Ghawi Iraqi Journal of Science, 2023, Vol. 64, No. 5, pp: 2436-2448
DOI: 10.24996/ijs.2023.64.5.29

ISSN: 0067-2904

Strongly Essential Submodules and Modules with the se-CIP

Thaar Younis Ghawi
Department of Mathematics, College of Education, AL-Qadisiyah University, AL-Qadisiyah, Iraq

Received: 17/8/2022 Accepted: 24/11/2022 Published: 30/5/2023

Abstract

Let R be a ring with identity. Recall that a submodule N of a left R-module M is
called strongly essential if for any nonzero subset X of M, there is r € R such that
(0 #)rX N, ie., (N:g X) # lg(X). This paper introduces a class of submodules
called se-closed, where a submodule N of M is called se-closed if it has no proper
strongly essential extensions inside M. We show by an example that the intersection
of two se-closed submodules may not be se-closed. We say that a module M is have
the se-Closed Intersection Property, briefly se-CIP, if the intersection of every two
se-closed submodules of M is again se-closed in M. Several characterizations are
introduced and studied for each of these concepts. We prove for submodules N and
L of M that a module M has the se-CIP if and only if N n L is strongly essential in N
implies L is strongly essential in N + L. Also, we verify that, a module M has the
se-CIP if and only if for each se-closed submodule N of M and for all submodule L
of M, N n L is se-closed in L. Finally, some connections and examples are included
about (se-CIP)-modules.

Keywords: Strongly essential submodules; se-closed submodules; modules with the
se-CIP; se-UC modules; se-extending modules; se-closed simple modules.
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1. Introduction

A module M is said to have the summand intersection property, briefly SIP, if the
intersection of any two direct summands of M is again a direct summand. Studying the class
of modules with the summand intersection property have been extensively interesting by
some authors such as, Wilson G.V. in [1], Alkan M. and Harmanci A. in [2]. If M is an R-
module and N is an essential submodule of M then M is called an essential extension of N. If
N has no proper essential extensions in M, then N is called a closed submodule, see [3]. In
case a submodule N is essential in K and K is closed in M, then K is called closure of N in M,
see [4]. It is well identified that any submodule of a module has a closure but not necessarily
unique. The module M is said to have a unique closure (or, UC-module) if every submodule
of M has a unique closure [4]. A submodule N of an R-module M is called strongly essential
if forany (0 #)X € M, thereisanr € R such that (0 #)rX € N, i.e.,, (N:g X) # [x(X) [5]. It
is clear that every strongly essential submodule is essential but not conversely.

In this paper, we introduce se-closed submodules as generalization of closed submodules.
A submodule N of a module M is called se-closed if it has no proper strongly essential
extensions inside M. In Example 2.7, we explain that the intersection of two se-closed
submodules of a module is not se-closed, this example leads us to introduce the concept of
se-closed intersection property of modules. An R-module M is said to have the se-closed
intersection property (briefly se-CIP) if the intersection of any two se-closed submodules of
M is again se-closed. Our object of this study is to investigate the notion of modules with the
se-CIP and then see its relation with the concept of strongly essential submodules.

In section 2 of this paper, some properties of se-closed submodules are given. Also, we
introduced the definition of modules having se-CIP and gave many characterizations of this
concept. In section 3, the relations between modules with the se-CIP and other related
modules were discussed. Illustrations of some of the new concepts and results related to the
notion of modules with the se-CIP presented throughout this paper.

In this work, as usual, unless otherwise identified all rings are associative with identity,
and all modules are assumed to be left unitary. For a left R-module M, S = End(M) will
denote the endomorphisms ring of M. The notations NS M, N<M, Nc M, N2 M,
N S, M, N <° M and N <® M means that N is a subset, a submodule, a proper submodule,
an essential submodule, a strongly essential submodule, a closed submodule and a direct
summand of M, respectively. Suppose that X € M and N < M, we will denote [N:z X] =
{r € R:rX < N}. Specialty, if N = {0} then [N:; X] = [g(X) denote the left annihilator of X
inR.

2. Modules with the se-closed intersection property (se-CIP)

Definition 2.1 ([5]). A submodule N of a left R-module M is called strongly essential, briefly
N 2, M, if for any nonzero subset X of M, there is an r € R such that (0 #)rX S N; i.e.,
r € [N:gX]and r & lz(X). If N S, M, then M is called strongly essential extension of N.

By this definition it is obvious that every strongly essential submodule is essential but may
not be conversely, in general, as the following examples shows.
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Examples 2.2. (i) In the rational numbers Q as Z-module, N = Z is an essential submodule
but it is not strongly essential, in fact X = {%| n=>1}<cQ but rX£7Z forall 0 #r € Z.

(i) If M = Z®Z, as Z-module, then N = (2,0)Z < ZDZ,. If we take X = (0)DZ, S M,
then rX = X € N for all odd number r in Z and, rX = 0 for all even number r in Z. Hence
N = (2,0)Z is not strongly essential in Z®Z,.

