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Abstract

The variational iteration method is used to deal with linear and nonlinear
differential equations. The main characteristics of the method lie in its flexibility and
ability to accurately and easily solve nonlinear equations. In this work, a general
framework is presented for a variational iteration method for the analytical treatment
of partial differential equations in fluid mechanics. The Caputo sense is used to
describe fractional derivatives. The time-fractional Kaup-Kupershmidt (KK) equation
is investigated, as it is the solution of the system of partial differential equations via
the Boussinesg-Burger equation. By comparing the results that are obtained by the
variational iteration method with those obtained by the two-dimensional Legendre
multiwavelet, the optimal homotopy asymptotic method (OHAM), the g-homotopy
analysis transform method, the Laplace Adomian Decomposition Method, and the
homotopy perturbation method, the first method proved to be very effective and
convenient. The main methodology in this work is anticipated to be applied to various
fractional calculus, linear, and nonlinear problems.

Keywords: Variational Iteration Method, Lagrange multiplier, Partial differential
equations, time-fractional Kaup-Kupershmidt, Boussinesq-Burger equation.
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1. Introduction

Fractional order partial differential equations have been suggested and studied in a variety
of scientific domains over the last few decades, including chemistry, finance, biology, plasma
physics, mechanics of materials and fluid dynamics[1-6]. Nonlinear Partial differential equation
systems have also been increasingly used to represent physical systems and control systems.
See[7], [8]. Unfortunately, the exact analytic solutions to these equations are difficult to find[9].
To solve these kinds of problems, you need good tools that can help you find a more accurate
solution. The iterative Laplace transform method (ILTM)[10], the iterative reduced differential
transform method (RDTM)[11], the fractional Adomian decomposition method (FADM)[12],
the Elzaki transform decomposition method (ETDM)[13], the fractional homotopy perturbation
method (FHPM)[14], the fractional homotopy analysis transform method (FHATM)[15], the
residual power series method (RPSM)[16], and the g-homotopy analysis transform method (-
HATM)[17]. In this article, we will try to use an effective analytical method, which is the
variational iteration method. The variational iteration method is particularly valuable as a tool
for scientists and applied mathematicians because it provides immediate and visible symbolic
terms of analytic solutions as well as numerical approximate solutions to fractional differential
equations. It was first suggested by He[18-21], and it has been successfully used in ordinary
differential equations, partial differential equations, and other fields[22-24]. Ji-Huan He [25]
was the first to apply the variational iteration method to fractional differential equations. Odibat
and Momani[26], [27] recently solved fractional order nonlinear differential equations using
the variational iteration method.

The objective of this paper is to extend the application of the variational iteration method to
obtain analytical solutions to some fractional partial differential equations and the system of
nonlinear partial differential equations. These equations include the time-fractional Kaup-
Kupershmidt (KK) equation and the Boussinesg-Burger equation. Throughout this paper, the
fractional partial differential equations are obtained from the corresponding integer order
equations by replacing the first-order time derivative with a fractional in the Caputo sense[28]
oforderawith0 < a < 1.

This paper is organized as follows: We introduce the idea of calculus in section 2. The
mathematical equation for the variational iteration method (VIM) is presented in section 3. In
sections 4 and 5, we explain the applications of the method to equations (time-fractional Kaup—
Kupershmidt equation and Boussinesg-Burger equations) and how to create convergent
solutions from the exact solutions and compare the results with other analytical methods. The
results and discussion are given in section 6. The conclusions are presented in section 7.

2. Basic definitions

We provide some fundamental concepts and characteristics of the fractional calculus theory
that are relevant to this study.
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Definition 2.1[29]
The gamma function I'(a) is defined by the integral

r'(a) =f t* le~tdt,
0

Some properties of the Gamma Function
'a+1) =al(a) =al.
Definition 2.2 [30], [31]
The Riemann-Liouville fractional integral operator of order « > 0 is defined as follows:

1 t
— | (& =8*1f(&)dé, >0 and t > 0.
f(t) ) a=0.
Some characteristics of the operator J%are given as follows:

- JYPF@®) =JFF@®), (a>0,>0).

r'(1+y)
- ayy — 7Y jaty y —
2 J7t F(1+y+a) e (y >-1).

