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Abstract   

     Let 𝑅 be a ring with identity. Recall that a submodule 𝑁 of a left 𝑅-module 𝑀 is 

called strongly essential if for any nonzero subset 𝑋 of 𝑀, there is 𝑟 ∈ 𝑅 such that 

(0 ≠)𝑟𝑋 ⊆ 𝑁, i.e., (𝑁:𝑅 𝑋) ≠ 𝑙𝑅(𝑋). This paper introduces a class of submodules 

called se-closed, where a submodule 𝑁 of 𝑀 is called se-closed if it has no proper 

strongly essential extensions inside 𝑀. We show by an example that the intersection 

of two se-closed submodules may not be se-closed. We say that a module 𝑀 is have 

the se-Closed Intersection Property, briefly se-CIP, if the intersection of every two 

se-closed submodules of 𝑀 is again se-closed in 𝑀. Several characterizations are 

introduced and studied for each of these concepts. We prove for submodules 𝑁 and 

𝐿 of 𝑀 that a module 𝑀 has the se-CIP if and only if 𝑁 ∩ 𝐿 is strongly essential in 𝑁 

implies 𝐿 is strongly essential in 𝑁 + 𝐿. Also, we verify that, a module 𝑀 has the  

se-CIP if and only if for each se-closed submodule 𝑁 of 𝑀 and for all submodule 𝐿 

of 𝑀, 𝑁 ∩ 𝐿 is se-closed in 𝐿. Finally, some connections and examples are included 

about (se-CIP)-modules. 

         
 

Keywords: Strongly essential submodules; se-closed submodules; modules with the     
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 se-CIPالمقاسات من صنف قاسات الجزئية الجوهرية القوية و الم
 

 ثائر يونس غاوي 
العراق -ة ، القادسيجامعة القادسية ،كلية التربية ،قسم الرياضيات  

 
  الخلاصة

انهُ جوهري  𝑅على الحلقة  𝑀من المقاس  𝑁حلقة بمحايد. يقال للمقاس الجزئي الغير صفري  𝑅لتكن       
𝑟, يوجد 𝑀من  𝑋قوي اذا كان لكل مجموعة جزئية غير صفرية  ∈ 𝑅  0بحيث ان ≠ 𝑟𝑋 ⊆ 𝑁،  بمعنى

𝑁:𝑅)اخر  𝑋) ≠ 𝑙𝑅(𝑋) تُسمى بالمغلقة من النمط. في هذا البحث قُدَمنا صنف من المقاسات الجزئيةse-، 
جوهرية قوية فعلية  توسعاتاذا كان لا يمتلك  -seيُدعى مغلق من النمط 𝑀من  𝑁حيث ان المقاس الجزئي 

. المقاس -seلا يكون مغلق من النمط -se. نحن بينا بمثال ان تقاطع مقاسين جزئيين مغلقين من النمط𝑀في 
𝑀 النمطلك خاصية التقاطع المغلق من تيمse-،  بـاختصارse-CIP، تقاطع أي مقاسين جزئيين  اذا كان

تم تقديمها و  اتصيشخت. العديد من ال-seفيه يكون أيضاً مقاس مغلق من النمط -seمغلقين من النمط
 ايضا لكتيم 𝑀 ان المقاس 𝑀من  𝐿و  𝑁لكل مقاسين جزئيين بأنه دراستها لكل من تلك المفاهيم. اثبتنا 

𝑁اذا كان  se-CIPخاصية  ∩ 𝐿  مقاس جزئي جوهري قوي في𝑁  يؤدي الى ان𝐿  مقاس جزئي جوهري في
𝑁 + 𝐿 كذلك نحن برهنا أن المقاس .𝑀 لك خاصية تيمse-CIP  اذا وفقط اذا كان لكل مقاس جزئي مغلق
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𝑁 فان 𝑀من  𝐿و لكل مقاس جزئي  𝑀من  𝑁مثل  -seمن النمط ∩ 𝐿  يكون مقاس جزئي مغلق من
 .se-CIPبعض العلاقات و الامثلة ضمَناها حول المقاسات ذات خاصية  ،. أخيراً 𝐿في  -seالنمط

 
 

1.  Introduction    

      A module 𝑀 is said to have the summand intersection property, briefly SIP, if the 

intersection of any two direct summands of 𝑀 is again a direct summand. Studying the class 

of modules with the summand intersection property have been extensively  interesting by 

some authors such as, Wilson G.V. in [1], Alkan M. and Harmanci A. in [2]. If 𝑀 is an 𝑅-

module and 𝑁 is an essential submodule of 𝑀 then 𝑀 is called an essential extension of 𝑁. If 

𝑁 has no proper essential extensions in 𝑀, then 𝑁 is called a closed submodule, see [3]. In 

case a submodule 𝑁 is essential in 𝐾 and 𝐾 is closed in 𝑀, then 𝐾 is called closure of 𝑁 in 𝑀, 

see [4]. It is well identified that any submodule of a module has a closure but not necessarily 

unique. The module 𝑀 is said to have a unique closure (or, UC-module) if every submodule 

of 𝑀 has a unique closure [4]. A submodule 𝑁 of an 𝑅-module 𝑀 is called strongly essential 

if for any (0 ≠)𝑋 ⊆ 𝑀, there is an 𝑟 ∈ 𝑅 such that (0 ≠)𝑟𝑋 ⊆ 𝑁, i.e., (𝑁:𝑅 𝑋) ≠ 𝑙𝑅(𝑋) [5]. It 

is clear that every strongly essential submodule is essential but not conversely.   

 

      In this paper, we introduce se-closed submodules as generalization of closed submodules. 

A submodule 𝑁 of a module 𝑀 is called se-closed if it has no proper strongly essential 

extensions inside 𝑀. In Example 2.7, we explain that the intersection of two se-closed 

submodules of a module is not se-closed, this example leads us to introduce the concept of  

se-closed intersection property of modules. An 𝑅-module 𝑀 is said to have the se-closed 

intersection property (briefly se-CIP) if the intersection of any two se-closed submodules of 

𝑀 is again se-closed. Our object of this study is to investigate the notion of modules with the 

se-CIP and then see its relation with the concept of strongly essential submodules.  

  

     In section 2 of this paper, some properties of se-closed submodules are given. Also, we 

introduced the definition of modules having se-CIP and gave many characterizations of this 

concept. In section 3, the relations between modules with the se-CIP and other related 

modules were discussed. Illustrations of some of the new concepts and results related to the 

notion of modules with the se-CIP presented throughout this paper.  

 

     In this work, as usual, unless otherwise identified all rings are associative with identity, 

and all modules are assumed to be left unitary. For a left 𝑅-module 𝑀, 𝑆 = 𝐸𝑛𝑑(𝑀) will 

denote the endomorphisms ring of 𝑀. The notations 𝑁 ⊆ 𝑀, 𝑁 ≤ 𝑀, 𝑁 ⊂ 𝑀, 𝑁 ⊴ 𝑀, 

𝑁 ⊴𝑠𝑒 𝑀, 𝑁 ≤𝑐 𝑀 and 𝑁 ≤⨁ 𝑀 means that 𝑁 is a subset, a submodule, a proper submodule, 

an essential submodule, a strongly essential submodule, a closed submodule and a direct 

summand of 𝑀, respectively. Suppose that 𝑋 ⊆ 𝑀 and  𝑁 ≤ 𝑀, we will denote [𝑁:𝑅 𝑋] =
{𝑟 ∈ 𝑅: 𝑟𝑋 ⊆ 𝑁}. Specialty, if  𝑁 = {0} then [𝑁:𝑅 𝑋] = 𝑙𝑅(𝑋) denote the left annihilator of 𝑋 

in 𝑅.                                                       

 

2.  Modules with the se-closed intersection property (se-CIP) 

Definition 2.1 ([5]). A submodule 𝑁 of a left 𝑅-module 𝑀 is called strongly essential, briefly 

𝑁 ⊴𝑠𝑒 𝑀, if for any nonzero subset 𝑋 of 𝑀, there is an 𝑟 ∈ 𝑅 such that (0 ≠)𝑟𝑋 ⊆ 𝑁; i.e., 

𝑟 ∈ [𝑁:𝑅 𝑋] and 𝑟 ∉ 𝑙𝑅(𝑋). If 𝑁 ⊴𝑠𝑒 𝑀, then 𝑀 is called strongly essential extension of 𝑁.      

 

     By this definition it is obvious that every strongly essential submodule is essential but may 

not be conversely, in general, as the following examples shows.    
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Examples 2.2. (i) In the rational numbers ℚ as ℤ-module, 𝑁 = ℤ is an essential submodule 

but it is not strongly essential, in fact 𝑋 = {1

𝑛
| 𝑛 ≥ 1} ⊆ ℚ  but  𝑟𝑋 ⊈ ℤ  for all 0 ≠ 𝑟 ∈ ℤ.  

(ii) If 𝑀 = ℤ⨁ℤ2 as ℤ-module, then 𝑁 = (2, 0̅)ℤ ⊴ ℤ⨁ℤ2. If we take 𝑋 = (0)⨁ℤ2 ⊆ 𝑀, 

then 𝑟𝑋 = 𝑋 ⊈ 𝑁 for all odd number r in ℤ and, 𝑟𝑋 = 0 for all even number r in ℤ. Hence 

𝑁 = (2, 0̅)ℤ is not strongly essential in ℤ⨁ℤ2. 

    

   Now, we list some known properties of strongly essential submodules which found in [5].  
 

Proposition 2.3. The following assertions are hold.  

(i)  If 𝑓: 𝑀1 → 𝑀2 is an 𝑅-homomorphism and 𝑁 ⊴𝑠𝑒 𝑀2, then 𝑓−1(𝑁) ⊴𝑠𝑒 𝑀1.   

