for different geochemical analyses. The analysis results revealed that the pH values in soil samples ranged from 7.12 to 7.56 with a mean of 7.327. According to the pH values detected in the soil samples, the soil is classified as neutral soil. The electrical conductivity ranged from 0.92 mmhos/cm to 7.8 mmhos/cm with a mean of 1.53 mmhos/cm. Thus, according to the detected electrical conductivity values, the soil was classified as non-saline to slightly saline. The organic matter ranged from 1.14% to 1.45% with a mean value of 1.326 %, while total organic carbon ranged from 0.66 % to 0.84 % with a mean value of 0.769 % which indicated the soil was characterized by low organic content. The results of the geochemical analysis revealed that the major and minor element mean concentrations were in the order Si> Ca>Al>Fe>Mg>K>Ti>Na>P>Mn>S>Cl>N. The average concentrations of trace elements in soil samples followed the decreasing order Sr > Cr> Ba> Zr> Ni> V>Zn>Ta>Rb>Cu>Nb>Y>Pb>Co>Ga>Mo>As>Th>Br>Sn>I. Furthermore, the comparison between heavy metal concentrations in the soil of the study area and metal concentrations in the world soil limit and Indirect Geochemical Background revealed an increase in metal concentrations of Cr, Ni, Zn, Co, As, Mo and Ta. Multivariate statistical analyses, such as Principal Component Analysis and Agglomerative Hierarchal Cluster Analysis, identified the potential sources of pollutants in the soil. Most metals are from natural sources and some of them are from anthropogenic sources mostly from agricultural activities mainly fertilizers use and the waste of animals breeding on farms. Besides industrial activities such as deposits of pollutants from emissions of petroleum refineries located inside or close to the study area. In addition, building blocks and paint factories.

Keywords: Soil quality, Shwan Sub-basin, Geochemistry, Multivariate statistical analyses.

تأثير استخدامات الارض على نوعية التربة في حوض شوان الثانوي، محافظة كركوك، شمال العراق

**هند فاضل الجبوري<sup>1\*</sup> ،بلسم سالم الطواش<sup>1</sup>، عمر صباح التميمي<sup>2</sup>، كرستوف شوت<sup>3</sup>** <sup>1</sup> قسم علم الارض، كلية العلوم، جامعة بغداد، بغداد، العراق <sup>2</sup> قسم علم الجيولوجيا التطبيقية، كلية العلوم، جامعة كركوك، كركوك ، العراق <sup>3</sup> معهد علوم الارض التطبيقي، جامعة دارمشتات التقنية، دارمشتات، المانيا

#### الخلاصة

ائتان وثلاثون عينة تربة تم جمعها من منطقة الدراسة في شهر تشرين الاول سنة 2020 من اجل التحري الجيوكيميائي وملوثات تربة حوض شوان الثانوي. كل عينات التربة تم تحليلها لمختلف التحاليل الجيوكيميائية. نتائج التحاليل كشفت ان حامضية التربة كانت من 7.12 الى 7.56 وبمعدل 7.327 وحسب هذه القيم صنغت تربة منطقة الدراسة بأنها تربة معتدلة الحامضية. تراوحت قيم التوصيلية الكهربائية من 2020 مليموز /سم الى 7.8 مليموز /سم وبمعدل 1.53 مليموز /سم. وحسب قيم التوصيلية الكهربائية المقاسة صنفت تربة منطقة الدراسة بالغير مالحة الى وبمعدل 1.53 مليموز /سم. وحسب قيم التوصيلية الكهربائية المقاسة صنفت تربة منطقة الدراسة بالغير مالحة الى وبمعدل 1.53 مليموز /سم. وحسب قيم التوصيلية الكهربائية المقاسة صنفت تربة منطقة الدراسة بالغير مالحة الى وبمعدل 1.53 مليموز /سم. وحسب قيم التوصيلية الكهربائية المقاسة صنفت تربة منطقة الدراسة بالغير مالحة الى وبمعدل 1.53 مليموز /سم. وحسب قيم التوصيلية الكهربائية المقاسة صنفت تربة منطقة الدراسة بالغير مالحة الى وبمعدل 1.53 مليموز /سم. وحسب قيم المادة العضوية من 1.14 % الى 1.45 % وبمعدل 1.326 %، بوزم المالية الملوحة. تراوحت قيم المادة العضوية من 1.14 % الى 1.45 % وبمعدل 1.326 %، بينما قيم الكاربون العضوي الكلي قد تراوحت بين 0.66 % الى 1.84 % وبمعدل 0.769 %، وهذه القيم بينما تشير الى ان تربة منطقة الدراسة نتصف بمحتوى واطئ من المادة العضوية. نتائج التحليل الجيوكيميائي كشفت عن ان تراكيز العناصر الكيميائية الرئيسية والثانوية كانت بالترتيب التالي

Si> Ca> Al> Fe> Mg > K> Ti> Na> P> Mn> S> Cl> N

#### 1. Introduction

Soil is a very specific component of the biosphere because it is not only a geochemical sink for contaminants, but also acts as a natural buffer controlling the transport of chemical elements and substances to the atmosphere, hydrosphere, and biota. However, the most important role of soil is its productivity, which is essential for the survival of humans [1]. There are twelve major, minor and trace elements (Si, Al, O, Ca, Fe, K, Ti, Mg, Mn, Na, Cr, Ni) representing about 99.4% of its total composition of soil composition and at least sixty-eight trace elements account for the rest [2]. However, local or regional geochemistry plays an important role in soil composition [2]. The major elements generally occur in minerals, so they can be used as a tool for discriminating element-mineral associations [3], [4]. The parent rocks are the major controlling factor in the concentration of heavy metals. Trace elements originating from various sources may finally reach the surface soil, and their further fate depends on the soil's chemical and physical properties and especially on their speciation [1]. Heavy metals are particularly of environmental concern because of their potential toxicity and their importance as essential nutrients. The background concentration of heavy metals in soils is, therefore, important due to the recent interest in contamination potential and toxic effects of these elements on humans and the environment [5]. Soil contamination means soil whose chemical state deviates from the normal composition but does not have a detrimental effect on organisms. Pollution occurs when

an element or a substance is present at greater than natural (background) concentrations as a result of human activity and has a net detrimental effect on the environment and its components [1]. Background concentrations are not necessarily equal to low concentrations and the citation of single values for a geochemical background is neither useful for the characterization of the geogenic background nor the determination of anthropogenic contamination because single values do not yield information about the natural deviation [6], [7]. Several methods have been developed to calculate the background content of trace elements in soils. There is great demand for such data as reference values because the entirely natural contents of trace elements do not currently exist. In general, these methods are based either on statistical calculations or on the relation of trace elements to various soil parameters and geologic factors [1]. Furthermore, soil contamination could affect the groundwater quality by leachate of different chemicals throughout the soil horizons until it reaches groundwater. Shwan Sub-basin is one of the important agricultural regions in north Iraq with high crop production that has been elevated in the last decades. Additionally, because the area depends on groundwater as a supply of water, it is crucial to assess soil contamination that could be a possible contamination source for groundwater by pollutants infiltration throughout the soil. While some studies have addressed hydrogeology and groundwater vulnerability assessment [8], [9], [10]. There was no study concerned with the geochemistry and soil quality of the Shwan Sub-basin soil. Additionally, they evaluate the possible sources of soil contamination. Therefore, this study aims to address the distribution, levels, and sources of chemical elements, and identify the physical properties and texture of the soil along the study area. Besides, investigate the possible influence of different land uses and land cover on the geochemical properties of the soil and estimates pollutant sources through statistical and pollution analyses.

# 1.1 Study area

The study area is located north of Iraq, northeast of Kirkuk Governorate between latitudes  $(35^{\circ}32'31''-35^{\circ}48'50'')$  N and longitudes  $(44^{\circ}06'50''-44^{\circ}37'37'')$  E and occupies an area of 829 km<sup>2</sup>, bordered by the northern Chamchamal Anticline from the northeast, and the Kirkuk structure, Baba Dome-Kany Domalan Mountain in the southwest. The Lesser Zab River borders the basin from the north (Figure 1). The region is characterized by variable terrain, which is between simple regressions and semi-flat terrain. Generally, elevation ranges between 200 and 850 m above sea level (ASL) (Figures 2 & 3). The main land use in the study area is agricultural. Besides, industrial activities are dominant in the southern part.



Figure 1: Location of the study area in the north of Iraq.

#### **1.2 Geological setting**

The Shwan Sub-basin is located in Iraq's folded zone of the unstable shelf and is part of the foothill zone. The unstable shelf has been the most subsiding region of the Arabian Plate [11]. The age of outcrop formations ranges from the Miocene to the Holocene [12] (Figure 2). The Kany Domalan Mountain series, a part of the Baba Dome series, forms the southwest edge of the area. The Bi-Hassan Formation is exposed in the basin's northeast along the northern Chamchamal Anticline. However, the Quaternary deposits (Pleistocene and Holocene) covered the center of the basin, known as the Julak Basin [13].

# 2. Materials and Methods

#### 2.1. Materials

#### Sampling and analyses

Thirty-two soil samples were collected from the study area in October 2020 (Figure 3). Approximately 2-3 kg of surface soil was collected with a stainless-steel tool at a depth of 25 cm below the surface [14], and stored in polyethylene bags. All soil samples were air-dried and were sieved to remove large debris, stones and pebbles and then sieved to obtain a soil fraction less than 2 mm for geochemical analysis [14].



Figure 2: Geological map of the study area [15].

All soil samples were analyzed for pH and electrical conductivity (EC) was determined by soil/water suspensions. Organic matters (OM) were determined by the most common procedure involving the reduction of potassium dichromate ( $K_2CrO_7$ ) by organic carbon compounds and subsequent determination of the unreduced dichromate by oxidation–reduction titration with ferrous ammonium sulfate [16]. Cation exchange capacity (CEC) was measured according to the methods of [17]. Samples were analyzed using XRF Spectrometer/SPECTRO XEPOS-2006 device at the Iraqi-German Laboratory at the University of Baghdad. Samples were sieved in a 2 mm sieve, then powdered to 0.063  $\mu$ m, and 5.0 g of each sample was used to determine the element concentrations.

#### 2.2. Methods

#### 2.2.1 Geochemical background

The background is defined as a relative measure to distinguish between the natural element or compound concentrations and anthropologically influenced concentrations in real sample collectives, which may be determined by direct, indirect, and integrated methods [6], [18]. Several methods can be used to calculate the geochemical background value, including direct geochemical and indirect statistical methods [6], [19], [20], [21]. For the estimation of geochemical background values in the present study, the indirect geochemical method and statistical analysis are applied.



Among the statistical methods, two methods were chosen. The first includes boxplot representations.

The method proposed by Tukey [22] was adopted to define background values using boxplot representations. Initially, ranges were determined by delimiting the interquartile (IQ) range augmented 1.5 times. From the range, the obtained background value was considered as the upper limit given by, where UL = upper limit and Q3 = upper quartile. The Minitab® software was used to draw the boxplot representations.

