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Abstract

The goal of this research is to solve several one-dimensional partial differential
equations in linear and nonlinear forms using a powerful approximate analytical
approach. Many of these equations are difficult to find the exact solutions due to_their
governing equations. Therefore, examining and analyzing efficient approximate
analytical approaches to treat these problems are required. In this work, the homotopy
analysis method (HAM) is proposed. We use convergence control parameters to
optimize the approximate solution. This method relay on choosing with complete
freedom an auxiliary function linear operator and initial guess to generate the series
solution. Moreover, the method gives a convenient way to guarantee the convergence
of series solutions via the control parameter curve graphical method to rate the
convergence and obtain the best solution. Decoding and analyzing potential
Korteweg-de-Vries, Benjamin, and Airy equations, followed by convergence analysis
to demonstrate the applicability of the method. By using the programs Mapel and
Mathematica, the obtained results are very effective, accurate, and convergent to the
exact solution after a few iterations, as shown in the tables and figures of this work.

Keywords: Homotopy analysis method Approximate solution , Partial differential
equations Benjamin equation p-KdV , Airy equation.
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1. Introduction

several real problems can be formulated by using mathematical models, these models can
take the form of linear or nonlinear partial differential equations (PDEs), which represent an
indispensable tool for modeling several physical and engineering problems. In this paper, three
typical issues are examined, namely, the potential KdV equation, which is expected to repeat
tsunami waves, the Benjamin equation, which is used to study long waves in shallow water,
and Airy's partial differential equation, which belongs to the category of linear partial
differential equations, which is used in a group variety of realistic physical applications, and it
is one of the oldest models of water waves. Small wave "trains" in deep water. Unfortunately,
The PDEs remain impractical to be solved to provide the physical or engineering describtion of
the specified problems.

Furthermore, the solutions give an overview of the features and properties of the physical
and engineering problems. Although the analytical methods provide an exact solution to the
problems, these methods apply only to some linear problems. At the same time, nonlinearity
represent the govering enviroument of real-world phenomena. It will be urgent to provide
alternative approximate methods to resolve these equations with acceptable accuracy. These
methods are the main entrance to numerical analysis. The primary purpose of delivering
approximate solutions is that most problems are too complicated to be solved exactly, or
sometimes it is impossible to find analytical solutions [1]. Several of the approximate analytical
methods were formulated to solve PDEs, such as the homotopy perturbation method (HPM)
[2], variational iteration method (VIM) [3], Adomian decomposition method (ADM) [4], the
local meshless method (LMM) [5-10], the fractional iterative algorithm [11], modified
variational iteration algorithm-I (mVIA-I) [12], modified variational iteration algorithm-II
(MVIA-II) [13], and other methods. The significant gap in these proposed methods is their
inability to control and adjust the convergence region of the approximate solutions, especially
for the nonlinear cases, therefore such methods are not practical for solving nonlinear PDEs.
Liao proposed the homotopy analysis method (HAM) in 1992 by employing the concept of the
homotopy from topology to deform the nonlinear equations to a system of linear equations,
making the complicated nonlinear equations easier to solve [14]. The difference between HAM
and other approximation methods is the auxiliary convergence control parameter, which can
optimize and rate the convergence of the method per order of solution. The operator and
auxiliary function with the optimal value of the convergence parameter allows for solving the
deformation equations and developing a solution series to obtain series solutions for differential
equations.
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The HAM has been used to find solutions to problems with various differential equations
[15-20]. In this work, we will illustrate and formulate an approximate analytical method with
the ability to control the convergence of solutions through applications by adopting an auxiliary
parameter which is called the Homotopy Analysis Method (HAM) to optimize the approximate
analytical solution of the linear and nonlinear PDEs. This research is arranged as follows: In
part 2, we offer the outline of the HAM. In part 3, we will explain the applications of the method,
and we will plot the obtained results. Part 3 includes details Parts 3, 4 and 5._The method is
applied to the KdV equations, Benjamin equation and Airy partial differential equation, and
approximate solutions from the exact solutions are shown. The results are compared with other
analytical methods as shown in the tables and graphs. Finally, part 6 contains the conclusions
of the research.