(ii)  If  𝑁 ⊴𝑠𝑒 𝐾 and  𝐾 ⊴𝑠𝑒 𝑀, then 𝑁 ⊴𝑠𝑒 𝑀.    

(iii)  If  𝑁1 ⊴𝑠𝑒 𝐾1 ⊆ 𝑀 and  𝑁2 ⊴𝑠𝑒 𝐾2 ⊆ 𝑀 , then  𝑁1 ∩ 𝑁2 ⊴𝑠𝑒 𝐾1 ∩ 𝐾2 in 𝑀.   

(iv) For 𝑅-modules 𝑁𝑖 ⊆ 𝑀𝑖 , 𝑖 = 1,2, … , 𝑛,  ⨁𝑖=1
𝑛 𝑁𝑖 ⊴𝑠𝑒 ⨁𝑖=1

𝑛 𝑀𝑖 if and only if 𝑁𝑖 ⊴𝑠𝑒 𝑀𝑖 for 

each 𝑖.   
(v)  If 𝐼 is any index set and  ⨁∀𝑖∈𝐼𝑁𝑖 ⊴𝑠𝑒 ⨁∀𝑖∈𝐼𝑀𝑖,  then  𝑁𝑖 ⊴𝑠𝑒 𝑀𝑖 for each 𝑖 ∈ 𝐼.      
 

In following, we present our definition.  
 

Definition 2.4. A submodule 𝑁 of a module 𝑀 is called se-closed if it has no proper strongly 

essential extensions inside 𝑀.       
 

Note. We have the implications, direct summand
⇍
⇒closed submodule

⇍
⇒se-closed submodule. 

 

    The next two examples explain that a se-closed submodule not closed.   
 

Example 2.5. Suppose that 𝑅 = ℤ⨁ℚ as a ring with multiplication defined as follows: 
(𝑛1, 𝑞1). (𝑛2, 𝑞2) = (𝑛1𝑛2, 𝑛1𝑞2 + 𝑛2𝑞1) for each (𝑛1, 𝑞1),(𝑛2, 𝑞2) ∈ 𝑅. It is observed that 

(0)⨁ℤ ⊴ ℤ⨁ℚ, so it is not closed submodule. Notice that (0)⨁ℤ has no proper strongly 

essential extensions in ℤ⨁ℚ. Hence (0)⨁ℤ is se-closed in ℤ⨁ℚ.   
  

Example 2.6. Consider the ℤ-module ℚ, and let 𝑁 = ℤ be a submodule of ℚ. Thus 𝑁 ⊴ ℚ, 

and hence ℤ is not closed submodule in ℚ. Moreover, 𝑁 = ℤ has no proper strongly essential 

extensions in ℚ, in fact, for any 𝐿 ≤ ℚ with ℤ ⊂ 𝐿, there is a nonzero subset 𝑋 of 𝐿 such that 

for all 𝑟 ∈ ℤ, either 𝑟𝑋 = 0 or 𝑟𝑋 ⊈ ℤ. Therefore, 𝑁 = ℤ is a se-closed submodule in ℚ. 
       

    The intersection of se-closed submodules of a module need not be se-closed.    
   

Example 2.7. Suppose that 𝑀 = ℤ⨁ℤ2 as ℤ-module, let 𝑁 = (1, 0̅)ℤ and 𝐾 = (1, 1̅)ℤ be 

submodules of 𝑀. Therefore 𝑀 = 𝑁⨁(0, 1̅)ℤ = 𝐾⨁(0, 1̅)ℤ, so that 𝑁 and 𝐾 are direct 

summands of 𝑀, and hence are both se-closed submodules. However 𝑁 ∩ 𝐾 = (2, 0̅)ℤ is not 

se-closed in 𝑀, because 𝑁 ∩ 𝐾 = (2, 0̅)ℤ is proper strongly essential in (1, 0̅)ℤ = 𝑁 of 𝑀. 
  

    This leads us to introduce the following our main definition.   
 

Definition 2.8. An 𝑅-module 𝑀 is said to have the se-closed intersection property, briefly   

se-CIP, if the intersection of any two se-closed submodules of 𝑀 is again se-closed.    
 

We have the following simple fact. 
   

Proposition 2.9. Let 𝑀 be a module and 𝑁 ≤ 𝑀, then there exists a se-closed submodule 𝐾 of 

𝑀 such that 𝑁 ⊴𝑠𝑒 𝐾.   

Proof. Consider 𝛤 = {𝐿 ≤ 𝑀| 𝑁 ⊴𝑠𝑒 𝐿}. As 𝑁 ⊴𝑠𝑒 𝑁, then 𝛤 ≠ ∅. By Zorn's Lemma, 𝛤 has   

a maximal element say 𝐾. We claim that 𝐾 is a se-closed submodule in 𝑀. If 𝐾 ⊴𝑠𝑒 𝐴 ≤ 𝑀, 

then 𝑁 ⊴𝑠𝑒 𝐴, so that 𝐴 ∈ 𝛤. By maximality for 𝐾, we deduce 𝐾 = 𝐴. Hence 𝐾 is a se-closed 

submodule of 𝑀 and 𝑁 ⊴𝑠𝑒 𝐾.  
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     In this case, recall that a submodule 𝐾 in Proposition 2.9 is called se-closure of 𝑁 (not 

necessary to be unique). Furthermore, recall that a module 𝑀 is called se-unique closure, 

briefly se-UC if, every submodule of 𝑀 has a unique se-closure in 𝑀.  

We need to prove the following.      

 

Lemma 2.10. Let 𝑀 be a module and 𝑁 ≤ 𝐾 ⊆ 𝑀, then   

(i) If 𝑁 ⊴𝑠𝑒 𝑀, then 𝑁 ⊴𝑠𝑒 𝐾 and 𝐾 ⊴𝑠𝑒 𝑀.  

(ii) If 𝑁 is se-closed in 𝑀, then 𝑁 is se-closed in 𝐾.    

 

Proof. (i) Let 𝑁 ⊴𝑠𝑒 𝑀. If (0 ≠)𝑋 ⊆ 𝐾, then there is an 𝑟 ∈ 𝑅 such that (0 ≠)𝑟𝑋 ⊆ 𝑁, and 

hence 𝑁 ⊴𝑠𝑒 𝐾. Now, let (0 ≠)𝑌 ⊆ 𝑀. Since 𝑁 ⊴𝑠𝑒 𝑀, then there is an 𝑟 ∈ 𝑅 such that 

(0 ≠)𝑟𝑌 ⊆ 𝑁 implies (0 ≠)𝑟𝑌 ⊆ 𝐾. Thus 𝐾 ⊴𝑠𝑒 𝑀.    

(ii) Assume that 𝑁 is a se-closed submodule of 𝑀. If 𝑁 ⊴𝑠𝑒 𝐿 in 𝐾, then 𝑁 ⊴𝑠𝑒 𝐿 in 𝑀 and so 

𝑁 = 𝐿. Hence 𝑁 is a se-closed submodule of 𝐾.      
 

Theorem 2.11. Every module having the se-CIP is a se-UC module.   

 

Proof. Let 𝑀 be a module has the se-CIP and 𝑁 ≤ 𝑀. Assume that 𝐻1 and 𝐻2 are se-closures 

of 𝑁. It follows that 𝐻1, 𝐻2 are se-closed submodules of 𝑀, so is 𝐻1 ∩ 𝐻2. Since 𝑁 ⊴𝑠𝑒 𝐻1 

and 𝑁 ≤ 𝐻1 ∩ 𝐻2 ⊆ 𝐻1, so by Lemma 2.10(i), 𝐻1 ∩ 𝐻2 ⊴𝑠𝑒 𝐻1. Thus, 𝐻1 ∩ 𝐻2 = 𝐻1, and 

hence 𝐻1 ⊆ 𝐻2. By a similar way, 𝐻2 ⊆ 𝐻1. So 𝐻1 = 𝐻2 and hence 𝑀 is a se-UC module.       
 

Lemma 2.12. Let 𝑀 be a left 𝑅-module, then    

(i) If 𝑁 is a se-closed submodule of 𝑀, then 𝑁 is a unique se-closure of 𝑁. 

(ii) Let 𝑀 be a se-UC module and 𝑁 ≤ 𝑀. If 𝐾 is a se-closure of 𝑁 and 𝑁 ⊴𝑠𝑒 𝐿, then 𝐿 ⊆ 𝐾.  

 

Proof. (i) Since 𝑁 ⊴𝑠𝑒 𝑁 and 𝑁 is a se-closed submodule of 𝑀, so 𝑁 is a se-closure of 𝑁. 

Assume that 𝐾 is another se-closure of 𝑁, thus 𝑁 ⊴𝑠𝑒 𝐾 and hence 𝑁 = 𝐾.      

(ii) Let 𝐾 be a se-closure of 𝑁. Since 𝑁 ⊴𝑠𝑒 𝐿, so we have two cases: if 𝐿 is se-closed in 𝑀, 

then 𝐿 is se-closure of 𝑁, as 𝑀 is a se-UC module, so 𝐿 = 𝐾. If 𝐿 is not se-closed in 𝑀, then 

𝐿 ⊴𝑠𝑒 𝐻 for some se-closed submodule 𝐻 ≠ 𝐿 of 𝑀, then by Proposition 2.3(ii) 𝑁 ⊴𝑠𝑒 𝐻 and 

𝐻 is se-closed in 𝑀, this mean 𝐻 is se-closure of 𝑁, 𝐾 = 𝐻, hence 𝐿 ⊆ 𝐻 = 𝐾.    
 

