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Abstract  

     The variational iteration method is used to deal with linear and nonlinear 

differential equations. The main characteristics of the method lie in its flexibility and 

ability to accurately and easily solve nonlinear equations. In this work, a general 

framework is presented for a variational iteration method for the analytical treatment 

of partial differential equations in fluid mechanics. The Caputo sense is used to 

describe fractional derivatives. The time-fractional Kaup-Kupershmidt (KK) equation 

is investigated, as it is the solution of the system of partial differential equations via 

the Boussinesq-Burger equation. By comparing the results that are obtained by the 

variational iteration method with those obtained by the two-dimensional Legendre 

multiwavelet, the optimal homotopy asymptotic method (OHAM), the q-homotopy 

analysis transform method, the Laplace Adomian Decomposition Method, and the 

homotopy perturbation method, the first method proved to be very effective and 

convenient. The main methodology in this work is anticipated to be applied to various 

fractional calculus, linear, and nonlinear problems. 

 

Keywords: Variational Iteration Method, Lagrange multiplier, Partial differential 
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الحلول التقريبية    طريقة التكرار المتغاير من اهمتوضح هذه الورقة دراسة حول         التقريبية لإيجاد  التقنيات 
برجر التفاضلية، تعتمد قابلية تطبيق هذه  -كوبرشميدت ذات الرتب الكسرية ومعادلة بوسينيسك-لمعادلات كاوب

الحل   التقنيات على نطاق واسع على موثوقيتها وتقليل حجم العمل الحسابي، ان تقارب الحلول التقريبية الى 
دقي كانت  ) المضبوط  الطرق  مع  عدديا  النتائج  مقارنة  تمت  ذلك  إلى  بالإضافة  وسريعة   HPM, LADMقة 

Legendre multiwavelet, OHAM, q-HATM,   . واثبات فعالية وأداء هذه الطريقة ) 
 

1. Introduction 

     Fractional order partial differential equations have been suggested and studied in a variety 

of scientific domains over the last few decades, including chemistry, finance, biology, plasma 

physics, mechanics of materials and fluid dynamics[1-6]. Nonlinear Partial differential equation 

systems have also been increasingly used to represent physical systems and control systems. 

See[7], [8]. Unfortunately, the exact analytic solutions to these equations are difficult to find[9]. 

To solve these kinds of problems, you need good tools that can help you find a more accurate 

solution. The iterative Laplace transform method (ILTM)[10], the iterative reduced differential 

transform method (RDTM)[11], the fractional Adomian decomposition method (FADM)[12], 

the Elzaki transform decomposition method (ETDM)[13], the fractional homotopy perturbation 

method (FHPM)[14],  the fractional homotopy analysis transform method (FHATM)[15], the 

residual power series method (RPSM)[16], and the q-homotopy analysis transform method (q-

HATM)[17]. In this article, we will try to use an effective analytical method, which is the 

variational iteration method. The variational iteration method is particularly valuable as a tool 

for scientists and applied mathematicians because it provides immediate and visible symbolic 

terms of analytic solutions as well as numerical approximate solutions to fractional differential 

equations. It was first suggested by He[18-21], and it has been successfully used in ordinary 

differential equations, partial differential equations, and other fields[22-24]. Ji-Huan He [25] 

was the first to apply the variational iteration method to fractional differential equations. Odibat 

and Momani[26], [27] recently solved fractional order nonlinear differential equations using 

the variational iteration method. 

 

     The objective of this paper is to extend the application of the variational iteration method to 

obtain analytical solutions to some fractional partial differential equations and the system of 

nonlinear partial differential equations. These equations include the time-fractional Kaup-

Kupershmidt (KK) equation and the Boussinesq-Burger equation. Throughout this paper, the 

fractional partial differential equations are obtained from the corresponding integer order 

equations by replacing the first-order time derivative with a fractional in the Caputo sense[28] 

of order α with 0 <  𝛼 ≤   1. 

 

     This paper is organized as follows: We introduce the idea of calculus in section 2. The 

mathematical equation for the variational iteration method (VIM) is presented in section 3. In 

sections 4 and 5, we explain the applications of the method to equations (time-fractional Kaup–

Kupershmidt equation and Boussinesq-Burger equations) and how to create convergent 

solutions from the exact solutions and compare the results with other analytical methods. The 

results and discussion are given in section 6. The conclusions are presented in section 7. 

 

2. Basic definitions 

     We provide some fundamental concepts and characteristics of the fractional calculus theory 

that are relevant to this study. 
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Definition 2.1[29] 

     The gamma function Γ(𝛼) is defined by the integral 

𝛤(𝛼) = ∫ 𝑡𝛼−1𝑒−𝑡𝑑𝑡,
∞

0

 

Some properties of the Gamma Function 

𝛤(𝛼 + 1) = 𝛼𝛤(𝛼) = 𝛼!. 
Definition 2.2 [30], [31] 

    The Riemann-Liouville fractional integral operator of order 𝛼 ≥ 0 is defined as follows: 

𝐽𝛼𝑓(𝑡) = {

1

𝛤(𝛼)
∫ (𝑡 − 𝜉)𝛼−1𝑓(𝜉)𝑑𝜉,                       𝛼 > 0  𝑎𝑛𝑑  𝑡 > 0.
𝑡

0

𝑓(𝑡) ,                                                                                     𝛼 = 0.

 (1) 

Some characteristics of the operator 𝐽𝛼are given as follows: 

1- 𝐽𝛼𝐽𝛽𝑓(𝑡) = 𝐽𝛼+𝛽𝑓(𝑡),        ( 𝛼 > 0, 𝛽 > 0 ). 

2- 𝐽𝛼𝑡𝛾 =
Γ(1+𝛾)

Γ(1+𝛾+𝛼)
𝑡𝛼+𝛾,               ( 𝛾 > −1 ).    

When using fractional differential equations to simulate real-world processes, the Riemann-

Liouville derivative has some drawbacks. Therefore, we will introduce the modified fractional 

differential factor 𝐷𝛼  that is proposed by Caputo in his work on viscoelastic theory[28]. 

 

Definition 2.3[30], [31] 

     The Caputo fractional derivative of a function 𝑓(𝑡) of order 𝛼 is defined as: 

𝐷∗
𝛼𝑓(𝑡) = 𝐽𝑚−𝛼𝐷𝑚𝑓(𝑡) =

1

𝛤(𝑚 − 𝛼)
∫ (𝑡 − 𝜉)𝑚−𝛼−1 𝑓(𝑚)(𝜉)𝑑𝜉,
𝑡

0

 (2) 

for 𝑚− 1 < 𝛼 ≤ 𝑚 , 𝑚 ∈ ℕ, 𝑡 > 0, 𝑓 ∈ 𝐶−1
𝑚 . 

 

Definition 2.4 [30], [31] 

     The Caputo time-fractional derivative operator of order 𝛼 > 0 is defined as follows: 

𝐷𝑡
𝛼𝑢(𝑥, 𝑡) =

𝜕𝛼𝑢(𝑥, 𝑡)

𝜕𝑡𝛼
=

{
 
 

 
 1

𝛤(𝑚 − 𝛼)
∫ (𝑡 − 𝜉)𝑚−𝛼−1  

𝜕𝑚𝑢(𝑥, 𝜉)

𝜕𝜉𝑚
𝑑𝜉,𝑚 − 1 < 𝛼 < 𝑚.

𝑡

0

𝜕𝑚𝑢(𝑥, 𝑡)

𝜕𝑡𝑚
,                                                                    𝛼 = 𝑚 ∈ ℕ.

 (3) 

 Where m is the smallest integer greater than 𝛼. 

Lemma 2.1 If    𝑚 − 1 < 𝛼 ≤ 𝑚 ,𝑚 ∈ ℕ, 𝑓 ∈ 𝐶−1
𝑚 , 𝜇 ≥ −1, then 

1- 𝐷∗
𝛼𝐽𝛼𝑓(𝑡) =  𝑓(𝑡). 