When using fractional differential equations to simulate real-world processes, the Riemann-
Liouville derivative has some drawbacks. Therefore, we will introduce the modified fractional
differential factor D* that is proposed by Caputo in his work on viscoelastic theory[28].

Definition 2.3[30], [31]
The Caputo fractional derivative of a function f(t) of order « is defined as:

1

DEF) =MD" () = s | (£ = O™ FM S, @

form—1<a<m,meN, t>0, feC™.

Definition 2.4 [30], [31]
The Caputo time-fractional derivative operator of order @ > 0 is defined as follows:

1 t g 0Tu(x, )
sun ) | TGm )y €O e dem-1<a<m
Dfu(x,t) =———= 0 (3)
ot 0™u(x, t)
-7 a=m€N.
atm
Where m is the smallest integer greater than a.
Lemma2llf m—1<a<m,meN,feCl},u>-1,then
- DIf@) = f(b) .
2 JUDEf(D) = F(©) = Tp FR 0N, £>0.
3. Mathematical formulation for VIM
We consider the time-fractional partial differential equation as follows:
Dfu(x,t) = f(u, Uy, Uyy) +qlx,t), m—1<a<m. (4)

Where D¢ = ;7 is the Caputo fractional derivative of order a,m € N, f is a nonlinear function

and q is the source function subject to the initial and boundary conditions.
u(x,0) =h(x), 0<ac<l.
u(x,t) >0 as|x| > o, t>0.

)
and
u(x,0) = h(x), %u(x, 0)=gkx), 1<a< (6)

u(x,t) >0 asl|x| > oo, t>0.
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where h(x), g(x) and q(x,t) are all continuous functions, and ¢, m—1<a <m, is a
parameter describing the order of the time-fractional derivative in the Caputo sense. According
to the variational iteration method, we can construct the correction functional for Eq. (4) as:

U (6, t) = u,(x,t)

t aa
+ | 4[5 (anCe £0) + £ @080, () (T, ) -
~q(e 9| d.

Where A is a general Lagrange multiplier that may be the best discovered using variational
theory for the variable t [32]. To identify an approximate Lagrange multiplier, some
approximation must be made. The correction functional (7) can be approximately expressed as
follows:

Ut (6, t) = u,(x,t)

Erom _ — —
+ .L A [at_m (un (x’ E)) + f(un(x: 5)’ (un(x' E))x' (un (x’ E))xx) (8)
- a9 ds,

In this case, we apply the constrained variations to the nonlinear term
@, (x,8), (1, (x,6))y (W, (x,8))xx). In this case, we can easily determine the multiplier by
integration by parts, Making the above functional stationary, noticing that §i,, = 0.

t
am
Btns2 () = B, 0) + 8 [ 20|55 (un (,)) - )|, ©
This yields the following multipliers i
AE) = -1, form = 1. (10)
AQ) =¢&—t, form = 2. (11)

Therefore, form =1 (0 < a < 1), we obtain the following iteration formula:
Unt1(x%, ) = up(x, t)

t 0%
- | [ (un 0) + £ (70 ), (02 00),, (@), 12
-9,z
In this case, we begin with the initial approximation
uy(x, t) = h(x). (13)

Form =2 (1 < a < 2), we obtain the following iteration formula:
Unt1(x%, ) = Uy (x, 1)

+f0t<f

a* . . . (14)
= )3z (a6 ) + (@ (), (@6, ) (T )
- 99| ds,
In this case, we begin with the initial approximation
ug(x, t) = h(x) + tg(x). (15)

Using the resulting Lagrange multiplier and any selected function u,, the successive
approximations u,,; (x, t), n = 0 of the solution u(x, t) will be easily obtained.
Finally, the solution u(x,t) = lim u,(x,t) approximated by the Nth term wuy (x, t), which
n—-oo

converges to the close form solution of Eq. (4). Note that the convergence of VIM has been
presented and analysed for the fractional partial differential equations in[30], [31], [33] .
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4. Application of VIM for solving nonlinear time-fractional (KK) equation:

In 1980, Kaup first proposed the renowned dispersive classical Kaup-Kupershmidt
equation[34], and Kupershmidt updated it in 1994[35]. the equation is used to examine the
behavior of capillary gravity waves and nonlinear dispersive waves. Given is the generalized
equation for fifth-order nonlinear evolution by:

DEu(x, t) — QUlyyy — bPUL ULy, + CU UL + Usyynns (16)
where a, b, and ¢ are real constants, and 0 < a < 1 displays the order time-fractional
derivative. By changing the values of a, b, and c, the above nonlinear evolution equation of the
fifth degree can be simplified to the fractional Kaup-Kupershmidt equation of the fifth degree.
The previous equation becomes, assuming a = b = 15, and ¢ = 45.
Dfu(x, t) — 15Uty — 15PU ULy + 45U Uy + Usyrrrs 17)
The classical Kaup—Kupershmidt equation is known to be integrable [36] for p = 5/2 and has
bilinear representations[37]. But, it appears that the precise form of its N-soliton solution is
unknown. In recent years, a lot of effort has been put into studying the classical Kaup-
Kupershmidt equations. Various methods have been independently developed by which soliton
and solitary wave solutions may be obtained for the nonlinear evolution equations. However,
based on our best knowledge, the thorough examination of the nonlinear fractional order Kaup-
Kupershmidt equation is just the beginning.

Example 4.1 Consider the time-fractional Kaup-Kupershmidt equation[38]

DEu(x, t) — 15Ullyyy — 15PU ULy + 45U Uy + Uspnye, 0 < @ < 1. (18)
with the initial condition
1 wxyy w?y?
— 202 2 19
u(x,0) 4Wysech ( 5 )+ TR (19)

The exact solution of Equation (18) is given by

y —w?(=8y*u+16u* +y*)
2 ( 16I'(1 + a)

where y, u,and w are constant with w # 0.

Following the discussion presented in the second section, we can obtain the recurrence relation

U (6, ) = wn (2, £) — j [ T, f))

—T(x, f)) (21)

+ 45 (i (x, f)) un( €)+ un(x f)ldf

By using the aforementioned variational |terat|on formula and starting with

24,2

wey
12’

u(x, t) = %W y2sech? ( t% + WX)) + (20)

3

d
(6, 8) — 15 (un(x Do

2

—15P < u, (x, f)

24,2
u(x, 0) = =w?y2sech? (ny ) + u, we may get the approximate values shown below.
(1) = 1 B2 (1 ) 4 1
Ug\ X, —4wy sec zywx 12W}/,
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1 1 1 45 1 1
u; (x, t) = szyz sech? (Eywx) + szyz — 1—6tw7y7 sech* (Eywx> tanh? (Eywx>
75 01 1
+3—2tw y’ sech (Eywx> tanh (Eywx>
_g 707 2 l 3 l
16 tw’y”’ sech 2ywx tanh 2ywx
181 - ) l 1
+—6 2 tw’y’ sech 2ywx tanh 2ywx
_E 787 4 1 3 l
32pw y’ sech 2ywx tanh 2ywx t
+ Epw7y7 sech* (1 ywx) tanh (1 ywx) t
32 2 2
+EW7 7 sech® z wx | tanh E wx | t
64" 7 2”7 2”7
+EW7 7 sech? z wx | tanh® E wx |t

and so on, using MAPLE software, it is possible to extract the remaining parts of the iteration
formula (21).

The tables and figures below show the approximate solutions to Eq. (18) for different values
of 0 =0.5, . =0.75, and o = 1 that are obtained by using the (VIM) and compared with the
multi-wavelength two-dimensional Legendre method, the optimal convergence method
(OHAM), and the transformation analysis method. g-homotopy (q-HATM).

Table 1: Comparison between absolute errors in VIM, two-dimensional Legendre multiwavelet
method, OHAM, and g-HATM of Eq. (18),at u=0w=1,y=01,a=1,p=Zandt =
0.1.