    In the next, we will give some characterizations of modules with the se-CIP. We will now 

start with the following.  
  

Theorem 2.13. The module 𝑀 has the se-CIP if and only if for each submodules 𝑁1 ⊴𝑠𝑒 𝑁2 

and 𝐿1 ⊴𝑠𝑒 𝐿2 of 𝑀 implies 𝑁1 + 𝐿1 ⊴𝑠𝑒 𝑁2 + 𝐿2 in 𝑀.    

 

Proof. Assume 𝑀 has the se-CIP, so 𝑀 is a se-UC module, by Theorem 2.11. As 𝑁1 + 𝐿1 and 

𝑁1are submodules in 𝑀, 𝑁1 + 𝐿1 ⊴𝑠𝑒 𝑃 and  𝑁1 ⊴𝑠𝑒 𝐾 for some se-closed submodules 𝑃 and 

𝐾 of 𝑀, hence by Proposition 2.3(iii), 𝑁1 ⊴𝑠𝑒 𝑃 ∩ 𝐾, where 𝑃 ∩ 𝐾 is se-closed in 𝑀. This 

means that 𝑃 ∩ 𝐾 is another se-closure of 𝑁1, then 𝑃 ∩ 𝐾 = 𝐾, and hence 𝐾 ⊆ 𝑃. On the 

other hand, 𝑁1 ⊴𝑠𝑒 𝑁2 and 𝐾 is a se-closure of 𝑁1 in 𝑀, so by Lemma 2.12(ii) 𝑁2 ⊆ 𝐾 

implies 𝑁1 ⊆ 𝑁2 ⊆ 𝐾 ⊆ 𝑃. By a similar way, 𝐿1 ≤ 𝑀  then 𝐿1 ⊴𝑠𝑒 𝐾′ for some se-closed 

submodule 𝐾′ of 𝑀. By Proposition 2.3(iii) 𝐿1 ⊴𝑠𝑒 𝑃 ∩ 𝐾′ and 𝑃 ∩ 𝐾′ is se-closed in 𝑀. It 

follows that 𝑃 ∩ 𝐾′ = 𝐾′ and so  𝐾′ ⊆ 𝑃. Now, 𝐿1 ⊴𝑠𝑒 𝐿2 and 𝐾′ is a se-closure of 𝐿1 in 𝑀. 

Again by Lemma 2.12(ii) 𝐿2 ⊆ 𝐾′ implies 𝐿1 ⊆ 𝐿2 ⊆ 𝐾′ ⊆ 𝑃. From two cases, 𝑁1 + 𝐿1 ⊆
𝑁2 + 𝐿2 ⊆ 𝑃 but 𝑁1 + 𝐿1 ⊴𝑠𝑒 𝑃, therefore by Lemma 2.10(i), 𝑁1 + 𝐿1 ⊴𝑠𝑒 𝑁2 + 𝐿2 in 𝑀. 

Conversely, assume 𝐴, 𝐵 are two se-closed submodules of 𝑀, and let 𝐴 ∩ 𝐵 ⊴𝑠𝑒 𝑊 ≤ 𝑀. 
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Since 𝐴 ⊴𝑠𝑒 𝐴, so by hypothesis 𝐴 = 𝐴 + (𝐴 ∩ 𝐵) ⊴𝑠𝑒 𝐴 + 𝑊, hence 𝐴 = 𝐴 + 𝑊, therefore 

𝑊 ⊆ 𝐴. By a similar way, 𝑊 ⊆ 𝐵. Thus 𝑊 ⊆ 𝐴 ∩ 𝐵, and this completes the proof.        
 

Corollary 2.14. The module 𝑀 has the se-CIP if and only if any submodule of 𝑀 has se-CIP.  

 

Proof. It is easy to check.         

 

Theorem 2.15. The module 𝑀 has the se-CIP if and only if 𝑁 ∩ 𝐿 ⊴𝑠𝑒 𝑁 in 𝑀 implies  

𝐿 ⊴𝑠𝑒 𝑁 + 𝐿 in 𝑀 for all submodules 𝑁, 𝐿 of 𝑀.    

 

Proof. Suppose that 𝑀 has the se-CIP. Let 𝑁 ∩ 𝐿 ⊴𝑠𝑒 𝑁, and as 𝐿 ⊴𝑠𝑒 𝐿, so by applying 

Theorem 2.13, we deduce that (𝑁 ∩ 𝐿) + 𝐿 ⊴𝑠𝑒 𝑁 + 𝐿, so that 𝐿 ⊴𝑠𝑒 𝑁 + 𝐿. Conversely, let 

𝐾, 𝐾′ be two se-closed submodules of 𝑀 such that 𝐾 ∩ 𝐾′ ⊴𝑠𝑒 𝑊 for some 𝑊 ≤ 𝑀. Since 

𝐾 ⊴𝑠𝑒 𝐾, then 𝐾 ∩ 𝐾′ ⊴𝑠𝑒 𝐾 ∩ 𝑊 ⊆ 𝑊, Lemma 2.10(i) implies 𝐾 ∩ 𝑊 ⊴𝑠𝑒 𝑊 and so by the 

condition, 𝐾 ⊴𝑠𝑒 𝑊 + 𝐾, hence 𝐾 = 𝑊 + 𝐾. Thus 𝑊 ⊆ 𝐾. By a similar way, 𝑊 ⊆ 𝐾′ and so 

𝑊 = 𝐾 ∩ 𝐾′. This completes the proof.    

 

Theorem 2.16. The module has 𝑀 the se-CIP if and only if for all submodules 𝐾 ⊆ 𝐿 in 𝑀, 

and 𝐾′ is a se-closure of 𝐾, there is a se-closure 𝐿′ of 𝐿 such that 𝐾′ ⊆ 𝐿′.  

 

Proof. Suppose 𝑀 has the se-CIP. If 𝐾 ⊆ 𝐿, so 𝐾 + 𝐿 = 𝐿. Let 𝐾′ be a se-closure of 𝐾, then 

𝐾 ⊴𝑠𝑒 𝐾′ and 𝐾′is a se-closed submodule of 𝑀, and as 𝐿 ⊴𝑠𝑒 𝐿 so 𝐿 = 𝐾 + 𝐿 ⊴𝑠𝑒 𝐾′ + 𝐿 by 

Theorem 2.13. Now, since  𝐾′ + 𝐿 ≤ 𝑀, then there is a se-closure 𝐿′ of 𝐾′ + 𝐿, this mean 

𝐾′ + 𝐿 ⊴𝑠𝑒 𝐿′ and 𝐿′ is se-closed in 𝑀, by Proposition 2.3(ii) 𝐿 ⊴𝑠𝑒 𝐿′ and 𝐿′ is se-closed in 

𝑀, therefore 𝐿′ is a se-closure of 𝐿 such that 𝐾′ ⊆ 𝐿′. Conversely, let 𝐿1, 𝐿2 be two se-closed 

submodules of 𝑀. Since 𝐿1 ∩ 𝐿2 ≤ 𝐿1, and let 𝐿 be a se-closure of 𝐿1 ∩ 𝐿2, then by our 

assumption, there exists a se-closure 𝐿1
′ of 𝐿1 such that 𝐿 ⊆ 𝐿1

′. As 𝐿1 ⊴𝑠𝑒 𝐿1
′ in 𝑀 and  𝐿1 

is se-closed in 𝑀, then 𝐿1 = 𝐿1
′, so 𝐿 ⊆ 𝐿1. Similarly, 𝐿1 ∩ 𝐿2 ≤ 𝐿2 and 𝐿 is a se-closure of  

𝐿1 ∩ 𝐿2, again by the same condition, there exists a se-closure 𝐿2
′ of 𝐿2 such that 𝐿 ⊆ 𝐿2

′. 

Since 𝐿2 ⊴𝑠𝑒 𝐿2
′ in 𝑀 and 𝐿2 is se-closed in 𝑀, then 𝐿2 = 𝐿2

′, and hence 𝐿 ⊆ 𝐿2, thus 

𝐿1 ∩ 𝐿2 = 𝐿 is se-closed in 𝑀.                 

 

Theorem 2.17. The module 𝑀 has the se-CIP if and only if for each se-closed submodule A 

of 𝑀 and 𝐵 ≤ 𝑀, 𝐴 ∩ 𝐵 is a se-closed submodule of 𝐵.      

 

Proof. Suppose 𝑀 has the se-CIP. Let 𝐴 ∩ 𝐵 ⊴𝑠𝑒 𝑊 in 𝐵 and since 𝐴 ⊴𝑠𝑒 𝐴 so by Theorem 

2.13, we have that 𝐴 ⊴𝑠𝑒 𝐴 + 𝑊, and as 𝐴 is se-closed in 𝑀, implies 𝐴 = 𝐴 + 𝑊, so 𝑊 ⊆
𝐴 ∩ 𝐵 and hence 𝐴 ∩ 𝐵 = 𝑊. Thus 𝐴 ∩ 𝐵 is a se-closed submodule of 𝐵. Conversely, let 

𝐿1, 𝐿2 be two se-closed submodules of 𝑀 such that 𝐿1 ∩ 𝐿2 ⊴𝑠𝑒 𝐾 in 𝑀. Since 𝐿1is se-closed 

in 𝑀 and 𝐾 ≤ 𝑀 then by assumption, 𝐿1 ∩ 𝐾 is se-closed in 𝐾. As 𝐿1 ∩ 𝐿2 ⊴𝑠𝑒 𝐾 and 

𝐿1 ⊴𝑠𝑒 𝐿1, so by Proposition 2.3(iii) 𝐿1 ∩ 𝐿2 ⊴𝑠𝑒 𝐿1 ∩ 𝐾. Again, we have 𝐿2 is se-closed in 𝑀 

and 𝐿1 ≤ 𝑀, so by assumption, 𝐿1 ∩ 𝐿2 is se-closed in 𝐿1, i.e., 𝐿1 ∩ 𝐿2 ⊴𝑠𝑒 𝐿1 ∩ 𝐾 ≤ 𝐿1 and 

𝐿1 ∩ 𝐿2 is se-closed in 𝐿1, so 𝐿1 ∩ 𝐿2 = 𝐿1 ∩ 𝐾 is se-closed in 𝐾, hence 𝐿1 ∩ 𝐿2 = 𝐾.         