UL = upper limit and Q3 = upper quartile.

The second statistical method applied in this study is an Iterative  $2\sigma$  technique: according to Matschullat et al. [6].

The iterative  $2\sigma$  technique (mean  $\pm 2\sigma$ ) is mainly used to define background values because it approximates the original data set to a normal distribution. In practice, the technique consists of the calculation of the mean and the standard deviation ( $\sigma$ ) of the data set. After that, all the values outside the range (mean  $\pm 2\sigma$ ) are excluded. This procedure is repeated until all the values of the remaining data set are constrained to the range (mean  $\pm 2\sigma$ ) [23], [6]. This range is then considered the background range for the analyzed element and the background value is the upper limit of this range.

#### 2.2.2 Statistical analyses

Statistical analyses were performed using JMP® Pro 16.0.0 (512257) software, the statistical methods used were principal component analysis (PCA) and Agglomerative Hierarchal Cluster Analysis (AHCA). PCA is a dimensionality-reduction method that reduces the number of

variables in a data set naturally comes at the expense of accuracy, but the trick in dimensionality reduction is to trade a little accuracy for simplicity. Because smaller data sets are easier to explore and visualize and make analyzing data much easier and faster for machine learning algorithms without extraneous variables to process. Varimax rotation was employed because orthogonal rotation minimizes the number of variables with high loading on each component and therefore facilitates the interpretation of PCA results [24], [25], [26], [27]. This can be accomplished by converting the initial variables to a new small group of variables without missing the most important information in the initial data set. Factor loading values of between 0.3 - and 0.5, between 0.5 - and 0.75, and > 0.75 are classified as weak, moderate, and strong, respectively, based on their absolute values [28]. AHCA applying the ward's method was performed on the results of geochemical results in soil samples.

# 3. Results and discussion

# 3.1 Geochemical background of Shwan Sub-basin soils

The geochemical background in this study was assumed from the mean values of the boxplot method [22] and Iterative  $2\sigma$ ; technique [6] and statistical methods have been defined as indirect geochemical background (IGB) (Table 2).

| Element | Sta       | Statistical technique |           |       | Sta    | tistical techni   | que    |
|---------|-----------|-----------------------|-----------|-------|--------|-------------------|--------|
| (ppm)   | UL*       | Iterative<br>2σ**     | IGB***    | (ppm) | UL*    | Iterative<br>2σ** | IGB*** |
| Na      | 4172.96   | 4497.51               | 4335.24   | Cu    | 35.97  | 38.15             | 37.06  |
| Mg      | 21480.17  | 22967.45              | 22223.81  | Zn    | 89.56  | 91.29             | 90.42  |
| Al      | 51430.53  | 54151.45              | 52790.99  | Ga    | 14.16  | 14.94             | 14.55  |
| Si      | 192158.75 | 203334.60             | 197746.70 | As    | 7.81   | 8.70              | 8.26   |
| Ν       | 99.63     | 107.93                | 103.78    | Br    | 5.91   | 5.95              | 5.93   |
| Р       | 983.39    | 977.08                | 980.24    | Rb    | 53.17  | 57.59             | 55.38  |
| S       | 624.90    | 419.36                | 522.13    | Sr    | 310.07 | 334.27            | 322.17 |
| Cl      | 207.97    | 207.79                | 207.88    | Y     | 21.65  | 23.46             | 22.56  |
| K       | 11649.74  | 13114.78              | 12382.26  | Zr    | 167.75 | 175.99            | 171.87 |
| Ca      | 184361.36 | 204662.75             | 194512.10 | Nb    | 10.38  | 10.84             | 10.61  |
| Ti      | 5508.67   | 5867.99               | 5688.33   | Мо    | 15.19  | 18.38             | 16.78  |
| V       | 108.64    | 115.11                | 111.87    | Ba    | 271.33 | 287.58            | 279.45 |
| Cr      | 301.29    | 244.33                | 272.81    | Та    | 71.77  | 74.16             | 72.97  |
| Mn      | 818.28    | 896.39                | 857.34    | Pb    | 13.58  | 14.37             | 13.97  |
| Fe      | 39109.94  | 41769.20              | 40439.57  | Th    | 6.71   | 7.20              | 6.95   |
| Ni      | 145.65    | 156.23                | 150.94    |       |        |                   |        |

**Table 1:** Indirect geochemical background (IGB) of the Shwan Sub-basin soil.

\*Ul; The upper limits which are considered as the background value of elements are calculated according to the adopted method of Tukey [22].

<sup>\*\*</sup> Iterative  $2\sigma$ ; technique means that all the values outside the range of (mean  $\pm 2\sigma$ ) are excluded. Hence, this procedure is repeated until all the values of the remaining data set are constrained to the range (mean  $\pm 2\sigma$ ) [6].

<sup>\*\*\*</sup> IGB; Indirect geochemical background values obtained from the mean value of both methods.

# 3.2 Geochemistry of Shwan Sub-basin soil

# 3.2.1 Chemical properties of soil

The pH values in the current study ranged from 7.12 to 7.56 with a mean of 7.327 (Table 4). According to pH values detected in the soil samples, the soil is classified as neutral soil (Table 2) [29], [30]. Soil pH affects the solubility of chemicals in soils by influencing the degree of ionization of compounds and their subsequent overall charge. Thus, soil pH may be critical in affecting the transport of potential pollutants through the soil [29],[30]. In the present study, the salinity degree of soil was expressed

| Soil     | PH Regime |  |  |  |  |
|----------|-----------|--|--|--|--|
| Acidic   | >5.5      |  |  |  |  |
| Neutral  | 6-8       |  |  |  |  |
| Alkaline | >8.5      |  |  |  |  |

### **Table 2:** Soil type based on PH Regime [29]

as EC. The EC ranged from 0.92 mmhos/cm to 7.8 mmhos/cm with a mean of 1.53 mmhos/cm (Table 4). After comparison, the EC results in soil samples with the USDA [31] the soils are classified as non-saline to slightly saline (Table 3).

### Table 3: Soil classification based on soil salinity as EC [30]

| Salinity class       | mmhos/cm |
|----------------------|----------|
| Non-saline           | 0-2      |
| Very slightly saline | 2-4      |
| Slightly saline      | 4-8      |
| Moderately saline    | 8-16     |
| Strongly saline      | >16      |

The CEC values in the soil samples ranged from 10.7 to 13.3 meq/100g with a mean value of 12.175 meq/100g (Table 4). The detailed CEC values for all soil samples were presented in appendix 1

The OM was measured for all soil samples, and it is necessary to convert the organic matter content to total organic carbon content. Traditionally, for soils, a conversion factor of 1.724 has been used to convert OM to organic carbon based on the assumption that organic matter contains 58% organic carbon (i.e.g., organic matter/1.724 = g organic carbon) [32] (Table 4).

In the current study, The OM ranged from 1.14% to 1.45% with a mean value of 1.326 %, while TOC ranged from 0.66 % to 0.84 % with a mean value of 0.769 % (Table 4). The soil of the study area showed low OM content (Appendix 1). In arid areas with high rates of decomposition and low inputs of plant residues, values are usually less than 1% [30] and the location of the study area within the region of arid and semi-arid climate [33], which explained the low OM content in the soil of the study area. OM can complex or chelate heavy metals, and sorb organic contaminants. This retention affects their availability to plants and soil microbes as well as their potential for transport into the subsurface [30].

# 3.2.2 Distribution of Major and minor elements

The results of chemical analysis in the present study revealed that the major and minor element mean concentrations were in the order Si> Ca> Al> Fe> Mg > K> Ti> Na> P> Mn> S> Cl> N (Table 4). The summary statistics of all measured elements with ranges, means, standard deviations, Indirect Geochemical Background (IGB), and World soil limit [1] are all presented in Table (4). The elements' spatial distribution in Shwan Sub-basin soils is illustrated in Figure 4 which showed the most abundant element is silicon (Si) with a mean of 174,803.57 ppm. Consequently, all Si concentration values were within the IGB except samples SA-2, S13, and S14, which had concentrations greater than the IGB (Table 4 and Appendix 2). While the next abundant element was calcium (Ca) with a mean value of 155371.31 ppm (Table 4). All Ca concentration values within the IGB except S12, S26 and S29, whereas all concentrations were exceeded the WBA except SA-2, S7, S9, S10, S13, S14, S15, S21, S22 and S31 (Table 4 and Appendix 2).

| ousin              |            |            |                |               |              |               |                        |
|--------------------|------------|------------|----------------|---------------|--------------|---------------|------------------------|
| Parameter          | Min        | Max        | Mean           | SD            | IGB*         | WBA**<br>[34] | Word soil<br>limit [1] |
| pН                 | 7.12       | 7.56       | 7.3275         | 0.123         | _            | -             |                        |
| EC (mmhos/cm)      | 0.92       | 7.8        | 1.535          | 1.199         |              |               |                        |
| OM %               | 1.14       | 1.45       | 1.326          | 0.0699        |              |               |                        |
| TOC%               | 0.661      | 0.841      | 0.769          | 0.0405        |              |               |                        |
| CEC (meq<br>/100g) | 10.7       | 13.3       | 12.175         | 0.6701        |              |               |                        |
| Na (ppm)           | 2,841.32   | 5,230.11   | 3,704.66       | 561.21        | 4335.<br>238 | 9644.18       |                        |
| Mg (ppm)           | 7,960.92   | 22,610.22  | 19,078.50      | 2,919.0<br>8  | 22223<br>.81 | 9046.5        |                        |
| Al (ppm)           | 33,453.89  | 60,175.73  | 46,268.19      | 5,763.7<br>4  | 52790<br>.99 | 79387.5       |                        |
| Si (ppm)           | 115,457.68 | 222,548.18 | 174,803.5<br>7 | 19,718.<br>37 | 19774<br>6.7 | 280464        |                        |
| Fe (ppm)           | 23,969.47  | 41,714.01  | 35,564.27      | 3,804.1<br>6  | 40439<br>.57 | 34971.5       |                        |
| P (ppm)            | 297.03     | 1951.67    | 800.8812       | 332.793<br>6  | 980.2<br>353 | 741.914       |                        |
| N (ppm)            | 65.00      | 106.00     | 88.13          | 10.28         | 103.7<br>76  | 1700          |                        |
| S (ppm)            | 258.40     | 2,181.87   | 569.08         | 443.547<br>95 | 522.1<br>279 |               |                        |
| Cl (ppm)           | 104.10     | 499.80     | 160.26         | 70.0594<br>95 | 207.8<br>819 |               |                        |
| K (ppm)            | 4,565.88   | 12,933.89  | 9,800.51       | 1857.45<br>71 | 12382<br>.26 | 13282.56      |                        |
| Ca (ppm)           | 79,689.05  | 248,215.30 | 155,371.3<br>1 | 32320.8<br>68 | 19451<br>2.1 | 14294         |                        |
| Ti (ppm)           | 2,774.53   | 5,755.90   | 4,746.30       | 678.579<br>35 | 5688.<br>331 | 4016.717      |                        |
| V (ppm)            | 50.42      | 123.24     | 95.98          | 15.2711<br>9  | 111.8<br>739 |               | 129                    |
| Cr (ppm)           | 106.19     | 501.24     | 253.39         | 77.8360<br>4  | 272.8<br>096 |               | 59.5                   |
| Mn (ppm)           | 550.8      | 877.46     | 731.25         | 87.0310<br>3  | 857.3<br>378 |               | 488                    |
| Co (ppm)           | 3.07       | 18.95      | 12.78          | 6.46          |              |               | 11.3                   |