Now, we list some known properties of strongly essential submodules which found in [5].

Proposition 2.3. The following assertions are hold.

(i) If f:M; > M, is an R-homomorphism and N 2, M,, then f~1(N) 2, M,.

@) If N 2, Kand K 9, M, then N 2, M.

@iii) If N; 2, Ky €Mand N, 25, K, €M ,then Nyn N, S, Ky NK, in M.

(iv) For R-modules N; € M;,i = 1,2,...,n, @j=,N; 2, &, M; if and only if N; S, M; for
each i.

(v) If I'isanyindex setand @®y;e;N; g0 Bvic/M;, then N; 2., M; foreachi € I.

In following, we present our definition.

Definition 2.4. A submodule N of a module M is called se-closed if it has no proper strongly
essential extensions inside M.

Note. We have the implications, direct summandzclosed submodulezse-closed submodule.

The next two examples explain that a se-closed submodule not closed.

Example 2.5. Suppose that R = Z@Q as a ring with multiplication defined as follows:
(ny,q1). (3, q3) = (nyny, nyq, + nyqq) for each (nq,q1),(ny, q2) € R. 1t is observed that
(0)BZ 2 ZBQ, so it is not closed submodule. Notice that (0)@Z has no proper strongly
essential extensions in Z@®Q. Hence (0)®Z is se-closed in ZHQ.

Example 2.6. Consider the Z-module @, and let N = Z be a submodule of Q. Thus N = Q,
and hence Z is not closed submodule in Q. Moreover, N = Z has no proper strongly essential
extensions in @, in fact, for any L < Q with Z c L, there is a nonzero subset X of L such that
forall r € Z, either rX = 0 or rX € Z. Therefore, N = Z is a se-closed submodule in Q.

The intersection of se-closed submodules of a module need not be se-closed.

Example 2.7. Suppose that M = Z@®Z, as Z-module, let N = (1,0)Z and K = (1,1)Z be
submodules of M. Therefore M = N®(0,1)Z = K&(0,1)Z, so that N and K are direct
summands of M, and hence are both se-closed submodules. However N n K = (2,0)Z is not
se-closed in M, because N n K = (2,0)Z is proper strongly essential in (1,0)Z = N of M.

This leads us to introduce the following our main definition.

Definition 2.8. An R-module M is said to have the se-closed intersection property, briefly
se-CIP, if the intersection of any two se-closed submodules of M is again se-closed.

We have the following simple fact.

Proposition 2.9. Let M be a module and N < M, then there exists a se-closed submodule K of
M such that N 2, K.

Proof. Consider I' = {L < M| N S, L}. As N S, N, then I' # @. By Zorn's Lemma, I" has
a maximal element say K. We claim that K is a se-closed submodule in M. If K 9,, A < M,
then N =, A, so that A € I". By maximality for K, we deduce K = A. Hence K is a se-closed
submodule of M and N =, K.
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In this case, recall that a submodule K in Proposition 2.9 is called se-closure of N (not
necessary to be unique). Furthermore, recall that a module M is called se-unique closure,
briefly se-UC if, every submodule of M has a unique se-closure in M.

We need to prove the following.

Lemma 2.10. Let M be a module and N < K € M, then
(i) IfN 2,, M,then N Q,, Kand K 2,, M.
(if) If N is se-closed in M, then N is se-closed in K.

Proof. (i) Let N 9, M. If (0 #)X < K, then there is an r € R such that (0 #)rX € N, and
hence N =, K. Now, let (0 #)Y € M. Since N S, M, then there is an r € R such that
(0 #)rY < N implies (0 #)rY € K. Thus K S, M.

(if) Assume that N is a se-closed submodule of M. If N 2, L in K, then N =, L in M and so
N = L. Hence N is a se-closed submodule of K.

Theorem 2.11. Every module having the se-CIP is a se-UC module.

Proof. Let M be a module has the se-CIP and N < M. Assume that H; and H, are se-closures
of N. It follows that H,, H, are se-closed submodules of M, so is H; N H,. Since N 2, H,
and N < H,nH, € Hy, so by Lemma 2.10(i), H; N H, S, H;. Thus, H; N H, = H,, and
hence H, € H,. By a similar way, H, € H,. So H; = H, and hence M is a se-UC module.

Lemma 2.12. Let M be a left R-module, then
(i) If N is a se-closed submodule of M, then N is a unique se-closure of N.
(i) Let M be a se-UC module and N < M. If K is a se-closure of N and N =, L, then L € K.

Proof. (i) Since N 2,, N and N is a se-closed submodule of M, so N is a se-closure of N.
Assume that K is another se-closure of N, thus N <., K and hence N = K.

(if) Let K be a se-closure of N. Since N <, L, so we have two cases: if L is se-closed in M,
then L is se-closure of N, as M is a se-UC module, so L = K. If L is not se-closed in M, then
L 2, H for some se-closed submodule H # L of M, then by Proposition 2.3(ii) N <, H and
H is se-closed in M, this mean H is se-closure of N,K = H, hence L € H = K.