 

Theorem 2.18. The following conditions are equivalent for a module 𝑀.  

(i) 𝑀 has the se-CIP; 

(ii) if {𝐴𝛼}𝛼∈⋀ and {𝐵𝛼}𝛼∈⋀ are two families of submodules of 𝑀 such that 𝐴𝛼 is se-closed in 

𝐵𝛼 of 𝑀 for all 𝛼 ∈ ⋀, then ⋂ 𝐴𝛼𝛼∈∧  is se-closed in ⋂ 𝐵𝛼𝛼∈∧ ;  

(iii) the intersection of any collection of se-closed submodules of 𝑀 is se-closed.  
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Proof. (𝒊) ⇒ (𝒊𝒊) Assume that 𝑀 has the se-CIP. If 𝐵𝛼 ≤ 𝑀, so by Corollary 2.14 𝐵𝛼 has the      

se-CIP for 𝛼 ∈ ⋀. Since 𝐴𝛼 is se-closed in 𝐵𝛼, and ⋂ 𝐵𝛼 ≤ 𝐵𝛼𝛼∈∧  then by applying Theorem 

2.17, we have 𝐴𝛼 ∩ (⋂ 𝐵𝛼)𝛼∈∧  is se-closed in ⋂ 𝐵𝛼𝛼∈∧  for 𝛼 ∈ ⋀. It is clear that ⋂ 𝐵𝛼𝛼∈∧  has 

the se-CIP, implies ⋂ [𝐴𝛼 ∩ (⋂ 𝐵𝛼)]𝛼∈∧𝛼∈⋀  is se-closed in ⋂ 𝐵𝛼𝛼∈∧ ; this means ⋂ 𝐴𝛼𝛼∈∧  is  

se-closed in ⋂ 𝐵𝛼𝛼∈∧ .  

(𝒊𝒊) ⇒ (𝒊𝒊𝒊) Consider the collection {𝐴𝛼| 𝐴𝛼 is se-closed in 𝑀 for all 𝛼 ∈ ⋀}. Put 𝐵𝛼 = 𝑀 for 

𝛼 ∈ ⋀, so by (ii), ⋂ 𝐴𝛼𝛼∈∧  is se-closed in ⋂ 𝐵𝛼𝛼∈∧ , hence ⋂ 𝐴𝛼𝛼∈∧  is se-closed in 𝑀.   

(𝒊𝒊𝒊) ⇒ (𝒊) Obvious.   

 

Now, we present the following definition.  
 

Definition 2.19. Let 𝑁, 𝑁′ be submodules of 𝑅-module 𝑀 such that 𝑁 ∩ 𝑁′ = 0. Then 𝑁′ is 

called a se-complement of 𝑁 in 𝑀 if 𝑁′ is a se-closed submodule of 𝑀 and 𝑁⨁𝑁′ ⊴𝑠𝑒 𝑀. 

Moreover, a submodule 𝑁 of a module 𝑀 is called a se-complement if it is se-complement for 

some submodule 𝐿 of 𝑀.  

 

    Notice that se-complement always exists for a module. Every se-complement submodule is 

se-closed, while there is a se-closed submodule of a module not be se-complement, as the 

following example:    

 

Example 2.20. In ℚ as ℤ-module, we see that ℤ is a se-closed submodule (see Example 2.6). 

But the zero is the only submodule of ℚ has zero intersection with ℤ, while ℤ⨁(0) is not 

strongly essential in ℚ. Thus ℤ is not se-complement in the ℤ-module ℚ.         

 

Theorem 2.21. The module 𝑀 has the se-CIP if and only if for any 𝑁 ⊴𝑠𝑒 𝑀, 𝑁 satisfies the 

property (𝑁 ∩ 𝐴) + (𝑁 ∩ 𝐵) ⊴𝑠𝑒 𝐴 + 𝐵 for all submodules 𝐴, 𝐵 of 𝑀.  

 

Proof. Suppose that 𝑀 has the se-CIP. Let 𝑁 ⊴𝑠𝑒 𝑀, so by Proposition 2.3(iii), we deduce 

that 𝑁 ∩ 𝐴 ⊴𝑠𝑒 𝐴 and 𝑁 ∩ 𝐵 ⊴𝑠𝑒 𝐵, hence (𝑁 ∩ 𝐴) + (𝑁 ∩ 𝐵) ⊴𝑠𝑒 𝐴 + 𝐵, by Theorem 2.13. 

Conversely, let 𝐿1, 𝐿2 be submodules of 𝑀 such that 𝐿1 ∩ 𝐿2 ⊴𝑠𝑒 𝐿1. Assume that 𝐾 is a se-

complement of 𝐿1 ∩ 𝐿2, then 𝐾⨁(𝐿1 ∩ 𝐿2) ⊴𝑠𝑒 𝑀. Put 𝐻 = 𝐾⨁(𝐿1 ∩ 𝐿2), by our assumption 
(𝐻 ∩ 𝐿1) + (𝐻 ∩ 𝐿2) ⊴𝑠𝑒 𝐿1 + 𝐿2. Now, if (0 ≠)𝑥 ∈ 𝐾 ∩ 𝐿1 then 𝑥 ∈ 𝐾 and 𝑥 ∈ 𝐿1. Since 

𝐿1 ∩ 𝐿2 ⊴𝑠𝑒 𝐿1 and (0 ≠)𝑥 ∈ 𝐿1, so there is an 𝑟 ∈ 𝑅 such that (0 ≠)𝑟𝑥 ∈ 𝐿1 ∩ 𝐿2, then 

(0 ≠)𝑟𝑥 ∈ 𝐾 ∩ (𝐿1 ∩ 𝐿2), that is a contradiction with 𝐾 is a se-complement of 𝐿1 ∩ 𝐿2 in 𝑀, 

therefore 𝐾 ∩ 𝐿1 = 0. Also, if ℎ ∈ 𝐻 ∩ 𝐿1 = (𝐾⨁(𝐿1⋂𝐿2))⋂𝐿1, ℎ = 𝑎 + 𝑏 where ℎ ∈ 𝐿1, 

𝑎 ∈ 𝐾 and 𝑏 ∈ 𝐿1 ∩ 𝐿2 then ℎ − 𝑏 = 𝑎 ∈ 𝐾 ∩ 𝐿1 = 0, and so ℎ ∈ 𝐿2, hence 𝐻 ∩ 𝐿1 ⊆ 𝐿2. 

Thus(𝐻 ∩ 𝐿1) + (𝐻 ∩ 𝐿2) ⊆ 𝐿2 ⊆ 𝐿1 + 𝐿2. Since (𝐻 ∩ 𝐿1) + (𝐻 ∩ 𝐿2) ⊴𝑠𝑒 𝐿1 + 𝐿2, Lemma 

2.10(i) implies 𝐿2 ⊴𝑠𝑒 𝐿1 + 𝐿2, thus the result is obtained by Theorem 2.15.     

 

   Smith P.F. in [4] defined the following: for submodules 𝐿1, 𝐿2 ≤ 𝑀, 𝐿1𝜌
𝐿2 if 𝐿1 ∩ 𝐿2 is an 

essential submodule in both 𝐿1 and 𝐿2. However, we will provide the following definition as  

a stronger idea of  previous concept.      

 

Definition 2.22. For a module 𝑀, and submodules 𝐿1, 𝐿2 of 𝑀, we say that 𝐿1𝜌𝑠𝑒
𝐿2 if, 𝐿1 ∩ 𝐿2 

is  a strongly essential submodule in both 𝐿1 and 𝐿2.  

  

Theorem 2.23. The module 𝑀 has the se-CIP if and only if for all submodules 𝐴𝑖 , 𝐵𝑖 of 𝑀, 

𝑖 = 1,2; 𝐴1𝜌𝑠𝑒
𝐴2 and  𝐵1𝜌𝑠𝑒

𝐵2 implies (𝐴1 + 𝐵1)𝜌𝑠𝑒
(𝐴2 + 𝐵2).     
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Proof. Let 𝑀 has the se-CIP. If 𝐴1𝜌𝑠𝑒
𝐴2 and 𝐵1𝜌𝑠𝑒

𝐵2, so 𝐴1 ∩ 𝐴2 ⊴𝑠𝑒 𝐴1, 𝐴1 ∩ 𝐴2 ⊴𝑠𝑒 𝐴2, 

𝐵1 ∩ 𝐵2 ⊴𝑠𝑒 𝐵1 and 𝐵1 ∩ 𝐵2 ⊴𝑠𝑒 𝐵2. By Theorem 2.13, it follows that 𝐴1 ∩ 𝐴2 ⊴𝑠𝑒 𝐴1 + 𝐴2 

and 𝐵1 ∩ 𝐵2 ⊴𝑠𝑒 𝐵1 + 𝐵2, hence (𝐴1 ∩ 𝐴2) + (𝐵1 ∩ 𝐵2) ⊴𝑠𝑒 (𝐴1 + 𝐴2) + (𝐵1 + 𝐵2), but we 

deduce (𝐴1 ∩ 𝐴2) + (𝐵1 ∩ 𝐵2) ⊆ (𝐴1 + 𝐵1)⋂(𝐴2 + 𝐵2) ⊆ (𝐴1 + 𝐵1) + (𝐴2 + 𝐵2), Lemma 

2.10(i) implies (𝐴1 + 𝐵1)⋂(𝐴2 + 𝐵2) ⊴𝑠𝑒 (𝐴1 + 𝐵1) + (𝐴2 + 𝐵2), so that (𝐴1 + 𝐵1)⋂(𝐴2 +
𝐵2) is strongly essential in both (𝐴1 + 𝐵1) and (𝐴2 + 𝐵2). Thus (𝐴1 + 𝐵1)𝜌𝑠𝑒

(𝐴2 + 𝐵2). 