**Table 4:** Summary statistics of the geochemical analyses of soil samples from Shwan Subbasin

| Ni (ppm) | 48.96     | 155.28         | 126.53        | 22.29              | 150.9              | 29                    |
|----------|-----------|----------------|---------------|--------------------|--------------------|-----------------------|
| Cu (ppm) | 21.09     | 39.86          | 31.47         | 4                  | 382<br>37.05<br>88 | 38.9                  |
| Zn (ppm) | 59.37     | 122.03         | 83.59         | 12.87              | 90.42<br>375       | 70                    |
| Ga (ppm) | 9.4       | 16.1           | 12.72         | 1.61               | 14.54<br>928       | 15.2                  |
| As (ppm) | 2.04      | 8.63           | 6.8           | 1.29               | 8.257<br>732       | 6.83                  |
| Br (ppm) | 3         | 9.3            | 5.28          | 1.55               | 5.929<br>794       | 10                    |
| Rb (ppm) | 23.68     | 57.52          | 46.79         | 7.13               | 55.38<br>102       | 68                    |
| Sr (ppm) | 138.34    | 417.98         | 265.9         | 68.31              | 322.1<br>684       | 175                   |
| Y (ppm)  | 12.4      | 23             | 19.53         | 2.42               | 22.55<br>607       | 23                    |
| Zr (ppm) | 65.44     | 188.85         | 142.9         | 26.49              | 171.8<br>668       | 267                   |
| Nb (ppm) | 3.84      | 411.49         | 22.42         | 71.25              | 10.60<br>633       | 12                    |
| Mo (ppm) | 3.4       | 55.4           | 11.83         | 8.86               | 16.78<br>186       | 1.1                   |
| Sn (ppm) | <3.071835 | 5.277255       | 4.332075      | 1.47894<br>7       |                    | 2.5                   |
| I (ppm)  | <3        | 7.9            | 3.66          | 2.48               |                    | 2.8                   |
| Ba (ppm) | 145.7     | 316.3          | 236.63        | 36                 | 279.4<br>515       | 460                   |
| Ta (ppm) | 59.54     | 73.63          | 68.75         | 3.24               | 72.96<br>569       | 1.39                  |
| Pb (ppm) | 9.44      | 49.53          | 13.79         | 6.83               | 13.97<br>314       | 27                    |
| Th (ppm) | 3.9       | 7.5            | 6.03          | 0.82               | 6.952<br>311       | 9.2                   |
| U (ppm)  | <1        | <1             | <1            | -                  |                    | 3                     |
|          | * IGB: In | direct Geocher | mical backgro | ound. **V<br>[34]. | VBA: Wor           | ld Background Average |

Aluminium (Al) with a mean value of 46268.19 ppm, all Al concentration values were within the IGB and the WBA, except samples SA-2, S13 and S31, which were more than the IGB. The maximum detected Al value was in sample S13 (Figure 4 and Appendix 2). Magnesium (Mg) also recorded the highest value in soil sample S13 (Figure 6 and Appendix 2), the high value at this site was due to an increase in animal breeding at this agricultural village. All of the Mg concentration values were higher than the WBA except S29 had a value of 7960.92 ppm within this background. While most of the Mg concentration values were within the IGB except S4 and S13 which were higher than this background (Table 4). The mean value of phosphorous (P) concentrations was 800.88 ppm. P concentration values were exceeded the WBA in samples of S2, SA-2, S3, S7, S9, S10, S11, S13, S14, S15, S17, S21, S30, and S31. Whereas P showed concentrations exceeded the IGB in soil samples of S3, S10, S13, S14 and S15 (Appendix 2). Sulfur (S) recorded a mean value of 569.08 ppm, and concentrations exceeded the IGB in soil samples S2, S3, S7, S10, S14, S15, S18, S20, S26, S30 and S31, while the rest of the samples were within the IGB. The highest S value was detected in soil sample S15 (Appendix 2). This increase in S concentrations at these soil sites was a result of the land uses effect which was mainly agricultural use, the application of fertilizers was the main source

for elevated S concentrations. On another hand, the lowest value was detected in S29 (Figure 4 and Appendix 2).

However, the minimum values of most elements were detected in soil sample S29. The land uses on this site are agricultural and grazing practices with very limited use of fertilizer. Titanium (Ti) was detected with a mean of 4746.30 ppm. All Ti concentration values were within the IGB, except SA-2 and S11, which exceeded the IGB (Appendix 2). After comparing Ti concentrations within the WBA, the results showed that all Ti concentrations were greater than this background except for the soil samples S20, S29 and S30 (Appendix 2). The results revealed that the alkali contents of sodium (Na) and potassium (K) in the soil of the study area were low. The Na concentrations in the soil had a mean value of 3704.66 ppm, All Na concentration values were within the WBA and the IGB except concentration values in soil samples S2, S3, S15, and S18 were greater than the IGB (Table 4 and Appendix 2).

Potassium (K) had a mean concentration value of 9800.51 ppm (Table 4). All K concentration values were within the IGB except K values in the soil samples S7, S9 and S14 exceeded the IGB, while after a comparison of the world background average and the K concentrations, have been concluded that all values of K were within this background (Table 4 and Appendix 2).

Iron (Fe) had a mean of 35,564.27 ppm (Table 4). Fe concentrations in most samples were within the IGB except for soil samples S13 and S16, where recorded values exceeded this background. and after comparison with the WBA, the Fe concentrations exceeded this background in most soil samples except S2, S3, S5, S10, S12, S15, S18, S20, S23, S26, S29, and S30 were within the world background average.

Manganese (Mn) concentrations ranged from 550.80 to 877.46 ppm with a mean of 731.25 ppm. Mn concentration values were all less than the world soil background [1] and the IGB except for the soil samples SA-2, S21, and S3 which were greater than the latter background. Nitrogen (N) had a mean value of 103.77 ppm (Table 4). All N concentration values were within The IGB except soil samples SA-2 and S14, which recorded N values greater than the IGB. The major and minor element sources were considered naturally, except for some increases in some elements that resulted from effects of land use such as agricultural activities, animal breeding and grazing.



**Figure 4:** Spatial distribution maps of major and minor elements in soil samples of Shwan Sub-basin.

#### 3.2.3 Spatial distribution of trace elements

The average abundance of trace elements in soil samples of Shwan Sub-basin follows the decreasing order of Sr> Cr> Ba> Zr> Ni> V> Zn> Ta> Rb> Cu> Nb> Y> Pb> Co> Ga> Mo> As> Th> Br> Sn> I (Table 4). Trace element concentrations showed obvious variation in the spatial distribution of Sr, Zr, Ba, Y, Zn, Rb, Cu, Mo, As, Br, Pb and Nb in the soils of different land use land cover (Table 4 and Figure 5). The rest of the trace elements showed no significant variation along with the sub-basin samples. Trace element concentrations from the soil samples of the Shwan Sub-basin were compared with the world soil limit [1] and indirect geochemical background (IGB) (Table 4) and this comparison revealed that all V concentrations within the world soil limit and the IGB, except S7 and S28, exceeded the IGB. All Cr concentrations exceeded the world soil limit, whereas most Cr concentrations were within the IGB, except for soil samples S1, SA-2, S4, S6, S8, S11, S13, S21, S25 and S30 (Table 4 and Appendix 2). The Co concentrations exceeded the world soil limit in soil samples SA-2, S9, S13, S14, S21 and S25 (Table 4 and Appendix 2). All Ni concentrations exceeded the world soil limits, while the Ni concentrations exceeded the IGB in soil samples S21 and S25 (Table 4 and Appendix 2).

All Cu concentrations were within the IGB and world soil limit except for soil sample S14, which was higher than all limits with a concentration value of 39.862 ppm. All Zn values were within the IGB except for soil samples S3, S10, S14 and S15. Whereas most Zn concentrations exceeded the world soil limit in most samples except soil samples S5 and S29 were within this limit. Ga exceeded the IGB and world soil limit just in samples SA-2, S14 and S16. Furthermore, the value of Ga in soil sample S28 exceeded the IGB. As exceeded the IGB in soil sample S16, and exceeded the world soil limits in soil samples S1, S3, S10, S11, S13, S14, S15, S18, S19, S20, S29 and S31(Table 4 and Appendix 2).



Figure 5: Spatial distribution of trace elements in soil samples.

Br All concentration values were within the world soil standard, while it exceeded the IGB in soil samples S3, S9, S16, S23, S26 and S30. Rb was all within the world soil standard and

IGB, except soil sample S9, which exceeded the IGB. All Sr concentration values exceeded the world soil limit except S29 and S30, whereas soil samples S2, S5, S12, S18, S19 and S26 exceeded the IGB (Table 4 and Appendix 2). All Y concentrations were within the world soil limit. The soil samples S11, S13 and S16 exceeded the IGB. All Zr concentration values were within the world soil limit. While soil samples S1, and S11 were detected with Zr concentration values that exceeded the IGB. The soil samples S16 and S14 and S26 recorded in general higher metal concentrations than other samples. Nb detected values exceeded the IGB in soil samples S5 and S16 and exceeded the world soil standard in S5. All Mo concentrations exceeded the world soil limit. While Mo exceeded the IGB in soil sampled just in sample S17. Sn was more than the world soil limit in S7, S10, S11 and S29. Iodine exceeded the world soil standard in soil samples S3, S6, S17, S18, S23, S24, S26, S30 and S31 (Table 4 and Appendix 2). All Pb concentrations were within the IGB except for soil samples S9, S14 and S15, while Pb concentration exceeded the world soil limit in sample S15. All Ba concentrations were within the world soil limit but exceeded the IGB in soil sample S18 (Table 4 and Appendix 2). All Ta concentration values were greater than the world soil limit, whereas it had values that exceeded the IGB in soil samples S8, S12 and S18. Th and U were all recorded concentrations within the world soil limit and IGB (Table 4 and Appendix 2).