2- 𝐽𝛼𝐷∗
𝛼𝑓(𝑡) = 𝑓(𝑡) − ∑ 𝑓(𝑘)(0+)

𝑡𝑘

𝑘!

𝑚−1
𝑘=0  , 𝑡 > 0.   

3. Mathematical formulation for VIM 

We consider the time-fractional partial differential equation as follows: 

𝐷𝑡
𝛼𝑢(𝑥, 𝑡) = 𝑓(𝑢, 𝑢𝑥 , 𝑢𝑥𝑥) + 𝑞(𝑥, 𝑡),       𝑚 − 1 < 𝛼 ≤ 𝑚. (4) 

Where 𝐷𝑡
𝛼 =

𝜕𝛼

𝜕𝑡𝛼
  is the Caputo fractional derivative of order 𝛼,𝑚 ∈ 𝑁, 𝑓 is a nonlinear function 

and 𝑞 is the source function subject to the initial and boundary conditions. 

𝑢(𝑥, 0) = ℎ(𝑥),     0 < 𝛼 ≤ 1. 
𝑢(𝑥, 𝑡) → 0    𝑎𝑠 |𝑥| → ∞ ,     𝑡 > 0. 

(5) 

and 

𝑢(𝑥, 0) = ℎ(𝑥),     
𝜕

𝜕𝑡
𝑢(𝑥, 0) = 𝑔(𝑥),      1 < 𝛼 ≤ 2. 

𝑢(𝑥, 𝑡) → 0    𝑎𝑠 |𝑥| → ∞ ,     𝑡 > 0. 
(6) 
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where ℎ(𝑥), 𝑔(𝑥) 𝑎𝑛𝑑 𝑞(𝑥, 𝑡) are all continuous functions, and 𝛼, 𝑚 − 1 < 𝛼 ≤ 𝑚, is a 

parameter describing the order of the time-fractional derivative in the Caputo sense. According 

to the variational iteration method, we can construct the correction functional for Eq. (4) as: 

𝑢𝑛+1(𝑥, 𝑡) = 𝑢𝑛(𝑥, 𝑡)

+ ∫ 𝜆 [
𝜕𝛼

𝜕𝑡𝛼
(𝑢𝑛(𝑥, 𝜉)) + 𝑓(𝑢�̃�(𝑥, 𝜉), (𝑢�̃�(𝑥, 𝜉))𝑥, (𝑢�̃�(𝑥, 𝜉))𝑥𝑥)

𝑡

0

− 𝑞(𝑥, 𝜉)] 𝑑𝜉. 

(7) 

     Where 𝜆 is a general Lagrange multiplier that may be the best discovered using variational 

theory for the variable t [32]. To identify an approximate Lagrange multiplier, some 

approximation must be made. The correction functional (7) can be approximately expressed as 

follows: 

𝑢𝑛+1(𝑥, 𝑡) = 𝑢𝑛(𝑥, 𝑡)

+ ∫ 𝜆 [
𝜕𝑚

𝜕𝑡𝑚
(𝑢𝑛(𝑥, 𝜉)) + 𝑓(𝑢�̃�(𝑥, 𝜉), (𝑢�̃�(𝑥, 𝜉))𝑥, (𝑢�̃�(𝑥, 𝜉))𝑥𝑥)

𝑡

0

− 𝑞(𝑥, 𝜉)] 𝑑𝜉, 

(8) 

     In this case, we apply the constrained variations to the nonlinear term 

𝑓(𝑢�̃�(𝑥, 𝜉), (𝑢�̃�(𝑥, 𝜉))𝑥, (𝑢�̃�(𝑥, 𝜉))𝑥𝑥). In this case, we can easily determine the multiplier by 

integration by parts, Making the above functional stationary, noticing that 𝛿𝑢�̃� = 0. 

𝛿𝑢𝑛+1(𝑥, 𝑡) = 𝛿𝑢𝑛(𝑥, 𝑡) + 𝛿∫𝜆(𝜉) [
𝜕𝑚

𝜕𝑡𝑚
(𝑢𝑛(𝑥, 𝜉)) − 𝑞(𝑥, 𝜉)] 𝑑𝜉,

𝑡

0

 (9) 

This yields the following multipliers 

𝜆(𝜉) = −1,              𝑓𝑜𝑟 𝑚 = 1. (10) 

 

𝜆(𝜉) = 𝜉 − 𝑡,          𝑓𝑜𝑟 𝑚 = 2. (11) 

Therefore, for 𝑚 = 1  (0 < 𝛼 ≤ 1), we obtain the following iteration formula: 

𝑢𝑛+1(𝑥, 𝑡) = 𝑢𝑛(𝑥, 𝑡)

− ∫ [
𝜕𝛼

𝜕𝑡𝛼
(𝑢𝑛(𝑥, 𝜉)) + 𝑓 (𝑢�̃�(𝑥, 𝜉), (𝑢�̃�(𝑥, 𝜉))𝑥, (𝑢�̃�

(𝑥, 𝜉))
𝑥𝑥
)

𝑡

0

− 𝑔(𝑥, 𝜉)] 𝑑𝜉, 

(12) 

In this case, we begin with the initial approximation 

𝑢0(𝑥, 𝑡) = ℎ(𝑥). (13) 

For 𝑚 = 2  (1 < 𝛼 ≤ 2), we obtain the following iteration formula: 

𝑢𝑛+1(𝑥, 𝑡) = 𝑢𝑛(𝑥, 𝑡) 

                     +∫ (𝜉
𝑡

0

− 𝑡) [
𝜕𝛼

𝜕𝑡𝛼
(𝑢𝑛(𝑥, 𝜉)) + 𝑓(𝑢�̃�(𝑥, 𝜉), (𝑢�̃�(𝑥, 𝜉))𝑥, (𝑢�̃�(𝑥, 𝜉))𝑥𝑥)

− 𝑔(𝑥, 𝜉)] 𝑑𝜉, 

(14) 

In this case, we begin with the initial approximation 

𝑢0(𝑥, 𝑡) = ℎ(𝑥) + 𝑡𝑔(𝑥). (15) 

     Using the resulting Lagrange multiplier and any selected function 𝑢0, the successive 

approximations 𝑢𝑛+1(𝑥, 𝑡), 𝑛 ≥ 0 of the solution 𝑢(𝑥, 𝑡) will be easily obtained.  

Finally, the solution   𝑢(𝑥, 𝑡) = 𝑙𝑖𝑚
𝑛→∞

𝑢𝑛(𝑥, 𝑡)    approximated by the Nth term 𝑢𝑁(𝑥, 𝑡), which 

converges to the close form solution of Eq. (4). Note that the convergence of VIM has been 

presented and analysed for the fractional partial differential equations in[30], [31], [33] . 
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4. Application of VIM for solving nonlinear time-fractional (KK) equation: 

     In 1980, Kaup first proposed the renowned dispersive classical Kaup-Kupershmidt 

equation[34], and Kupershmidt updated it in 1994[35]. the equation is used to examine the 

behavior of capillary gravity waves and nonlinear dispersive waves. Given is the generalized 

equation for fifth-order nonlinear evolution by: 

𝐷𝑡
𝛼𝑢(𝑥, 𝑡) − 𝑎𝑢𝑢𝑥𝑥𝑥 − 𝑏𝑝𝑢𝑥𝑢𝑥𝑥 + 𝑐𝑢

2𝑢𝑥 + 𝑢𝑥𝑥𝑥𝑥𝑥, (16) 

     where a, b, and c are real constants, and 0 < α ≤ 1 displays the order time-fractional 

derivative. By changing the values of a, b, and c, the above nonlinear evolution equation of the 

fifth degree can be simplified to the fractional Kaup-Kupershmidt equation of the fifth degree. 

The previous equation becomes, assuming a = b = 15, and c = 45. 