Conversely, let 𝐴1 ⊴𝑠𝑒 𝐴2 and 𝐵1 ⊴𝑠𝑒 𝐵2 of 𝑀. It follows that 𝐴1 ∩ 𝐴2 = 𝐴1 is strongly 

essential in both 𝐴1, 𝐴2, also 𝐵1 ∩ 𝐵2 is strongly essential in both 𝐵1, 𝐵2 this mean 𝐴1𝜌𝑠𝑒
𝐴2 

and 𝐵1𝜌𝑠𝑒
𝐵2, so that by assumption (𝐴1 + 𝐵1)𝜌𝑠𝑒

(𝐴2 + 𝐵2), thus 𝐴1 + 𝐵1 = (𝐴1 + 𝐵1) ∩

(𝐴2 + 𝐵2) ⊴𝑠𝑒 𝐴2 + 𝐵2, and by applying Theorem 2.13, the result is obtained. 

        

Theorem 2.24. Let 𝑀 = 𝑀1⨁𝑀2 be a module has the se-CIP. If 𝑓 ∈ 𝐻𝑜𝑚𝑅(𝑀1, 𝑀2), then 

𝑘𝑒𝑟𝑓 is a se-closed submodule of 𝑀.   

 

Proof. Suppose 𝑀 = 𝑀1⨁𝑀2 has the se-CIP and let 𝑓: 𝑀1 → 𝑀2 be an 𝑅-homomorphism. 

Consider 𝑊 = {𝑚1 + 𝑓(𝑚1)|𝑚1 ∈ 𝑀1}, we claim that 𝑀 = 𝑊⨁𝑀2. Let  𝑚2 ∈ 𝑊 ∩ 𝑀2, 

𝑚2 = 𝑚1 + 𝑓(𝑚1) where 𝑚1 ∈ 𝑀1 and 𝑚2 ∈ 𝑀2, then 𝑚1 = 𝑚2 − 𝑓(𝑚1) ∈ 𝑀1 ∩ 𝑀2 = 0, 

so 𝑚1 = 0  and  𝑚2 = 0 and hence 𝑊 ∩ 𝑀2 = 0. Now, if  𝑚 ∈ 𝑀 then 𝑚 = 𝑚1 + 𝑚2 where 

𝑚1 ∈ 𝑀1 and 𝑚2 ∈ 𝑀2, so we can put 𝑚 = 𝑚1 + 𝑓(𝑚1) − 𝑓(𝑚1) + 𝑚2 ∈ 𝑊 + 𝑀2, then 

𝑀 = 𝑊 + 𝑀2. Thus 𝑀 = 𝑊⨁𝑀2. It follows that 𝑀1 and 𝑊 are both se-closed submodules of 

𝑀, implies 𝑀1 ∩ 𝑊 is se-closed in 𝑀, as 𝑀 has the se-CIP. It is enough to prove 𝑘𝑒𝑟𝑓 =
𝑀1 ∩ 𝑊, to see this; let 𝑎 ∈ 𝑘𝑒𝑟𝑓, so 𝑎 = 𝑎 + 𝑓(𝑎) ∈ 𝑊 thus 𝑘𝑒𝑟𝑓 ⊆ 𝑊, implies 𝑘𝑒𝑟𝑓 ⊆
𝑀1 ∩ 𝑊. Now, if 𝑏 ∈ 𝑀1 ∩ 𝑊, 𝑏 = 𝑚1 + 𝑓(𝑚1) where 𝑏, 𝑚1 ∈ 𝑀1, so we have 𝑓(𝑚1) =
𝑏 − 𝑚1 ∈ 𝑀1 ∩ 𝑀2 = 0 implies 𝑏 = 𝑚1 ∈ 𝑘𝑒𝑟𝑓, so 𝑀1 ∩ 𝑊 ⊆ 𝑘𝑒𝑟𝑓.      

   

Theorem 2.25. Let 𝑀 be a module has the se-CIP, and 𝑁 ≤ 𝑀. If 𝑓 ∈ 𝐻𝑜𝑚𝑅(𝑁, 𝑀) with 

𝑁 ∩ 𝑓(𝑁) = 0, then 𝑘𝑒𝑟𝑓 is se-closed in 𝑁.    

 

Proof. Assume 𝑀 has the se-CIP. Let 𝑁 ≤ 𝑀 such that 𝑓 ∈ 𝐻𝑜𝑚𝑅(𝑁, 𝑀) and 𝑁 ∩ 𝑓(𝑁) = 0. 

Put 𝐿 = 𝑁⨁𝑓(𝑁). By Corollary 2.14, 𝐿 has the se-CIP. Define 𝑔: 𝑁 → 𝑓(𝑁) by 𝑔(𝑛) = 𝑓(𝑛) 

for all 𝑛 ∈ 𝑁. It is easy to see 𝑔 is well-defined and 𝑅-homomorphism. By Theorem 2.24, 

𝑘𝑒𝑟𝑔 = 𝑘𝑒𝑟𝑓 is se-closed in 𝐿, therefore in 𝑁, by Lemma 2.10(ii).       

 

Lemma 2.26. Let 𝑀 be a module and let 𝑁 ≤ 𝐾 ≤ 𝑀. If 𝐾 is se-closed in 𝑀, then 𝐾 𝑁⁄  is  

se-closed in 𝑀 𝑁⁄ . The converse hold, if 𝑁 is se-closed in 𝑀.         

 

Proof. Let 𝐾 be a se-closed submodule of 𝑀. If 𝐾 𝑁 ⊴𝑠𝑒 𝐿 𝑁⁄⁄  in 𝑀 𝑁⁄ , it follows by 

Proposition 2.3(i) that 𝐾 ⊴𝑠𝑒 𝐿 in 𝑀, so 𝐾 = 𝐿 and hence 𝐾 𝑁 = 𝐿 𝑁⁄⁄ . Therefore 𝐾 𝑁⁄  is   

se-closed in 𝑀 𝑁⁄ . Conversely, let 𝐾 ⊴𝑠𝑒 𝐴 in 𝑀. We claim that 𝐾 𝑁 ⊴𝑠𝑒 𝐴 𝑁⁄⁄  in 𝑀 𝑁⁄ . Let 

(0 ≠) 𝐵 𝑁 ⊆ 𝐴 𝑁⁄⁄  implies (0 ≠)𝐵 ⊆ 𝐴, then there is an 𝑟 ∈ 𝑅 such that (0 ≠)𝑟𝐵 ⊆ 𝐾. 

Since 𝑁 is se-closed in 𝑀, then 𝑁 is not strongly essential in 𝐾 ≤ 𝑀, so for all 𝑠 ∈ 𝑅, either 

𝑠(𝑟𝐵) = 0  or  𝑠(𝑟𝐵) ⊈ 𝑁. Choose 𝑠 = 1, we deduce 𝑟𝐵 ⊈ 𝑁, so 𝑟(𝐵 𝑁⁄ ) ≠ 0. As 𝑟𝐵 ⊆ 𝐾, 

implies (0 ≠) 𝑟(𝐵 𝑁) ⊆ 𝐾 𝑁⁄⁄ , and hence 𝐾 𝑁⁄ ⊴𝑠𝑒 𝐴 𝑁⁄  in 𝑀 𝑁⁄ , therefore 𝐾 𝑁⁄ = 𝐴 𝑁⁄  

and  𝐾 = 𝐴.   

               

    Notice that a module 𝑀 need not have the se-CIP whenever the factor module of 𝑀 has the    

se-CIP. Indeed, its well known that (ℤ⨁ℤ2) (0⨁ℤ2)⁄ ≅ ℤ has the se-CIP as ℤ-module, but 

the ℤ-module ℤ⨁ℤ2 does not have the se-CIP. However, we are going to demonstrate that 

under some cases, the class of modules with the se-CIP is closed under factors. 
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Proposition 2.27. The module 𝑀 has the se-CIP if and only if for all se-closed submodule 𝑁 

of 𝑀, 𝑀 𝑁⁄  has the se-CIP.     

 

Proof. Suppose 𝑀 has the se-CIP. Let 𝐴 𝑁⁄  and 𝐵 𝑁⁄  are two se-closed submodules of 𝑀 𝑁⁄ . 

Since 𝑁 is se-closed in 𝑀, so by Lemma 2.26 𝐴 and 𝐵 are se-closed in 𝑀, and hence 𝐴 ∩ 𝐵 is    

se-closed in 𝑀. Again, by Lemma 2.26, we get (𝐴 𝑁⁄ ) ∩ (𝐵 𝑁⁄ ) = (𝐴 ∩ 𝐵) 𝑁⁄  is a se-closed 

submodule of 𝑀 𝑁⁄ . Therefore 𝑀 𝑁⁄  has the se-CIP. The reverse is clear.        
 