2. Outline of the Method
To describe the basic idea of the homotopy analysis method, we will impose the following
nonlinear differential equation [19]:

N [u(x, )] =0, (1)

where V' is a nonlinear operator, u(x, t) is an unknown function, x and t denote the spatial
and the temporal independent variables, respectively. Let uy(x, t) be the initial guess of the
exact solution u(x, t), h # 0 is the auxiliary convergence parameter, B(x, t)) # 0 is an auxiliary
function, £ is an auxiliary linear operator, and p € [0,1] represents the embedding parameter
by means of the homotopy analysis method, according to [16], we construct the so-called
zeroth-order deformation equation as below

(1 =p)L[@(x, t; p) —uo(x, )] = phB(x, O Ne (x,t; p)] )
It is very significant that one has great freedom to choose the auxiliary functions of HAM.
Clearly, for p = 0, it holds the initial approximation of Eq. (1)

@ (x,t;0)=uy(x, t)
While for p = 1, since h # 0 and B(x, t) # 0 then we get the exact solution of Eq. (1)

@ (x,t;1)=u(xt)

On the other hand, when p increases from 0 to 1, the approximate solution ¢ (x, t; p) deforms
from the initial guess u, (x, t) to the exact solution u(x, t)
According to [18], by utilizing the Taylor series theorem, the approximate solution ¢@(x, t; p)
expanded in a power series of p as follows:

@ (x,t;p) =@ (x,t;0) + X —g up (x, t)p™ 3)
Where
_ 1 0Mextp)
Uy (x, )= m o |, 4)

If the auxiliary linear operator, the initial guess, the auxiliary parameter, and the auxiliary
function are so
properly chosen, the series (3) converges to the exact solution at p = 1, then we have

u(x, t)=uo(x, t)+ Xin=q tm(x, 1) ()
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According to Eq. (4), the governing equation will be inferred from the zeroth-order deformation
equation (2)
. Define the vector

w, (x, t) ={uy(x, t), u (x, t),...,u, (x, t)} (6)

Now, by differentiating Eq. (2) m-times with respect to the embedding parameter p, then setting
p =0, and finally dividing them by m! we obtain the mth-order deformation equation as follows

L [um(x, t)_ Xmum—l(x' t)] =h %(X’ t) R‘m(um—lv X, t)

where
(0, m<1
=[], %} ™
1 am—l .
Rn(tm-1,%,1) = s (s MEoatm (e 0™} t)
p:

If the series (5) is convergent, that yields the approximate solution of Eq. (1) will converge
to the exact solution at p = 1. Note that the homotopy analysis method contains the auxiliary
parameter h, which provides us with that control and adjustment of the convergence of the
series solution (5).

3. HOMOTOPY ANALYSIS METHOD FOR (P-KDV) EQUATION:

We use the homotopy analysis method to analyse the p-KdV equation, which is crucial in
and of itself because it is thought to repeat tsunami waves. It is frequently observed while
investigating water waves where the first term is the evolution term, (u,)? nonlinear term, and
U SCattering term are all present.

3.1 Potential Korteweg-de Vries equation (p-KdV)[21]:
U + a(u,)? + by, = 0 9)

Where u(x, t)is the dependent variable, the parameters a and b are real constants then the exact
solution is given by:
u(x, t)=A tanh[B(x—vt)],

where v is velocity and A = % , B= % .We consider the potential Korteweg-de Vries
equation (p-KdV) with the following initial condition:
u(x, 0)=Atanh(Bx) (10)

3.2. HAM for (p-KdV), we choose the linear operator:

) _ 00 (xt;p)
Llg (x,t;p)] ==

with the property £ [c;] = 0, where c; is integral constants. Now we will define the nonlinear
operator as follows:

