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Abstract  

     The goal of this research is to solve several one-dimensional partial differential 

equations in linear and nonlinear forms using a powerful approximate analytical 

approach. Many of these equations are difficult to find the exact solutions due to their 

governing equations. Therefore, examining and analyzing efficient approximate 

analytical approaches to treat these problems are required. In this work, the homotopy 

analysis method (HAM) is proposed. We use convergence control parameters to 

optimize the approximate solution. This method relay on choosing with complete 

freedom an auxiliary function linear operator and initial guess to generate the series 

solution. Moreover, the method gives a convenient way to guarantee the convergence 

of series solutions via the control parameter curve graphical method to rate the 

convergence and obtain the best solution. Decoding and analyzing potential 

Korteweg-de-Vries, Benjamin, and Airy equations, followed by convergence analysis 

to demonstrate the applicability of the method. By using the programs Mapel and 

Mathematica, the obtained results are very effective, accurate, and convergent to the 

exact solution after a few iterations, as shown in the tables and figures of this work.  

 
Keywords: Homotopy analysis method Approximate solution  , Partial differential 

equations Benjamin equation  p-KdV , Airy equation. 
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بصيغة خطية وغير خطية         البعد  أحادية  جزئية  تفاضلية  معادلات  عدة  البحث هو حل  هذا  من  الهدف 
 باستخدام أساليب تحليلية تقري 

قوية. يصعب إيجاد الحلول الدقيقة للعديد من هذه المعادلات بسبب معادلاتها الحاكمة. لذلك ، يلزم فحص  بية  
الم هذه  لمعالجة  الفعالة  التقريبية  التحليلية  الأساليب  اقتراح طريقة  سائلوتحليل  تم   ، العمل  هذا  في    تحليل ال. 

لتحسين  HAM))   الهوموتوبي  التقارب  تحكم  معلمات  نستخدم  نحن  على  .  الطريقة  تعتمد هذه  التقريبي.  الحل 
والتخمين الأولي لتوليد الحل المتسلسل. علاوة على ذلك ، توفر  دالة المساعدة  خطي لل  مؤثرالاختيار بحرية تامة  

الطريقة طريقة مناسبة لضمان تقارب حلول السلسلة عبر الطريقة الرسومية لمنحنى معلمة التحكم لتقييم التقارب  
المحتملة ،    Airyو    Benjaminو   Korteweg-de-Vriesفضل حل. فك وتحليل معادلات  والحصول على أ 

، تكون النتائج التي    ماتيمتيكا و    مابلمتبوعًا بتحليل التقارب لإثبات إمكانية تطبيق الطريقة. باستخدام البرنامجين  
الجداول   في  ، كما هو موضح  بعد عدة تكرارات  الدقيق  للحل  ودقيقة ومتقاربة  فعالة جدًا  الحصول عليها  تم 

   والأشكال في هذا العمل. 
 

1. Introduction 

     several real problems can be formulated by using mathematical models, these models can 

take the form of linear or nonlinear partial differential equations (PDEs), which represent an 

indispensable tool for modeling several physical and engineering problems. In this paper, three 

typical issues are examined, namely, the potential KdV equation, which is expected to repeat 

tsunami waves, the Benjamin equation, which is used to study long waves in shallow water, 

and Airy's partial differential equation, which belongs to the category of linear partial 

differential equations, which is used in a group variety of realistic physical applications, and it 

is one of the oldest models of water waves. Small wave "trains" in deep water. Unfortunately, 

The PDEs remain impractical to be solved to provide the physical or engineering describtion of 

the specified problems. 

  

     Furthermore, the solutions give an overview of the features and properties of the physical 

and engineering problems. Although the analytical methods provide an exact solution to the 

problems, these methods apply only to some linear problems. At the same time, nonlinearity 

represent the govering enviroument of real-world phenomena. It will be urgent to provide 

alternative approximate methods to resolve these equations with acceptable accuracy. These 

methods are the main entrance to numerical analysis. The primary purpose of delivering 

approximate solutions is that most problems are too complicated to be solved exactly, or 

sometimes it is impossible to find analytical solutions [1]. Several of the approximate analytical 

methods were formulated to solve PDEs, such as the homotopy perturbation method (HPM) 

[2], variational iteration method (VIM) [3], Adomian decomposition method (ADM) [4], the 

local meshless method (LMM) [5-10], the fractional iterative algorithm [11], modified 

variational iteration algorithm-I (mVIA-I) [12], modified variational iteration algorithm-II 

(MVIA-II) [13], and other methods. The significant gap in these proposed methods is their 

inability to control and adjust the convergence region of the approximate solutions, especially 

for the nonlinear cases, therefore such methods are not practical for solving nonlinear PDEs. 

Liao proposed the homotopy analysis method (HAM) in 1992 by employing the concept of the 

homotopy from topology to deform the nonlinear equations to a system of linear equations, 

making the complicated nonlinear equations easier to solve [14]. The difference between HAM 

and other approximation methods is the auxiliary convergence control parameter, which can 

optimize and rate the convergence of the method per order of solution. The operator and 

auxiliary function with the optimal value of the convergence parameter allows for solving the 

deformation equations and developing a solution series to obtain series solutions for differential 

equations.  
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     The HAM has been used to find solutions to problems with various differential equations 

[15–20]. In this work, we will illustrate and formulate an approximate analytical method with 

the ability to control the convergence of solutions through applications by adopting an auxiliary 

parameter  which is called the Homotopy Analysis Method (HAM) to optimize the approximate 

analytical solution of the linear and nonlinear PDEs. This research is arranged as follows: In 

part 2, we offer the outline of the HAM. In part 3, we will explain the applications of the method, 

and we will plot the obtained results. Part 3 includes details Parts 3, 4 and 5. The method is 

applied to the KdV equations, Benjamin equation and Airy partial differential equation, and 

approximate solutions from the exact solutions are shown. The results are compared with other 

analytical methods as shown in the tables and graphs. Finally, part 6 contains the conclusions 

of the research. 