    In general, the direct sum of two modules with the se-CIP has not se-CIP as seen by the 

following: in the ℤ-modules ℤ and ℤ𝑝2 where 𝑝 is prime, any nonzero submodule is strongly 

essential, so are both modules with the se-CIP. While the ℤ-module ℤ⨁ℤ2 does not be have 

se-CIP.  
 

   Furthermore, we give a condition under which the direct sum of modules with the se-CIP, 

also has the  se-CIP. Before that, we need the following Lemma.    

 

Lemma 2.28. Let 𝑀 = 𝑀1⨁𝑀2 be a module, and let 𝐴𝑖 ≤ 𝑀𝑖 for 𝑖 = 1,2. Then 𝐴1⨁𝐴2 is     

a se-closed submodule in 𝑀 if and only if 𝐴𝑖 is a se-closed submodule in 𝑀𝑖 for  𝑖 = 1,2.   

 

Proof. Suppose that 𝐴1⨁𝐴2 is a se-closed submodule in 𝑀1⨁𝑀2. Let 𝐴𝑖 ⊴𝑠𝑒 𝐵𝑖 in 𝑀𝑖 for 

𝑖 = 1,2, so by Proposition 2.3(iv) 𝐴1⨁𝐴2 ⊴𝑠𝑒 𝐵1⨁𝐵2 in 𝑀, and hence 𝐴1⨁𝐴2 = 𝐵1⨁𝐵2. 

Thus 𝐴1 = 𝐵1 and 𝐴2 = 𝐵2. Conversely, let 𝐴𝑖 be a se-closed submodule in 𝑀𝑖 for 𝑖 = 1,2. 

Suppose 𝐴1⨁𝐴2 ⊴𝑠𝑒 𝑋 in 𝑀. For 𝑖 ∈ {1,2}, it is easy to see that 𝐴𝑖 = (𝐴1⨁𝐴2) ∩ 𝑀𝑖. Thus 

by Proposition 2.3(iii), 𝐴𝑖 = (𝐴1⨁𝐴2) ∩ 𝑀𝑖 ⊴𝑠𝑒 𝑋 ∩ 𝑀𝑖 in 𝑀𝑖 for 𝑖 = 1,2. As 𝐴𝑖 is se-closed 

in 𝑀𝑖 for 𝑖 = 1,2, 𝐴𝑖 = 𝑋 ∩ 𝑀𝑖. Let  𝑥 ∈ 𝑋, 𝑥 = 𝑥1 + 𝑥2  where 𝑥1 ∈ 𝑀1 and 𝑥2 ∈ 𝑀2. For 

𝑖 ∈ {1,2}, the ith component 𝑥𝑖 of 𝑥 is in 𝑋 ∩ 𝑀𝑖 = 𝐴𝑖, this mean 𝑥𝑖 ∈ 𝐴𝑖 for  𝑖 = 1,2, hence 

𝑥 = 𝑥1 + 𝑥2 ∈ 𝐴1⨁𝐴2 and  𝐴1⨁𝐴2 = 𝑋, therefore 𝐴1⨁𝐴2 is a se-closed submodule in 𝑀.       

 

Corollary 2.29. Let 𝑀 = ⨁𝑖=1
𝑛 𝑀𝑖 be a module, and let 𝐴𝑖 ≤ 𝑀𝑖 for 𝑖 ∈ {1,2, … , 𝑛}. Then 

⨁𝑖=1
𝑛 𝐴𝑖 is a se-closed submodule in 𝑀 if and only if 𝐴𝑖 is a se-closed submodule in 𝑀𝑖 for 

𝑖 ∈ {1,2, … , 𝑛}.     

 

Proposition 2.30. Let 𝑀 = 𝑀1⨁𝑀2 be an 𝑅-module such that 𝑙𝑅(𝑀1)⨁𝑙𝑅(𝑀2) = 𝑅. Then 

𝑀1 and 𝑀2 has the se-CIP if and only if 𝑀 has the se-CIP.   

 

Proof. Suppose 𝑀1, 𝑀2 has the se-CIP. Let 𝑁 and 𝐿 be se-closed submodules of 𝑀. Since 

𝑙𝑅(𝑀1)⨁𝑙𝑅(𝑀2) = 𝑅, so by a part from the proof of [6, Prop. 4.2] we have 𝑁 = 𝑁1⨁𝑁2 and 

𝐿 = 𝐿1⨁𝐿2, where 𝑁1, 𝐿1 ≤ 𝑀1 and 𝑁2, 𝐿2 ≤ 𝑀2. By using Lemma 2.28  𝑁1, 𝐿1 are se-closed 

in 𝑀1 and 𝑁2, 𝐿2 are se-closed in 𝑀2. It follows that 𝑁1 ∩ 𝐿1 and 𝑁2 ∩ 𝐿2 are se-closed in 

𝑀1, 𝑀2 respectively. Again, by Lemma 2.28, we have that 𝑁 ∩ 𝐿 = (𝑁1 ∩ 𝐿1)⨁(𝑁2 ∩ 𝐿2) is a 

se-closed submodule in 𝑀 = 𝑀1⨁𝑀2. The reverse is follows directly by Corollary 2.14.      

 

Proposition 2.31. Let 𝑀 = 𝑀1⨁𝑀2 be a module has the se-CIP with 𝐻𝑜𝑚𝑅( 𝑀𝑖, 𝑀𝑗) ≠ 0 for 

1 ≤ 𝑖, 𝑗 ≤ 2, then there is an ℎ ∈ 𝐸𝑛𝑑𝑅(𝑀) such that 𝑘𝑒𝑟ℎ  is se-closed in 𝑀.     

 

Proof. Consider 𝑓: 𝑀1 → 𝑀2 and  𝑔: 𝑀2 → 𝑀1 are two 𝑅-homomorphisms. Now, we will 

define ℎ: 𝑀 → 𝑀 by ℎ(𝑚1 + 𝑚2) = 𝑓(𝑚1) + 𝑔(𝑚2) for all 𝑚1 ∈ 𝑀1 and 𝑚2 ∈ 𝑀2. It is 

easily to prove ℎ ∈ 𝐸𝑛𝑑𝑅(𝑀) and 𝑘𝑒𝑟ℎ = 𝑘𝑒𝑟𝑓⨁𝑘𝑒𝑟𝑔. By Theorem 2.24, 𝑘𝑒𝑟𝑓 and 𝑘𝑒𝑟𝑔 
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are se-closed submodules of 𝑀1 and 𝑀2, respectively, as 𝑀 = 𝑀1⨁𝑀2 has the se-CIP. Hence 

𝑘𝑒𝑟ℎ = 𝑘𝑒𝑟𝑓⨁𝑘𝑒𝑟𝑔 is se-closed in 𝑀 = 𝑀1⨁𝑀2, by Lemma 2.28.       
 

   Recall that a module 𝑀 is called extending, or CS-module, if for every submodule 𝑁 of 𝑀, 

there is a decomposition 𝑀 = 𝐴⨁𝐵 such that 𝑁 ⊴ 𝐴, equivalently, a module 𝑀 is extending 

if any closed submodule of 𝑀 is a direct summand [7]. Moreover, we will present a stronger 

concept than the notion of extending modules, as follows.   
          

Definition 2.32. A module 𝑀 is called se-extending if for every submodule of 𝑀 is strongly 

essential in a direct summand of 𝑀. A ring 𝑅 is called se-extending if 𝑅 is a left se-extending 

𝑅-module. 
 

Proposition 2.33. The module 𝑀 is se-extending if and only if every se-closed submodule of 

𝑀 is a direct summand.      

 

Proof. Suppose that 𝑀 is a se-extending module. If 𝑁 is a se-closed submodule of 𝑀, there is        

a direct summand 𝐿 of 𝑀 such that 𝑁 ⊴𝑠𝑒 𝐿. It follows that 𝑁 = 𝐿, 𝑁 is a direct summand of 

𝑀. Conversely, let 𝑁 ≤ 𝑀. By Proposition 2.9, there is a se-closed submodule 𝐾 of 𝑀 such 

that 𝑁 ⊴𝑠𝑒 𝐾. By the condition, 𝐾 is a direct summand of 𝑀, and that ends the proof.        
 

   It is clear that every se-extending module is extending, in fact, every strongly essential 

submodule is essential. But the reverse is not true, in general, as follows examples shows.   

 

Examples 2.34. (i) Consider 𝑀 = ℤ⨁ℤ𝑝∞ as ℤ-module. According to [8], 𝑀 is extending. 

Let 𝑁 = (0, 1

𝑃
+ℤ)ℤ, so 𝑁 ≤ 𝑀. It is easy to see that 𝑁 is essential in (0)⨁ℤ𝑝∞ then 𝑁 is not 

closed (therefore not a direct summand). Moreover, notice 𝑁 has no proper strongly essential 

extensions inside 𝑀, thus 𝑁 is se-closed. Hence 𝑀 is not se-extending.       

(ii) It is well know that ℚ as ℤ-module is extending. By Example 2.6, 𝑁 = ℤ is a se-closed 

submodule in ℚ but it is not a direct summand. Thus ℚ is not se-extending as ℤ-module.    

 

Proposition 2.35. The following statements are equivalent for a se-extending module 𝑀.  

(i) 𝑀 has the SIP; 

(ii) 𝑀 has the se-CIP.   

Proof.(𝒊) ⇒ (𝒊𝒊) Assume 𝐿1 and 𝐿2 are se-closed submodules of 𝑀 where 𝑀 is se-extending, 

then 𝐿1 and 𝐿2 are direct summands of 𝑀, and hence from (i), we get 𝐿1 ∩ 𝐿2 ≤⨁ 𝑀, and 

hence  𝐿1 ∩ 𝐿2 is se-closed in 𝑀. Thus 𝑀 has the se-CIP.           