Wit i L Uopam [38] Uq—parm [38]

0.1 3.5268 x 10710 3.4968 x 10710 3.1482 x 1071 3.4870 x 10~1°
0.2 7.0308 x 10710 7.2934 x 107° 6.3101 x 1071 7.0110 x 10710
0.3 1.0532 x 10~° 2.6793 x 107° 9.4682 x 10710 1.0510 x 10~°
0.4 1.4028 x 10~° 5.8103 x 107° 1.2620 x 10~° 1.4017 x 107°
0.5 1.7520 x 10~° 1.0061 x 104 1.5765 x 10~° 1.7517 x 10~°

Table 2: Comparison between absolute errors in VIM, two-dimensional Legendre multiwavelet
method, OHAM, and g-HATM of Eq. (18), at u=0w=1,y=0.1,a=0.75,p =

2and t = 0.1.
X i e i ket Uopam [38] Ug_parm [38]
0.1 6.7734 x 10710 6.7141 x 10710 6.0478 x 10710 5.2676 x 10710
0.2 1.3533 x 107° 7.2899 x 1076 1.2165 x 1071° 1.0537 x 107°
0.3 2.0287 x 107° 2.6785 x 107° 1.8276 x 10710 1.5807 x 107°
0.4 2.7033 x 107° 5.8094 x 1075 2.4376 x 107° 2.1085 x 10~°
0.5 3.3768 x 107° 1.0060 x 10™* 3.0461 x 107° 2.6327 x 107°
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Table 3: Comparison between absolute errors in VIM, two-dimensional Legendre multiwavelet
method, OHAM, and g-HATM of Eq. (18), at u=0w=1,y=0.1,a=0.5,p =

Sand t =0.1.
Wit | 06| Uonam [38] Uq_parm [38]
0.1 1.2348 x 107° 1.2175 x 107° 1.0979 x 10~1° 6.1555 x 10710
0.2 2.4789 x 107° 7.2836 x 107 2.2262 x 107° 1.2337 x 107°
0.3 3.7221 x 107° 2.6773 x 1075 3.3531 x 107° 1.8497 x 10~°
0.4 49638 x 107° 5.8078 x 1075 44781 x107° 2.4657 x 107°
0.5 6.2035 x 10~° 1.0058 x 107 5.6004 x 10~° 3.0807 x 107°

0.0010

T T T T
—40 -20 0 20 40
x — values

[

Exact Solution © _ VIM Solution |
Figure 1: Exact and VIM approximate solution of KK equationata =1, u =0,w =1,p =
2,and y =01 att=05,-50 < x < 50.

20 !

-20

x — values

x — values

(a) (b)

x — values
©
Figure 2: Surfaces of (a) exact solution, (b) VIM solution, (c) absolute error =

lugxa —Uyimlata =1,u=0,w=1,p =gand y=0.1.
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Example 4.2 Consider the time-fractional Kaup-Kupershmidt equation[38]
Dfu(x, t) — 15Ullyyy — 15PU ULy + 45U Uy + Ugrsrrs 0<a<l (22)
with the initial condition

u(x,0) = %c — scsech2 (Vex), (23)

The exact solution of Equation (22) is given by
u(x, t) = gc - %csech2 (\/E(x + 8(3c% — 5pc)t)). (24)

where c is constant ,c # 0.
Following the discussion presented in the second section, we can obtain the recurrence relation

t
0% a3
Un+1(x, 8) = up(x, t) — f [ﬁun(% §)—15 <u~n(x, )53 Il f))
0
d 02 0
~15P (amx, §) 37 (x, f)) +45(T (6, 9) T (%, 9) =

65
+ ﬁﬂ?(% f)l dg,
By using the aforementioned variational iteration formula and starting with

u(x,0) = %c - scsech2 (+/cx), we may get the approximate values that are shown below.
4c  4csech?(Vex)

uy(x, t) = 3 >
4c  4csech?(Vex) 5760tc% sech?(Vex) tanh®(Vex)
u(x,t) = 3 > + >
3008tc% sech?(Vex) tanh(Vcx) 5760tc% sech*(Vex) tanh3(Vex)
) 7 P ) 7 pz
N 7680tcZ sech*(Vcx) tanh(Vex) _ 2880c2 sech*(Vex) tanh3(Vex) t
7 pz 7 P
N 960c2 sech*(Vex) tanh(Vex) t _ 5760c2 sech®(Vex) tanh(Vex) t
] p p®
2880cz sech?(Vcx) tanh5(Vex) t
b

and so on, using MAPLE software, it is possible to extract the remaining parts of the iteration
formula (25).

