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Abstract 

     This paper emphasizes on examining the impact of a magnetic field, and porous 

medium on the non-Newtonian Jeffery nanofluid flows due to metachronal waves 

induced by ciliated structures that covering the inner walls of the symmetric channel. 

The governing equations namely continuity, motion, energy and nanoparticles 

concentration are formulated with suitable boundary conditions and simplified 

depending on the assumption of long wavelength and low Reynolds number. The 

simplified equations are solved by using Mathematica program. Further, these 

analytical solutions for velocity profile, temperature, concentration profiles and 

streamlines are graphically elucidated and discussed in detail. we concluded that the 

Hartman number and permeability parameter have opposite effect on the flow 

characteristics. Moreover, the Jeffery parameter𝜆1 has an increasing impact on the 

velocity profile whereas the dimensionless eccentricity of ellipse parameter 𝛼 

decreases the velocity profile of the fluid. 

 

Keywords: Jeffery fluid, Nanofluid, Ciliated channel, Porous medium. 

 

 ة ذات وسط مسامي: تطبيق بيولوجي تماثلجفري النانوي عبر قناة مهدبة ممائع ل MHDتدفق  
 

 1غشيم, بشرى عيسى 1, صبا ستار حسن2, احمد مولود عبدالهادي1حياة عادل علي

العراق, بغداد, العراق -قسم العلوم التطبيقية, الجامعة التكنولوجية  
 قسم الرياضيات, كلية العلوم, جامعة بغداد, بغداد, العراق 

 

 خلاصىة ال
  ينينيوتلا  ئع نانوي  ا ركزت هذه الورقة على فحص تأثير المجال المغناطيسي والوسط المسامي على تدفق م     

ة. تمت  تماثل التي تحدثها الهياكل الهدبية التي تغطي الجدران الداخلية للقناة الم  متسارعةجفري بسبب موجات  
بشروط حدودية   النانوية(  الجسيمات  وتركيز   ، والطاقة   ، والحركة   ، )الاستمرارية  الحاكمة  المعادلات  صياغة 

، تم حلوبسطت  مناسبة   المنخفض  الطويل وعدد رينولدز  الموجي  الطول  افتراض   المعادلات  اعتمادًا على 
علاوة على ذلك ، تم توضيح هذه الحلول التحليلية لملف تعريف السرعة  .    ماثماتيكاباستخدام برنامج    المبسطة

بالتفصيل.   ومناقشتها  بيانياً  الانسيابية  والمخططات  التركيز  وملامح  الحرارة  هارتمان    استنتجنا ودرجة  رقم  أن 
لها تأثير    𝜆1فري  جومعامل النفاذية لهما تأثير معاكس على خصائص التدفق. علاوة على ذلك ، إن معلمة  

 يقلل من سرعة المائع. αمتزايد على ملف تعريف السرعة بينما الانحراف اللامركزي لمعلمة القطع الناقص 
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Introduction 

     Cilia’s hair resembles tiny and dense structures, it effects on a huge variety of eukaryotic 

cells of animal kingdoms. They are naturally fabricated instruments present by a wide biological 

and physical system to sense or help pass liquids over their surfaces. Cilia motion is essential 

in many physiological processes such as respiration, locomotion, circulation, reproduction and 

alimentation   [1] [2] [3]. A metachronal wave or an oscillatory motion is formed by the 

envelope of cilia tips, which in turn assist in transporting the fluid in the ductus such as male 

sperms in the female cervical canal. However, it is found that the information related the 

metachronal wave and cilia mechanism is few. Metachronal waves are classified into various 

types depending on the dynamics and strokes of the cilia motion. If the propagative metachronal 

waves and the main flow in the same direction, this induces a symplectic beat pattern, whereas 

antiplectic patterns are generated if they are opposite in their direction.  The main attempt has 

made by Sleigh [4], and Miller [5] who studied the movement of viscous fluid via metachronal 

waves. After that Khaderi et al. [6] explained the rigorous results related to the metachronal 

movement of symmetric beating cilia that creates a gradient of pressure in the flow field 

direction. Recently many efforts in cilia transport of various fluid models achieved. For more 

detail see [7] [8] [9]. 