(𝒊𝒊) ⇒ (𝒊) Let 𝐴, 𝐵 be two direct summands of 𝑀, thus 𝐴 and 𝐵 are se-closed submodules in 

𝑀. By (ii), 𝐿1 ∩ 𝐿2 is se-closed in 𝑀, implies 𝐴 ∩ 𝐵 ≤⨁ 𝑀 (since 𝑀 is se-extending). Hence 

𝑀 has the SIP.❑       

 

Proposition 2.36. Let 𝑀 = ℤ⨁ℤ be a ℤ-module and 𝑁 a cyclic submodule of 𝑀. Then 𝑁 is      

se-closed in 𝑀 if and only if 𝑁 = (𝑎, 𝑏)ℤ  for some  𝑎, 𝑏 ∈ ℤ and  𝑔𝑐𝑑(𝑎, 𝑏) = 1.      

Proof. Suppose 𝑁 is a cyclic se-closed submodule of 𝑀 = ℤ⨁ℤ. So 𝑁 = (𝑎, 𝑏)ℤ for some 

𝑎, 𝑏 ∈ ℤ. If 𝑔𝑐𝑑(𝑎, 𝑏) = 1, then the proof is finish. Let 𝑔𝑐𝑑(𝑎, 𝑏) = 𝑑(≠ 1), then there exists 

𝑥, 𝑦 ∈ ℤ such that 𝑎 = 𝑑𝑥 and 𝑏 = 𝑑𝑦 with 𝑔𝑐𝑑(𝑥, 𝑦) = 1. We claim that 𝑁 ⊴𝑠𝑒 (𝑥, 𝑦)ℤ in 

𝑀. If 𝑠 =(𝑎, 𝑏) 𝑟 ∈ 𝑁 where 𝑟 ∈ ℤ,  then 𝑠 = (𝑥, 𝑦)𝑑𝑟 ∈ (𝑥, 𝑦)ℤ, thus 𝑁 ⊆ (𝑥, 𝑦)ℤ. Now, let  

𝐻 = (𝑥, 𝑦)𝐿 ⊆ (𝑥, 𝑦)ℤ and 𝐻 ≠ 0. For 𝑑 ∈ ℤ and for all (𝑥, 𝑦)𝑙 ∈ 𝐻, (𝑥, 𝑦)𝑙𝑑 = (𝑎, 𝑏)𝑙 ∈
(𝑎, 𝑏)ℤ = 𝑁, then 𝐻𝑑 ⊆ 𝑁. Since 𝐻 ≠ 0, so there is (𝑥, 𝑦)𝑙1 ∈ 𝐻 and (0 ≠)𝑙1 ∈ 𝐿, hence 

(𝑥, 𝑦)𝑙1𝑑 = (𝑎, 𝑏)𝑙1 ≠ 0; i.e., 𝐻𝑑 ≠ 0. Thus 𝑁 ⊴𝑠𝑒 (𝑥, 𝑦)ℤ in 𝑀, it follows that 𝑁 =(𝑥, 𝑦) ℤ  
such that 𝑔𝑐𝑑(𝑥, 𝑦) = 1, and that ends the proof. Conversely, assume 𝑁 =(𝑎, 𝑏) ℤ ⊴𝑠𝑒 𝐾 in  
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𝑀 = ℤ⨁ℤ. Let  0 ≠ (𝑥, 𝑦) ∈ 𝐾, so there is an 𝑟 ∈ ℤ and 0 ≠ (𝑥, 𝑦)𝑟 ∈ 𝑁, then (𝑥, 𝑦)𝑟 =
(𝑎, 𝑏)𝑟1 for some 𝑟1 ∈ ℤ, i.e., 𝑥𝑟 = 𝑎𝑟1 and 𝑦𝑟 = 𝑏𝑟1, hence 𝑥𝑏 = 𝑦𝑎. Thus (𝑥, 𝑦)𝑏 =
(𝑎, 𝑏)𝑦. Since 𝑔𝑐𝑑(𝑎, 𝑏) = 1, then 𝑎𝑠 + 𝑏𝑡 = 1 for some 𝑠, 𝑡 ∈ ℤ. Hence (𝑥, 𝑦) =
(𝑥, 𝑦)(𝑎𝑠 + 𝑏𝑡) = (𝑥𝑎, 𝑥𝑏)𝑠 + (𝑎, 𝑏)𝑦𝑡 = (𝑎, 𝑏)(𝑥𝑠 + 𝑦𝑡) ∈ (𝑎, 𝑏)ℤ = 𝑁, and then 𝑁 = 𝐾. 

Therefore 𝑁 = (𝑎, 𝑏)ℤ is a se-closed submodule of  𝑀 = ℤ⨁ℤ.       
 

Remarks 2.37. (i) In the ℤ-module ℤ⨁ℤ, we know if 𝑁 = (𝑎, 𝑏)ℤ ≤ ℤ⨁ℤ for some 𝑎, 𝑏 ∈ ℤ 

and  𝑔𝑐𝑑(𝑎, 𝑏) = 1, then 𝑁 is a direct summand. By Proposition 2.36, we deduce that every 

se-closed submodule of ℤ⨁ℤ as ℤ-module is a direct summand. Hence the ℤ-module ℤ⨁ℤ is 

se-extending.   

(ii) A homomorphic image of module with the se-CIP may not has the se-CIP, for example, 

we define 𝑓: ℤ⨁ℤ → ℤ⨁ℤ2 by 𝑓(𝑎, 𝑏) = (𝑎, 𝑏̅) for all 𝑎, 𝑏 ∈ ℤ, so 𝑓 is a ℤ-homomorphism. 

By [3, Example 5] ℤ⨁ℤ has the SIP, but by (i) ℤ⨁ℤ is a se-extending as ℤ-module, thus        

it has the se-CIP as ℤ-module, by Proposition 2.35. While 𝐼𝑚𝑓 = ℤ⨁ℤ2 does not have the     

se-CIP.   
 

The proof of the following lemma is clear.    
 

 

Lemma 2.38. (i) If 𝑓: 𝑀1 → 𝑀2 is an 𝑅-monomorphism, and 𝐿 ⊴𝑠𝑒 𝑀1, then 𝑓(𝐿) ⊴𝑠𝑒 𝐼𝑚𝑓.  

(ii) If 𝑓: 𝑀1 → 𝑀2 is an 𝑅-monomorphism such that 𝐿 ≤ 𝑀1. Then 𝐿 is se-closed in 𝑀1 if and 

only if 𝑓(𝐿) is se-closed in 𝐼𝑚𝑓.     
 

Proposition 2.39. Let 𝑓: 𝑀1 → 𝑀2 be an 𝑅-monomorphism. Then 𝑀1 has the se-CIP if and 

only if the image of 𝑀1 has the se-CIP.  

 

Proof. Suppose that 𝑀1 has the se-CIP. Let 𝐴, 𝐵 be two se-closed submodules of 𝐼𝑚𝑓, then 

𝐴 = 𝑓(𝐿1) and 𝐵 = 𝑓(𝐿2) for some se-closed submodules 𝐿1, 𝐿2 of  𝑀1, by Lemma 2.38(ii). 

Thus 𝐿1 ∩ 𝐿2 is a se-closed submodule of 𝑀1. Again, by Lemma 2.38(ii) 𝐴 ∩ 𝐵 = 𝑓(𝐿1) ∩
𝑓(𝐿2) = 𝑓(𝐿1 ∩ 𝐿2) is se-closed in 𝐼𝑚𝑓. Conversely, suppose 𝐼𝑚𝑓 has the se-CIP. Let 𝐾1, 𝐾2 

be se-closed submodules of 𝑀1, so by Lemma 2.38(ii) both of 𝑓(𝐾1) and 𝑓(𝐾2) is se-closed 

in 𝐼𝑚𝑓, hence 𝑓(𝐾1 ∩ 𝐾2) = 𝑓(𝐾1) ∩ 𝑓(𝐾2) is se-closed in 𝐼𝑚𝑓. By Lemma 2.38(ii),𝐾1 ∩ 𝐾2 

is a se-closed submodule of 𝑀1.             

 

3.  Modules with the se-CIP and related concepts 

   In this section, we give many connections between modules with the se-CIP and other types 

of modules such as se-extending, strongly uniform and se-closed simple modules. Clearly, 

every semisimple module is a module with the se-CIP, so that any module over a semisimple 

ring has the se-CIP. Notice, the ℤ-module ℤ has the se-CIP but not semisimple. Furthermore, 

every multiplication module has the SIP, see [9, Cor. 1.1.12], so by applying Proposition 2.36, 

every multiplication se-extending module has the se-CIP. An 𝑅-module 𝑀 is called polyform 

if for all nonzero 𝑓 ∈ 𝐻𝑜𝑚𝑅(𝑁, 𝑀) and for all 𝑁 ≤ 𝑀, 𝑘𝑒𝑟𝑓 is closed in 𝑁 [10]. According to 

[2, Lemma 11], if 𝑀 is an extending polyform module, then 𝑀 has the SIP. Thus, it follows 

by Proposition 2.35, any polyform se-extending module has the se-CIP.   

      Ghashghaei, E. and Namdari, M. [11], recall that a nonzero module 𝑀 is strongly uniform 

if every nonzero submodule of 𝑀 is strongly essential in 𝑀. Note that all nonzero submodules 

of strongly uniform module are strongly uniform. It is clear that any strongly uniform module 

is uniform. Moreover, if 𝑀 is a strongly uniform module, so that the trivial submodules are 

the only se-closed in 𝑀, implies 𝑀 has the se-CIP. It is easy to see the ℤ-module ℤ is strongly 

uniform, but the ℤ-module ℚ is not strongly uniform.     
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Theorem 3.1. Let 𝑀 =⊕𝑖=1
𝑛 𝑀𝑖 be a finite direct sum of finitely many strongly uniform 

submodules 𝑀𝑖. If 𝑀 has the se-CIP that for any se-closed submodule 𝐴 of 𝑀, 𝐴 ∩ 𝑀𝑖 ≠ 0 for 

some 1 ≤ 𝑖 ≤ 𝑛, then 𝑀 is se-extending.     