5] Jt; 3} Jt; a3 )t
N [ (x,t; p)] = 2220 + a(PEZED)? + p( L) (1)

Using the above definition, we construct the zeroth-order deformation equation

(1=p) L[@(x, t; p) = uo(x, )] = phB(x, )N g (x, t; p)] (12)
According to Egs. (11), and (12), we gain the mth-order (m > 1) deformation equation
L[um(xr t) - Xmum—l(x' t)] = hSB(X, t) Rm(um—I! X, t) (13)
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0 m<1
Where Xm = {1 m > 1

¢ (x,t; p) 09 (x,t; D)\ 2 93¢ (x,t; p)
+ + h(——==
ot a( ox ) b( dx3 )

and

Rin(Um—1, x,t) =

By applying £ on both sides of Eq. (13), followed by employing HAM construction
according to Eq. (9) and (10), we have

Um—l(xr t) = XmUm-1 + h%(x» t)L_l[Rm(um—li X, t)] (14)

Now, sincem > 1, x,, = 1, B(x, t)=1, equation (14) becomes:
Um—l(x' t) = um—l(xJ O) ++ h[’_l[Rm(um—lv X, t)]
And
L= [7()dt
Now we successively obtain
uy(x, t)= A tanh(Bx)

u;(x,t) = htaA?B?-2htaA? B*tanh(Bx)?+htaA? B?tanh(Bx)*
—2htbA B3 +8htbAB3tanh(Bx)? — 6htbA B3tanh(Bx)*,

Then, the fourth order approximate series solutions of Eq. (9) are given by
ux, t) = up(x, t) + X ui(x, t), (15)

u(x,t) ~ —2.6711141201072°¢3 tanh(0.3535533906x)1° +

5.00833899410711¢3 tanh(0.3535533906x)8 —

0.02347658917t3 tanh(0.3535533906x)° —

5.3091957711071°¢2 tanh(0.3535533906x)7 +

0.04695317819t3 tanh(0.3535533906x)* + 0.1990948429t2 tanh(0.3535533906x)° +
0.1327298946t2 tanh(0.3535533906x) + 0.3749998850¢ tanh(0.3535533906x)2 —
0.3749998844t + 2.121320344ttanh(0.3535533906x)+ ...+ us(x, t).

Firstly, we can identify the convergence region for the h —curve by plotting the h-curves of the
fourth order HAM series solution U(0.1,0.1; h) for Eq. (9) in Figure 1 below

h—Curve

0.0

-0.1

-0.2

U(0.1,0.1n)

-0.3

-20 -15 -1.0 -0.5 0.0

h
Figure 1: The h-curve of Eq. (9) via fourth-order HAM series solutions when B(x, t) = 1.

According to [16] and based on the above curve in Fig.1, it is clear that the valid region of
the series solution via forth order HAM for Eq. (9) corresponds to the line segment nearly
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parallel to the horizontal axis such that the series solution is convergent when —1.5 < h <
—0.8, and the optimum value of h = —1.0005556227424213.

The fourth order approximate series solution via HAM for the (p-KdV) equation compared with
the exact solution are summarized in Table 1 for different values of x, t € [0,1] as below

Table 1: Comparison between the solutions of the approximate obtained by HAM and exact
solutions of Eq. (9), also a comparison between absolute errors in HAM and RDTM of Eq. (9),
at a=b=1andv =0.5.