# 3.3 Statistical analysis

# 3.3.1 Principal component analysis (PCA)

After applying PCA in the chemical analysis [24], [25], [35]. results principal components with eigenvalues greater than 1 (Kaiser Criterion) were extracted into six PCs, which explained about 83.299 % of the total variation (Table 5). The factor loadings of the different variables are presented in Table (6). In detail, the first principal component (PC1) with an Eigenvalue of 11.369 accounted for 43.728% of the total variance (Table 5) and had a strong factor loading of Mg (0.857), A1 (0.85), Si (0.78), Fe (0.901), Ti (0.94), Ni (0.80), Rb (0.82), Zr (0.9) and Y (0.93) (Table 6), quite explained the natural sources of these elements from rock weathering. Furthermore, PC1 had a moderate factor loading of K (0.733), Mn (0.735), Cr (0.585), Cu (0.545), Ba (0.686) and As (0.621) (Table 6). Most of these were probably derived from natural sources for K, while Mn, Cr, Cu and As were derived from natural and anthropogenic sources. Oil production activities from the Kirkuk oil fields could be considered the source of these metals by aerial transport then deposited in the close regions, as well as the Shwan Sub-basin.

The second principal component (PC2) with an Eigenvalue of 3.85 explained 14.8 % of the total variance (Table 5) which had strong factor loadings of P (0.891), and moderate for Mn (0.513), Cu (0.64), CEC (0.51012) and Zn (0.72) accounts for 14.81% of the total variance, PC2 source could be considered from agriculture activities, Fertilizers, and livestock manure are known to be a significant source of these elements [30], [36]. The third principal component (PC3) with an Eigenvalue of 2.38 explained 9.17% (Table 5) of the total variance had a strong factor loading of N (0.881), CEC (0.594) and TOC (0.831) and moderate factor loading of Pb (0.509). PC3 sources were mainly derived from the decomposition of plants and animal waste or anthropogenic sources such as chemical contaminants, fertilizers, or organic-rich waste [37]. The fourth principal component (PC4) with an Eigenvalue of 1.5726, explained 6.04% of the total variance had a strong factor loading of S (0.836), Cl (0.924), and moderate factor loading Na (0.566) (Table 6). Fertilizers and animal waste are sources of S and Cl. This finding is consistent with Pepper et al. [30] who stated that most animal wastes are high in TDS (Na, Cl, Ca, Mg, K, and soluble N and P forms and for S). While the fifth principal component (PC5) with an Eigenvalue of 1.34 explained 5.164% of the total variance (Table 5) had a strong factor loading Br (0.836), Br might be of agricultural source [38], [1]. The sixth principal component (PC6) with an Eigenvalue of 1.13 explained 4.364 % of the total variance and had a strong factor loading of Vanadium (0.893). Vanadium is mainly derived from phosphorus fertilizers commonly used in the study area that riches in trace elements such as As, Cd, Cr, Hg, Pb, Se, U and V [39].

Vanadium mainly accumulates from aerial transport as an atmospheric deposition [37] derived from fuel combustion operations at the refineries in the south of the sub-basin and the Kirkuk oil field near the study area. Petroleum refinery is a major source of pollution in areas where they are established. The refineries are major sources of toxic air pollutants including BTEX compounds, carbon monoxide, particulate matter, and sulfur dioxide [36]. Vanadium is also present in crude oil. However, this effect is quite noticeable not just in the soil it also clears in groundwater from the study region who recorded high V concentrations.

| Number | Eigenvalue | Percent | Cumulated Percent |
|--------|------------|---------|-------------------|
| 1      | 11.3694    | 43.728  | 43.728            |
| 2      | 3.8529     | 14.819  | 58.547            |
| 3      | 2.3856     | 9.175   | 67.723            |
| 4      | 1.5726     | 6.048   | 73.771            |
| 5      | 1.3425     | 5.164   | 78.935            |
| 6      | 1.1347     | 4.364   | 83.299            |

**Table 5:** Eigenvalues of total variance explain the six components selected.

**Table 6:** Loadings of experimental geochemical variables on significant principal components for the Shwan Sub-basin soil samples. Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.

| Element | PC1       | PC2       | PC3       | PC4       | PC5       | PC6       |
|---------|-----------|-----------|-----------|-----------|-----------|-----------|
| Na      | -0.258956 | 0.084297  | 0.309569  | 0.566215  | -0.430234 | 0.229765  |
| Mg      | 0.857582  |           | 0.329424  | 0.084891  | -0.095834 | 0.108095  |
| Al      | 0.850810  | 0.332667  | -0.121905 | -0.070718 | 0.072552  | 0.047490  |
| Si      | 0.780043  | 0.422767  | -0.085211 |           | -0.133793 | -0.099112 |
| Fe      | 0.901480  | 0.206572  | 0.165461  | -0.131201 | 0.192801  | 0.069802  |
| Ν       | 0.274246  | 0.162863  | 0.881655  | 0.098834  | 0.108071  | -0.054401 |
| Р       | 0.126380  | 0.891818  | 0.116514  | 0.113736  | -0.071506 | 0.005539  |
| S       | -0.247377 | 0.225316  | 0.311593  | 0.836183  | -0.036475 | 0.076756  |
| Cl      | 0.018862  | -0.067141 | -0.103757 | 0.924361  | 0.196740  | -0.032287 |
| K       | 0.733781  | 0.487251  | 0.078392  |           | -0.233641 | 0.052687  |
| Ca      | -0.692660 | -0.611693 | -0.127269 | -0.013143 | 0.122226  | 0.049645  |
| Ti      | 0.944011  |           | 0.056679  | -0.117956 | 0.026956  | 0.022666  |
| Mn      | 0.735885  | 0.513412  | -0.021384 | -0.119119 | 0.076205  | -0.214037 |
| V       |           |           | -0.098853 | 0.104410  | 0.096323  | 0.893540  |
| Cr      | 0.585444  | -0.121983 | -0.190711 | -0.085369 | -0.054896 | -0.334862 |
| Ni      | 0.806606  |           | 0.482394  | -0.074838 | 0.157767  | 0.077122  |
| Cu      | 0.545568  | 0.649393  | 0.339441  | -0.125234 | 0.162927  | -0.026319 |
| Zn      | 0.166403  | 0.720565  | 0.492508  | 0.088408  | 0.138813  | 0.070090  |
| Sr      | 0.04706   | 0.30313   | 0.66684   | 0.42255   | 0.22753   | 0.14722   |
| As      | 0.621486  | -0.252285 | 0.415924  |           | 0.382914  | 0.347649  |
| Мо      | 0.15509   | 0.06362   | 0.20021   | 0.32252   | -0.51252  | 0.14426   |

| Br  | -0.125168 | 0.028420  | 0.206951 | 0.097849  | 0.836537  | 0.105780 |
|-----|-----------|-----------|----------|-----------|-----------|----------|
| Rb  | 0.820094  | 0.173039  | 0.401899 | -0.045865 | -0.116787 | 0.187087 |
| Zr  | 0.904456  |           | 0.189334 | -0.113224 | -0.084927 |          |
| Ba  | 0.68640   | 0.02465   | 0.22774  | 0.07341   | -0.21299  | -0.22526 |
| Pb  | -0.087897 | 0.417496  | 0.509252 | 0.319969  | -0.307347 | 0.106013 |
| Y   | 0.930171  | 0.052476  | 0.174713 | -0.189066 | 0.011574  | 0.027153 |
| Nb  | 0.185747  | -0.269296 | 0.182207 | -0.192151 | -0.202587 | 0.299844 |
| Th  | 0.74872   | -0.18665  | 0.24636  | -0.04516  | -0.26215  | -0.26215 |
| CEC | 0.41012   | 0.59430   | 0.19070  | -0.42448  | -0.21699  |          |
| Ph  | 0.36693   | 0.44942   | 0.00694  | 0.25831   | -0.47300  | 0.02312  |
| TOC | 0.229134  | 0.190423  | 0.831054 |           | 0.119856  |          |

# 3.3.2 Agglomerative Hierarchal Cluster Analysis (AHCA)

The results of the geochemical analysis are illustrated in the dendrogram (Figure 6). AHCA highlighted [25], [35], [40]. six specific soil response patterns (R1, R2, R3, R4, R5, and R6) were identified from clustering samples based on geochemical variables (Figure 6). The distance cluster represents the degree of association between sampling sites depending on geochemical variables, where clusters with smaller or shorter distances between them are more similar to each other than clusters with larger or longer distances between them [40]. From the dendrogram cluster, R2 had the shortest distance (2.185) and highest similarity to cluster R1, whereas cluster R3 was the least similar and has the greatest distance to R1 (15.144) (Figure 6 and Table 7).

| Number of<br>Clusters | Distance   | Lead<br>er | Joiner     | Number of<br>Clusters | Distance    | Leade<br>r | Joine<br>r |
|-----------------------|------------|------------|------------|-----------------------|-------------|------------|------------|
| 31                    | 2.18549248 | S6         | S24        | 15                    | 4.54921118  | S4         | S16        |
| 30                    | 2.39075239 | S22        | S28        | 14                    | 4.72234250  | S2         | S12        |
| 29                    | 2.50320357 | S4         | S25        | 13                    | 5.01526071  | SA-2       | S14        |
| 28                    | 2.53625651 | S19        | S27        | 12                    | 5.51824633  | S2         | S17        |
| 27                    | 2.56331257 | SA-2       | S21        | 11                    | 5.53507105  | <b>S</b> 1 | S31        |
| 26                    | 3.13072940 | <b>S</b> 7 | <b>S</b> 9 | 10                    | 5.58045540  | <b>S</b> 3 | S15        |
| 25                    | 3.19992588 | S6         | <b>S</b> 8 | 9                     | 6.13832483  | S23        | S26        |
| 24                    | 3.37302625 | S4         | S22        | 8                     | 6.15135406  | S20        | S29        |
| 23                    | 3.57345585 | <b>S</b> 1 | S10        | 7                     | 6.55497670  | S2         | S5         |
| 22                    | 3.61938021 | S12        | S18        | 6                     | 6.82492107  | <b>S</b> 1 | SA-2       |
| 21                    | 3.62819786 | S4         | <b>S</b> 6 | 5                     | 7.15359639  | S2         | S23        |
| 20                    | 3.96357639 | <b>S</b> 7 | S13        | 4                     | 7.53271119  | <b>S</b> 1 | <b>S</b> 4 |
| 19                    | 3.98877768 | S23        | S30        | 3                     | 8.93703890  | S2         | <b>S</b> 3 |
| 18                    | 4.00041566 | S4         | S19        | 2                     | 11.95012900 | S2         | S20        |
| 17                    | 4.23140545 | <b>S</b> 1 | S11        | 1                     | 15.14440539 | <b>S</b> 1 | S2         |
| 16                    | 4.53404828 | SA-2       | S7         |                       |             |            |            |

# Table 7: Detail distance between the different clusters.

Cluster R1 involved ten samples (S1, S10, S11, SA-2, S31, S21, S7, S9, S13, and S14) (Figure 6), this cluster was subdivided into two sub-cluster, the first groups including S1, S31, S10, and S11. Soil sample S1 was taken from urban and built-up lands, while the rest of the samples were from agricultural land. Another sub-cluster in R1 includes soil samples SA-2,

S21, S7, S9, S13, and S14 (Figure 6) which represent agricultural land. Furthermore, SA-2 is very close to the refinery and may have a direct effect on this sample. The representative variables with high concentrations in R1 were Al, Si, Fe, K, Ti, Mn, Cr, Co, Cu, Ga, Rb, Zr and Y (Table 8). Cluster R2 included ten samples (S4, S25, S22, S28, S6, S24, S9, S8, S19, S27 and S16 (Figure 8) whereas the representative variables in R2 are M g, Ni, Ba, Th. All high variables in clusters R1 and R2 were dominant in the PC1 (Table 6) indicating natural and anthropogenic sources. Cr, Ni, Cr, Ni, Zn, As, and Br (Table 8) were derived from fertilizers and supplies from an oil refinery located south of the study. Besides, pollutants from emissions from the Kirkuk oil refinery located far away from the study area about a distance of 27 Km, could be transported by winds to the study area.