 

     Nanofluid is powerful in many procedures to achieve industrial requirements, like propellant 

combustion, drug delivery, cooling of automotive engines, and extraction of geothermal forces, 

and it contains nanometer-sized particles that are called nanoparticles [10]. These fluids are 

essentially a homogenous mixture of nanoparticles and base fluid. Metals, oxides or nonmetals 

are types of nanoparticles that are used in nanofluids while the base fluid is usually a conductive 

fluid, like water or ethylene glycol. The study of nanofluids has gained the attention of 

numerous researchers because they significantly improve the thermal conductivity of the base 

fluid, which is beyond the explanation of any existing theory. They are also very stable and 

have no additional problems, such as sedimentation, erosion, further pressure drop, etc. Choi 

[11] was the first who presented the nanofluids model. Nowadays, there is a continuous focus 

of the researchers on the flow analysis of nanofluids. Nowar [12] investigated the peristaltic 

flow of a nanofluid in a vertical asymmetric channel through a porous medium under the effect 

of Hall force by using the homotopy perturbation method. The impact of combined convection 

on heat transfer on pseudoplastic nanofluid flow towards an extendable Riga surface is 

numerically simulated by Rehman et al. [13]. Aamir Ali et al. [14] examined the combined 

effects of surface deformation and peristaltic motion of the walls on the nanofluid flow with 

coupled double diffusion analysis in a channel. Various studies have been illustrated for 

(Newtonian/non-Newtonian) nanofluid flow through channels with different configurations and 

effects, see [8] [15]. 

 

     Motivated by the above literature especially our gap in this study was then extended the 

investigation that is given by Imran et al. [10] which developed the nanofluids with metachronal 

rhythm through ductus differences by considering the flow in a ciliated channel to figure out 

the effect of magnetic field and porous medium. This study has numerous applications in 

physiology (human male reproductive system) and industry as well. The flow is analyzed for a 

non-Newtonian Jeffrey nanofluid that is generated by wavy motion via cilia tips. The governing 

equations are modelled and converted into a system of partial differential equations by 

employing the long wavelength and low Reynolds number approximations for which the 

analytical solutions for the problem mathematically are obtained. Finally, the analytical results 

for the velocity field, temperature distribution, nanoparticles concentration, heat transfer and 

streamlines are studied in detail with graphs for different key parameters. 
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Mathematical modeling of the problem 

     Taking into consideration the unsteady flow of incompressible MHD Jeffery nanofluid 

under the action of a transverse magnetic field 𝐵0 normal to the flow through a two dimensional 

symmetric channel filled with porous medium (see Figure 1). The channel is ciliated with a 

metachronal wave pattern due to the existence of cilia tips which possess along the infinite 

length in �̂�, and �̂� directions where the �̂�-axis lies along the centre of the channel and �̂�-axis is 

transverse to the fluid flow. The flow is induced by the collective beating of the cilia and moves 

in the �̂� direction at a constant wave velocity 𝑐 along the channel wall.  

 

     The mathematical description for the elliptical pattern of the cilia tips envelope is defined as 

[16]. 

�̂� = 𝐹(�̂�, �̂�) = ±�̂� = 𝑑 + 𝑑𝜖 𝑐𝑜𝑠 ((2𝜋𝜆−1)(�̂� − 𝑐�̂�))                                                          (1) 

 
Figure 1: Geometry of ciliated channel [2] 

 

While the horizontal cilia tip is expressed as [1] 

�̂� = 𝐺(�̂�, �̂�0, �̂�) = �̂�0 + 𝛼𝜖𝑑 𝑠𝑖𝑛 ((2𝜋𝜆−1)(�̂� − 𝑐�̂�))                                                            (2) 

 

     Where 𝑑is the mean half thickness of the channel, 𝜖 is a dimensionless magnitude of the 

cilia length, 𝜆 is the metachronal wavelength, �̂�0 is the fixed position of the particle, and 𝛼 is 

the elliptical motion eccentricity value. 

 

     The basic equations for conservation of mass, the momentum of MHD nano-fluid through 

porous medium, energy, and concentration equations expressed respectively, as follows: 

𝛻 . 𝑈 =  0,                                                                                                                               (3) 

𝜌𝑓
𝑑�̅�

𝑑�̂�
= −∇�̅� + ∇. 𝑆̅ + 𝐽 × 𝐵0 − 𝑅 + 𝜌𝑓𝑔𝛽�̅� (�̅�  − 𝑇0)  +  𝜌𝑓𝑔𝛽�̅�  (𝐶̅  −  𝐶0),                     (4) 

𝑐𝜌𝑓
𝑑�̅�

𝑑�̂�
= 𝐾∇2�̅� + 𝑐𝜌𝜌 (𝐷𝐵𝛻𝐶̅. 𝛻�̅� +

𝐾𝑇

𝑇𝑚
𝛻�̅�. 𝛻�̅�),                                                                    (5) 