 

2. Outline of the Method       

To describe the basic idea of the homotopy analysis method, we will impose the following 

nonlinear differential equation [19]: 

 𝒩 [𝑢(𝑥, 𝑡)] = 0,   (1) 

 

     where 𝒩 is a nonlinear operator, 𝑢(𝑥, 𝑡) is an unknown function, 𝑥 and t denote the spatial 

and the temporal independent variables, respectively. Let 𝑢0(𝑥, 𝑡) be the initial guess of the 

exact solution 𝑢(𝑥, 𝑡), ℎ ≠ 0 is the auxiliary  convergence parameter, 𝔙(𝑥, 𝑡)) ≠ 0 is an auxiliary 

function, ℒ is an auxiliary linear operator, and 𝑝 ∈ [0,1] represents the embedding parameter 

by means of the homotopy analysis method, according to [16], we construct the so-called 

zeroth-order deformation equation as below 

 

  (1 − 𝑝)ℒ [𝝋(𝑥, 𝑡; 𝑝) − 𝑢0(𝑥, 𝑡)] = 𝑝ℎ𝔙(𝑥, 𝑡)𝒩[𝝋 (𝑥, 𝑡; 𝑝)]                   (2) 

It is very significant that one has great freedom to choose the auxiliary functions of HAM. 

Clearly, for 𝑝 = 0, it holds the initial approximation of Eq. (1) 

              𝝋 (𝑥, 𝑡; 0) = 𝑢0(𝑥, 𝑡) 

While for 𝑝 = 1, since ℎ ≠ 0 and 𝔙(𝑥, t) ≠ 0 then we get the exact solution of Eq. (1) 

                  𝝋 (𝑥, 𝑡; 1) = 𝑢(𝑥, 𝑡)  

On the other hand, when 𝑝 increases from 0 to 1, the approximate solution 𝝋 (𝑥, t; 𝑝) deforms 

from the initial guess 𝑢0(𝑥, 𝑡) to the exact solution 𝑢(𝑥, 𝑡)  

According to [18], by utilizing the Taylor series theorem, the approximate solution 𝝋(𝑥, t; 𝑝)  

expanded in a power series of 𝑝 as follows:  

 

 𝝋 (𝑥, 𝑡; 𝑝) = 𝝋 (𝑥, 𝑡; 0) + ∑ 𝑢𝑚
∞
𝑚=1 (𝑥, 𝑡)𝑝𝑚 (3) 

Where 

 

 𝑢𝑚(𝑥, 𝑡)=  
1

m!
 
∂𝑚φ(𝑥,𝑡; 𝑝)

∂𝑝𝑚 |
𝑝=0

 (4) 

 

      If the auxiliary linear operator, the initial guess, the auxiliary parameter, and the auxiliary 

function are so 

properly chosen, the series (3) converges to the exact solution at 𝑝 = 1, then we have 

 𝑢(𝑥, 𝑡)= 𝑢0(𝑥, 𝑡)+ ∑ 𝑢𝑚
∞
𝑚=1 (𝑥, t) (5) 
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According to Eq. (4), the governing equation will be inferred from the zeroth-order deformation 

equation (2) 

. Define the vector 

 𝑢𝑛(𝑥, 𝑡)⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ ={𝑢0(𝑥, 𝑡), 𝑢1(𝑥, 𝑡),…,𝑢𝑛(𝑥, 𝑡)} (6) 

Now, by differentiating Eq. (2) m-times with respect to the embedding parameter 𝑝, then setting 

𝑝 = 0, and finally dividing them by m! we obtain the mth-order deformation equation as follows 

                     ℒ [𝑢𝑚(𝑥, 𝑡)− 𝜒𝑚𝑢𝑚−1(𝑥, 𝑡)] = ℎ 𝔙(𝑥, t) 𝑅𝑚(𝑢𝑚−1, 𝑥, 𝑡) 

where 

                     𝜒𝑚 ={
0,   𝑚 ≤ 1
1,   𝑚 > 1

, and (7) 

       

  𝑅𝑚(𝑢𝑚−1, 𝑥, 𝑡) = 
1

(m−1)!
 {

∂𝑚−1

∂q𝑚−1  𝒩[∑ 𝑢𝑚
∞
𝑚=1 (𝑥, 𝑡)𝑝𝑚]}|

𝑝=0
 (8) 

 

      If the series (5) is convergent, that yields the approximate solution of Eq. (1) will converge 

to the exact solution at 𝑝 = 1. Note that the homotopy analysis method contains the auxiliary 

parameter ħ, which provides us with that control and adjustment of the convergence of the 

series solution (5).  

 

3. HOMOTOPY ANALYSIS METHOD FOR (P-KDV) EQUATION: 

     We use the homotopy analysis method to analyse the p-KdV equation, which is crucial in 

and of itself because it is thought to repeat tsunami waves. It is frequently observed while 

investigating water waves where the first term is the evolution term, (𝑢𝑥)
2 nonlinear term, and 

𝑢𝑥𝑥𝑥scattering term are all present. 