Figure 6: Dendrogram showing clustering of soil sample sites

Cluster R3 involved five soil samples (S2, S12, S17, S18 and S5) (Figure 8), these samples were taken from agricultural lands. The representative variables in R3 are Sr, Mo and Nb (Table 8) that were dominant in PC3. The source of high concentrations of these elements was the use of fertilizers. Cluster R4 involves S23, S30 and S26 (Figure 8). The representative variables with high concentrations were Cl, V, As, Br, and Ta (Table 8) indicating mainly natural sources

and anticipated sources from fertilizer uses. The cluster R5 involved S3 and S15 (Figure 6), the land uses in these two sites are agriculture and grazing lands. The representative variables in R5 were Na, N, P, S, Zn, Pb, pH, CEC, and TOC (Table 8) which were dominant in PC2, PC3, and PC4 (Table 6). The grouping of these elements with pH, CEC and TOC indicate the direct effect between the increase in concentrations of Na, N, P, S, Zn, and Pb at samples S3 and S15 and these parameters. Mostly the CEC showed an increased pattern with the increase of OM and TOC in Fertilizers and animal manures are most probably the sources of increasing the variable concentrations in R5. Cluster R6 involved samples S20 and S29 (Figure 6). The representative variable in R6 was Ca (Table 8), such an increase in this element is mostly from a natural source.

| Cluster | 1       | 2       | 3       | 4       | 5        | 6       |
|---------|---------|---------|---------|---------|----------|---------|
| Count   | 10      | 10      | 5       | 3       | 2        | 2       |
| Na      | 3571    | 3430    | 4235    | 3492    | 4833     | 3609    |
| Mg      | 20255   | 20302   | 19346   | 16776   | 18006    | 10937   |
| Al      | 51138   | 48297   | 41990   | 42153   | 41144    | 33769   |
| Si      | 193604  | 176561  | 159434  | 156265  | 164843   | 148202  |
| Fe      | 37826.6 | 37641.2 | 33548.9 | 33346.5 | 32478    | 25319.4 |
| Ν       | 85      | 94      | 86      | 82      | 106      | 70      |
| Р       | 1072    | 623     | 712     | 587     | 1269     | 407     |
| S       | 529     | 359     | 437     | 933     | 1609     | 566     |
| Cl      | 162     | 134     | 150     | 273     | 171      | 129     |
| K       | 11611   | 9442    | 9852    | 7618    | 9410     | 6070    |
| Ca      | 124994  | 155433  | 176802  | 193898  | 140081   | 210872  |
| Ti      | 5151.47 | 5099.73 | 4494.05 | 4214.16 | 4186.98  | 2941.5  |
| Mn      | 819.58  | 746.688 | 658.183 | 655.012 | 681.951  | 558.657 |
| V       | 93.324  | 97.47   | 100.27  | 101.017 | 93.828   | 85.706  |
| Cr      | 284.347 | 277.019 | 215.879 | 236.574 | 191.508  | 161.3   |
| Со      | 11.206  | 2.669   | 1.892   | 1.375   | 1.375    | 1.375   |
| Ni      | 130.866 | 140.06  | 124.886 | 118.452 | 117.326  | 62.592  |
| Cu      | 34.1588 | 32.7049 | 28.1994 | 27.9864 | 33.7115  | 23.0069 |
| Zn      | 89.1339 | 81.3492 | 78.3928 | 76.0256 | 114.8418 | 60.1322 |
| Ga      | 13.4    | 13.008  | 12.4    | 12.533  | 12       | 9.6     |
| As      | 6.567   | 7.498   | 7.15    | 7.523   | 6.211    | 3.105   |
| Br      | 4.8     | 5.18    | 4.8     | 8.267   | 6.95     | 3.2     |
| Rb      | 50.219  | 49.323  | 48.153  | 38.192  | 45.035   | 28.164  |
| Sr      | 226.474 | 279.873 | 365.329 | 237.019 | 275.451  | 178.293 |
| Zr      | 156.724 | 154.614 | 140.081 | 120.868 | 125.26   | 72.884  |
| Мо      | 10.67   | 10.29   | 20.88   | 7.633   | 12.45    | 8.45    |
| Ba      | 247.22  | 252.79  | 228.48  | 196.567 | 213.6    | 206.3   |
| Та      | 67.7698 | 69.6206 | 69.2357 | 70.1311 | 67.0736  | 67.7288 |
| Pb      | 13.6334 | 12.8646 | 11.6774 | 11.2882 | 30.9939  | 10.4124 |

Table 8: Representative mean of variables in red line for each of six clusters.

| Th  | 6.36     | 6.43     | 5.58   | 5.5667   | 5.5      | 4.8      |
|-----|----------|----------|--------|----------|----------|----------|
| Y   | 21.05    | 20.57    | 19.04  | 17.27    | 17.45    | 13.35    |
| Nb  | 9.3      | 9.7      | 15.2   | 7.6      | 8.5      | 4.4      |
| Ph  | 7.3      | 7.3      | 7.4    | 7.2      | 7.5      | 7.2      |
| CEC | 12       | 13       | 12     | 12       | 13       | 11       |
| TOC | 0.758121 | 0.792343 | 0.7529 | 0.750193 | 0.835267 | 0.716357 |

### Conclusions

The soil of the study area generally was characterized by high concentrations of Ta, Mo, Ni, Cr and As in most sampling sites, whereas some sample sites showed high concentrations of Co, Nb, Sr, Zn and Mn. The applied multivariate statistical techniques, such as PCA and AHCA, identified the possible sources of contaminants in the soil. Some metals were from anthropogenic sources (mainly fertilizers and petroleum extraction emissions), and others were from natural sources.

Most geochemical elements were derived from natural sources, and some heavy metals were derived from anthropogenic activities. The dominant land use in the study area was agricultural activities. The farmers were depending greatly on fertilizers to enhance crop production. The consequences of fertilizer application remarkably affected soil quality. Besides, industrial activities, whether inside or outside of the study area, these activities were represented by oil production activities that released significant air pollutants such as metals that are transported and deposited on the soil of the study area. Many other industrial activities, such as blocks and painting factories in the southern part of the sub-basin could be sources of increased metals in this part.

This study established geochemical background that could be the geochemical reference for future geochemical and environmental studies for the regions located close to the study area.

#### **Competing interests**

The authors declare no conflict of interest.

#### References

- [1] A. Kabata-Pendias. Trace elements in soils and plants, 4th ed. Taylor & Francis Group, Boca Raton London New York, 2011.
- [2] C. Galinha, MC. Freitas, Pacheco AMG. Enrichment factors and transfer coefficients from soil to rye plants by INAA. J Radioanal Nucl Chem 286:583–589, 2010.
- [3] D. Q. Liu Yang, D. Tang, X. Kang, W. Huang. Geochemistry of sulfur and elements in coals from the Antaibao surface mine, Pingshuo, Shanxi Province, China. Intern J Coal Geol 46:51–64, 2001.
- [4] S. A. Salman. Study of some environmental impacts on Maghara Coal Mine area. M.Sc. Thesis, Fac. Sci., Al-Azhar Univ., Egypt, 2008.
- [5] B. A. Raji, W. B. Jimba, S.A. Alagbe. The distribution and geochemical assessment of trace elements from the semi-arid to sub-humid savanna of Nigeria. *Environmental Earth Sciences* 73(7), pp:3555–3564, 2015.
- [6] J. Matschullat, R. Ottenstein, C. Reimann. Geochemical background- can we calculate it? Environmental Geology, Vol. 39, No. 9, pp: 990–1000, 2000.
- [7] K. S. Al-Bassam, M. A. Yousif. Geochemical distribution and background values of some minor and trace elements in Iraqi soils and recent sediments. Iraqi Bulletin of Geology and Mining, Vol. 10, No.2, pp: 109-156, 2014.
- [8] M. A. AL-Abadi. Water Resources Evaluation of Alton Kopri Basin, NE Kirkuk. Ph. D., Thesis, College of Science, University of Baghdad, 2013.