𝐷𝑡
𝛼𝑢(𝑥, 𝑡) − 15𝑢𝑢𝑥𝑥𝑥 − 15𝑝𝑢𝑥𝑢𝑥𝑥 + 45𝑢

2𝑢𝑥 + 𝑢𝑥𝑥𝑥𝑥𝑥, (17) 

     The classical Kaup–Kupershmidt equation is known to be integrable [36] for p = 5/2 and has 

bilinear representations[37]. But, it appears that the precise form of its N-soliton solution is 

unknown. In recent years, a lot of effort has been put into studying the classical Kaup-

Kupershmidt equations. Various methods have been independently developed by which soliton 

and solitary wave solutions may be obtained for the nonlinear evolution equations. However, 

based on our best knowledge, the thorough examination of the nonlinear fractional order Kaup-

Kupershmidt equation is just the beginning. 

  

Example 4.1 Consider the time-fractional Kaup-Kupershmidt equation[38] 

𝐷𝑡
𝛼𝑢(𝑥, 𝑡) − 15𝑢𝑢𝑥𝑥𝑥 − 15𝑝𝑢𝑥𝑢𝑥𝑥 + 45𝑢

2𝑢𝑥 + 𝑢𝑥𝑥𝑥𝑥𝑥 ,    0 < 𝛼 ≤ 1. (18) 

with the initial condition 

𝑢(𝑥, 0) =
1

4
𝑤2𝑦2𝑠𝑒𝑐ℎ2 (

𝑤𝑥𝑦

2
) +

𝑤2𝑦2

12
, (19) 

The exact solution of Equation (18) is given by 

𝑢(𝑥, 𝑡) =
1

4
𝑤2𝑦2𝑠𝑒𝑐ℎ2 (

𝑦

2
(
−𝑤5(−8𝑦2𝜇 + 16𝜇2 + 𝑦4)

16𝛤(1 + 𝛼)
𝑡𝛼 + 𝑤𝑥)) +

𝑤2𝑦2

12
, (20) 

where 𝑦 , 𝜇 , 𝑎𝑛𝑑 𝑤 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑤𝑖𝑡ℎ 𝑤 ≠ 0. 
Following the discussion presented in the second section, we can obtain the recurrence relation 

𝑢𝑛+1(𝑥, 𝑡) = 𝑢𝑛(𝑥, 𝑡) − ∫[
𝜕𝛼

𝜕𝜉𝛼
𝑢𝑛(𝑥, 𝜉) − 15(𝑢�̃�(𝑥, 𝜉)

𝜕3

𝜕𝑥3
𝑢�̃�(𝑥, 𝜉))

𝑡

0

 

                     −15𝑃 (
𝜕

𝜕𝑥
𝑢�̃�(𝑥, 𝜉)

𝜕2

𝜕𝑥2
𝑢�̃�(𝑥, 𝜉))

+ 45(𝑢�̃�(𝑥, 𝜉))
2 𝜕

𝜕𝑥
𝑢�̃�(𝑥, 𝜉) +

𝜕5

𝜕𝑥5
𝑢�̃�(𝑥, 𝜉)] 𝑑𝜉, 

(21) 

By using the aforementioned variational iteration formula and starting with  

𝑢(𝑥, 0) =
1

4
𝑤2𝑦2𝑠𝑒𝑐ℎ2 (

𝑤𝑥𝑦

2
) +

𝑤2𝑦2

12
, we may get the approximate values shown below. 

 𝑢0(𝑥, 𝑡) =
1

4
𝑤2𝑦2 𝑠𝑒𝑐ℎ2 (

1

2
𝑦𝑤𝑥) +

1

12
𝑤2𝑦2, 
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 𝑢1(𝑥, 𝑡) =
1

4
𝑤2𝑦2 𝑠𝑒𝑐ℎ2 (

1

2
𝑦𝑤𝑥) +

1

12
𝑤2𝑦2 −

45

16
𝑡𝑤7𝑦7 𝑠𝑒𝑐ℎ4 (

1

2
𝑦𝑤𝑥) 𝑡𝑎𝑛ℎ3 (

1

2
𝑦𝑤𝑥)

+
75

32
𝑡𝑤7𝑦7 𝑠𝑒𝑐ℎ4 (

1

2
𝑦𝑤𝑥) 𝑡𝑎𝑛ℎ (

1

2
𝑦𝑤𝑥)

−
135

16
𝑡𝑤7𝑦7 𝑠𝑒𝑐ℎ2 (

1

2
𝑦𝑤𝑥) 𝑡𝑎𝑛ℎ3 (

1

2
𝑦𝑤𝑥)

+
181

64
𝑡𝑤7𝑦7 𝑠𝑒𝑐ℎ2 (

1

2
𝑦𝑤𝑥) 𝑡𝑎𝑛ℎ (

1

2
𝑦𝑤𝑥)

−
45

32
𝑝𝑤7𝑦7 𝑠𝑒𝑐ℎ4 (

1

2
𝑦𝑤𝑥) 𝑡𝑎𝑛ℎ3 (

1

2
𝑦𝑤𝑥) 𝑡 

+
15

32
𝑝𝑤7𝑦7 𝑠𝑒𝑐ℎ4 (

1

2
𝑦𝑤𝑥) 𝑡𝑎𝑛ℎ (

1

2
𝑦𝑤𝑥) 𝑡 

+
45

64
𝑤7𝑦7 𝑠𝑒𝑐ℎ6 (

1

2
𝑦𝑤𝑥) 𝑡𝑎𝑛ℎ (

1

2
𝑦𝑤𝑥) 𝑡 

+
45

8
𝑤7𝑦7 𝑠𝑒𝑐ℎ2 (

1

2
𝑦𝑤𝑥) 𝑡𝑎𝑛ℎ5 (

1

2
𝑦𝑤𝑥) 𝑡. 

 

and so on, using MAPLE software, it is possible to extract the remaining parts of the iteration 

formula (21). 

 

     The tables and figures below show the approximate solutions to Eq. (18) for different values 

of α = 0.5, α = 0.75, and α = 1 that are obtained by using the (VIM) and compared with the 

multi-wavelength two-dimensional Legendre method, the optimal convergence method 

(OHAM), and the transformation analysis method. q-homotopy (q-HATM). 

  

Table 1: Comparison between absolute errors in VIM, two-dimensional Legendre multiwavelet 

method, OHAM, and q-HATM of Eq. (18), at   𝜇 = 0,𝑤 = 1 , 𝑦 = 0.1 , 𝛼 = 1 , 𝑝 =
5

2
𝑎𝑛𝑑 𝑡 =

0.1. 

x 𝒖𝑳𝒆𝒈𝒆𝒏𝒅𝒓𝒆 𝒎𝒖𝒍𝒕𝒊𝒘𝒂𝒗𝒆𝒍𝒆𝒕 [38] 𝒖𝑶𝑯𝑨𝑴 [38] 𝒖𝒒−𝑯𝑨𝑻𝑴 [38] 𝒖𝑽𝑰𝑴 

0.1 3.5268 × 10−10 3.4968 × 10−10 3.1482 × 10−10 3.4870 × 10−10 

0.2 7.0308 × 10−10 7.2934 × 10−6 6.3101 × 10−10 7.0110 × 10−10 

0.3 1.0532 × 10−9 2.6793 × 10−5 9.4682 × 10−10 1.0510 × 10−9 

0.4 1.4028 × 10−9 5.8103 × 10−5 1.2620 × 10−9 1.4017 × 10−9 

0.5 1.7520 × 10−9 1.0061 × 10−4 1.5765 × 10−9 1.7517 × 10−9 

 

Table 2: Comparison between absolute errors in VIM, two-dimensional Legendre multiwavelet 

method, OHAM, and q-HATM of Eq. (18), at   𝜇 = 0,𝑤 = 1 , 𝑦 = 0.1 , 𝛼 = 0.75 , 𝑝 =
5