Absolute Error (RDTM)

Exact HAM Solution Absolute Error (HAM)
solutions 2w, (x, 1) | u(x, £) — g (x, 0)| [21]

| u(x,t) —uy(x, t)]
0.10 0.0374960 0.0374960  4.875193512776654 x 10~1° 4.839076 x 10710
0.25 0.0936890 0.0936890 3.597901576142149 x 108 4505072 x 1078
0.50 0.1870132 0.1870144 0.000001235171927405076 1.204876 x 107¢
0.75 0.2796202 0.2796135 0.000006732823662036758 6.523635 x 1076
1.00 0.3711575 0.3711419 0.00001557828342330092 1.481861 x 10°

We can also summarize the solutions of fourth order HAM series solution over all x €
[0,1] corresponding with the best value of h = —1.0005556227424213 for Eq. (9) compared
with the exact solution u(x, t) in the following figures.

u(x,t) | Uy (x, t)
Figure 2: The exact solution and fourth order HAM approximate solution of p-KdV equation
ata=b=1,and v =0.5

From Table 1 and Figure 2, we conclude that the fourth order HAM provide an accurate series
solution of Eq. (9) compared with exact solution.

4. HOMOTOPY ANALYSIS METHOD FOR BENJAMIN EQUATION:

We use the homotopy analysis of Benjamin's equation, which is one of the most significant
non-linear partial differential equations used to study long waves in shallow water. It simulates
the single propagation of long internal waves of small amplitude along the interface of two fluid
layers under the influence of gravity and surface tension.

4.1 The Benjamin equation [21]:
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U + AUy )y + Blyxxx =0 (15)
where u(x, t) is the dependent variable, while x and t are the independent variables. The
parameters a and S are real constants. The bright (non-topological) solutions of Eq. (16) are
given by:
u(x, t)= Asech?(B(x - v t))

2
where v is velocity and A = 12 BB

B =—+
1 2\/__[?
We consider the Benjamin equation subject to the initial condition:
u(x, t)= Asech?(Bx)
u, (x, 0)=2ABv sech?(Bx )tanh(Bx),
According to the initial condition, we have the following initial approximation of Eq. (16)

uy(x, t)= Asech?(Bx)(1-2 Bvt tanh(Bx)), (16)

4.2. HAM for The Benjamin equation, we choose the linear operator
92 L
Ll (x,t; p)] = LEEED
with the following property
Le; +c(t)] =0
Where ¢4, and c, are the integral constants, then we will define the following nonlinear operator
as

a%@(xt; ] a*

No G t;p)] = =5 1 (x5 p). 2222 + p( TEEED)) (17)
According to [16], we can construct the zeroth order deformatlon equatlon as follows:

(1 =p)Llep(x, t; p) — uo(x, ©)] = phB(x, YN [@ (x, ¢; p)] (18)
Also, according to Egs. (18), (19), we gain the mth-order (m > 1) deformation equation

L[ um(x' t) B Xmum—l(x' t)] = h%(xvt) Rm(um—l’ X, t) (19)

_ (0 m<1
Where Xm = {1 m > X and
*o(xt; dp(xt; a*Q(xt;

Ry (ttm—1,,8) = =222 4 T (x, t; p). 2250 4 p TEBLD))
Applying £71 on both sides of Eq. (20) we have

Um—l(x' t): XmUm-1 + h%(x: t)L_l[Rm(um—l’ X, t)] (20)
Finally, According to HAM series in Section 2, and since m > 1, x,,, = 1, B(x, t)=1, we have
the following approximate series solution of the Benjamin equation
Um—l(xr t) = um—l(x' O) + hL_l[Rm(um—la X, t)]
Such that
—1_t rt

—fo fo (.)dtdt
Then, the initial approximation of Eq. (16) will be:

uo(x, t)= Asech?(Bx)(1-2 Bvt tanh(Bx))
And the first approximation:
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14
u; (x,t) = 7hA?B*t*v2asech(Bx)*tanh(Bx)* — ?hA2B41:4vzczsech(Bx)‘*tanh(Bx)2

1
+ §ht4aA2asech(Bx)4‘B4v2 — 10ht3aA?sech(Bx)*B3vtanh(Bx)3

14
ey ht3aA?sech(Bx)*B3v tanh(Bx)

+ 120ht3BAsech(Bx)?B vtanh(Bx)®
— 160ht3BAsech(Bx)?B>vtanh(Bx)?

136
+ = ht3BAsech(Bx)?B>v tanh(Bx) + 5ht?>aA?sech(Bx)*tanh(Bx)?B?