 

3.1   Potential Korteweg-de Vries equation (p-KdV)[21]: 

 𝑢𝑡 + 𝑎(𝑢𝑥)
2 + 𝑏𝑢𝑥𝑥𝑥 = 0 (9) 

Where 𝑢(𝑥, 𝑡)is the dependent variable, the parameters 𝑎 and 𝑏 are real constants then the exact 

solution is given by: 

𝑢(𝑥, 𝑡)=𝐴 𝑡𝑎𝑛ℎ[𝐵(𝑥−𝑣𝑡)], 

 where 𝑣 is velocity and 𝐴 = 
6 𝑏𝐵

𝑎
 ,    𝐵 =  

√𝑣

2√𝑏
 .We consider the potential Korteweg-de Vries 

equation (p-KdV) with the following initial condition: 

 𝑢(𝑥, 0)=𝐴tanh(𝐵𝑥) (10) 

 

3.2. HAM for (p-KdV), we choose the linear operator : 

               ℒ [𝝋 (𝑥, 𝑡; 𝑝)] = 
𝜕φ (𝑥,𝑡; 𝑝)

𝜕𝑡
  

with the property ℒ [𝑐1] = 0, where 𝑐1 is integral constants. Now we will define the nonlinear 

operator as follows: 

 𝒩 [φ (𝑥, 𝑡;  𝑝)] = 
𝜕φ (𝑥,𝑡; 𝑝)

𝜕𝑡
 + 𝑎(

𝜕φ (𝑥,𝑡; 𝑝)

𝜕𝑥
)2 + 𝑏( 

𝜕3φ (𝑥,𝑡; 𝑝)

𝜕𝑥3
)                                        (11) 

 

Using the above definition, we construct the zeroth-order deformation equation 

 (1 − 𝑝) ℒ [𝝋(𝑥, 𝑡; 𝑝) − 𝑢0(𝑥, 𝑡)] = 𝑝ℎ𝔙(𝑥, 𝑡)𝒩[𝝋 (𝑥, 𝑡; 𝑝)]        (12) 

According to Eqs. (11), and (12), we gain the mth-order (m ≥ 1) deformation equation  

 ℒ[𝑢𝑚(𝑥, 𝑡)  − χ𝑚𝑢𝑚−1(𝑥, 𝑡)] = ℎ𝔙(𝑥, 𝑡) 𝑅𝑚(𝑢𝑚−1, 𝑥, 𝑡)   (13) 
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Where             χ𝑚 = {
0   𝑚 ≤ 1
1   𝑚 > 1

, and 

  𝑅𝑚(𝑢𝑚−1, 𝑥, 𝑡) =  
𝜕φ (𝑥,𝑡; 𝑝)

𝜕𝑡
 + 𝑎(

𝜕φ (𝑥,𝑡; 𝑝)

𝜕𝑥
)2 + 𝑏( 

𝜕3φ (𝑥,𝑡; 𝑝)

𝜕𝑥3
)  

 

By applying ℒ−1 on both sides of Eq. (13), followed by employing HAM construction 

according to Eq. (9) and (10), we have  

 𝑈𝑚−1(𝑥, 𝑡) = χ𝑚𝑢𝑚−1 + ℎ𝔙(𝑥, 𝑡)ℒ−1[𝑅𝑚(𝑢𝑚−1, 𝑥, 𝑡)]    (14) 

 

Now, since m ≥ 1, χ𝑚 = 1 , 𝔙(𝑥, 𝑡)=1, equation (14) becomes: 

𝑈𝑚−1(𝑥, 𝑡) = 𝑢𝑚−1(𝑥, 0) + + ℎℒ−1[𝑅𝑚(𝑢𝑚−1, 𝑥, 𝑡)]    

And 

  ℒ−1= ∫ (. )
𝑡

0
dt 

Now we successively obtain 

𝑢0(𝑥, 𝑡)= 𝐴 tanℎ(𝐵𝑥) 

          

𝑢1(𝑥, 𝑡) =  ℎ𝑡a𝐴2𝐵2-2ℎ𝑡a𝐴2 𝐵2tanh(𝐵𝑥)2+ℎ𝑡a𝐴2 𝐵2tanh(𝐵𝑥)4                    

                  −2ℎ𝑡𝑏𝐴 𝐵3 +8ℎ𝑡𝑏𝐴𝐵3tanh(𝐵𝑥)2 − 6ℎ𝑡𝑏𝐴 𝐵3tanh(𝐵𝑥)4, 

                        . 

                        . 

                        .  

Then, the fourth order approximate series solutions of Eq. (9) are given by 

𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + ∑ 𝑢𝑖(𝑥, 𝑡)
4
𝑖=1 ,                                                                                       (15) 

 

𝑢(𝑥, 𝑡) ≈ −2.67111412010−20𝑡3 tanh(0.3535533906𝑥)10  +
5.00833899410−11𝑡3 tanh(0.3535533906𝑥)8 −
0.02347658917𝑡3 tanh(0.3535533906𝑥)6 −
5.30919577110−10𝑡2 tanh(0.3535533906𝑥)7 +
0.04695317819𝑡3 tanh(0.3535533906𝑥)4 + 0.1990948429𝑡2 tanh(0.3535533906𝑥)5 +
0.1327298946𝑡2 tanh(0.3535533906𝑥) + 0.3749998850𝑡 tanh(0.3535533906𝑥)2 −
0.3749998844𝑡 + 2.121320344𝑡tanh(0.3535533906𝑥)+ . . . + 𝑢3(𝑥, 𝑡).  
Firstly, we can identify the convergence region for the ℎ −curve by plotting the ℎ-curves of the 

fourth order HAM series solution 𝑈(0.1,0.1; ℎ) for Eq. (9) in Figure 1 below 

   

                               
 

 Figure 1: The ℎ-curve of Eq. (9) via fourth-order HAM series solutions when 𝔙(𝑥, 𝑡) = 1. 