2
𝑎𝑛𝑑 𝑡 = 0.1. 

x 𝒖𝑳𝒆𝒈𝒆𝒏𝒅𝒓𝒆 𝒎𝒖𝒍𝒕𝒊𝒘𝒂𝒗𝒆𝒍𝒆𝒕 [38] 𝒖𝑶𝑯𝑨𝑴 [38] 𝒖𝒒−𝑯𝑨𝑻𝑴 [38] 𝒖𝑽𝑰𝑴 

0.1 6.7734 × 10−10 6.7141 × 10−10 6.0478 × 10−10 5.2676 × 10−10 

0.2 1.3533 × 10−9 7.2899 × 10−6 1.2165 × 10−10 1.0537 × 10−9 

0.3 2.0287 × 10−9 2.6785 × 10−5 1.8276 × 10−10 1.5807 × 10−9 

0.4 2.7033 × 10−9 5.8094 × 10−5 2.4376 × 10−9 2.1085 × 10−9 

0.5 3.3768 × 10−9 1.0060 × 10−4 3.0461 × 10−9 2.6327 × 10−9 
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Table 3: Comparison between absolute errors in VIM, two-dimensional Legendre multiwavelet 

method, OHAM, and q-HATM of Eq. (18), at   𝜇 = 0,𝑤 = 1 , 𝑦 = 0.1 , 𝛼 = 0.5 , 𝑝 =
5

2
𝑎𝑛𝑑 𝑡 = 0.1. 

x 𝒖𝑳𝒆𝒈𝒆𝒏𝒅𝒓𝒆 𝒎𝒖𝒍𝒕𝒊𝒘𝒂𝒗𝒆𝒍𝒆𝒕 [38] 𝒖𝑶𝑯𝑨𝑴 [38] 𝒖𝒒−𝑯𝑨𝑻𝑴 [38] 𝒖𝑽𝑰𝑴 

0.1 1.2348 × 10−9 1.2175 × 10−9 1.0979 × 10−10 6.1555 × 10−10 

0.2 2.4789 × 10−9 7.2836 × 10−6 2.2262 × 10−9 1.2337 × 10−9 

0.3 3.7221 × 10−9 2.6773 × 10−5 3.3531 × 10−9 1.8497 × 10−9 

0.4 4.9638 × 10−9 5.8078 × 10−5 4.4781 × 10−9 2.4657 × 10−9 

0.5 6.2035 × 10−9 1.0058 × 10−4 5.6004 × 10−9 3.0807 × 10−9 

 

 
Figure 1: Exact and VIM approximate solution of KK equation at 𝛼 = 1 , 𝜇 = 0,𝑤 = 1, 𝑝 =
5

2
, 𝑎𝑛𝑑  𝑦 = 0.1   𝑎𝑡 𝑡 = 0.5 , −50 ≤ 𝑥 ≤ 50. 

 

 
Figure 2: Surfaces of (a) exact solution, (b) VIM solution, (c) absolute error =

|𝑢𝐸𝑥𝑎 − 𝑢𝑉𝐼𝑀| 𝑎𝑡 𝛼 = 1 , 𝜇 = 0,𝑤 = 1, 𝑝 =
5

2
𝑎𝑛𝑑  𝑦 = 0.1 . 
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Example 4.2 Consider the time-fractional Kaup-Kupershmidt equation[38] 

𝐷𝑡
𝛼𝑢(𝑥, 𝑡) − 15𝑢𝑢𝑥𝑥𝑥 − 15𝑝𝑢𝑥𝑢𝑥𝑥 + 45𝑢

2𝑢𝑥 + 𝑢𝑥𝑥𝑥𝑥𝑥,            0 < 𝛼 ≤ 1. (22) 

with the initial condition 

𝑢(𝑥, 0) =
4

3
𝑐 −

4

𝑝
𝑐𝑠𝑒𝑐ℎ2(√𝑐𝑥),  (23) 

The exact solution of Equation (22) is given by  

𝑢(𝑥, 𝑡) =
4

3
𝑐 −

4

𝑝
𝑐𝑠𝑒𝑐ℎ2 (√𝑐(𝑥 + 8(3𝑐2 − 5𝑝𝑐)𝑡)).  (24) 

where 𝑐 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 , 𝑐 ≠ 0. 
Following the discussion presented in the second section, we can obtain the recurrence relation 

𝑢𝑛+1(𝑥, 𝑡) = 𝑢𝑛(𝑥, 𝑡) − ∫[
𝜕𝛼

𝜕𝜉𝛼
𝑢𝑛(𝑥, 𝜉) − 15(𝑢�̃�(𝑥, 𝜉)

𝜕3

𝜕𝑥3
𝑢�̃�(𝑥, 𝜉))

𝑡

0

 

                      −15𝑃 (
𝜕

𝜕𝑥
𝑢�̃�(𝑥, 𝜉)

𝜕2

𝜕𝑥2
𝑢�̃�(𝑥, 𝜉)) + 45(𝑢�̃�(𝑥, 𝜉))

2 𝜕

𝜕𝑥
𝑢�̃�(𝑥, 𝜉)

+
𝜕5

𝜕𝑥5
𝑢�̃�(𝑥, 𝜉)] 𝑑𝜉, 

(25) 

By using the aforementioned variational iteration formula and starting with  

𝑢(𝑥, 0) =
4

3
𝑐 −

4

𝑝
𝑐𝑠𝑒𝑐ℎ2(√𝑐𝑥), we may get the approximate values that are shown below. 

 𝑢0(𝑥, 𝑡) =
4𝑐

3
−
4𝑐𝑠𝑒𝑐ℎ2(√𝑐𝑥)

𝑝
, 

 𝑢1(𝑥, 𝑡) =
4𝑐

3
−
4𝑐𝑠𝑒𝑐ℎ2(√𝑐𝑥)

𝑝
+
5760𝑡𝑐

7
2 𝑠𝑒𝑐ℎ2(√𝑐𝑥) 𝑡𝑎𝑛ℎ3(√𝑐𝑥)

𝑝

− 
3008𝑡𝑐

7
2 𝑠𝑒𝑐ℎ2(√𝑐𝑥) 𝑡𝑎𝑛ℎ(√𝑐𝑥)

𝑝
−
 5760𝑡𝑐

7
2 𝑠𝑒𝑐ℎ4(√𝑐𝑥) 𝑡𝑎𝑛ℎ3(√𝑐𝑥)

𝑝2

+ 
7680𝑡𝑐

7
2 𝑠𝑒𝑐ℎ4(√𝑐𝑥) 𝑡𝑎𝑛ℎ(√𝑐𝑥)

𝑝2
− 
2880𝑐

7
2 𝑠𝑒𝑐ℎ4(√𝑐𝑥) 𝑡𝑎𝑛ℎ3(√𝑐𝑥) 𝑡

𝑝

+ 
960𝑐

7
2 𝑠𝑒𝑐ℎ4(√𝑐𝑥) 𝑡𝑎𝑛ℎ(√𝑐𝑥) 𝑡

𝑝
− 
5760𝑐

7
2 𝑠𝑒𝑐ℎ6(√𝑐𝑥) 𝑡𝑎𝑛ℎ(√𝑐𝑥) 𝑡

𝑝3

− 
2880𝑐

7
2 𝑠𝑒𝑐ℎ2(√𝑐𝑥) 𝑡𝑎𝑛ℎ5(√𝑐𝑥) 𝑡

𝑝
. 

    ⋮ 
and so on, using MAPLE software, it is possible to extract the remaining parts of the iteration 

formula (25). 

  

     The results of the absolute errors of equation (22) for different values (α=0.5, α=0.75, and 

α=1) were summarized using (VIM) and compared with the absolute error of (q-HATM) in the 

table and figures below for different values of x, t. 