— ht?aA?sech(Bx)*B? + 60ht?BAsech(Bx)*tanh(Bx)*B*
+ 8ht?BAsech(Bx)?B* — 60ht?BAsech(Bx)?B*tanh(Bx)?
In a similar process, the rest of the orders of the HAM series solution of Eq. (16) can be
obtained by using maple software.
Then, we will set « = -1, = -3 and v = 0.25in Eqg. (16) to test the correctness and
dependability of the HAM we have the following series form

u(x, t) = uy(x, )+ u (x, )+ uy (x, t) (21)

u(x,t) ~ 4.1723251281077t* sech(0.07216878364x)* tanh(0.07216878364x)* —
2.7815500851077t* sech(0.07216878364x)* tanh(0.07216878364x)* +
0.00003303624737t3 sech(0.07216878364x)* tanh(0.07216878364x)3 +
0.00003303624736t3 sech(0.07216878364x)? tanh(0.07216878364x)° +
1.986821490108t* sech(0.07216878364x)* —

0.00001541691544t3 sech(0.07216878364x)* tanh(0.07216878364x) —
0.00004404832980¢3 sech(0.07216878364x)? tanh(0.07216878364x)3 +
0.0009155273435t% sech(0.07216878364x)* tanh(0.07216878364x)* +
0.0009155273435t2 sech(0.07216878364x)? tanh(0.07216878364x)* +
0.00001248036012t> sech(0.07216878364x)? tanh(0.07216878364x) —
0.0001831054688t2 sech(0.07216878364x)* —

0.0009155273435t2 sech(0.07216878364x)? tanh(0.07216878364x)? —
0.0001220703124t% sech(0.07216878364x)% +

0.18750000000(0.02083333332v/3 t tanh(0.04166666666+/3 x) +

1) sech(0.04166666666v3x) + ... +u,(x,b).

we can identify the convergence region for the h —curve to optimize the series solution of Eq.
(16) we will plot the h-curves of the second order HAM series solution U(0.1,0.1; h) as shown
in Figure 3 below

h-Curve

0.000048

0.000046

0.000044

0.000042

U(0.01,0.01:n)

0.000040

0.000038

0.000036
-2.0 -15 -1.0 -0.5 0.0

h
Figure 3: The h-curve of the solution in Eq.(16). with n = 2.
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According to [20], and because the valid region of the series solution via second order HAM
for Eq. (16) corresponds to the line segment nearly parallel to the horizontal axis, then based
on Figure 3, above, the series solution of Eq. (16) is convergent when h = —1
Hence, the series solution convergent when the convergence parameter h = —1 for solving Eq.
(16) we have the following new convergence HAM series solution

u(x, t) = ug(x, t)+ u, (x, )+ u,(x, t)
for different values of x, and te [0,0.5], the second order approximate series solution via HAM
for the Benjamin equation in Eq. (16) compared with the exact solution are summarized in
Table 2.

Table 2: The numerical results for the approximate solutions obtained by HAM in comparison
with the exact solutions for Benjamin equationata = —1 , f = —3,v = 0.25and h = —1

Absolute Error
Exact HAM Solution  RDTM Solution ~ Absolute Error (HAM) (RDTM) [21]

3 solutions u,(x,t) uy(x, t) | ulx, t) — uy(x,t)| |u(x, t)
—uy(x, t)|
0N 01874945  0.1874945 0.1874961695 1'11})9333024625 156 1'31%1_243
LN 01874656 01874656 01874744680 Loorapo0 020426 215508
QLN 01873627 01873627 o1s73sraelo ) 1s000%1076%7 Ve
AN 01871913 01871913 01872217567 ooolas 1 0%7 776734 BHI05H5
00 01869517 01869517 01860617528 oo lar /o0 00c 20
200 01853197  0.1853197 0.1846516678 1'298776614033261%_9 1'433_0355
0l 01826417  0.1826417 0.1796230788 4'893057820032551%_9 f(‘gfgiﬁ
AN 01789784 01789783 01712874217 1Z9000057901798 6136389
U 01744108 01744102 01596662760  >C4I73IO0LLI0N 3053455

We can also summarize the solutions of the second order HAM series solution over all x €
[0, 5] corresponding with best value of h = —1 for Eq. (16) compared with the exact solution
u(x, t) in the Figure 4.