     According to [16] and based on the above curve in Fig.1, it is clear that the valid region of 

the series solution via forth order HAM for Eq. (9) corresponds to the line segment nearly 
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parallel to the horizontal axis such that the series solution is convergent when −1.5 ≤ ℎ ≤
−0.8, and the optimum value of  ℎ = −1.0005556227424213. 

The fourth order approximate series solution via HAM for the (p-KdV) equation compared with 

the exact solution are summarized in Table 1 for different values of 𝑥, 𝑡 ∈ [0,1] as below 

 

Table 1: Comparison between the solutions of the approximate obtained by HAM and exact 

solutions of Eq. (9), also a comparison between absolute errors in HAM and RDTM of Eq. (9), 

at   𝑎 = 𝑏 = 1 𝑎𝑛𝑑 𝑣 = 0.5. 

x\t 
Exact 

solutions 

HAM Solution 

 𝒖𝟒(𝒙, 𝒕) 

Absolute Error (HAM) 

| 𝒖(𝒙, 𝒕) − 𝒖𝟒(𝒙, 𝒕)| 

Absolute Error (RDTM) 

[21] 

| 𝒖(𝒙, 𝒕) − 𝒖𝟒(𝒙, 𝒕)| 

0.10 0.0374960 0.0374960 4.875193512776654 × 10−10 4.839076 × 10−10 

0.25 0.0936890 0.0936890 3.597901576142149 × 10−8 4.505072 × 10−8 

0.50 0.1870132 0.1870144 0.000001235171927405076 1.204876 × 10−6 

0.75 0.2796202 0.2796135 0.000006732823662036758 6.523635 × 10−6 

1.00 0.3711575 0.3711419 0.00001557828342330092 1.481861 × 10−5 

 

     We can also summarize the solutions of fourth order HAM series solution over all 𝑥 ∈
[0,1] corresponding with the best value of ℎ = −1.0005556227424213 for Eq. (9) compared 

with the exact solution 𝑢(𝑥, 𝑡) in the following figures. 

 

 
                           𝑢(𝑥, 𝑡)                                                 𝑢4(𝑥, 𝑡) 

Figure 2: The exact solution and fourth order HAM approximate solution of p-KdV equation 

 at 𝑎 = 𝑏 = 1, 𝑎𝑛𝑑 𝑣 = 0.5   
 

From Table 1 and Figure 2, we conclude that the fourth order HAM provide an accurate series 

solution of Eq. (9) compared with exact solution. 

 

4. HOMOTOPY ANALYSIS METHOD FOR BENJAMIN EQUATION: 

     We use the homotopy analysis of Benjamin's equation, which is one of the most significant 

non-linear partial differential equations used to study long waves in shallow water. It simulates 

the single propagation of long internal waves of small amplitude along the interface of two fluid 

layers under the influence of gravity and surface tension. 

 

 

 

 

 

4.1   The Benjamin equation [21]: 
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 𝑢𝑡𝑡 + 𝛼(𝑢𝑢𝑥)𝑥 + 𝛽𝑢𝑥𝑥𝑥𝑥 = 0 (15) 

      where 𝑢(𝑥, 𝑡) is the dependent variable, while 𝑥 and 𝑡 are the independent variables. The 

parameters 𝛼 and 𝛽 are real constants. The bright (non-topological) solutions of Eq. (16) are 

given by: 

𝑢(𝑥, 𝑡)= 𝐴secℎ2(𝐵(𝑥 - 𝑣 𝑡)) 

where 𝑣 is velocity and  𝐴 = 
12 𝛽𝐵2

𝛼
 ,  𝐵 = 

𝑣

2√−𝛽
  

We consider the Benjamin equation subject to the initial condition:  

             𝑢(𝑥, 𝑡)= 𝐴secℎ2(𝐵x ) 

              𝑢𝑡(𝑥, 0)=2𝐴𝐵𝑣 secℎ2(𝐵𝑥 )tanℎ(𝐵𝑥), 

According to the initial condition, we have the following initial approximation of Eq. (16) 

 𝑢0(𝑥, 𝑡)= 𝐴secℎ2(𝐵𝑥)(1-2 𝐵𝑣𝑡 tanℎ(𝐵𝑥)),            (16) 

 

4.2. HAM for The Benjamin equation, we choose the linear operator 

                 ℒ [𝝋 (𝑥, 𝑡; 𝑝)] = 
𝜕2φ(𝑥,𝑡; 𝑝)

𝜕𝑡2  

with the following property  

ℒ [𝑐1 + 𝑐2(𝑡)] = 0   

Where 𝑐1, and 𝑐2 are the integral constants, then we will define the following nonlinear operator 

as 

 𝒩[φ (𝑥, 𝑡; 𝑝)] = 
𝜕2φ(𝑥,𝑡; 𝑝)

𝜕𝑡2  +𝛼 
𝜕

𝜕𝑥
(φ(𝑥, 𝑡;  𝑝).