 

 

 

 

 

Table 4: Comparison between absolute errors in VIM and q-HATM of Eq. (22), at   𝑐 =

0.01 , 𝑝 =
5

2
. 
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t x 
𝜶 = 𝟎. 𝟓 𝜶 = 𝟎. 𝟕𝟓 𝜶 = 𝟎𝟏 

𝒖𝒒−𝑯𝑨𝑻𝑴 [38] 𝒖𝑽𝑰𝑴 𝒖𝒒−𝑯𝑨𝑻𝑴 [38] 𝒖𝑽𝑰𝑴 𝒖𝒒−𝑯𝑨𝑻𝑴 [38] 𝒖𝑽𝑰𝑴 

0
.2

5
 

1 
6.9281
× 10−5 

6.9266
× 10−5 

6.9249
× 10−5 

6.9245
× 10−5 

6.9213
× 10−5 

6.9213
× 10−5 

2 
1.4299
× 10−4 

1.4295
× 10−4 

1.4294
× 10−4 

1.4293
× 10−4 

1.4290
× 10−4 

1.4290
× 10−4 

3 
2.0569
× 10−4 

2.0571
× 10−4 

2.0572
× 10−4 

2.0573
× 10−4 

2.0575
× 10−4 

2.0575
× 10−4 

4 
2.5375
× 10−4 

2.5392
× 10−4 

2.5396
× 10−4 

2.5400
× 10−4 

2.5413
× 10−4 

2.5413
× 10−4 

5 
2.8563
× 10−4 

2.8601
× 10−4 

2.8608
× 10−4 

2.8617
× 10−4 

2.8642
× 10−4 

2.8642
× 10−4 

0
.5

0
 

1 
1.1899
× 10−4 

1.1904
× 10−4 

1.1899
× 10−4 

1.1901
× 10−4 

1.1896
× 10−4 

1.1896
× 10−4 

2 
2.6828
× 10−4 

2.6831
× 10−4 

2.6827
× 10−4 

2.6828
× 10−4 

2.6824
× 10−4 

2.6824
× 10−4 

3 
3.9699
× 10−4 

3.9698
× 10−4 

3.9701
× 10−4 

3.9701
× 10−4 

3.9704
× 10−4 

3.9704
× 10−4 

4 
4.9729
× 10−4 

4.9730
× 10−4 

4.9744
× 10−4 

4.9744
× 10−4 

4.9761
× 10−4 

4.9761
× 10−4 

5 
5.6552
× 10−4 

5.6562
× 10−4 

5.6587
× 10−4 

5.6590
× 10−4 

5.6623
× 10−4 

5.6623
× 10−4 

0
.7

5
 

1 
1.4899
× 10−4 

1.4910
× 10−4 

1.4901
× 10−4 

1.4906
× 10−4 

1.4900
× 10−4 

1.4901
× 10−4 

2 
3.7540
× 10−4 

3.7550
× 10−4 

3.7543
× 10−4 

3.7546
× 10−4 

3.7541
× 10−4 

3.7542
× 10−4 

3 
5.7297
× 10−4 

5.7293
× 10−4 

5.7298
× 10−4 

5.7296
× 10−4 

5.7300
× 10−4 

5.7300
× 10−4 

4 
7.2926
× 10−4 

7.2910
× 10−4 

7.2933
× 10−4 

7.2927
× 10−4 

7.2945
× 10−4 

7.2945
× 10−4 

5 
8.3793
× 10−4 

8.3775
× 10−4 

8.3814
× 10−4 

8.3810
× 10−4 

8.3844
× 10−4 

8.3843
× 10−4 

1
.0

0
 

1 
1.5913
× 10−4 

1.5929
× 10−4 

1.5917
× 10−4 

1.5924
× 10−4 

1.5919
× 10−4 

1.5920
× 10−4 

2 
4.6381
× 10−4 

4.6400
× 10−4 

4.6389
× 10−4 

4.6396
× 10−4 

4.6390
× 10−4 

4.6392
× 10−4 

3 
7.3280
× 10−4 

7.3276
× 10−4 

7.3282
× 10−4 

7.3279
× 10−4 

7.3282
× 10−4 

7.3283
× 10−4 

4 
9.4865
× 10−4 

9.4834
× 10−4 

9.4862
× 10−4 

9.4851
× 10−4 

9.4868
× 10−4 

9.4867
× 10−4 

5 
1.1018
× 10−3 

1.1013
× 10−3 

1.1018
× 10−3 

1.1017
× 10−3 

1.1020
× 10−3 

1.1020
× 10−3 

 
Figure 3: Exact and VIM approximate solution of KK equation at 𝛼 = 1  𝑐 = 0.01   𝑎𝑡 𝑡 =
0.5. 
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Figure 4: Surfaces of (a) exact solution, (b) VIM solution, (c) |𝑢𝐸𝑥𝑎 − 𝑢𝑉𝐼𝑀| 𝑎𝑡 𝛼 = 1  𝑐 =
0.01 . 
 

5. Application of VIM for solving the Boussinesq–Burger equation 

𝑢𝑡 −
1

2
𝑣𝑥 + 2𝑢𝑢𝑥 = 0, (26) 

𝑣𝑡 −
1

2
𝑢𝑥𝑥𝑥 + 2(𝑢𝑣)𝑥 = 0,    0 ≤ 𝑥 ≤ 1. (27) 

     Numerous phenomena in physics, engineering, applied mathematics, chemistry, and biology 

are known to be described by systems of nonlinear equations. 

 

    The propagation of shallow water waves is described by the Boussinesq-Burgers equations, 

which are derived from the study of fluid flow. In this case, x and t stand for normalized space 

and time, respectively, whereas 𝑣(𝑥, 𝑡) stands for the height of the water surface above the 

horizontal level at the bottom and 𝑢(𝑥, 𝑡) stands for the horizontal velocity at the leading order 

[39] 

Example 5.1  Consider the general Boussinesq -Burger equation [40], [41] of the form 

𝑢𝑡 −
1

2
𝑣𝑥 + 2𝑢𝑢𝑥 = 0, (28) 

 

𝑣𝑡 −
1

2
𝑢𝑥𝑥𝑥 + 2(𝑢𝑣)𝑥 = 0,    0 ≤ 𝑥 ≤ 1. (29) 

 

with initial conditions: 

𝑢(𝑥, 0) =
𝑐𝑘

2
+
𝑐𝑘

2
𝑡𝑎𝑛 ℎ (

−𝑘𝑥 − 𝑙𝑛(𝑏)

2
), (30) 
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𝑣(𝑥, 0) =
−𝑘2

8
𝑠𝑒𝑐ℎ2 (

𝑘𝑥 + 𝑙𝑛(𝑏)

2
). (31) 

The exact solutions of Eq. (28) and (29) are given by: 

𝑢(𝑥, 𝑡) =
𝑐𝑘

2
+
𝑐𝑘

2
𝑡𝑎𝑛 ℎ (

𝑐𝑘2𝑡 − 𝑘𝑥 − 𝑙𝑛(𝑏)

2
), (32) 

 

𝑣(𝑥, 𝑡) =
−𝑘2

8
𝑠𝑒𝑐ℎ2 (

𝑘𝑥 − 𝑐𝑘2𝑡 + 𝑙𝑛(𝑏)

2
). (33) 

Now, we apply VIM, to solve the nonlinear Boussinesq-Burger equation. we construct a 

correction functional: 

𝑢𝑛+1(𝑥, 𝑡) = 𝑢𝑛(𝑥, 𝑡)

+ ∫𝜆1 [
𝜕

𝜕𝜉
𝑢𝑛(𝑥, 𝜉) −

1

2
(
𝜕

𝜕𝑥
𝑣�̃�(𝑥, 𝜉)) + 2(𝑢�̃�(𝑥, 𝜉) 

𝜕

𝜕𝑥
𝑢�̃�(𝑥, 𝜉))] 𝑑𝜉,

𝑡

0

 
(34) 

 

𝑣𝑛+1(𝑥, 𝑡) = 𝑣𝑛(𝑥, 𝑡)

+ ∫𝜆2 [
𝜕

𝜕𝜉
𝑣𝑛(𝑥, 𝜉) −

1

2
(
𝜕3

𝜕𝑥3
𝑢�̃�(𝑥, 𝜉)) + 2

𝜕

𝜕𝑥
(𝑢�̃�(𝑥, 𝜉) 𝑣�̃�(𝑥, 𝜉))] 𝑑𝜉

𝑡

0

, 
(35) 

Where 𝑢�̃� and 𝑣�̃� are restricted to variation, 𝛿𝑢�̃� = 0 and 𝛿𝑣�̃� = 0,   𝑢0(𝑥, 𝑡) and  𝑣0(𝑥, 𝑡) are 

an initial approximation or trial function, and λ(ξ) is a Lagrange multiplier. 