ExactD 18745%" 7
R el S
nagrast’ A
o.18730% 7

L
00

Figure 4: The graph 3D exact and approximate solution of Benjamin equation for
h=-1,a=-1,p=-4,v=025and 0< x<0.5, 0<t <0.5.
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According to Table 2 and Figures 3-4, we conclude that the second order HAM approximate
series solution satisfies the initial condition of the Benjamin equation for a = -1, f =
—4 and v = 0.25 with sufficient accuracy compared with the exact solution of Benjamin
equation. Furthermore, from Table 2, we conclude that the accuracy of the approximate solution
solved by the second order HAM is better than the fourth order HAM for solving RDTM
approximate solution at h = -1, and t = 0.1. Finally, we will show the 3-D accuracy of the
second order HAM series for solving the Benjamin equation at « = -1, = -3, and v = 0.25 for
all x,t € [0,5] in Figure 5.

Figure 5: The accuracy for 2-approximation solution of Benjamin equation
fora=-1,p=-3,and v =0.25

5. APPLYING HOMOTOPY ANALYSIS METHOD FOR AIRY EQUATION:

In this part, we apply the homotopy analysis method of Airy's equation, which is one of the
first models of water waves and is one of the linear partial differential equations which is used
in many practical physical applications.

5.1. The Airy equation [22]:

ut + uxxx = O (22)
with the following initial condition:
u(x,0) =e”* (23)

And u(x,t) =e*t is the exact solution of Eq. (23).

5.2. Homotopy analysis method for Airy equation:

For solving Airy equation via HAM, we choose the linear operator as £ [¢ (x, t; p)] = W
with the property L [c;] =0, c; is the integral constant.
By using the following nonlinear operator
d ,t; a3 )L
Nl (xt; p)] = 2LEED. 4 (L2 EED (24)
We will construct the zeroth-order deformation equation as follows:
(1 = p)Lle(x, t; p) — up(x, t)] = phB(x, )N (x, t; p)] (25)

That followed by substituting Eq. (25) in Eg. (26), we have the mth-order (m > 1) deformation
equation.

LI um(x,8) = AmUm-1(x, )] = KB(x, t) Ry (-1, X, 1) (26)
Where Xm = {(1) m i 1 and
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_ 3¢ (xt;p) 3¢ (xt; p)
Rm(um—ll X, t) - at + ( 9x3 )

Now, by applying £~ on both sides of Eq. (27) we have:
Um-1(%,t) = XimUm-1 + hB(x, t)L 7 [Rpp (U1, X, t)] (27)

Finally, According to HAM series in Section 2, and since m > 1, x,, = 1, B(r, t) =1, we
have the following approximate series solution of the Airy equation
U106, t) = Upm-1(x,0) + + AL [Ry (i1, %, 1)]
Then, we have the following HAM series terms for solving the Airy equation starting with the
initial approximation as follows:

uO (x, t) = ex|
: u, (x,t) = he*t,
u,(x,t) = he*t + h%e*t + % h?e*t?,

us(x, t) = he*t +2 h%e*t + h?e*t? + % h3e*t3 + h3e*t? + h3e*t,

Also, the rest components of the HAM series for solving the Airy equation can be derived
by using maple software, such that the tenth order HAM series solution of the Airy equation is

given by
u(x,t) =uglx, t) +u(x,t) +uy(x,t) + ... +uyo(x, t) (28)
u(x,t) = e* + 4 he*t + 6h%e*t + 3h%e*t? +§ h3e*t3 + 4h3e*t? + 4h3e*t +
i h*e*t* +% h*e*t3 +§ h*e*t? + h*e*t+...+ ujo(x,t).
we can identify the convergence region for the h —curve to optimize the series solution of the

Airy equation by plotting the h-curves of the tenth order HAM series solution U(0.1,0.1; k) as
shown in Figure 6.

h-Curve

-0.4

-0.6

U(0.01,0.01;h)

-0.8

-1.0

-2.0 -1.5 -1.0 -0.5 0.0

h
Figure 6: The h-curve of the solution in example 5.3 withn = 10.