𝜕φ(𝑥,𝑡; 𝑝)

𝜕𝑥
) + 𝛽( 

𝜕4φ(𝑥,𝑡; 𝑝)

𝜕𝑥4 )                         (17) 

According to [16], we can construct the zeroth-order deformation equation as follows: 

 (1 − 𝑝)ℒ[𝝋(𝑥, 𝑡; 𝑝) − 𝑢0(𝑥, 𝑡)] = 𝑝ℎ𝔙(𝑥,t)𝒩[𝝋 (𝑥, 𝑡; 𝑝)]                                          (18) 

Also, according to Eqs. (18), (19), we gain the mth-order (m ≥ 1) deformation equation  

 ℒ[ 𝑢𝑚(𝑥, 𝑡)  −  𝜒𝑚𝑢𝑚−1(𝑥, 𝑡)] = ℎ𝔙(𝑥,t) 𝑅𝑚(𝑢𝑚−1, 𝑥, 𝑡) (19) 

Where             χ𝑚 = {
0   𝑚 ≤ 1
1   𝑚 > 1

, and 

𝑅𝑚(𝑢𝑚−1,,t) = 
𝜕2φ(𝑥,𝑡; 𝑝)

𝜕𝑡2  +𝛼 
𝜕

𝜕𝑥
(φ(𝑥, 𝑡;  𝑝).

𝜕φ(𝑥,𝑡; 𝑝)

𝜕𝑥
) + 𝛽( 

𝜕4φ(𝑥,𝑡; 𝑝)

𝜕𝑥4 ) 

Applying ℒ−1 on both sides of Eq. (20) we have: 

 𝑈𝑚−1(𝑥, 𝑡)= χ𝑚𝑢𝑚−1 + ℎ𝔙(𝑥, 𝑡)ℒ−1[𝑅𝑚(𝑢𝑚−1, 𝑥, 𝑡)]                                                   (20) 

Finally, According to HAM series in Section 2, and since m ≥ 1, χ𝑚 = 1 , 𝔙(𝑥, 𝑡)=1, we have 

the following approximate series solution of the Benjamin equation 

𝑈𝑚−1(𝑥, 𝑡) = 𝑢𝑚−1(𝑥, 0) + ℎℒ−1[𝑅𝑚(𝑢𝑚−1, 𝑥, 𝑡)]. 

Such that 

ℒ−1=∫ ∫ (. )
𝑡

0

𝑡

0
dtdt 

Then, the initial approximation of Eq. (16) will be: 

        𝑢0(𝑥, 𝑡)= 𝐴secℎ2(𝐵𝑥)(1-2 𝐵𝑣𝑡 tanℎ(𝐵𝑥)) 

And the first approximation: 



Abdul Kadir et al.                            Iraqi Journal of Science, 2023, Vol. 64, No. 9, pp: 4644-4657 

 

4651 

𝑢1(𝑥, 𝑡) = 7ℎ𝐴2𝐵4𝑡4𝑣2𝛼𝑠𝑒𝑐ℎ(𝐵𝑥)4𝑡𝑎𝑛ℎ(𝐵𝑥)4 −
14

3
ℎ𝐴2𝐵4𝑡4𝑣2𝛼𝑠𝑒𝑐ℎ(𝐵𝑥)4𝑡𝑎𝑛ℎ(𝐵𝑥)2

+
1

3
ℎ𝑡4𝛼𝐴2𝛼𝑠𝑒𝑐ℎ(𝐵𝑥)4𝐵4𝑣2 − 10ℎ𝑡3𝛼𝐴2𝑠𝑒𝑐ℎ(𝐵𝑥)4𝐵3𝑣𝑡𝑎𝑛ℎ(𝐵𝑥)3

−
14

3
ℎ𝑡3𝛼𝐴2𝑠𝑒𝑐ℎ(𝐵𝑥)4𝐵3𝑣 𝑡𝑎𝑛ℎ(𝐵𝑥)

+ 120ℎ𝑡3𝛽𝐴𝑠𝑒𝑐ℎ(𝐵𝑥)2𝐵5𝑣𝑡𝑎𝑛ℎ(𝐵𝑥)5

− 160ℎ𝑡3𝛽𝐴𝑠𝑒𝑐ℎ(𝐵𝑥)2𝐵5𝑣𝑡𝑎𝑛ℎ(𝐵𝑥)3

+
136

3
ℎ𝑡3𝛽𝐴𝑠𝑒𝑐ℎ(𝐵𝑥)2𝐵5𝑣 𝑡𝑎𝑛ℎ(𝐵𝑥) + 5ℎ𝑡2𝛼𝐴2𝑠𝑒𝑐ℎ(𝐵𝑥)4𝑡𝑎𝑛ℎ(𝐵𝑥)2𝐵2

− ℎ𝑡2𝛼𝐴2𝑠𝑒𝑐ℎ(𝐵𝑥)4𝐵2 + 60ℎ𝑡2𝛽𝐴𝑠𝑒𝑐ℎ(𝐵𝑥)2𝑡𝑎𝑛ℎ(𝐵𝑥)4𝐵4

+ 8ℎ𝑡2𝛽𝐴𝑠𝑒𝑐ℎ(𝐵𝑥)2𝐵4 − 60ℎ𝑡2𝛽𝐴𝑠𝑒𝑐ℎ(𝐵𝑥)2𝐵4𝑡𝑎𝑛ℎ(𝐵𝑥)2 
  In a similar process, the rest of the orders of the HAM series solution of Eq. (16) can be 

obtained by using maple software.  