With the above correction functional stationary, we have: 

𝛿𝑢𝑛+1(𝑥, 𝑡) = 𝛿𝑢𝑛(𝑥, 𝑡)

+ 𝛿∫𝜆1 [
𝜕

𝜕𝜉
𝑢𝑛(𝑥, 𝜉) −

1

2
(
𝜕

𝜕𝑥
𝑣�̃�(𝑥, 𝜉))

𝑡

0

+ 2(𝑢�̃�(𝑥, 𝜉) 
𝜕

𝜕𝑥
𝑢�̃�(𝑥, 𝜉))] 𝑑𝜉, 

(36) 

 

𝛿𝑣𝑛+1(𝑥, 𝑡) = 𝛿𝑣𝑛(𝑥, 𝑡)

+ 𝛿∫𝜆2 [
𝜕

𝜕𝜉
𝑣𝑛(𝑥, 𝜉) −

1

2
(
𝜕3

𝜕𝑥3
𝑢�̃�(𝑥, 𝜉))

𝑡

0

+ 2
𝜕

𝜕𝑥
(𝑢�̃�(𝑥, 𝜉) 𝑣�̃�(𝑥, 𝜉))] 𝑑𝜉, 

(37) 

 

𝛿𝑢𝑛+1(𝑥, 𝑡) = 𝛿𝑢𝑛(𝑥, 𝑡) + 𝛿 ∫𝜆1 [
𝜕

𝜕𝜉
𝑢𝑛(𝑥, 𝜉)] 𝑑𝜉,

𝑡

0

 (38) 

 

𝛿𝑣𝑛+1(𝑥, 𝑡) = 𝛿𝑣𝑛(𝑥, 𝑡) + 𝛿 ∫𝜆2 [
𝜕

𝜕𝜉
𝑣𝑛(𝑥, 𝜉)] 𝑑𝜉

𝑡

0

, (39) 

By using integration by parts, we have: 

𝛿𝑢𝑛+1(𝑥, 𝑡) = 𝛿𝑢𝑛(𝑥, 𝑡)(1 + 𝜆(𝜉)) − 𝛿∫𝜆´1(𝜉)𝑢𝑛(𝑥, 𝜉)𝑑𝜉

𝑡

0

, (40) 
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𝛿𝑣𝑛+1(𝑥, 𝑡) = 𝛿𝑣𝑛(𝑥, 𝑡)(1 + 𝜆(𝜉)) − 𝛿 ∫𝜆´2(𝜉)𝑣𝑛(𝑥, 𝜉)𝑑𝜉

𝑡

0

, (41) 

By using the following stationary conditions:  

𝛿𝑢𝑛 ∶ 1 + 𝜆1(𝜉) = 0,             𝛿𝑢𝑛: 𝜆´1(𝜉) = 0, (42) 

 

𝛿𝑣𝑛 ∶ 1 + 𝜆2(𝜉) = 0,             𝛿𝑣𝑛: 𝜆´2(𝜉) = 0, (43) 

Therefore, the Lagrange multiplier can be identified as 

𝜆1(𝜉) = 𝜆2(𝜉) = −1. (44) 

As a result, we can obtain the following iteration formula 

𝑢𝑛+1(𝑥, 𝑡) = 𝑢𝑛(𝑥, 𝑡)

− ∫[
𝜕

𝜕𝜉
𝑢𝑛(𝑥, 𝜉) −

1

2
(
𝜕

𝜕𝑥
𝑣�̃�(𝑥, 𝜉)) + 2(𝑢�̃�(𝑥, 𝜉) 

𝜕

𝜕𝑥
𝑢�̃�(𝑥, 𝜉))] 𝑑𝜉,

𝑡

0

 
(45) 

 

𝑣𝑛+1(𝑥, 𝑡) = 𝑣𝑛(𝑥, 𝑡)

− ∫[
𝜕

𝜕𝜉
𝑣𝑛(𝑥, 𝜉) −

1

2
(
𝜕3

𝜕𝑥3
𝑢�̃�(𝑥, 𝜉)) + 2

𝜕

𝜕𝑥
(𝑢�̃�(𝑥, 𝜉) 𝑣�̃�(𝑥, 𝜉))] 𝑑𝜉

𝑡

0

, 
(46) 

Then, using the variational iteration formula (29)-(29), we begin with the initial approximation 

 𝑢0(𝑥, 𝑡) =
𝑐𝑘

2
+
𝑐𝑘

2
𝑡𝑎𝑛ℎ (

−𝑘𝑥−𝑙𝑛(𝑏)

2
)    𝑎𝑛𝑑   𝑣0(𝑥, 𝑡) =

−𝑘2

8
𝑠𝑒𝑐ℎ2 (

𝑘𝑥+𝑙𝑛(𝑏)

2
), it follows that 

 𝑢1(𝑥, 𝑡) =
𝑐𝑘

2
 −
𝑐𝑘

2
𝑡𝑎𝑛ℎ (

𝑘𝑥 + 𝑙𝑛(𝑏)

2
 )

+
𝑘3

16
𝑠𝑒𝑐ℎ2 (

1

2
𝑘𝑥 +

1

2
𝑙𝑛(𝑏)) 𝑡𝑎𝑛ℎ (

1

2
𝑘𝑥 +

1

2
𝑙𝑛(𝑏)) 𝑡 

+
1

2
(
1

2
𝑐𝑘 −

1

2
𝑐𝑘 𝑡𝑎𝑛ℎ (

1

2
𝑘𝑥 +

1

2
𝑙𝑛(𝑏))) 𝑐𝑘2 (1 

− 𝑡𝑎𝑛ℎ2 (
1

2
𝑘𝑥 +

1

2
𝑙𝑛(𝑏))) 𝑡,  

 𝑣1(𝑥, 𝑡) = −
𝑘2

8
𝑠𝑒𝑐ℎ2 (

𝑘𝑥 + 𝑙𝑛(𝑏)

2
 ) +

𝑐𝑘4

16
(1 − 𝑡𝑎𝑛ℎ2 (

1

2
𝑘𝑥 +

1

2
𝑙𝑛(𝑏)))

2

𝑡 

−
𝑐𝑘4

8
𝑡𝑎𝑛ℎ2 (

1

2
𝑘𝑥 +

1

2
𝑙𝑛(𝑏)) (1 − 𝑡𝑎𝑛ℎ2 (

1

2
𝑘𝑥 +

1

2
𝑙𝑛(𝑏))) 𝑡 

−
𝑐𝑘4

16
(1 − 𝑡𝑎𝑛ℎ2 (

1

2
𝑘𝑥 +

1

2
𝑙𝑛(𝑏))) 𝑠𝑒𝑐ℎ2 (

1

2
𝑘𝑥 +

1

2
𝑙𝑛(𝑏)) 𝑡 

−
1

4
(
1

2
𝑐𝑘 

−
𝑐𝑘

2
𝑡𝑎𝑛ℎ (

1

2
𝑘𝑥 +

1

2
𝑙𝑛(𝑏))) 𝑘3 𝑠𝑒𝑐ℎ2 (

1

2
𝑘𝑥 +

1

2
𝑙𝑛(𝑏)) 𝑡𝑎𝑛ℎ (

1

2
𝑘𝑥 

+
1

2
𝑙𝑛(𝑏)) 𝑡, 

    ⋮ 
Similarly, the other parts of the iteration formula (34-35) may be found by using the 

Mathematica or Maple software packages. 