The results of the absolute errors of equation (22) for different values (a=0.5, a=0.75, and
a=1) were summarized using (VIM) and compared with the absolute error of (G-HATM) in the
table and figures below for different values of x, t.

Table 4: Comparison between absolute errors in VIM and gq-HATM of Eq. (22), at ¢

0.01,p =2

5197



Shihab et al. Iragi Journal of Science, 2023, Vol. 64, No. 10, pp: 5190-5207

Uy_parm [38] Uyim Uq_parm [38] Uyim Uq_parm [38] Uyim
1 6.9281 6.9266 6.9249 6.9245 6.9213 6.9213
x 1075 x 1075 x 1075 x 1075 x 1075 x 1075
2 1.4299 1.4295 1.4294 1.4293 1.4290 1.4290
x 107% x 1074 x 1074 x 1074 x 1074 x 10~*
= 3 2.0569 2.0571 2.0572 2.0573 2.0575 2.0575
o x 1074 x 107 x 107 x 107* x 107* x 107
4 2.5375 2.5392 2.5396 2.5400 2.5413 2.5413
x 107* x 107 x 107 x 107* x 107* x 107*
5 2.8563 2.8601 2.8608 2.8617 2.8642 2.8642
x 107* x 107 x 107 x 107* x 107* x 1074
1 1.1899 1.1904 1.1899 1.1901 1.1896 1.1896
x 1074 x 1074 x 1074 x 1074 x 1074 x 107*
2 2.6828 2.6831 2.6827 2.6828 2.6824 2.6824
x 1074 x 107 x 1074 x 107* x 107* x 107
2 3 3.9699 3.9698 3.9701 3.9701 3.9704 3.9704
o x 10~* x 1074 x 107 x 107* x 107* x 107*
4 49729 49730 49744 49744 49761 49761
x 107* x 107 x 107 x 107* x 107* x 1074
5 5.6552 5.6562 5.6587 5.6590 5.6623 5.6623
x 107* x 107 x 107 x 107* x 107* x 107*
1 1.4899 1.4910 1.4901 1.4906 1.4900 1.4901
x 1074 x 1074 x 1074 x 107* x 107* x 107
2 3.7540 3.7550 3.7543 3.7546 3.7541 3.7542
x 107* x 1074 x 107 x 107 x 1074 x 107*
E2 3 5.7297 5.7293 5.7298 5.7296 5.7300 5.7300
o x 107* x 107 x 107 x 107* x 107* x 1074
4 7.2926 7.2910 7.2933 7.2927 7.2945 7.2945
x 107* x 107 x 107 x 107* x 107* x 107*
5 8.3793 8.3775 8.3814 8.3810 8.3844 8.3843
x 107 x 1074 x 1074 x 107 x 107% x 107
1 1.5913 1.5929 1.5917 1.5924 1.5919 1.5920
x 107* x 107 x 107 x 107* x 107* x 10~*
2 4.6381 4.6400 4.6389 4.6396 4.6390 4.6392
x 1074 x 107 x 107 x 1074 x 1074 x 107
=) 3 7.3280 7.3276 7.3282 7.3279 7.3282 7.3283
i x 107* x 107 x 107 x 107* x 10~* x 107*
4 9.4865 9.4834 9.4862 9.4851 9.4868 9.4867
x 107 x 1074 x 1074 x 107 x 107% x 107
5 1.1018 1.1013 1.1018 1.1017 1.1020 1.1020
x 1073 x 1073 x 1073 x 1073 x 1073 x 1073

v — Solution

—_10 —20 0 20 40
x — values
—0.002y

[ Exact Solution 2 W IM Solution |

Figure 3: Exact and VIM approximate solution of KK equation at a =1 ¢ =0.01 att =
0.5.
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0.012]
0.0107
0.008]
0.0067]
0.004-]
0.0027]
o
-0.0027]