According to [20] and based on Figure 6 above the h-curve that provides the convergence
region of tenth order HAM for solving the Airy equation is parallel to the horizontal line.
Therefore, it is straightforward to choose an appropriate range for h which ensure the
convergence of the solution series. We identify the h-curve of u'(0.01; 0.01) in Figure 7, which
shows that the solution series is convergent when —0.4 < h < —1.5. with in the valid region
of —0.4 < h < —1.5 we have three convergence control parameters; in the following figure
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we will show the accuracy of the Airy equation solving by tenth order HAM series solution
based on each convergence control parameter of h:

h=-0.9732306585978938 h=-1

~0.0 “00
1.0 1.0

-0.6036813684717972" -0.889772553199413"

Figure 7: The absolute error of Airy equation solving by tenth order HAM series

Based on the Figure 7, one can say the tenth order HAM series provided various convergence
control parameters, on the other, the convergence parameter h = —0.9732306585978938 is
the best convergence control parameter to optimize the approximate solution of Airy equation
via tenth order HAM series as shown in next Table.

Table 3: The numerical results for the approximate solutions obtained by tenth order HAM
compared with the exact solution of Eg. (23), whent = 1,h = —0.9732306585978938.

x/t Exact solutions HAM (114 (x, t)) Absolute Error

0.1 1. 1.0000000000000022 2.220446049250313 x 107>
0.2 1. 1.000000000000006 5.995204332975845 x 10~1°
0.3 1. 1.0000000000000027 2.664535259100375 x 10715
0.4 1. 1.0000000000000122 1.221245327087672 x 10~ 1*
0.5 1. 1.000000000000024 2.398081733190338 x 10~ 4
0.6 1. 1.0000000000001086 1.085798118083403 x 10713
0.7 1. 0.9999999999993667 6.332712132461893 x 10713
0.8 1. 0.9999999999950716 4.928391028613532 x 10712
0.9 1. 1.0000000000164408 1.644084868246409 x 10~ 1!
1.0 1. 1.000000000359325 3.593250141875614 x 10710

According to Table 3 and Figure 7, we conclude that the tenth-order HAM approximate
series solution satisfies the initial condition of the Airy equation with sufficient accuracy
compared with the exact solution. Finally the comparison between the tenth order HAM series
and the exact solution of Airy equation explained below in
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10 00 o0

Figure 8: The 3D graph of the exact and approximate solution via tenth order HAM based on
the best convergence control parameter h for solving the Airy equation for all 0 <x <
1,and0 <t < 0.5

6. CONCLUSION

An approximate analytical approach for solving partial differential equations in parabolic
form was formed as a result of this research. It is discussed and studied here how to use a
method based on HAM to approximate the solution to the Korteweg-de Vries equation, the
Benjamin equation, and the Airy equation. The research illustrates that HAM can be
implemented by managing the convergence of the series solution through the benefit of the
convergence control parameter being convergent to the exact solution. An engineer or scientist
can benefit from this method to obtain a better knowledge of a physical problem. It is expected
that it will contribute to improving future methods and designs employed to confront their
obstacles, which plays an essential role in solving various mathematical problems. The test
problems demonstrated good accuracy when tested against the right solution. It tends to be a
suitable method for solving parabolic partial differential equations because of its efficiency and
conformity with the HIM. This approach will be utilised in the future when we need to address
problems involving elliptic and hyperbolic models.
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