Then, we will set 𝛼 = −1, 𝛽 = −3 and 𝑣 = 0.25 in Eq. (16) to test the correctness and 

dependability of the HAM we have the following series form  

 𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡)+ 𝑢1(𝑥, 𝑡)+ 𝑢2(𝑥, 𝑡)  (21) 

 

𝑢(𝑥, 𝑡) ≈ 4.17232512810−7𝑡4 𝑠𝑒𝑐ℎ(0.07216878364𝑥)4 tanℎ(0.07216878364𝑥)4 −
2.78155008510−7𝑡4 𝑠𝑒𝑐ℎ(0.07216878364𝑥)4 tanℎ(0.07216878364𝑥)2 +
0.00003303624737𝑡3 𝑠𝑒𝑐ℎ(0.07216878364𝑥)4 tanℎ(0.07216878364𝑥)3 +
0.00003303624736𝑡3 𝑠𝑒𝑐ℎ(0.07216878364𝑥)2 tanℎ(0.07216878364𝑥)5 +
1.98682149010−8𝑡4 𝑠𝑒𝑐ℎ(0.07216878364𝑥)4 −
0.00001541691544𝑡3 𝑠𝑒𝑐ℎ(0.07216878364𝑥)4 tanh(0.07216878364𝑥) −
0.00004404832980𝑡3 𝑠𝑒𝑐ℎ(0.07216878364𝑥)2 tanℎ(0.07216878364𝑥)3 +
0.0009155273435𝑡2 𝑠𝑒𝑐ℎ(0.07216878364𝑥)4  tanℎ(0.07216878364𝑥)2 +
0.0009155273435𝑡2 𝑠𝑒𝑐ℎ(0.07216878364𝑥)2  tanℎ(0.07216878364𝑥)4 +
0.00001248036012𝑡3 𝑠𝑒𝑐ℎ(0.07216878364𝑥)2 tanh(0.07216878364𝑥) −
0.0001831054688𝑡2 𝑠𝑒𝑐ℎ(0.07216878364𝑥)4 −
0.0009155273435𝑡2 𝑠𝑒𝑐ℎ(0.07216878364𝑥)2 tanℎ(0.07216878364𝑥)2 −
0.0001220703124𝑡2 𝑠𝑒𝑐ℎ(0.07216878364𝑥)2 +

0.18750000000(0.02083333332√3 𝑡 tanℎ(0.04166666666√3𝑥) +

1) 𝑠𝑒𝑐ℎ(0.04166666666√3𝑥)
2
+ . . .  + 𝑢2(𝑥, 𝑡).  

we can identify the convergence region for the ℎ −curve to optimize the series solution of  Eq. 

(16) we will plot the ℎ-curves of the second order HAM series solution 𝑈(0.1,0.1; ℎ) as shown 

in Figure 3 below 

 

                                        
Figure 3: The h-curve of the solution in Eq.(16). with n = 2. 
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      According to [20], and because the valid region of the series solution via second order HAM 

for Eq. (16) corresponds to the line segment nearly parallel to the horizontal axis, then based 

on Figure 3, above, the series solution of Eq. (16) is convergent when ℎ = −1 

Hence, the series solution convergent when the convergence parameter  ℎ = −1 for solving Eq. 

(16) we have the following new convergence HAM series solution  

            𝑢(𝑥, 𝑡) ≈ 𝑢0(𝑥, 𝑡)+ 𝑢1(𝑥, 𝑡)+ 𝑢2(𝑥, 𝑡)  

for different values of x, and t∈ [0,0.5], the second order approximate series solution via HAM 

for the Benjamin equation in Eq. (16) compared with the exact solution are summarized in 

Table 2. 

 

Table 2: The numerical results for the approximate solutions obtained by HAM in comparison 

with the exact solutions for Benjamin equation at 𝛼 = −1  , 𝛽 = −3 , 𝑣 = 0.25 and ℎ = −1 

x\t 
Exact 

solutions 

HAM Solution 

 𝒖𝟐(𝒙, 𝒕) 

RDTM Solution 

 𝒖𝟒(𝒙, 𝒕) 

Absolute Error (HAM) 

| 𝒖(𝒙, 𝒕) − 𝒖𝟐(𝒙, 𝒕)| 

Absolute Error 

(RDTM) [21] 

|𝒖(𝒙, 𝒕)
− 𝒖𝟒(𝒙, 𝒕)| 

0.10 0.1874945 0.1874945 0.1874961695 
1.110223024625156
× 10−16 

4.381643  
× 10−9 

0.25 0.1874656 0.1874656 0.1874744689 
1.254552017826426
× 10−14 

4.213508 
×  10−7 

0.50 0.1873627 0.1873627 0.1873871610 
7.770728505107627
× 10−13 

1.276248 
×  10−5 

0.75 0.1871913 0.1871913 0.1872217567 
8.350931057776734
× 10−12 

8.846545 
×  10−5 

1.00 0.1869517 0.1869517 0.1869617528 
4.310429790876924
× 10−11 

3.282989 
×  10−4 

2.00 0.1853197 0.1853197 0.1846516678 
1.298776614033769

× 10−9 

4.422055 
×  10−3 

3.00 0.1826417 0.1826417 0.1796230788 
4.893057820032354

× 10−9 

6.802317 
×  10−3 

4.00 0.1789784 0.1789783 0.1712874217 
1.129665657961798

× 10−7 

6.136389
× 10−3 

5.00 0.1744108 0.1744102 0.1596662760 
5.64373380113059

× 10−7 

3.033455 
×  10−2 

 

     We can also summarize the solutions of the second order HAM series solution over all 𝑥 ∈
[0, 5] corresponding with best value of ℎ = −1 for Eq. (16) compared with the exact solution 

𝑢(𝑥, 𝑡) in the Figure 4. 