       As in the table and figures below, we set (c = 1/2, k =-1, and b = 2) to test the validity and 

reliability of the VIM solution of the Boussinesq-Burger equation. For different values of 𝑥, 𝑡 ∈
 [0,1], we show the results obtained by applying VIM in the third iteration, the exact solution 
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results, the absolute error results, and compare the results in terms of absolute errors with the 

Laplace Adomian Decomposition Method (LADM)[41], the homotopy perturbation method 

(HPM)[40], and the optimal homotopy asymptotic method (OHAM)[40]. 

 

Table 5: comparison of the solution of Boussinesq–Burgers equation using three terms 

approximation for VIM, LADM, HPM, and OHAM at various points by absolute errors when   
𝑐 = 1/2  , 𝑘 = −1 𝑎𝑛𝑑 𝑏 = 2. 

𝒖(𝒙, 𝒕) 

(𝒙, 𝒕) Exact 𝑽𝑰𝑴( 𝒖𝟑) 
|𝒖𝐄𝐱𝐚𝐜𝐭
− 𝒖𝑽𝑰𝑴| 

|𝒖𝐄𝐱𝐚𝐜𝐭
− 𝒖𝑳𝑨𝑫𝑴| 

|𝒖𝐄𝐱𝐚𝐜𝐭
− 𝒖𝑯𝑷𝑴| 

|𝒖𝐄𝐱𝐚𝐜𝐭
− 𝒖𝑶𝑯𝑨𝑴| 

(0.1,0.1) 
-

0.18372788 

-

0.18372786 

2.19907
× 10−8 

9.1140× 10−7 
9.11428×
10−7 

3.15534× 10−6 

(0.1,0.2) 
-

0.18957622 

-

0.18957586 

3.58258
× 10−7 

7.4086× 10−6 
7.40859×
10−6 

7.33961× 10−7 

(0.1,0.3) 
-

0.19549565 

-

0.19549381 

1.84175
× 10−6 

2.5391× 10−5 
2.53911×
10−5 

1.36454× 10−6 

(0.1,0.4) 
-

0.20147995 

-

0.20147404 

5.91545
× 10−6 

6.1082× 10−5 
6.10825×
10−5 

3.08338× 10−6 

(0.1,0.5) 
-

0.20752259 

-

0.20750791 

1.46796
× 10−5 

1.2100× 10−4 
1.21007×
10−4 

2.06021× 10−5 

(0.2,0.1) 
-

0.19549565 

-

0.19549562 

2.79988
× 10−8 

1.0246× 10−6 
1.02449×
10−6 

3.23055× 10−6 

(0.2,0.2) 
-

0.20147995 

-

0.20147949 

4.55925
× 10−7 

8.2995× 10−6 
8.29954×
10−6 

1.05314× 10−6 

(0.2,0.3) 
-

0.20752259 

-

0.20752024 

2.34585
× 10−6 

2.8349× 10−5 
2.83495×
10−5 

7.84907× 10−6 

(0.2,0.4) 
-

0.21361678 

-

0.21360924 

7.53487
× 10−6 

6.7973× 10−5 
6.79737×
10−5 

6.84685× 10−6 

(0.2,0.5) 
-

0.21975546 

-

0.21973676 

1.86972
× 10−5 

1.3421× 10−4 
1.34218×
10−4 

2.86627× 10−5 

(0.3,0.1) 
-

0.20752259 

-

0.20752256 

3.34823
× 10−8 

1.1227× 10−6 
1.12268×
10−6 

3.34664× 10−6 

(0.3,0.2) 
-

0.21361678 

-

0.21361623 

5.41192
× 10−7 

9.0676× 10−6 
9.06757×
10−6 

1.53865× 10−6 

(0.3,0.3) 
-

0.21975546 

-

0.21975267 

2.78296
× 10−6 

3.0880× 10−5 
3.08802×
10−5 

1.62153× 10−6 

(0.3,0.4) 
-

0.22593138 

-

0.22592244 

8.93885
× 10−6 

7.3821× 10−5 
7.38211×
10−5 

1.08559× 10−5 

(0.3,0.5) 
-

0.23213709 

-

0.23211491 

2.21783
× 10−5 

1.4533× 10−4 
1.45333×
10−4 

3.66844× 10−5 

(0.4,0.1) 
-

0.21975546 

-

0.21975542 

3.72668
× 10−8 

1.2022× 10−6 
1.20223×
10−6 

3.50880× 10−6 

(0.4,0.2) 
-

0.22593138 

-

0.22593077 

6.07820
× 10−7 

9.6832× 10−6 
9.68307×
10−6 

2.20317× 10−6 

(0.4,0.3) 
-

0.23213709 

-

0.23213396 

3.12750
× 10−6 

3.2885× 10−5 
3.28850×
10−5 

3.52562× 10−6 

(0.4,0.4) 
-

0.23836501 

-

0.23835496 

1.00442
× 10−5 

7.8397× 10−5 
7.83973×
10−5 

1.50654× 10−5 

(0.4,0.5) 
-

0.24460743 

-

0.24458252 

2.49173
× 10−5 

1.5391× 10−4 
1.53919×
10−4 

4.45217× 10−5 

(0.5,0.1) 
-

0.23213709 

-

0.23213705 

4.01071
× 10−8 

1.2600× 10−6 
1.25997×
10−6 

3.72005× 10−6 

(0.5,0.2) 
-

0.23836501 

-

0.23836436 

6.53099
× 10−7 

1.0121× 10−5 
1.01214×
10−5 

3.05227× 10−6 

(0.5,0.3) 
-

0.24460743 

-

0.24460407 

3.35983
× 10−6 

3.4283× 10−5 
3.42835×
10−5 

5.69591× 10−6 

(0.5,0.4) 
-

0.25085659 

-

0.25084581 

1.07880
× 10−5 

8.1517× 10−5 
8.15178×
10−5 

1.94224× 10−5 
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(0.5,0.5) 
-

0.25710468 

-

0.25707793 

2.67551
× 10−5 

1.5962× 10−4 
1.59629×
10−4 

5.20368× 10−5 

 

𝒗(𝒙, 𝒕) 