𝑑�̅�

𝑑�̂�
= 𝐷𝐵𝛻2𝐶̅ +

𝐷𝑇

𝑇𝑚
𝛻2�̅�,                                                                                                            (6) 
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     Where 𝜌𝑓is the fluid density, 𝜌𝑝 is the particle density, �̅� is the pressure term, 𝑈 = (�̃�, �̃�, 0) 

is the velocity vector, (𝑅 =
𝜇

𝜅0
𝑈) is the porous medium, 𝐾 is the thermal conductivity, �̅� 

exhibits fluid temperature field, 𝑔 the gravitational acceleration, 𝛽�̅� the thermal expansion 

coefficient, 𝛽�̅� the concentration expansion coefficient, 𝐶̅ is the nanoparticle field, 𝐷𝐵is the 

Brownian diffusion coefficient, 𝐾𝑇 is the thermal diffusion, 𝑇𝑚 is the fluid mean temperature, 

and 𝐷𝑇 denotes the thermophoretic diffusion coefficient.  

However, the expression of Cauchy stress tensor 𝑆̅ for Jeffrey nanofluid is [17]. 

𝑆̅ =
𝜇

1+�̌�1
(�̇� + 𝜆2

𝑑�̇�

𝑑𝑡
),                                                                                                               (7) 

𝑆̅ refers to the extra stress tensor, 𝜇 assigns the dynamical viscosity, �̌�1, and 𝜆2  are the ratios of 

relaxation to retardation times, �̇� is the shear rate and 
𝑑

𝑑𝑡
 is the material time differentiation. 

Eqs.(1) and (2) can be utilized to evaluate the axial and transverse velocity components of cilia 

tips as below  

�̃� = 𝐴
𝜕�̃�

𝜕�̂�
+

−(2𝜋𝜆−1)(𝛼𝑑𝜀𝑐 𝑐𝑜𝑠((2𝜋𝜆−1)(�̂�−𝑐�̂�)))

1−(2𝜋𝜆−1)(𝛼𝑑𝜀 𝑐𝑜𝑠((2𝜋𝜆−1)(�̂�−𝑐�̂�)))
,  

�̃� =
(2𝜋𝜆−1)(𝑑𝜀𝑐 𝑠𝑖𝑛((2𝜋𝜆−1)(�̂�−𝑐�̂�)))

1−(2𝜋𝜆−1)(𝛼𝑑𝜀 𝑐𝑜𝑠((2𝜋𝜆−1)(�̂�−𝑐�̂�)))
,   at �̂� = �̂�                                                                     (8) 

Defining the following transformation which relates to the fixed (�̂�, �̂�, �̂�) and moving 

frame(�̂�, �̂�) as �̂� = �̂� + 𝑐�̂�, �̂� = �̂�, �̃� = �̃� + 𝑐, �̃� = �̃�, the unsteady flow transformed into a 

steady flow which moves with the metachronal wave velocity. 

Now, we introduce the following non-dimensional scaling parameters [5] [12]. 

𝑥 =
�̂�

𝜆
, 𝑦 =

�̂�

𝑑
 , ℎ =

�̂�

𝑑
, 𝛿 =

𝑑

𝜆
, 𝑢 =

𝑢

𝑐
, 𝑣 =

�̃�

 𝛿𝑐
, 𝑅𝑒 =

𝑐𝑑𝜌𝑓

𝜇
, 𝜃 =

�̅�−𝑇0

𝑇1−𝑇0
, 𝑃𝑟 =

𝜇𝑐𝜌𝑓

𝐾
, 𝐻2 =

𝜎𝐵0
2𝑑2

𝜇
 , 𝜅 =

𝜅0

𝑑2 , 𝜔 =
�̅�−𝐶0

𝐶1−𝐶0
, 𝑝 =  

𝑑2�̅�

𝜆𝜇𝑐
 , 𝐺𝑟 =

𝜌𝑓𝛽�̅�𝑔(𝑇1−𝑇0)𝑑2

𝜇𝑐
, 𝐵𝑟 =

(𝐶1−𝐶0)𝑑2(𝜌𝑝−𝜌𝑓)𝑔𝛽�̅�

𝜇𝑐
, 𝑁𝑏 =

𝑐𝜌𝑝(𝐶1−𝐶0)𝐷𝐵

𝑐𝜌𝑓 𝜈
, 𝑁𝑡 =

𝐷𝑇

𝑇𝑚

𝑐𝜌𝑝(𝑇1−𝑇0)

𝑐𝜌𝑓 𝜈
, 𝐵 =

𝐴

𝑑
                                                                                  (9) 

Where 𝑅𝑒, 𝛿, 𝜔, 𝐺𝑟, 𝑃𝑟, 𝐵𝑟, 𝜅, 𝑁𝑡, 𝐻, 𝑁𝑏 ,and 𝐵 represent the Reynold number, the 

dimensionless wave number, dimensionless concentration phenomena, the Grashof number, the 

Prandtl number, the Brinkman number, the porosity parameter, the Brownian motion number, 

the Hartman number, the thermophoresis parameter and the slip parameter, respectively. 