 

 
                                𝑢(𝑥, 𝑡)                                                  𝑢2(𝑥, 𝑡) 

 

Figure 4: The graph 3D exact and approximate solution of Benjamin equation for 

ℎ = -1, 𝛼 = -1, β = -4, 𝑣 = 0.25 and 0 ≤  x ≤ 0.5,  0 ≤  t  ≤0.5 . 
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      According to Table 2 and Figures 3-4, we conclude that the second order HAM approximate 

series solution satisfies the initial condition of the Benjamin equation for 𝛼 = −1  , 𝛽 =
−4 and 𝑣 = 0.25   with sufficient accuracy compared with the exact solution of Benjamin 

equation. Furthermore, from Table 2, we conclude that the accuracy of the approximate solution 

solved by the second order HAM is better than the fourth order HAM for solving RDTM 

approximate solution at ℎ = -1, and 𝑡 = 0.1. Finally, we will show the 3-D accuracy of the 

second order HAM series for solving the Benjamin equation at 𝛼 = -1, β = -3, and 𝑣 = 0.25 for 

all 𝑥, 𝑡 ∈ [0,5] in Figure 5. 

 

                                         
Figure 5: The accuracy for 2-approximation solution of Benjamin equation 

 for 𝛼 = -1, β = -3, and 𝑣 = 0.25 

 

5. APPLYING HOMOTOPY ANALYSIS METHOD FOR AIRY EQUATION: 

     In this part, we apply the homotopy analysis method of Airy's equation, which is one of the 

first models of water waves and is one of the linear partial differential equations which is used 

in many practical physical applications. 

 

5.1. The Airy equation [22]: 

 𝑢𝑡 + 𝑢𝑥𝑥𝑥 = 0 (22) 

with the following initial condition: 

 𝑢(𝑥, 0) = 𝑒𝑥 (23) 

And  𝑢(𝑥, 𝑡) = 𝑒𝑥−𝑡  is the exact solution of Eq. (23). 

 

5.2. Homotopy analysis method for Airy equation: 

 For solving Airy equation via HAM, we choose the linear operator as ℒ [𝝋 (𝑥, 𝑡; 𝑝)] = 
𝜕φ (𝑥,𝑡; 𝑝)

𝜕𝑡
 

with the property   ℒ [𝑐1] = 0, 𝑐1 is the integral constant.  

By using the following nonlinear operator  

 𝒩[φ (𝑥, 𝑡;  𝑝)] = 
𝜕φ (𝑥,𝑡; 𝑝)

𝜕𝑡
  + ( 

𝜕3φ (𝑥,𝑡; 𝑝)

𝜕𝑥3
)                                                                  (24) 

We will construct the zeroth-order deformation equation as follows: 

 (1 − 𝑝)ℒ[𝝋(𝑥, 𝑡; 𝑝) −  𝑢0(𝑥, 𝑡)] = 𝑝ℎ𝔙(𝑥, 𝑡)𝒩[𝝋 (𝑥, 𝑡; 𝑝)] (25) 

That followed by substituting Eq. (25) in Eq. (26), we have the mth-order (m ≥ 1) deformation 

equation. 

 ℒ[ 𝑢𝑚(𝑥, 𝑡)  −  𝜒𝑚𝑢𝑚−1(𝑥, 𝑡)] = ℎ𝔙(𝑥, 𝑡) 𝑅𝑚(𝑢𝑚−1, 𝑥, 𝑡)   (26) 

Where             χ𝑚 = {
0   𝑚 ≤ 1
1   𝑚 > 1

, and 
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  𝑅𝑚(𝑢𝑚−1, 𝑥, 𝑡) = 
𝜕φ (𝑥,𝑡; 𝑝)

𝜕𝑡
  + ( 

𝜕3φ (𝑥,𝑡; 𝑝)

𝜕𝑥3
) 

Now, by applying ℒ−1 on both sides of Eq. (27) we have: 

 𝑈𝑚−1(𝑥, 𝑡) = χ𝑚𝑢𝑚−1 + ℎ𝔙(𝑥, 𝑡)ℒ−1[𝑅𝑚(𝑢𝑚−1, 𝑥, 𝑡)] (27) 

 

     Finally, According to HAM series in Section 2, and since m ≥ 1, χ𝑚 = 1 , 𝔙(r, t) =1, we 

have the following approximate series solution of the Airy equation 

𝑈𝑚−1(𝑥, 𝑡) = 𝑢𝑚−1(𝑥, 0) + + ℎℒ−1[𝑅𝑚(𝑢𝑚−1, 𝑥, 𝑡)]    

Then, we have the following HAM series terms for solving the Airy equation starting with the 

initial approximation as follows: 

            𝑢0(𝑥, 𝑡) = 𝑒𝑥, 

,        𝑢1(𝑥, 𝑡) = ℎ𝑒𝑥𝑡, 

  𝑢2(𝑥, 𝑡) = ℎ𝑒𝑥𝑡 + ℎ2𝑒𝑥𝑡 + 
1

2
 ℎ2𝑒𝑥𝑡2, 

 𝑢3(𝑥, 𝑡) = ℎ𝑒𝑥𝑡 +2 ℎ2𝑒𝑥𝑡 + ℎ2𝑒𝑥𝑡2 + 
1

6
 ℎ3𝑒𝑥𝑡3 + ℎ3𝑒𝑥𝑡2 + ℎ3𝑒𝑥𝑡, 

            . 