0.01 21
0.01 O“_‘
0.008’:
(J.O()()’_
0.0()4“_‘

0.0027]

07

-0.0027

x — values x — values

(@) (b)

x — values

(c)
Figure 4: Surfaces of (a) exact solution, (b) VIM solution, (¢) |ugyqa —uyimlata =1 ¢ =
0.01.

5. Application of VIM for solving the Boussinesg—Burger equation

1
Uy — va + 2uu, = 0, (26)

1
Ve — Euxxx +2wv), =0, 0<x<1 (27)

Numerous phenomena in physics, engineering, applied mathematics, chemistry, and biology
are known to be described by systems of nonlinear equations.

The propagation of shallow water waves is described by the Boussinesg-Burgers equations,
which are derived from the study of fluid flow. In this case, x and t stand for normalized space
and time, respectively, whereas v(x, t) stands for the height of the water surface above the
horizontal level at the bottom and u(x, t) stands for the horizontal velocity at the leading order
[39]

Example 5.1 Consider the general Boussinesq -Burger equation [40], [41] of the form
1

U =5 Vs + 2uu, =0, (28)

1
Ve = 5 Urxx +2(uv), =0, 0<x<1 (29)

with initial conditions:

ck ck —kx — In(b)
u(x,0) =7+7tanh — ) (30)
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—k? kx + In(b
v(x,0) = - sech? <—x zn( )> (31)
The exact solutions of Eq. (28) and (29) are given by:

ck ck ck?t — kx — In(b)

u(x,t) =—+—tanh , (32)
2 2 2
—k? kx — ck?t + In(b

v(x,t) = Tsech2< r—c > n( )>. (33)

Now, we apply VIM, to solve the nonlinear Boussinesg-Burger equation. we construct a
correction functional:

U (6, t) = u,(x,t)

t 9] 1[0 d
[ %un(x, H-5 (a e f)) +2 (mx, O T, f))] ag, Y

Vna1(x,0) = vn(x,t t)
d 1( 0% _ o, _ ~ (35)
+ j AZ [& vn(xl f) - E (ﬁun(xr f)) +2 a (un(x' f) Un(x, f))] df;
0
Where 1, and 73, are restricted to variation, 6, = 0 and 67, = 0, uy(x,t) and vy(x,t) are
an initial approximation or trial function, and A(%) is a Lagrange multiplier.

With the above correction functional stationary, we have:
Supt1(x,t) = Suy(x, t)

: 0 1(0
t6 | A [—un(x, §) — —(—@Z(X. f))
oj 0¢ 2\ 0x (36)
3]
+ 2 (u~n(x, E) aﬁ;l’(xi E))] df:
6Vny1(x, t) = S (x, 1)
t
+ 5f/'12 [ivn(x, $) —1<a—2u~n(x, f))
. 0¢ 2\ 0x (37)

0 (o
+ 2 (0 ) Tl f))] ds,

Stk (0) = bun 0 +6 [ 2, [% ua 8] (38)
0

V1 (1, 8) = 0,6, £) + f 2 [% va(x.8)| 2, (39)
0

By using integration by parts, we have:
t

Btns1(x,8) = Stn(x, O)(L + A()) — 8 f 21 (O unCr, )dE, (40)

0
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t
80p (5, 8) = 80, (L + A() — 6 f X2 ()6, ),
0
By using the following stationary conditions:

Su, : 1+ 2,(8€) =0, Su,: A1(6) =0,

Svy t 1+ 2,(8) =0, S 472(8) =0,
Therefore, the Lagrange multiplier can be identified as

A1) = 1,(8) = -1
As a result, we can obtain the following iteration formula
un+1(xr t) = un(x; t)