Employing Eq. (9) in Eqs. (3)-(8)  and applying the well-known physiological assumptions of 

low Renold number (𝑅𝑒 ≪  1) and the long wavelength (𝛿 ≪  1) approximations in our 

present model, the governing equations can be simplified into dimensionless form as follows: 

    
𝜕𝑢

 𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,                                                                                                                        (10) 

𝑝𝑥 =
𝜕𝑆𝑥𝑦

𝜕𝑦
+ 𝐺𝑟 𝜃 +   𝐵𝑟 𝜔 − (𝐻2 +

1

𝜅
) (𝑢 + 1)                                                                    (11) 

𝑝𝑦 = 0                                                                                                                                    (12) 

𝜃𝑦𝑦 + 𝑃𝑟𝑁𝑏𝜃𝑦𝜔𝑦 + 𝑃𝑟𝑁𝑡𝜃𝑦
2 = 0,                                                                                        (13) 

𝑁𝑏𝜔𝑦𝑦 + 𝑁𝑡𝜃𝑦𝑦 = 0,                                                                                                              (14) 

Eq. (12) shows that the pressure field 𝑝 is not the function of 𝑦, and by using this observation , 

we eliminate the gradient of pressure from Eq. (11) as below 
𝜕2𝑆𝑥𝑦

𝜕𝑦2
+ 𝐺𝑟 𝜃𝑦 +   𝐵𝑟 𝜔𝑦 − (𝐻2 +

1

𝜅
) 𝑢𝑦 = 0                                                                        (15) 

Where 𝑠𝑥𝑦 is the dimensionless extra stress tensor and 𝑠𝑥𝑦 =
1

1+𝜆1

𝜕𝑢

𝜕𝑦
, (𝜆1is the Jeffery 

parameter) 

However, the dimensionless form of corresponding physical boundary conditions is 
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𝑢(ℎ) = −1 −
2𝜋𝜖𝛼𝛽 𝑐𝑜𝑠(2𝜋𝑥)

(1−2𝜋𝜖𝛼𝛽 𝑐𝑜𝑠(2𝜋𝑥))
+

𝐵

1+𝜆1

𝜕𝑢

𝜕𝑦
 , and (ℎ) =

2𝜋𝜖 𝑠𝑖𝑛(2𝜋𝑥)

(1−2𝜋𝜖𝛼𝛽 𝑐𝑜𝑠(2𝜋𝑥))
 ,                         (16) 

𝜃 = 1, 𝜔 = 1 at 𝑦 = ℎ = 1 + 𝜖 𝑐𝑜𝑠(2𝜋𝑥)                                                                             (17) 

𝑢 = −1, 𝑢𝑦 = 0,  𝜃𝑦 = 0, 𝜔 = 0 at 𝑦 = 0                                                                            (18) 

 

The Solution to the Problem  

     The closed-form solutions for the well-posed system of the differential equations for the 

velocity, the temperature and the concentration fields are achieved.  Integrating Eqs. (13), (14) 

and (15) with respect to boundary conditions in Eqs.(16)-(18), the exact solution for the velocity 

profile 𝑢(𝑥, 𝑦) , the temperature distribution 𝜃(𝑥, 𝑦)and the concentration profile 𝜔(𝑥, 𝑦) are 

obtained, respectively as follows: 

𝑢(𝑥, 𝑦) = 𝑐3 −
(𝐿1𝐿2+𝐿3𝐿4+𝐿5−𝐿6)

𝐿7𝐿8
                                                                                           (19) 