(𝒙, 𝒕) Exact 𝑽𝑰𝑴(𝒗𝟑) 
|𝒗𝐄𝐱𝐚𝐜𝐭
− 𝒗𝑽𝑰𝑴| 

|𝒗𝐄𝐱𝐚𝐜𝐭
− 𝒗𝑳𝑨𝑫𝑴| 

|𝒗𝐄𝐱𝐚𝐜𝐭
− 𝒗𝑯𝑷𝑴| 

|𝒗𝐄𝐱𝐚𝐜𝐭
− 𝒗𝑶𝑯𝑨𝑴| 

(0.1,0.1) 
-

0.11621601 

-

0.11621595 

6.29624
× 10−8 

4.18318×
10−6 

1.19150×
10−6 

5.85344× 10−7 

(0.1,0.2) 
-

0.11769793 

-

0.11769691 

1.02511
× 10−6 

9.4169× 10−6 
9.41690×
10−6 

2.12165× 10−6 

(0.1,0.3) 
-

0.11905855 

-

0.11905327 

5.27864
× 10−6 

3.1365× 10−5 
3.13655×
10−5 

1.12982× 10−5 

(0.1,0.4) 
-

0.12029161 

-

0.12027464 

1.69620
× 10−5 

7.3295× 10−5 
7.32950×
10−5 

3.43727× 10−5 

(0.1,0.5) 
-

0.12139134 

-

0.12134924 

4.20907
× 10−5 

1.4097× 10−4 
1.40972×
10−4 

7.71116× 10−5 

(0.2,0.1) 
-

0.11905855 

-

0.11905849 

5.68500
× 10−8 

1.0629× 10−6 
1.06292×
10−6 

8.39207× 10−7 

(0.2,0.2) 
-

0.12029161 

-

0.12029068 

9.22907
× 10−7 

8.3474× 10−6 
8.34741×
10−6 

3.45590× 10−6 

(0.2,0.3) 
-

0.12139134 

-

0.12138658 

4.75130
× 10−6 

2.7620× 10−5 
2.76201×
10−5 

2.08340× 10−6 

(0.2,0.4) 
-

0.12235252 

-

0.12233725 

1.52641
× 10−5 

6.4101× 10−5 
6.41010×
10−5 

8.49823× 10−6 

(0.2,0.5) 
-

0.12317053 

-

0.12313267 

3.78646
× 10−5 

1.2241× 10−4 
1.22412×
10−4 

3.29106× 10−5 

(0.3,0.1) 
-

0.12139134 

-

0.12139129 

4.72199
× 10−8 

8.9460× 10−7 
8.94544×
10−7 

2.35740× 10−6 

(0.3,0.2) 
-

0.12235252 

-

0.12235175 

7.66441
× 10−7 

6.9635× 10−6 
6.96343×
10−6 

9.48698× 10−6 

(0.3,0.3) 
-

0.12317053 

-

0.12316658 

3.94649
× 10−6 

2.2828× 10−5 
2.28283×
10−5 

1.67671× 10−5 

(0.3,0.4) 
-

0.12384140 

-

0.12382873 

1.26722
× 10−5 

5.2465× 10−5 
5.24659×
10−5 

2.02210× 10−5 

(0.3,0.5) 
-

0.12436183 

-

0.12433042 

3.14112
× 10−5 

9.9167× 10−5 
9.91676×
10−5 

1.65572× 10−5 

(0.4,0.1) 
-

0.12317053 

-

0.12317050 

3.51310
× 10−8 

6.9110× 10−7 
6.91094×
10−7 

3.92344× 10−6 

(0.4,0.2) 
-

0.12384140 

-

0.12384083 

5.66778
× 10−7 

5.3051× 10−6 
5.30519×
10−6 

1.57786× 10−5 

(0.4,0.3) 
-

0.12436183 

-

0.12435892 

2.91137
× 10−6 

1.7133× 10−5 
1.71337×
10−5 

3.22743× 10−5 

(0.4,0.4) 
-

0.12472925 

-

0.12471991 

9.33541
× 10−6 

3.8748× 10−5 
3.87483×
10−5 

5.08384× 10−5 

(0.4,0.5) 
-

0.12494184 

-

0.12491873 

2.31015
× 10−5 

7.1974× 10−5 
7.19747×
10−5 

6.96457× 10−5 

(0.5,0.1) 
-

0.12436183 

-

0.12436181 

2.07152
× 10−8 

4.5970× 10−7 
4.59601×
10−7 

5.48493× 10−6 

(0.5,0.2) 
-

0.12472925 

-

0.12472891 

3.33528
× 10−7 

3.4311× 10−6 
3.43102×
10−6 

2.21052× 10−5 

(0.5,0.3) 
-

0.12494184 

-

0.12494012 

1.71471
× 10−6 

1.0739× 10−5 
1.07397×
10−5 

4.80354× 10−5 

(0.5,0.4) 
-

0.12499853 

-

0.12499305 

5.47659
× 10−6 

2.3445× 10−5 
2.34456×
10−5 

8.22156× 10−5 

(0.5,0.5) 
-

0.12489904 

-

0.12488555 

1.34953
× 10−5 

4.1831× 10−5 
4.18318×
10−5 

1.24363× 10−4 
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Figure 5: The graph 2D exact and 3-approximation solution of Boussinesq-Burger for 𝑐 =
1/2 , 𝑘 = −1, 𝑏 = 2 . 
 

  

  
Figure 6: Plots of results for 𝑐 = 1/2  , 𝑘 = −1 𝑎𝑛𝑑 𝑏 = 2    ,   0 ≤  𝑥 ≤ −4,    0 ≤ 𝑡 ≤ 0.5, 

(a) Exact solution of  𝑢(𝑥, 𝑡) , (b) VIM solution of  𝑢(𝑥, 𝑡) , (c) Exact solution of  𝑣(𝑥, 𝑡) , (d) 

VIM solution of 𝑣(𝑥, 𝑡). 
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6. Results and Discussion 

     Tables 1, 2, and 3 show a comparison among the results of the absolute errors of the 

approximate solutions of equation (18) that are obtained by using the variational iteration 

method for different values of 𝛼 =  0.5, 𝛼 =  0.75, and 𝛼 =  1. The results are also compared 

with the two-dimensional multi-wave Legendre method, the optimal homotopy asymptotic 

method (OHAM), and the q-homotopy analysis transform method (q-HATM), we obtained 

good results compared to the mentioned methods, where the results when 𝛼 =  0.5 are better 

than other methods and very close when the rest of the other values, that indicates the efficiency 

and accuracy of VIM for solving such equations. Figures 1 and 2 show the approximate 

solutions to equation (18) when 𝛼 = 1,−50 ≤ 𝑥 ≤ 50, and 0 ≤ 𝑡 ≤ 1. It should be noted that 

only two iterations are used in the evaluation. 

 

     Table 4 compares the absolute error results of VIM and q-HATM using  𝛼 =  0.5, 𝛼 =  0.75, 
and 𝛼 =  1 with the unique values of x and t. Figures 3 and 4 show the approximate solutions 

to equation (22) when 𝛼 = 1,−50 ≤ 𝑥 ≤ 50, and 0 ≤ 𝑡 ≤ 1. It should be noted that only two 

iterations are used in the evaluation. The results indicate the accuracy and efficiency of VIM. 

 

     Table 5 shows the approximate solutions for (26) and (27) that are obtained by applying 

VIM in the third iteration for different values of x, t ∈ [0,1]. We compare the results of the 

absolute error with each of the Laplace Adomian Decomposition method, the homotopy 

perturbation method, and the optimal homotopy asymptotic method. Figures 5 and 6 show the 

approximate solutions to equations (26) and (27) for different values of x, t ∈ [0,1] and, 0 ≤
𝑥 ≤ 4,−4 ≤ 𝑡 ≤ 2, respectively. The results that we got are close to the exact solution, in 

addition to being better and more accurate than LADM and HPM, and OHAM. 

 

     The construction of a rough solution to nonlinear partial differential equations of fractional 

order has been the primary objective of this effort. The goal has been achieved by using the 

variational iteration method, and there are three important points to make here. 

First, the variational iteration method gives solutions in the form of convergent series whose 

parts are easy to figure out.  

 

     Second, they can be used instead of traditional ways to solve partial differential equations 

because their accuracy depends on the fractional differential equation that is not linear.  

Third, the variational iteration method solves nonlinear equations without the need for so-called 

Adomian polynomials. 

 

7. Conclusion 

     To solve the time-fractional Kaup-Kupershmidt equation and the Boussinesq-Burger 

equation, the Variational Iteration Method is introduced. To verify the efficacy and applicability 

of the suggested method, we looked at two different cases of the time-fractional KK equation 

and one of the Boussinesq-Burger equations. The obtained results are compared to those of 

other methods in Tables 1-4 including the optimal homotopy analysis transform method 

(OHAM), the two-dimensional Legendre multiwavelet method, and the q-homotopy analysis 

transform method (q-HATM). In most cases, the (VIM) method gave the best results. The 

results of solving the Boussinesq-Burger equation by using the Laplace Adomian 

Decomposition Technique and homotopy perturbation approach are compared with the (VIM) 

method, where the (VIM) method was the best, the results are displayed in Table 5.  
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