- [9] O. S. Al-Tamimi, J. K. Al-Shwani. Hydrogeological Characteristics of the Aquifer in Shwan Sub-Basin, Kirkuk Iraq. Kirkuk University Journal /Scientific Studies (KUJSS) Volume 14, Issue 1, pp. (120-140) ISSN: 2616-6801, 2019.
- [10] F. D. Al-Hayali, O. S. Al-Tamimi., D. F. Hamamin. Identification of Vulnerable Zones for Groundwater Using a GIS-based DRASTIC Technique in Shwan Sub-basin/North-Iraq Iraqi Journal of Science, 2021, Vol. 62, No. 5, pp: 1587-1597, 2020. <u>doi: 10.24996/ijs.2021.62.5.2.</u>
- [11] T. Buday, S. Z. Jassim. The Regional Geology of Iraq, Vol. 2, Tectonism, Magmatism and Metamorphism, 1987, 352p.
- [12] K.M. Al- Naqib. Geology of the southern area of Kirkuk liwa, technical publication. Iraq petroleum company limited, 1959, 50 p.
- [13] H. R. Haddad, S. B. Al-Jawad, I. Haddad, A. I. Younan, A. V. Salvo. Hydrogeological investigation in Jolak Basin of the Alton-Kopry area. Tech. rep. no.25 Institute for Applied Research on Natural Resources. 1971, 38 p.
- [14] R. Salminen, T. Tarvainen, A., Demetriades, M. Duris, M. Fordyce, F. M., Gregorauskiene, V., Kahelin, H., Kivisilla, J., Klaver, G., Klein, H., Larson, J. O., Lis, J., et al. FOREGS geochemical mapping. Field Manual. Guide 47, Geological Survey of Finland, 1998, p. 36.
- [15] V. K. Sissakian. The geology of Kirkuk Quadrangle Sheet NI-38- 2scale1:250000, State Organization of Minerals, General Directorate for Geological Survey and Mineral Investigation, 1993.
- [16] A. Walkley. A critical examination of a rapid method for determining organic carbon in soils: Effect of9 variations in digestion conditions and inorganic soil constituents. Soil Science. 63, pp: 251-26, 1947.
- [17] J.D. Rhoades. Cation exchange capacity. In: A.L. Page (ed.) Methods of soil analysis. Part 2: Chemical and microbiological properties, 2nd ed., Agronomy No.9, pp: 149-157, 1982.
- [18] A. Gałuszka. Methods of determining geochemical background in environmental studies. Problems of Landscape Ecology. Polish Association of Landscape Ecology. Warsaw (in Polish with English Summary), Vol. 16, No. 1, pp: 507–519, 2006.
- [19] W. Zgłobicki, L. Lata, A. Plak, M. Reszka. Geochemical and statistical approach to evaluate background concentrations of Cd, Cu, Pb and Zn (case study: Eastern Poland). Environmental Earth Sciences, Vol. 62, No. 2, pp: 347–355, 2011.
- [20] G. F. C. Lima, C.C. Bento, A. H. Horn. Geochemical signature and environmental background of bottom sediments in a tropical aquatic system: the Três Marias Reservoir, Brazil. Environ Monit Assess 193, 85, 2021. <u>https://doi.org/10.1007/s10661-021-08876-8</u>.
- [21] Y. I. Al-Saady, B. S. Al-Tawash & Q. A. Al-Suhail. Effects of Land Use and Land Cover on Concentrations of Heavy Metals in Surface Soils of Lesser Zab River Basin, NE Iraq. *Iraqi Journal* of Science, 57(2C), 1484–1503, 2016. Retrieved from <u>https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/7149</u>
- [22] J. W. Tukey. Exploratory data analysis. Reading7 Addison-Wesley, 1977.
- [23] A. S. de Lima Rodrigues, G. Malafaia, A. T. Costa, H. A. Nalini-Jr. Background values for chemical elements in sediments of the Gualaxo Do Norte River Basin, MG, BRAZIL. Revista de Ciências Ambientais, 7(2), pp:15-32, 2014.
- [24] B.S. Al-Tawash, H.S. Al-Lafta & Merkel, B.J. Multivariate Statistical Evaluation of Major and Trace Elements in Shatt Al-Arab Sediments, Southern Iraq. *Journal of environment and earth science*, *3*, 146-155, 2013.
- [25] A. Chandrasekaran, R. Ravisankar, N. Harikrishnan, K.K. Satapathy, M. V. R. Prasad, K. V. Kanagasabapathy. Multivariate statistical analysis of heavy metal concentration in soils of Yelagiri Hills, Tamilnadu, India Spectroscopical approach, Research, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 137, pp: 589–600, 2014.
- [26] H.F. Abdullah, & B.S. Al-Tawash. Environmental Assessment of Al-Hammar Marsh Sediments, Southern Iraq. *Iraqi journal of science*, 56, 2329-2340, 2015
- [27] H.F. AL-Gburi, B.S. Al-Tawash & Al-Lafta, H.S. Environmental assessment of Al-Hammar Marsh, Southern Iraq. *Heliyon*, *3*, 2017.
- [28] I. V. Nair, K. Singh, M. Arumugam, K. Gangadhar, D. Clarson. Trace metal quality of Meenachil River at Kottayam, Kerala (India) by principal component analysis, World Applied Sciences Journal, Vol.9, No.10, pp: 1100-1107, 2010.

- [29] I. L. Pepper, C. P. Gerba, M. L. Brusseau. Pollution Science. Academic Press, San Diego, California, 1996
- [30] I. L. Pepper, C. P. Gerba, M. L. Brusseau. Environmental and pollution science. 2nd ed., Elsevier Academic Press, 2006, 628 p.
- [31] USDA (U.S. Salinity Lab. Staff). Methods for soil characterization. p.83-147. In: Diagnosis and improvement of saline and alkali soils. Agr. Handbook 60, USDA, Washington, D.C, 1954.
- [32] B. A. Schumacher. Methods for the determination of total organic carbon (TOC) in soils and sediments", EPA National Exposure Research Laboratory, office of Research and Development (ORD), pp: 1-23, 2002.
- [33] Atlas of Iraqi climate. Atlas of Iraqi climate for the years (1981–2000). Iraqi General Institute of Meteorological information. Baghdad, Iraq, 2000.
- [34] C. Reimann, & P. de. Caritat. Chemical Elements in the Environment. Factsheets for the Geochemistry and Environmental Scientist, 1998, 398 pp.
- [35] M., Varol, B., Gökot, A., Bekleyen, & B. Sen. Geochemistry of the Tigris River basin, Turkey: Spatial and seasonal variations of major ion compositions and their controlling factors. Quaternary International, 304, 22-32, 2013.
- [36] E.R. Weiner, Applications of Environmental Aquatic Chemistry A Practical Guide, Second ed., CRC Press: Taylor & Francis Group, USA, 2008.
- [37] P. Avramidis, K. Nikolaou, V. Bekiari. Total Organic Carbon and Total Nitrogen in Sediments and Soils: A Comparison of the Wet Oxidation - Titration Method with the Combustion-infrared Method, Agriculture and Agricultural Science Procedia, Volume 4, 2015, Pages 425-430, ISSN 2210-7843, https://doi.org/10.1016/j.aaspro.2015.03.048.
- [38] C. Reimann, P. DeCaritat. Chemical elements in the environment. (Berlin: Springer Verlag.) RoTAP, 2011. Review of Tran boundary Air Pollution (RoTAP), A review of Acidification, Eutrophication, Heavy Metals and Ground- Level Ozone in the UK, 1998.
- [39] P. S. Hooda. Trace Elements in Soils, John Wiley & Sons Ltd, London, John Wiley & Sons Ltd, ISBN: 978-1-405-16037-7 UK, 596P, 2010.
- [40] H. Yongming, D. Peixuan, C. Junji, E.S. Posmentier, Multivariate analysis of heavy metal contamination in urban dusts of Xian, Central China, Sci. Total Environ. 355(1-3), 2006, 176-186

| Appendi   | Appendix 1: Results of chemical analyses for Shwan Sub-basin soils |                       |      |      |                         |          |  |  |  |
|-----------|--------------------------------------------------------------------|-----------------------|------|------|-------------------------|----------|--|--|--|
| Station   | Land Use<br>Land<br>Cover                                          | EC (ds/m)=<br>mmhs/cm | Ph   | OM % | CEC (centmol. Kg-<br>1) | TOC %    |  |  |  |
| S1        | Urban and<br>Built-up<br>Land                                      | 1.24                  | 7.16 | 1.2  | 11                      | 0.696056 |  |  |  |
| <b>S2</b> | Urban and<br>Built-up<br>Land                                      | 1.2                   | 7.18 | 1.23 | 11.2                    | 0.713457 |  |  |  |

**Appendices** 

| SA-2       | Agricultural<br>Land          | 1.1  | 7.23 | 1.32 | 12   | 0.765661 |
|------------|-------------------------------|------|------|------|------|----------|
| <b>S</b> 3 | Agricultural<br>Land          | 1.2  | 7.41 | 1.43 | 13.2 | 0.829466 |
| <b>S4</b>  | Urban and<br>Built-up<br>Land | 1.12 | 7.37 | 1.37 | 12.5 | 0.794664 |
| <b>S</b> 5 | Urban and<br>Built-up<br>Land | 1.18 | 7.34 | 1.32 | 12.2 | 0.765661 |
| <b>S6</b>  | Agricultural<br>Land          | 1.24 | 7.3  | 1.34 | 12.3 | 0.777262 |
| <b>S7</b>  | Agricultural<br>Land          | 2.2  | 7.33 | 1.36 | 12.7 | 0.788863 |
| <b>S</b> 8 | Agricultural<br>Land          | 1.64 | 7.38 | 1.31 | 12   | 0.759861 |
| <b>S9</b>  | Agricultural<br>Land          | 1.5  | 7.41 | 1.29 | 11.8 | 0.74826  |
| <b>S10</b> | Agricultural<br>Land          | 2    | 7.44 | 1.26 | 11.4 | 0.730858 |
| <b>S11</b> | Agricultural<br>Land          | 1.28 | 7.42 | 1.27 | 11.5 | 0.736659 |
| S12        | Agricultural<br>Land          | 1    | 7.47 | 1.25 | 11.3 | 0.725058 |
| S13        | Agricultural<br>Land          | 1.04 | 7.52 | 1.31 | 12.1 | 0.759861 |
| <b>S14</b> | Agricultural<br>Land          | 1.14 | 7.49 | 1.41 | 12.9 | 0.817865 |
| S15        | Agricultural<br>Land          | 2.6  | 7.56 | 1.45 | 13.3 | 0.841067 |
| <b>S16</b> | Barren land                   | 1.22 | 7.51 | 1.42 | 13   | 0.823666 |
| <b>S17</b> | Agricultural<br>Land          | 1.46 | 7.46 | 1.33 | 12.2 | 0.771462 |
| S18        | Agricultural<br>Land          | 1.3  | 7.41 | 1.36 | 12.3 | 0.788863 |
| S19        | Agricultural<br>Land          | 1.4  | 7.37 | 1.37 | 12.7 | 0.794664 |
| <b>S20</b> | Agricultural<br>Land          | 1.08 | 7.34 | 1.33 | 12.1 | 0.771462 |
| S21        | Agricultural<br>Land          | 1.2  | 7.3  | 1.35 | 12.4 | 0.783063 |
| S22        | Barren land                   | 1.12 | 7.28 | 1.37 | 12.5 | 0.794664 |
| S23        | Agricultural<br>Land          | 1.24 | 7.31 | 1.35 | 12.2 | 0.783063 |
| S24        | Agricultural<br>Land          | 1.06 | 7.25 | 1.36 | 13.3 | 0.788863 |
| S25        | Urban and<br>Built-up<br>Land | 1.14 | 7.17 | 1.38 | 12.7 | 0.800464 |
| S26        | Barren land                   | 7.8  | 7.2  | 1.33 | 12   | 0.771462 |
| S27        | Agricultural<br>Land          | 1.2  | 7.23 | 1.39 | 12.9 | 0.806265 |
| S28        | Agricultural<br>Land          | 1.04 | 7.18 | 1.35 | 12.1 | 0.783063 |
| S29        | Barren<br>Land                | 0.92 | 7.12 | 1.14 | 10.7 | 0.661253 |
| <b>S30</b> | Barren<br>Land                | 1.6  | 7.15 | 1.2  | 11.3 | 0.696056 |

| <b>S</b> 31 | Agricultural<br>Land | 1.66        | 7.19        | 1.3        | 11.8        | 0.75406  |
|-------------|----------------------|-------------|-------------|------------|-------------|----------|
| Min         |                      | 0.92        | 7.12        | 1.14       | 10.7        | 0.661253 |
| Max         |                      | 7.8         | 7.56        | 1.45       | 13.3        | 0.841067 |
| Mean        |                      | 1.535       | 7.3275      | 1.3265625  | 12.175      | 0.769468 |
| SD          |                      | 1.199290113 | 0.123419034 | 0.06995895 | 0.670098693 | 0.040579 |