 

Proof. Suppose 𝑀 =⊕𝑖=1
𝑛 𝑀𝑖 has the se-CIP. Let 𝐴 be se-closed in 𝑀 such that 𝐴 ∩ 𝑀1 ≠ 0 

for some 𝑀1 ≤ 𝑀. By Theorem 2.17, 𝐴 ∩ 𝑀1 is se-closed in 𝑀1 which implies 𝐴 ∩ 𝑀1 = 𝑀1, 

since 𝑀1 is strongly uniform, thus 𝑀1 ⊆ 𝐴. By the modular law, 𝐴 = 𝑀1⨁(𝐴 ∩ (⊕𝑖=2
𝑛 𝑀𝑖)). 

Put 𝐵 = 𝐴 ∩ (⊕𝑖=2
𝑛 𝑀𝑖), so we have two cases: if 𝐵 = 0 then 𝐴 = 𝑀1 which is a direct 

summand of 𝑀. Let 𝐵 ≠ 0 then  𝐴 ∩ 𝑀𝑖 ≠ 0  for some  2 ≤ 𝑖 ≤ 𝑛. Assume that 𝐴 ∩ 𝑀2 ≠ 0, 

so by a similar way 𝐴 ∩ 𝑀2 = 𝑀2, hence 𝑀2 ⊆ 𝐴. Thus 𝐵 = 𝐴 ∩ (⊕𝑖=2
𝑛 𝑀𝑖) = 𝑀2⨁(𝐴 ∩

(⊕𝑖=3
𝑛 𝑀𝑖)). If 𝐶 = 𝐴 ∩ (⊕𝑖=3

𝑛 𝑀𝑖) = 0, 𝐵 = 𝑀2 and so 𝐴 = 𝑀1⨁𝐵 = 𝑀1⨁𝑀2 ≤⨁ 𝑀. If 

𝐶 ≠ 0 then 𝐴 ∩ 𝑀𝑖 ≠ 0  for some 3 ≤ 𝑖 ≤ 𝑛. Hence by repeating this argument, we have 

either 𝐴 ≤⨁ 𝑀 or 𝐴 = 𝑀 and that ends the proof. 

 

Proposition 3.2. Let 𝑀 be a module over a se-extending ring 𝑅. If 𝑅⨁𝑀 has the se-CIP, then 

every cyclic submodule of 𝑀 is projective.   

Proof. Let (0 ≠)𝑚 ∈ 𝑀. Consider the sequence 0 → 𝑘𝑒𝑟𝜓
𝑖

→ 𝑅
𝜓
→ 𝑅𝑚

𝑗
→ 𝑀 → 0 where 

𝜓(𝑟) = 𝑟𝑚 for all 𝑟 ∈ 𝑅, 𝑖 and 𝑗 are the inclusion maps. Since 𝑅⨁𝑀 has the se-CIP and 

ℎ = 𝑗𝜓: 𝑅 → 𝑀 is a homomorphism, then by Theorem 2.24, 𝑘𝑒𝑟𝜓 = 𝑘𝑒𝑟ℎ is se-closed in 

𝑅⨁𝑀, so in 𝑅. Since 𝑅 is se-extending, we get 𝑘𝑒𝑟𝜓 ≤⨁ 𝑅 and hence 𝑅𝑚 is projective.  

       

   Now, we consider the following definition. 
 

Definition 3.3. A nonzero module 𝑀 is called se-closed simple if the trivial submodules are 

the only se-closed submodules of 𝑀.  

 

Remark 3.4. Obviously, every se-closed simple module has the se-CIP, but need not be 

conversely, in general, such as example; every semisimple module has the se-CIP but it is not 

se-closed simple. However, we have the following implications for modules: 

    

simple ⇒ strongly uniform ⇒ se-closed simple ⇒ indecomposable ⇒ module with the SIP. 

 

Proposition 3.5. Let 𝑀 = 𝑀1⨁𝑀2 such that 𝑀1 is a se-closed simple (not simple) and 𝑀2 is 

simple 𝑅-modules. If 𝐻𝑜𝑚𝑅(𝑀1, 𝑀2) ≠ 0, then 𝑀 does not have the se-CIP.     

 

Proof. Suppose 𝐻𝑜𝑚𝑅(𝑀1, 𝑀2) ≠ 0, then there is a nonzero homomorphism 𝑓: 𝑀1 → 𝑀2.   If 

false, then 𝑓 have two cases: if  𝑘𝑒𝑟𝑓 = 0 (i.e., 𝑓 is a monomorphism), but 𝑀2 is a simple 

module and 𝑓 ≠ 0, so by Schor’s Lemma 𝑓 is an epimorphism, and then 𝑀1 ≅ 𝑀2. It follows 

that 𝑀1 is simple, which is a contradiction. Thus 𝑘𝑒𝑟𝑓 ≠ 0. If 𝑀 has the se-CIP, Theorem 

2.24 implies 𝑘𝑒𝑟𝑓 is se-closed in 𝑀1. As 𝑀1 is a se-closed simple module and 𝑘𝑒𝑟𝑓 ≠ 0, 

hence 𝑘𝑒𝑟𝑓 = 𝐴 and so 𝑓 = 0, a contradiction. Hence, 𝑀 does not have the se-CIP.           

 

Proposition 3.6. Let 𝐴 be a se-closed simple and 𝐵 be any 𝑅-modules. If 𝐴 ⊕ 𝐵 has the se-

CIP, then for any 𝑓 ∈ 𝐻𝑜𝑚𝑅(𝐴, 𝐵), either 𝑓 = 0  or,  𝑓 is a monomorphism.  

 

Proof. Assume 𝑓 ∈ 𝐻𝑜𝑚𝑅(𝐴, 𝐵) and  𝑓 ≠ 0. Since 𝐴 ⊕ 𝐵 has the se-CIP, then by Theorem 

2.24, 𝑘𝑒𝑟𝑓 is a se-closed submodule of 𝐴. As 𝐴 is a se-closed simple module and 𝑓 ≠ 0, 

hence 𝑘𝑒𝑟𝑓 = 0. Therefore 𝑓 is a monomorphism.     
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  Roman C.S. in [12], recall that a module 𝑀 is called mono-endo if all nonzero endomorphisms 

are monomorphisms, or, equivalently, for any endomorphism 𝑓 of 𝑀, 𝑘𝑒𝑟𝑓 is either 𝑀 or 0. It 

is clear that every mono-endo module is indecomposable. However, we give the following.         

 

Proposition 3.7. Let 𝐴 be a se-closed simple and 𝐵 be 𝑅-modules such that 𝐻𝑜𝑚𝑅(𝐴, 𝐵) ≠ 0. 

If 𝐴 ⊕ 𝐵 has the se-CIP, then 𝐴 is an mono-endo 𝑅-module.   

 

Proof. Let 𝐴 ⊕ 𝐵 is a module with se-CIP. By Proposition 3.6, any 0 ≠ 𝑓 ∈ 𝐻𝑜𝑚𝑅(𝐴, 𝐵) is  

a monomorphism. If 𝐴 is not an mono-endo module, there is an (0 ≠)𝑔 ∈ 𝐸𝑛𝑑𝑅(𝐴) such that 

𝑔 is not a monomorphism. It is easy to see 𝑘𝑒𝑟𝑓𝑔 = 𝑘𝑒𝑟𝑔, thus (0 ≠)𝑓𝑔 ∈ 𝐻𝑜𝑚𝑅(𝐴, 𝐵) 

such that 𝑘𝑒𝑟𝑓𝑔 ≠ 0; this mean 𝑓𝑔 is not a monomorphism which is a contradiction with 

assumption.             

 

Corollary 3.8. Let 𝐴 ⊕ 𝐴 be a module has the se-CIP. If 𝐴 is a se-closed simple module, then 

A is mono-endo.    

 

Proposition 3.9. Let 𝐴, 𝐵 be two se-closed simple 𝑅-modules. If 𝐴 ⊕ 𝐵 has the se-CIP such 

that 𝐴 is injective, then either 𝐻𝑜𝑚𝑅(𝐴, 𝐵) = 0  or  𝐴 ≅ 𝐵.  
 

Proof. By Proposition 3.6, either 𝐻𝑜𝑚𝑅(𝐴, 𝐵) = 0 or any nonzero 𝑓 ∈  𝐻𝑜𝑚𝑅(𝐴, 𝐵) is                       

a monomorphism. It is enough to show that 𝑓 is an epimorphism. Since 𝑓 is a monomorphism 

and 𝐴 is injective, then 𝐼𝑚𝑓 is an injective submodule of 𝐵, so it is closed and hence it is        

a se-closed submodule. Since 𝐵 is a se-closed simple module and  𝐼𝑚𝑓 ≠ 0, thus 𝐼𝑚𝑓 = 𝐵.  

 

4. Conclusions 

     We defined the notions of modules which have the se-closed intersection property, briefly  

se-CIP, and se-complement submodules as a proper generalizing of module with the SIP and 

complement submodules, respectively. It is discussed and examine some different properties, 

characterizations and examples of these classes. Also, we defined the idea of se-extending 

modules and characterize these modules as a proper generalizing of extending modules. 

Future desire will achieve deeper outcomes on issues raised in this work.  
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