            . 

            . 

     Also, the rest components of the HAM series for solving the Airy equation can be derived 

by using maple software, such that the tenth order HAM series solution of the Airy equation is 

given by 

 𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑢1(𝑥, 𝑡) + 𝑢2(𝑥, 𝑡) +  . . . + 𝑢10(𝑥, 𝑡)                                          (28) 

𝑢(𝑥, 𝑡) = 𝑒𝑥 + 4 ℎ𝑒𝑥𝑡 + 6ℎ2𝑒𝑥𝑡 + 3ℎ2𝑒𝑥𝑡2 +
2

3
 ℎ3𝑒𝑥𝑡3 + 4ℎ3𝑒𝑥𝑡2 + 4ℎ3𝑒𝑥𝑡 +

1

24
 ℎ4𝑒𝑥𝑡4 +

1

2
 ℎ4𝑒𝑥𝑡3 +

3

2
 ℎ4𝑒𝑥𝑡2 + ℎ4𝑒𝑥𝑡+. . . + 𝑢10(𝑥, 𝑡).  

we can identify the convergence region for the ℎ −curve to optimize the series solution of the 

Airy equation by plotting the ℎ-curves of the tenth order HAM series solution 𝑈(0.1,0.1; ℎ) as 

shown in Figure 6. 

 

                                       
Figure 6: The h-curve of the solution in example 5.3 with 𝑛 =  10. 

 

       According to [20] and based on Figure 6 above the h-curve that provides the convergence 

region of tenth order HAM for solving the Airy equation is parallel to the horizontal line. 

Therefore, it is straightforward to choose an appropriate range for h which ensure the 

convergence of the solution series. We identify the h-curve of u'(0.01; 0.01) in Figure 7, which 

shows that the solution series is convergent when −0.4 <  ℎ <  −1.5. with in the valid region 

of −0.4 <  ℎ <  −1.5 we have three convergence control parameters; in the following figure 
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we will show the accuracy of the Airy equation solving by tenth order HAM series solution 

based on each convergence control parameter of ℎ: 

 

 

 
Figure 7: The absolute error of Airy equation solving by tenth order HAM series 

Based on the Figure 7, one can say the tenth order HAM series provided various convergence 

control parameters, on the other, the convergence parameter  ℎ = −0.9732306585978938 is 

the best convergence control parameter to optimize the approximate solution of Airy equation 

via tenth order HAM series as shown in next Table. 

 

Table 3: The numerical results for the approximate solutions obtained by tenth order HAM 

compared with the exact solution of Eq. (23), when 𝑡 = 1, ℎ = −0.9732306585978938. 

𝒙/𝒕 Exact solutions  HAM (𝒖𝟏𝟎(𝒙, 𝒕)) Absolute Error 

0.1 1.  1.0000000000000022 2.220446049250313 × 10−15 

0.2 1.  1.000000000000006 5.995204332975845 × 10−15 

0.3 1.  1.0000000000000027 2.664535259100375 × 10−15 

0.4 1.  1.0000000000000122 1.221245327087672 × 10−14 

0.5 1.  1.000000000000024 2.398081733190338 × 10−14 

0.6 1.  1.0000000000001086 1.085798118083403 × 10−13 

0.7 1.  0.9999999999993667 6.332712132461893 × 10−13 

0.8 1.  0.9999999999950716 4.928391028613532 × 10−12 

0.9 1.  1.0000000000164408 1.644084868246409 × 10−11 

1.0 1.  1.000000000359325 3.593250141875614 × 10−10 

 

     According to Table 3 and Figure 7, we conclude that the tenth-order HAM approximate 

series solution satisfies the initial condition of the Airy equation with sufficient accuracy 

compared with the exact solution. Finally the comparison between the tenth order HAM series 

and the exact solution of Airy equation explained below in  
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Figure 8: The 3D graph of the exact and approximate solution via tenth order HAM based on 

the best convergence control parameter h for solving the Airy  equation for all  0 ≤ 𝑥 ≤
1, and 0 ≤ 𝑡 ≤ 0.5  

 

6. CONCLUSION  

     An approximate analytical approach for solving partial differential equations in parabolic 

form was formed as a result of this research. It is discussed and studied here how to use a 

method based on HAM to approximate the solution to the Korteweg-de Vries equation, the 

Benjamin equation, and the Airy equation. The research illustrates that HAM can be 

implemented by managing the convergence of the series solution through the benefit of the 

convergence control parameter being convergent to the exact solution. An engineer or scientist 

can benefit from this method to obtain a better knowledge of a physical problem. It is expected 

that it will contribute to improving future methods and designs employed to confront their 

obstacles, which plays an essential role in solving various mathematical problems. The test 

problems demonstrated good accuracy when tested against the right solution. It tends to be a 

suitable method for solving parabolic partial differential equations because of its efficiency and 

conformity with the HIM. This approach will be utilised in the future when we need to address 

problems involving elliptic and hyperbolic models. 
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