# Appendix 2: Chemical elements concentrations in (ppm) for Shwan Sub-basin soils.

| Sample     | Na       | Mg        | Al        | Si         | Fe        | Ν   | Р        | S        | Cl    | K       |
|------------|----------|-----------|-----------|------------|-----------|-----|----------|----------|-------|---------|
| <b>S1</b>  | 4,184.09 | 20,638.08 | 49,437.24 | 183,096.25 | 36,797.01 | 76  | 732.3128 | 405.6964 | 151.2 | 10,352. |
| S2         | 4473.416 | 19685.18  | 42281.78  | 165707.48  | 32537.48  | 88  | 765.9171 | 550.6738 | 199.2 | 10401.  |
| SA-2       | 2997.114 | 21615.1   | 53348.4   | 198428.28  | 40329.13  | 83  | 937.4302 | 350.7892 | 128.5 | 12078.8 |
| <b>S</b> 3 | 4436.323 | 17700.99  | 39762.55  | 161079.82  | 31852.04  | 105 | 1202.774 | 1035.267 | 138.6 | 8401.21 |
| <b>S4</b>  | 3976.37  | 22302.64  | 48040.02  | 184498.57  | 36999.85  | 98  | 673.8325 | 348.0659 | 136.6 | 11090.9 |
| <b>S</b> 5 | 3746.393 | 19727.4   | 43610.2   | 166595.62  | 33257.9   | 84  | 606.6238 | 298.2049 | 114.2 | 8982.33 |
| <b>S</b> 6 | 3256.765 | 20776.8   | 49426.66  | 181834.16  | 37216.67  | 87  | 671.214  | 349.828  | 128.8 | 9845.69 |
| <b>S7</b>  | 4020.881 | 21024.07  | 51559.54  | 189079.48  | 38391.71  | 96  | 773.7727 | 1226.701 | 190.3 | 12485.6 |
| <b>S8</b>  | 3605.44  | 18159.34  | 46637.51  | 166595.62  | 36496.26  | 85  | 502.7558 | 378.0225 | 148.2 | 8063.34 |
| <b>S9</b>  | 3516.416 | 20752.67  | 48749.22  | 185994.38  | 37174.7   | 82  | 900.3345 | 444.9444 | 150.2 | 12809.3 |
| <b>S10</b> | 3687.044 | 17960.32  | 44853.94  | 178749.06  | 34453.92  | 77  | 1319.298 | 568.2953 | 139.5 | 11032.8 |
| <b>S11</b> | 3212.254 | 18901.15  | 48765.1   | 194642.02  | 35202.31  | 80  | 874.1493 | 318.8301 | 114.9 | 11066.0 |
| S12        | 3983.788 | 19486.16  | 37412.68  | 141914.78  | 31593.25  | 78  | 599.6411 | 380.1852 | 128.5 | 9106.85 |
| <b>S13</b> | 3746.393 | 22610.22  | 60175.73  | 222548.18  | 41714.01  | 83  | 1029.515 | 328.0814 | 201.9 | 12327.8 |
| S14        | 3279.021 | 21832.22  | 49135.57  | 199456.65  | 38146.91  | 103 | 1951.67  | 605.5409 | 155.3 | 12933.8 |
| <b>S15</b> | 5230.113 | 18310.12  | 42525.24  | 168605.61  | 33104.02  | 106 | 1335.009 | 2181.87  | 202.6 | 10418.5 |
| <b>S16</b> | 2952.603 | 18599.6   | 50405.77  | 173840.94  | 40895.67  | 101 | 548.1435 | 299.0058 | 121   | 8899.31 |
| S17        | 4035.718 | 18539.29  | 44123.57  | 163650.74  | 35726.88  | 86  | 898.1524 | 383.9498 | 108.7 | 11248.6 |
| S18        | 4933.369 | 19293.17  | 42519.95  | 159303.55  | 34628.78  | 94  | 692.1621 | 574.3027 | 201.8 | 9521.93 |

| S19         | 3427.393 | 20179.73  | 44896.28  | 166829.34  | 35880.76  | 96     | 707.0004 | 407.6988 | 138.6     | 9521.93  |
|-------------|----------|-----------|-----------|------------|-----------|--------|----------|----------|-----------|----------|
| S20         | 3635.114 | 13913.52  | 33453.89  | 180946.02  | 26669.27  | 74     | 517.1577 | 873.4687 | 153.7     | 7574.38  |
| S21         | 3204.835 | 20246.07  | 50257.58  | 192117.84  | 39874.5   | 93     | 918.2277 | 378.5031 | 157.1     | 11373.1  |
| S22         | 3301.277 | 21633.2   | 52358.7   | 194922.48  | 39475.83  | 95     | 670.7775 | 360.401  | 151       | 10385.3  |
| S23         | 3167.742 | 16380.2   | 42001.28  | 158836.11  | 34495.89  | 89     | 381.9111 | 340.8971 | 123.1     | 6556.60  |
| S24         | 3687.044 | 18394.55  | 48389.33  | 171830.94  | 38510.62  | 91     | 543.7793 | 364.4859 | 153.4     | 9023.83  |
| S25         | 3961.532 | 21488.45  | 46759.24  | 171597.22  | 37622.34  | 99     | 729.2578 | 366.5685 | 109       | 10161.1  |
| S26         | 4228.602 | 19769.62  | 42059.5   | 156358.68  | 32894.19  | 89     | 536.3602 | 1894.718 | 499.8     | 8148.85  |
| S27         | 3293.858 | 19781.68  | 45621.35  | 170802.58  | 35454.11  | 98     | 622.3349 | 379.224  | 139.3     | 8625.36  |
| S28         | 2841.324 | 21699.54  | 50437.53  | 182862.53  | 37860.15  | 90     | 562.9818 | 335.2902 | 115.5     | 8807.99  |
| S29         | 3583.184 | 7960.92   | 34083.7   | 115457.68  | 23969.47  | 65     | 297.0275 | 258.3961 | 104.1     | 4565.88  |
| <b>S30</b>  | 3078.719 | 14178.88  | 42398.22  | 153600.78  | 32649.39  | 69     | 841.4178 | 564.2904 | 197.4     | 8149.68  |
| <b>S</b> 31 | 3865.091 | 16971.23  | 55094.93  | 191930.86  | 36181.51  | 80     | 1285.257 | 658.4056 | 226.3     | 9654.76  |
| Min         | 2,841.32 | 7,960.92  | 33,453.89 | 115,457.68 | 23,969.47 | 65.00  | 297.03   | 258.40   | 104.10    | 4,565.8  |
| Max         | 5,230.11 | 22,610.22 | 60,175.73 | 222,548.18 | 41,714.01 | 106.00 | 1,951.67 | 2,181.87 | 18,612.72 | 12,933.8 |
| Mean        | 3,704.66 | 19,078.50 | 46,268.19 | 174,803.57 | 35,564.27 | 88.13  | 800.88   | 569.08   | 738.06    | 9,800.5  |
| SD          | 561.21   | 2,919.08  | 5,763.74  | 19,718.37  | 3,804.16  | 10.28  | 332.79   | 443.55   | 3,262.50  | 1,857.4  |

# Appendix 2: Continued

| Sample     | V        | Cr       | Со        | Ni       | Cu       | Zn       | Ga   | As       | Se   | Br  |    |
|------------|----------|----------|-----------|----------|----------|----------|------|----------|------|-----|----|
| <b>S1</b>  | 107.5526 | 317.4004 | 9.75235   | 130.1351 | 31.07527 | 84.59486 | 12.9 | 6.05912  | <0.5 | 3.9 | 47 |
| S2         | 87.94669 | 232.0806 | <3.067272 | 116.3043 | 28.35918 | 75.83813 | 11   | 7.270944 | <0.5 | 4.6 | 46 |
| SA-2       | 75.62295 | 277.3747 | 18.95417  | 142.9443 | 36.66722 | 88.04935 | 15.6 | 7.195205 | <0.5 | 4.8 | 51 |
| <b>S</b> 3 | 86.26618 | 210.5283 | <3.067272 | 113.7896 | 32.11377 | 122.0319 | 11.1 | 5.756164 | <0.5 | 9.3 | 41 |

| <b>S4</b>  | 87.38652 | 437.1354 | <3.067272 | 143.18   | 32.03389 | 84.19318 | 13.4     | 7.119466 | <0.5  | 5.6 | 53 |
|------------|----------|----------|-----------|----------|----------|----------|----------|----------|-------|-----|----|
| <b>S</b> 5 | 101.9509 | 225.0334 | 3.067272  | 118.2689 | 25.72297 | 69.73252 | 13.6     | 7.801117 | <0.5  | 4.8 | 45 |
| <b>S6</b>  | 111.4738 | 291.7429 | <3.067272 | 133.6714 | 32.43331 | 82.02408 | 9.89     | 7.5739   | <0.5  | 5.4 | 48 |
| <b>S7</b>  | 123.2374 | 223.8702 | 7.235616  | 138.9365 | 33.71147 | 86.60329 | 13.7     | 8.255551 | <0.5  | 5.3 | 54 |
| <b>S8</b>  | 111.4738 | 379.731  | <3.067272 | 126.9917 | 29.07814 | 77.52521 | 12.4     | 7.043727 | <0.5  | 4.9 | 44 |
| <b>S9</b>  | 89.6272  | 241.9331 | 13.37016  | 140.5082 | 35.30917 | 87.48699 | 12.8     | 7.725378 | <0.5  | 6.3 | 57 |
| S10        | 108.1128 | 232.9017 | <3.067272 | 120.7836 | 32.19366 | 98.73417 | 11.9     | 6.05912  | < 0.5 | 5.6 | 47 |
| S11        | 78.4238  | 501.2449 | <3.067272 | 115.5185 | 28.03964 | 75.19543 | 11.8     | 5.680425 | <0.5  | 4.2 | 46 |
| S12        | 100.8306 | 220.5861 | <3.067272 | 123.927  | 26.36205 | 77.76622 | 11.5     | 6.967988 | <0.5  | 5.1 | 44 |
| S13        | 100.2704 | 281.4799 | 17.6958   | 140.6654 | 33.71147 | 89.25441 | 13.9     | 6.286337 | <0.5  | 3.2 | 54 |
| S14        | 98.02975 | 235.228  | 18.95417  | 133.8286 | 39.86262 | 113.8375 | 12.9     | 6.362076 | <0.5  | 5.3 | 52 |
| S15        | 101.3908 | 172.4868 | <3.067272 | 120.8622 | 35.30917 | 107.6516 | 12.9     | 6.665032 | <0.5  | 4.6 | 48 |
| S16        | 106.9925 | 212.6494 | <3.067272 | 148.6023 | 34.51032 | 83.87183 | 16.1     | 8.634246 | <0.5  | 7.2 | 52 |
| S17        | 106.9925 | 215.8651 | <3.067272 | 135.7146 | 31.63446 | 87.08531 | 12.3     | 7.119466 | <0.5  | 4.8 | 52 |
| S18        | 103.6315 | 185.8287 | <3.067272 | 130.2137 | 28.91837 | 81.54206 | 13.6     | 6.589293 | <0.5  | 4.7 | 50 |
| S19        | 85.14584 | 213.2651 | <3.067272 | 136.8147 | 33.87124 | 78.8106  | 14.1     | 6.740771 | <0.5  | 4.2 | 48 |
| S20        | 90.74754 | 216.4125 | <3.067272 | 76.22648 | 21.08964 | 60.89545 | 9.4      | 4.165645 | <0.5  | 3   | 32 |
| S21        | 50.4153  | 346.8894 | 12.26909  | 155.282  | 35.86837 | 88.69205 | 14.4     | 7.119466 | <0.5  | 4.7 | 51 |
| S22        | 100.2704 | 257.875  | <3.067272 | 143.6516 | 34.90975 | 80.01565 | 13.7     | 7.422422 | <0.5  | 5.7 | 51 |
| S23        | 103.6315 | 197.597  | <3.067272 | 131.3924 | 29.87699 | 74.39206 | 12       | 7.876856 | <0.5  | 8.6 | 39 |
| S24        | 95.78907 | 226.1965 | <3.067272 | 144.6731 | 31.954   | 86.04093 | 10.19233 | 8.028334 | < 0.5 | 5.8 | 51 |
| S25        | 99.15009 | 290.1692 | 13.7634   | 154.8105 | 34.59021 | 85.23756 | 12.5     | 7.346683 | <0.5  | 4.2 | 51 |
| S26        | 95.78907 | 204.7811 | <3.067272 | 123.6912 | 26.92125 | 74.63307 | 13.2     | 7.195205 | <0.5  | 6.9 | 41 |
| S27        | 60.49836 | 225.786  | <3.067272 | 132.1783 | 31.15515 | 77.92689 | 12.9     | 7.043727 | <0.5  | 4.8 | 44 |
|            |          |          |           |          |          |          |          |          |       |     |    |