𝐿1 = 𝑒−𝑀𝑦√1+𝜆1(−1 + 𝑒𝑃𝑟(𝑁𝑏+𝑁𝑡))ℎ𝑀𝑐1𝑁𝑏(𝑃𝑟𝑁𝑏 + 𝑃𝑟𝑁𝑡 − 𝑀√1 + 𝜆1) , 

𝐿2 = (𝑃𝑟𝑁𝑏 + 𝑃𝑟𝑁𝑡 + 𝑀√1 + 𝜆1)(𝑃𝑟𝑁𝑏 + 𝑃𝑟𝑁𝑡 − ℎ𝑀√1 + 𝜆1)(𝑃𝑟𝑁𝑏 + 𝑃𝑟𝑁𝑡 +

ℎ𝑀√1 + 𝜆1) , 

𝐿3 = 𝑒𝑀𝑦√1+𝜆1(1 − 𝑒𝑃𝑟(𝑁𝑏+𝑁𝑡))ℎ𝑀𝑐2𝑁𝑏(𝑃𝑟𝑁𝑏 + 𝑃𝑟𝑁𝑡 − 𝑀√1 + 𝜆1) , 

𝐿4 = (𝑃𝑟𝑁𝑏 + 𝑃𝑟𝑁𝑡 + 𝑀√1 + 𝜆1)(𝑃𝑟𝑁𝑏 + 𝑃𝑟𝑁𝑡 − ℎ𝑀√1 + 𝜆1)(𝑃𝑟𝑁𝑏 + 𝑃𝑟𝑁𝑡 +

ℎ𝑀√1 + 𝜆1) , 

𝐿5 = 𝑒−
𝑃𝑟(−ℎ+𝑦)(𝑁𝑏+𝑁𝑡)

ℎ 𝐺𝑟ℎ3𝑀2𝑁𝑏(1 + 𝜆1)3 2⁄ (−𝑃𝑟2𝑁𝑏
2 − 2𝑃𝑟2𝑁𝑏𝑁𝑡 − 𝑃𝑟2𝑁𝑡

2 + 𝑀2(1 +
𝜆1)), 

𝐿6 = 𝐵𝑟𝑒−𝑃𝑟(−ℎ+𝑦)(𝑁𝑏+𝑁𝑡)ℎ𝑀2𝑁𝑡(1 + 𝜆1)3 2⁄ (−𝑃𝑟2𝑁𝑏
2 − 2𝑃𝑟2𝑁𝑏𝑁𝑡 − 𝑃𝑟2𝑁𝑡

2 + ℎ2𝑀2(1 +
𝜆1))), 

𝐿7 = ((−1 + 𝑒Pr(𝑁𝑏+𝑁𝑡))ℎ𝑀2𝑁𝑏√1 + 𝜆1(Pr𝑁𝑏 + Pr𝑁𝑡 − 𝑀√1 + 𝜆1)(Pr𝑁𝑏 + Pr𝑁𝑡 +

𝑀√1 + 𝜆1), 

𝐿8 = (Pr𝑁𝑏 + Pr𝑁𝑡 − ℎ𝑀√1 + 𝜆1)(Pr𝑁𝑏 + Pr𝑁𝑡 + ℎ𝑀√1 + 𝜆1)), 

𝑀 = (𝐻2 +
1

𝜅
),  

and 

𝜃(𝑥, 𝑦) = −
ⅇ(𝑁𝑏+𝑁𝑡)Pr(−1+ⅇ

−
(𝑁𝑏+𝑁𝑡)Pr𝑦

ℎ )

(−1+ⅇ(𝑁𝑏+𝑁𝑡)Pr)
,                                                                                (20) 

𝜔(𝑥, 𝑦) =
ⅇ(𝑁𝑏+𝑁𝑡)Pr(ℎ−𝑦)ℎ𝑁𝑡−(𝑁𝑏+𝑁𝑡)𝑦+ⅇ(𝑁𝑏+𝑁𝑡)Pr(−ℎ∗𝑁𝑡+(𝑁𝑏+𝑁𝑡)𝑦)

(−1+ⅇ(𝑁𝑏+𝑁𝑡)Pr)ℎ𝑁𝑏
 ,                                       (21) 

In which the expressions for the  parameters 𝑐1, 𝑐2, and 𝑐3 are determined by applying the 

boundary conditions in Eq. (18). 