‘o 1{a _ (o a .
- [ g —3( 570 ) +2( meeH) 3-me D | a5
vn+1(x; t) = vn (X, t)

‘[a 103 _ o, .
—f %Un(x,f)_z ﬁun(-x;f) +2a(un(xi€) Un(x,f)) f;
0

(41)

(42)
(43)

(44)

(45)

(46)

Then, using the variational iteration formula (29)-(29), we begin with the initial approximation

- - _1,2
ug(x, t) = % + %tanh (%n(b)) and vy(x,t) = %sech2 (

k ck kx + In(b
W) =5 - tann ()

kx+ln(b))

+k3 hz(lk +1l b)t h(lk +ll b)t
16sec > kx 2n()anzx 2n()
+1<1 k ! kt h(lk +1l (b))) k2(1

) 2C 2C an > X 2n c
—t hz(lk +1l (b)))t

an > X 2n ,

k? , (kx +1n(b)\ ck* , (1 1 z
vi(x,t) = —gsech > + 16 (1 — tanh (Ekx +§ln(b))) t

Kk, hz(lk +1l(b))(1 t hz(lk + 1 (b)))t
8 an 2 X 2 n an 2 X 2 n
Ck4<1 ¢ h2<1k +1l(b))> h2<1k +1l(b))t
16 an 2 X 2 n sec 2 X 2 n
1(1 I
2\2°¢
ck

L
+=In( ))t,

t h(lk My (b)))k3 hz(lk + 5 (b))t h(lk
) an ) X 2 n sec 2 X 2 n an ) X

, it follows that

Similarly, the other parts of the iteration formula (34-35) may be found by using the

Mathematica or Maple software packages.

As in the table and figures below, we set (¢ = 1/2, k =-1, and b = 2) to test the validity and
reliability of the VIM solution of the Boussinesq-Burger equation. For different values of x, t €
[0,1], we show the results obtained by applying VIM in the third iteration, the exact solution
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results, the absolute error results, and compare the results in terms of absolute errors with the
Laplace Adomian Decomposition Method (LADM)[41], the homotopy perturbation method
(HPM)[40], and the optimal homotopy asymptotic method (OHAM)[40].

Table 5: comparison of the solution of Boussinesq—Burgers equation using three terms
approximation for VIM, LADM, HPM, and OHAM at various points by absolute errors when

c=1i2,k=—1andb=2.

0 N CAE O s R sl
(0.1,0.1) S ey LK EP S T SV 318534x 107
(0.1,0.2) 0_189:57622 0_189:57586 i.51%2_578 7.4086x 107° 7'4105_53)‘ 7.33961x 1077
(0.1,0.3) S, i‘%i_zs 2.5391x 105 2'5135_15“ 1.36454x 1076
(0.1,0.4) | i‘91105_‘§5 6.1082x 105 6'110(?_25X 3.08338x 10~°
GNON oose 020780701 wpae. L2100x 107+ F2OPC 5 06091 1075
(0:2,0.1) [ A O VT S S T R N P oS T
WA ooos osotirose  woma  82095x1070  O2OPC 1 05314x 1070
(020.3) [, 1'31‘55_25 2.8349 105 2'81351?55”‘ 7.84907x 10~
QAN e ootoe00z e 67973x 107 6'71907_357 X 6.84685x 106
(0:2,0.5) [P A E 77 P T X P T
(0:310.1) O S A K 71 O T AR Y O T
(0:30.2) [P i‘41101_32 9.0676x 10-6 9'01607_567 X 153865x 10~
(0.3,03) [ 1'71%2_26 3.0880x 105 3.01853_052x 1.62153% 1076
(0:3.0.4) [P, i'ﬁs_ﬁs 7.3821x 105 7'31802_151" 1.08559% 105
(03,0.5) [ 1'21107_853 1.4533x 10~ 1'41503_33X 3.66844x 1075
QRN o occse ootorsssy  oane  L2022x1070  M2RERX 3 50880x 1070
(0.4,0.2) A Y S (R A ¥ R S T
(0.40.3) |F SN 111207_30 3.2885% 10~ 3'218(;3_53>‘ 3.52562x 10-6
(0.4,0.4) [ S I & S U 7'8135_73x 1.50654x 10-5
OOBN iious oommmemsy  olh 18301x 10+ O 44507k 107
(0.5,0.1) 0_232'13709 0_232'13705 i‘olto_z,l 1.2600% 107° 1'215(??67 % 3.72005% 107°
(050.2) | 2.5136939 1.0121x 105 1'01102_1;” 3.05227x 106
05.0.3) [ 1'3’1%9_%3 3.4283% 10-5 3'412(;3_355“ 5.69591x 10~
(05.0.4) [NV AL 1T ST 8'11501_75x 1.94224 105
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Figure 5: The graph 2D exact and 3-approximation solution of Boussinesq-Burger for ¢ =
1/2,k=-1,b=2.
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Figure 6: Plots of results forc =1/2 , k=—-1landb=2 , 0< x<—-4, 0<t<0.5,
(@) Exact solution of u(x,t) , (b) VIM solution of u(x,t) , (c) Exact solution of v(x,t), (d)
VIM solution of v(x, t).
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6. Results and Discussion