| S28         | 116.5154 | 235.6385 | <3.067272 | 136.0289 | 32.5132  | 77.84655 | 14.9  | 8.028334 | <0.5 | 4    | 47 |
|-------------|----------|----------|-----------|----------|----------|----------|-------|----------|------|------|----|
| <b>S29</b>  | 80.66448 | 106.1878 | <3.067272 | 48.95783 | 24.92412 | 59.36904 | 9.8   | 2.044953 | <0.5 | 3.4  | 23 |
| <b>S30</b>  | 103.6315 | 307.3426 | <3.067272 | 100.2732 | 27.1609  | 79.05161 | 12.4  | 7.498161 | <0.5 | 9.3  | 33 |
| <b>S</b> 31 | 101.9509 | 185.1445 | <3.067272 | 90.05726 | 35.1494  | 78.89093 | 14.1  | 4.923035 | <0.5 | 4.7  | 39 |
| Min         | 50.42    | 106.19   | 3.07      | 48.96    | 21.09    | 59.37    | 9.40  | 2.04     | <0.5 | 3.00 | 2  |
| Max         | 123.24   | 501.24   | 18.95     | 155.28   | 39.86    | 122.03   | 16.10 | 8.63     | <0.5 | 9.30 | -  |
| Mean        | 95.98    | 253.39   | 12.78     | 126.53   | 31.47    | 83.59    | 12.72 | 6.80     | <0.5 | 5.28 | ۷  |
| SD          | 15.27    | 77.84    | 6.46      | 22.29    | 4.00     | 12.87    | 1.61  | 1.29     | -    | 1.55 |    |

# **Appendix 2: Continued**

| Sample     | Zr       | Мо   | Ag | Cd | Ι   | Ba    | Ta       | Hg | Sn        | Pb       | Th  | Y    | Nb       |
|------------|----------|------|----|----|-----|-------|----------|----|-----------|----------|-----|------|----------|
| S1         | 175.1574 | 15.6 | <2 | <2 | <3  | 235.9 | 68.384   | <1 | <3.071835 | 13.33174 | 6.8 | 20.5 | 9.43704  |
| S2         | 152.8    | 8.3  | <2 | <2 | <3  | 145.7 | 67.97451 | <1 | <3.071835 | 9.439264 | 3.9 | 19.3 | 7.549632 |
| SA-2       | 164.6449 | 12.3 | <2 | <2 | <3  | 262.1 | 63.55207 | <1 | <3.071835 | 12.45594 | 6.6 | 21.8 | 9.996272 |
| <b>S</b> 3 | 115.4143 | 12.8 | <2 | <2 | 5.3 | 206.3 | 67.64692 | <1 | <3.071835 | 12.45594 | 5.1 | 17.1 | 8.178768 |
| <b>S</b> 4 | 151.0232 | 8.9  | <2 | <2 | <3  | 252.5 | 69.12107 | <1 | <3.071835 | 11.96938 | 6.3 | 20.1 | 9.996272 |
| <b>S</b> 5 | 137.8457 | 15.2 | <2 | <2 | <3  | 213.2 | 59.53912 | <1 | <3.071835 | 11.09357 | 6.1 | 19.3 | 41.16446 |
| <b>S</b> 6 | 164.6449 | 10   | <2 | <2 | 3.4 | 248.3 | 70.43142 | <1 | <3.071835 | 12.164   | 6.4 | 20.7 | 10.06618 |
| <b>S</b> 7 | 157.7601 | 13.6 | <2 | <2 | <3  | 275.9 | 67.31933 | <1 | 3.62319   | 13.52637 | 7   | 21.6 | 9.3      |
| <b>S</b> 8 | 146.0632 | 5.3  | <2 | <2 | <3  | 224   | 73.6254  | <1 | <3.071835 | 13.13712 | 6.5 | 19.9 | 9.297232 |
| <b>S</b> 9 | 161.9058 | 13.8 | <2 | <2 | <3  | 258.5 | 70.34952 | <1 | <3.071835 | 14.30486 | 7   | 21   | 9.716656 |
| <b>S10</b> | 141.3992 | 4.3  | <2 | <2 | <3  | 214.2 | 69.53055 | <1 | 4.804665  | 13.23443 | 5.7 | 19.3 | 9.157424 |
| <b>S11</b> | 188.8531 | 15.9 | <2 | <2 | <3  | 230.9 | 68.3021  | <1 | 3.62319   | 12.164   | 6.9 | 22.9 | 10.20598 |
| S12        | 131.1829 | 9.6  | <2 | <2 | <3  | 235   | 73.54351 | <1 | <3.071835 | 12.26131 | 5.7 | 17.8 | 8.668096 |
| S13        | 165.1632 | 14.2 | <2 | <2 | <3  | 279.2 | 67.40123 | <1 | <3.071835 | 13.13712 | 6.5 | 23   | 10.4856  |

| <b>S14</b> | 144.3605 | 8.9   | <2 | <2 | <3   | 239.3  | 70.84091 | <1 | <3.071835 | 18.97584 | 6    | 20.5  | 9.646752  |
|------------|----------|-------|----|----|------|--------|----------|----|-----------|----------|------|-------|-----------|
| <b>S15</b> | 135.1066 | 12.1  | <2 | <2 | <3   | 220.9  | 66.50036 | <1 | <3.071835 | 49.53181 | 5.9  | 17.8  | 8.807904  |
| <b>S16</b> | 155.9833 | 7.4   | <2 | <2 | <3   | 268.3  | 65.92709 | <1 | <3.071835 | 13.03981 | 7.5  | 22.9  | 10.62541  |
| <b>S17</b> | 135.8469 | 55.4  | <2 | <2 | 5.4  | 232.2  | 71.74177 | <1 | <3.071835 | 12.45594 | 6.3  | 19.4  | 9.367136  |
| S18        | 142.7318 | 15.9  | <2 | <2 | 7    | 316.3  | 73.37971 | <1 | <3.071835 | 13.13712 | 5.9  | 19.4  | 9.227328  |
| <b>S19</b> | 144.1384 | 9.6   | <2 | <2 | <3   | 245.3  | 70.43142 | <1 | <3.071835 | 12.164   | 5.4  | 19.3  | 9.017616  |
| S20        | 80.32364 | 12.9  | <2 | <2 | <3   | 256.1  | 72.31505 | <1 | <3.071835 | 11.09357 | 5.6  | 14.3  | 5.033088  |
| <b>S21</b> | 164.867  | 3.5   | <2 | <2 | <3   | 268    | 68.05641 | <1 | <3.071835 | 13.23443 | 6.4  | 22.2  | 10.13608  |
| S22        | 169.0128 | 14.5  | <2 | <2 | <3   | 265.9  | 69.28486 | <1 | <3.071835 | 13.52637 | 6.4  | 21.9  | 9.506944  |
| S23        | 135.6248 | 10.6  | <2 | <2 | 3.8  | 208.8  | 71.0047  | <1 | <3.071835 | 11.28819 | 6.1  | 19.1  | 8.248672  |
| S24        | 151.1713 | 8.9   | <2 | <2 | 6    | 259.1  | 69.61245 | <1 | <3.071835 | 13.33174 | 6.4  | 21.3  | 9.78656   |
| S25        | 148.136  | 12.4  | <2 | <2 | <3   | 270.7  | 71.57798 | <1 | <3.071835 | 13.91562 | 6.4  | 19.5  | 9.646752  |
| <b>S26</b> | 123.0395 | 3.4   | <2 | <2 | 7.9  | 210.5  | 72.80643 | <1 | <3.071835 | 11.77475 | 5.3  | 17    | 8.108864  |
| <b>S27</b> | 154.8729 | 15.8  | <2 | <2 | <3   | 246.3  | 67.31933 | <1 | <3.071835 | 13.13712 | 6.6  | 19.7  | 9.017616  |
| <b>S28</b> | 161.0915 | 10.1  | <2 | <2 | <3   | 247.5  | 68.87538 | <1 | <3.071835 | 12.26131 | 6.4  | 20.4  | 10.27589  |
| S29        | 65.4434  | 4     | <2 | <2 | <3   | 156.5  | 63.14259 | <1 | 5.277255  | 9.7312   | 4    | 12.4  | 3.84472   |
| <b>S30</b> | 103.9395 | 8.9   | <2 | <2 | 6.4  | 170.4  | 66.58226 | <1 | <3.071835 | 10.80163 | 5.3  | 15.7  | 6.361264  |
| <b>S31</b> | 103.1252 | 4.6   | <2 | <2 | 3.2  | 208.2  | 63.96156 | <1 | <3.071835 | 11.96938 | 4.7  | 17.7  | 5.312704  |
| Min        | 65.44    | 3.40  | <2 | <2 | <3   | 145.70 | 59.54    | <1 | <3.071835 | 9.44     | 3.90 | 12.40 | 3.84      |
| Max        | 188.85   | 55.40 | <2 | <2 | 7.90 | 316.30 | 73.63    | <1 | 5.277255  | 49.53    | 7.50 | 23.00 | 41.16     |
| Mean       | 142.90   | 11.83 | <2 | <2 | 3.66 | 236.63 | 68.75    | <1 | 4.332075  | 13.75    | 6.03 | 19.53 | 9.85      |
| SD         | 26.49    | 8.86  | -  | -  | 2.48 | 36.00  | 3.24     | -  | 1.478947  | 6.72     | 0.82 | 2.42  | 5.9399001 |

Al-Gburi et al.