To determine the expression for the stream function, we make use of the following relations 

𝑢 =
𝜕𝜓

𝜕𝑦
,                                                                                                                                   (22) 

Thus 

𝜓(𝑥, 𝑦) =
−1

2(−1+ⅇPr(𝑁𝑏+𝑁𝑡))ℎ𝑀2𝑃𝑟𝑁𝑏(𝑁𝑏+𝑁𝑡)(1+𝜆1)(𝑃𝑟𝑁𝑏+𝑃𝑟𝑁𝑡−𝑀√1+𝜆1)(𝑃𝑟𝑁𝑏+𝑃𝑟𝑁𝑡+𝑀√1+𝜆1)
(((−2𝑐3(−1 +

𝑒Pr(𝑁𝑏+𝑁𝑡))ℎ𝑀2𝑃𝑟𝑦𝑁𝑏(𝑁𝑏 + 𝑁𝑡)(1 + 𝜆1)(𝑃𝑟𝑁𝑏 + 𝑃𝑟𝑁𝑡 − 𝑀√1 + 𝜆1)(𝑃𝑟𝑁𝑏 + 𝑃𝑟𝑁𝑡 +

𝑀√1 + 𝜆1)(𝑃𝑟𝑁𝑏 + 𝑃𝑟𝑁𝑡 − ℎ𝑀√1 + 𝜆1)(𝑃𝑟𝑁𝑏 + 𝑃𝑟𝑁𝑡 + ℎ𝑀√1 + 𝜆1) +
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2𝑒−
Pr(−ℎ+𝑦)(𝑁𝑏+𝑁𝑡)

ℎ 𝐺𝑟ℎ4𝑀2𝑁𝑏(1 + 𝜆1)2(𝑃𝑟2𝑁𝑏
2 + 2𝑃𝑟2𝑁𝑏𝑁𝑡 + 𝑃𝑟2𝑁𝑡

2 − 𝑀2(1 + 𝜆1)) +

⋯ ) + 𝐶                                                                                                                             (23) 

Where 𝐶 can be found by satisfying the boundary condition 𝜓(ℎ) = 𝑞. 

Graphical discussion 

     This part of the work is dedicated to analyzing the impacts of different flow physical 

parameters on graphic outcomes for the flow of MHD Jeffery nanofluid through cilia channel 

i.e. velocity distribution, temperature field, nanoparticle concentration, and trapping 

phenomena. The velocity profile attitudes a parabolic trajectory with a maximum magnitude 

appearing in the middle part of the channel. The discussion is made for the fixed values {𝑥 =
0.01, 𝛽 = 0.1, 𝐵𝑟 = 0.1, 𝑃𝑟 = 0.7} In Figure 2(a), the reduction influence of Hartman number 

𝐻on the velocity profile 𝑢(𝑦) is recorded due to the normal effect of the magnetic field. This 

result is beneficial during surgery and critical operation to control redundant bleeding.  

However, we noticed an enhancement of 𝑢(𝑦) with increasing the permeability parameter 𝜅 i.e. 

more fluid passes through the pores via Figure 2(b). It is clear from Figure 2(c) that ascending 

values of the Grashof  𝐺𝑟 number reduces the drag force, which, in turn, the axial velocity 

𝑢(𝑦)will be accelerated. An increasing behavior for 𝑢(𝑦) exhibits due to the larger magnitude 

of Jeffery nanofluid parameter 𝜆1, which is noted in Figure 3(a). The increasing effect of slip 

parameter 𝐵 on the fluid velocity profile through Figure 3(b) is noted. The impact of the 

dimensionless eccentricity of ellipse parameter 𝛼 on velocity distribution is demonstrated in 

Figure 3(c). We conclude that enhancement in 𝛼 magnitude leads to  stagnation of the largest 

amount of Jeffery fluid in the main stream of the flow field which induces mitigation  in its 

velocity. Figures 4(a) and (b) recorded the dissimilar behavior for the velocity profile as the 

Brownian motion number𝑁𝑏   and the thermophoresis parameter  𝑁𝑡 increase. Whereas two 

opposite reactions upon velocity profile are seen via increment the dimensionless magnitude of 

the cilia length 𝜖 i.e. decay in 𝑢(𝑦) magnitude is noticed for the region (0.2 ≤ 𝑦 ≤ 0.7) and 

after this region the velocity value continues to rise along the channel, see Figure 4(c).  

 

     The graphs in Figures 5 (a),(b), and (c)  inspect the behavior of temperature profile under 

the effect of the Prandtl number 𝑃𝑟 , Brownian motion number 𝑁𝑡,and dimensionless magnitude 

of the cilia length 𝜖, respectively. It can be observed from these figures that the temperature 

profile exhibits a parabolic nature. Moreover, it is admitted from the plots that 𝜃(𝑦) exactly 

grows in the same manner with increasing the values of 𝑃𝑟, and 𝑁𝑡. Whereas a decay in 

temperature profile is noticed with ascending values of   𝜖  parameter .  The evolution in 

nanoparticle concentration distribution via ascending of embedded parameters 𝑃𝑟, 𝑁𝑡, and 𝑁𝑏 

respectively illustrates in Figure 6. Diminishing behavior for the three selected parameters on 

𝜔(𝑦) curve can be revealed in Figures 6(a) and (b), respectively. However 𝜔(𝑦) is very 

sensitive against to any small rises in  𝑁𝑏 value see Figure 6(c). In our study the graphical 

observation of the discussed profiles for 𝜃(𝑦)  and 𝜔(𝑦) are in complete agreement with those 

illustrated in Imran et al. [10] study. 