Tables 1, 2, and 3 show a comparison among the results of the absolute errors of the
approximate solutions of equation (18) that are obtained by using the variational iteration
method for different values of « = 0.5, = 0.75,and @ = 1. The results are also compared
with the two-dimensional multi-wave Legendre method, the optimal homotopy asymptotic
method (OHAM), and the g-homotopy analysis transform method (q-HATM), we obtained
good results compared to the mentioned methods, where the results when a = 0.5 are better
than other methods and very close when the rest of the other values, that indicates the efficiency
and accuracy of VIM for solving such equations. Figures 1 and 2 show the approximate
solutions to equation (18) when @ = 1,—50 < x < 50,and 0 < t < 1. It should be noted that
only two iterations are used in the evaluation.

Table 4 compares the absolute error results of VIM and g-HATM using a« = 0.5,a = 0.75,
and a = 1 with the unique values of x and t. Figures 3 and 4 show the approximate solutions
to equation (22) when ¢ = 1,—50 < x < 50,and 0 < t < 1. It should be noted that only two
iterations are used in the evaluation. The results indicate the accuracy and efficiency of VIM.

Table 5 shows the approximate solutions for (26) and (27) that are obtained by applying
VIM in the third iteration for different values of x, t € [0,1]. We compare the results of the
absolute error with each of the Laplace Adomian Decomposition method, the homotopy
perturbation method, and the optimal homotopy asymptotic method. Figures 5 and 6 show the
approximate solutions to equations (26) and (27) for different values of x, t € [0,1] and, 0 <
x <4,—4 <t < 2, respectively. The results that we got are close to the exact solution, in
addition to being better and more accurate than LADM and HPM, and OHAM.

The construction of a rough solution to nonlinear partial differential equations of fractional
order has been the primary objective of this effort. The goal has been achieved by using the
variational iteration method, and there are three important points to make here.

First, the variational iteration method gives solutions in the form of convergent series whose
parts are easy to figure out.

Second, they can be used instead of traditional ways to solve partial differential equations
because their accuracy depends on the fractional differential equation that is not linear.
Third, the variational iteration method solves nonlinear equations without the need for so-called
Adomian polynomials.

7. Conclusion

To solve the time-fractional Kaup-Kupershmidt equation and the Boussinesg-Burger
equation, the Variational Iteration Method is introduced. To verify the efficacy and applicability
of the suggested method, we looked at two different cases of the time-fractional KK equation
and one of the Boussinesq-Burger equations. The obtained results are compared to those of
other methods in Tables 1-4 including the optimal homotopy analysis transform method
(OHAM), the two-dimensional Legendre multiwavelet method, and the g-homotopy analysis
transform method (g-HATM). In most cases, the (VIM) method gave the best results. The
results of solving the Boussinesq-Burger equation by using the Laplace Adomian
Decomposition Technique and homotopy perturbation approach are compared with the (VIM)
method, where the (VIM) method was the best, the results are displayed in Table 5.
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