 

     The configuration of the heat transfer coefficient (𝑍(𝑥) =
𝜕ℎ

𝜕𝑥
× 𝜃𝑦|𝑦 = ℎ) versus the 𝑥-axis 

is inspected under the impact of the following involved physical parameters Prandtl number 𝑃𝑟 

, Brownian motion number 𝑁𝑡, and thermophoresis parameter 𝑁𝑏 through Figures 7(a)-(c). It 

can be revealed. One can notice from these figures the oscillatory behavior for the heat transfer 

coefficient due to peristaltic walls. Furthermore; 𝑍(𝑥)is an increasing function of increasing the 

three mentioned parameters i.e. 𝑃𝑟, 𝑁𝑡and 𝑁𝑏 at other points and decreasing at other points 

successively and continually along the channel wall  .  
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     In human body channels especially the esophagus conduits which contains within cilia tips 

create metachronal wave motion which causes a trapping phenomenon (formation of an 

enclosed bolus of the fluid particles entirely surrounded by fluid streamlines) in return moves 

along the channel with metachronal wave speed. In this part of the discussion, we will  examine 

the influence of physically interesting parameters on fluid streamlines by sketching the stream 

function against various values of the Hartman number 𝐻, the porosity parameter 𝜅, the Grashof 

number 𝐺𝑟, 𝛼 the elliptical motion eccentricity dimensionless value, Jeffery parameter 𝜆1, 

Brinkman number 𝐵𝑟, the Brownian motion number 𝑁𝑡 and the dimensionless magnitude of 

the cilia length  𝜖    respectively. From these figures, we noticed that the generating two 

separated trapping boluses in the central part of the channel.  Figure 8 depicts a diminishing in 

size and number of the trapped bolus in which the two boluses are connected into one big bolus 

in the center of the channel via increasing the value of 𝐻. However; the impact of 𝜅 on 

streamlines is illustrated in Figure 9. It is evident from the figure that the size of trapping bolus 

enhances and more streamlines surrounded the boluses. Figures 10, 11 and 12 show the 

shrinking effect for 𝐺𝑟, 𝛼 and 𝜆1on trapping bolus size and fewer numbers of bolus recognized 

especially with 𝛼 larger value.  The shape of the trapped bolus deforms and decreases for larger 

values of  𝐵𝑟 see Figure 13. It reveals from Figure 14 that the volume of the trapping bolus 

tends to enlarge as  𝑁𝑡 increases furthermore, the two boluses are merged together and become 

a single bolus in the central part of the channel. A remarkable effect of 𝜖 on streamlines from 

Figure 15 is illustrated. When the value of  𝜖 = 0.1, the trapped bolus disappeared and the flow 

turned into straight streamlines while the bolus is generated and increased for 𝜖 > 0.1. 

                           (a)                                          (b)                                             (c) 

   
 

Figure 2: Velocity profile against ascending values of (a) Hartman number 𝐻 (b) Porosity 

parameter 𝜅 (c) Grashof number 𝐺𝑟. 

 

         (a)                                                  (b)                                                  (c) 

 
 

Figure 3: Velocity profile against ascending values of (a) Jeffery parameter 𝜆1 (b) slip 

parameter 𝐵 (c) dimensionless eccentricity of ellipse parameter 𝛼. 
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                  (a)                                                  (b)                                                  (c) 

 
Figure 4: Velocity profile against ascending values of (a) thermophoresis parameter 𝑁𝑏 (b) 

Brownian motion number 𝑁𝑡 (c) dimensionless magnitude of the cilia length 𝜖. 

 

                (a)                                                  (b)                                                  (c) 

 
Figure -5 Temperature profile𝜃(𝑦) for ascending values of (a) Prandtl number 𝑃𝑟 (b) Brownian 

motion number 𝑁𝑡 (c) dimensionless magnitude of the cilia length 𝜖. 

 

                 (a)                                                (b)                                            (c) 

  
Figure 6: Nanoparticle concentration profile 𝜔(𝑦) for ascending values of (a) Prandtl number 

𝑃𝑟 (b) Brownian motion number 𝑁𝑡 (c) thermophoresis parameter 𝑁𝑏 . 

 

      (a)                                                (b)                                            (c) 

   
Figure 7: Heat transfer profile𝑍(𝑥) for ascending values of (a) Prandtl number 𝑃𝑟 (b) Brownian 

motion number 𝑁𝑡 (c) thermophoresis parameter 𝑁𝑏 . 
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                        (a)                                        (b)                                                  (c) 

  
Figure 8: Streamlines for ascending values of Hartman number (a) 𝐻 = 0.8 (b) 𝐻 = 0.9 (c) =
1.4 . 

 

                      (a)                                             (b)                                           (c) 

 
Figure 9: Streamlines for ascending values of porosity parameter (a) 𝜅 = 0.8 (b) 𝜅 = 0.9 (c) 

= 1.4 . 

 

               (a)                                             (b)                                                  (c) 

 
Figure 10: Streamlines for ascending values of Grashof number (a) 𝐺𝑟 = 0.8 (b) 𝐺𝑟 = 1.2 (c) 

= 1.9 . 

          (a)                                             (b)                                                  (c) 
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Figure 11: Streamlines for ascending values of elliptical motion eccentricity dimensionless 

value (a) 𝛼 = 0.03 

 (b) 𝛼 = 0.08 (c) 𝛼 = 0.3 

 

          (a)                                             (b)                                                  (c) 

 
Figure 12: Streamlines for ascending values of Jeffery parameter (a) 𝜆1 = 0.7 (b) 𝜆1 = 0.9 (c) 

𝜆1 = 1.2 

 

         

          (a)                                             (b)                                                  (c) 

  
Figure 13: Streamlines for ascending values of Brinkman number (a) 𝐵𝑟 = 0.7 (b) 𝐵𝑟 = 0.9 

(c) 𝐵𝑟 = 1.2 
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                (a)                                             (b)                                                  (c) 

    
Figure 14: Streamlines for ascending values of Brownian motion number  (a) 𝑁𝑡 = 0.03 (b) 

𝑁𝑡 = 0.05 (c) 𝑁𝑡 = 0.08 

     

      (a)                                             (b)                                                  (c) 

  
Figure -15 Streamlines for ascending values of cilia length parameter  (a) 𝜖 = 0.1 (b) 𝜖 = 0.3 

(c) 𝜖 = 0.8 

 

 

 

 

Conclusion 

     This article analyzes the metachronal waves of the Jeffery nanofluid propagate due to flow 

through ciliated channel filled with porous media. The mathematical equations that govern the 

flow were formulated and simplified depending on the assumption of long wavelength and 

small Reynolds number. The reduced partial differential equations associated with slip 

boundaries are exactly solved by the Mathematica program. The results are discussed through 

figures and bellows some important outcomes are listed. 

 

  1. The velocity profile is an increasing function via mounting the parameters 𝜅 , 𝐺𝑟, 𝜆1, 𝐵  and 

𝑁𝑏   whereas it is a decreasing function with  𝐻, 𝛼 and 𝑁𝑡. 

  2.  It is observed that the velocity profile first diminishes and then enhances with increasing  𝜖 

value. 

  3.  The parameters 𝑃𝑟 and 𝑁𝑡 exhibit risen effect on temperature distribution 𝜃(𝑥, 𝑦). 

However, they  exhibit opposite consequences on nanoparticle concentration 𝜔(𝑥, 𝑦) .  

  4. Dimensionless magnitude of the cilia length 𝜖 causes retardation in 𝜃(𝑥, 𝑦). 

  5. An oscillatory behavior is witnessed of the heat transfer coefficient  𝑍(𝑥) magnitude upon 

variation of 𝑃𝑟, 𝑁𝑡, and  𝑁𝑏 parameters. 
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  6. The trapping bolus revealed a reversed behavior with increments of 𝐻, 𝐵𝑟, 𝜆1, 𝐺𝑟, 𝛼 and  𝑁𝑡 

values whereas direct effect to 𝜅 on the trapped bolus in size and number is recorded. 

  7. Remarkable effect of 𝜖 on streamlines depicted, for a certain value (𝜖 = 0.1), the flow 

presents The flow is straight lines and free of the trapped bolus, while we notice the appearance 

of the bolus phenomenon for 𝜖 values higher than that. 

  8. It is worth to mentioning that our work considered an extension of the study given by Imran 

et al. [10], they investigated the effect of ciliary channel on the nanofluid flow, while here, we 

extended the research to explore the effect of the ciliary channel , porous medium and normal 

magnetic field on Jeffery nanofluid flow.  
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