In the next, we will give some characterizations of modules with the se-CIP. We will now
start with the following.

Theorem 2.13. The module M has the se-CIP if and only if for each submodules N; 2., N,
and L, 2, L, of M implies N; + L; Sg. N, + L, in M.

Proof. Assume M has the se-CIP, so M is a se-UC module, by Theorem 2.11. As N, + L, and
N,are submodules in M, N; + L; 2, P and N; 2, K for some se-closed submodules P and
K of M, hence by Proposition 2.3(iii), N; 2, P n K, where P N K is se-closed in M. This
means that P N K is another se-closure of N;, then PN K = K, and hence K € P. On the
other hand, N; 2., N, and K is a se-closure of N; in M, so by Lemma 2.12(ii) N, € K
implies N; € N, € K € P. By a similar way, L, <M then L; 2., K’ for some se-closed
submodule K' of M. By Proposition 2.3(iii) L; S,, PN K’ and P n K’ is se-closed in M. It
follows that PN K' = K" andso K' € P. Now, L, 9., L, and K' is a se-closure of L, in M.
Again by Lemma 2.12(ii) L, € K' implies L, € L, € K’ < P. From two cases, N; + L; S
N,+ L, € P but N; +L; 2, P, therefore by Lemma 2.10(i), N; + L; <5 N, + L, in M.
Conversely, assume A, B are two se-closed submodules of M, and let AnB 2,, W < M.
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Since A 2, A, so by hypothesis A=A+ (AN B) J,, A+ W, hence A = A + W, therefore
W < A. By asimilar way, W € B. Thus W € A n B, and this completes the proof.

Corollary 2.14. The module M has the se-CIP if and only if any submodule of M has se-CIP.
Proof. It is easy to check.

Theorem 2.15. The module M has the se-CIP if and only if NNnL S, N in M implies
L 2., N+ Lin M for all submodules N, L of M.

Proof. Suppose that M has the se-CIP. Let NnL 2, N, and as L <, L, so by applying
Theorem 2.13, we deduce that (NN L) + L 9, N + L, so that L 2, N + L. Conversely, let
K,K' be two se-closed submodules of M such that K n K’ 2,, W for some W < M. Since
K2, K, thenKNK'2,, KNnW < W, Lemma 2.10(i) implies K n W S, W and so by the
condition, K <, W + K, hence K = W + K. Thus W < K. By a similar way, W < K’ and so
W = K n K'. This completes the proof.

Theorem 2.16. The module has M the se-CIP if and only if for all submodules K € L in M,
and K' is a se-closure of K, there is a se-closure L' of L such that K’ < L'.

Proof. Suppose M has the se-CIP. If K € L, so K + L = L. Let K’ be a se-closure of K, then
K 2, K' and K'is a se-closed submodule of M, andas L <, Lso L =K + L S, K' + L by
Theorem 2.13. Now, since K'+ L < M, then there is a se-closure L' of K’ + L, this mean
K'+ L 2, L' and L' is se-closed in M, by Proposition 2.3(ii) L <, L' and L’ is se-closed in
M, therefore L’ is a se-closure of L such that K’ < L'. Conversely, let L,, L, be two se-closed
submodules of M. Since L; nL, < L4, and let L be a se-closure of L; N L,, then by our
assumption, there exists a se-closure L," of L, suchthat L € L,". As L, 9., L;" inM and L,
is se-closed in M, then L; = L', so L € L,. Similarly, L, N L, < L, and L is a se-closure of
L, N L,, again by the same condition, there exists a se-closure L," of L, such that L € L,’.
Since L, S, L," in M and L, is se-closed in M, then L, = L,’, and hence L € L,, thus
L; N L, = Lisse-closed in M.

Theorem 2.17. The module M has the se-CIP if and only if for each se-closed submodule A
of M and B < M, AN B is a se-closed submodule of B.

Proof. Suppose M has the se-CIP. Let An B 2,, W in B and since A S, A so by Theorem
2.13, we have that A 9,, A+ W, and as A is se-closed in M, implies A=A+ W,so W <
ANB and hence AnB =W. Thus AN B is a se-closed submodule of B. Conversely, let
L4, L, be two se-closed submodules of M such that L; n L, S, K in M. Since L,is se-closed
in M and K <M then by assumption, L; N K is se-closed in K. As L, nL, <, K and
L; S L4, S0 by Proposition 2.3(iii) L, N L, S, Ly N K. Again, we have L, is se-closed in M
and L; < M, so by assumption, L, N L, is se-closed in Ly, i.e., Ly NL, Q,, Ly N K < L; and
Ly NnL,isse-closedinL;,s0L; NL, =L; NK isse-closedin K, hence Ly N L, = K.

Theorem 2.18. The following conditions are equivalent for a module M.

(i) M has the se-CIP;

(i1) if {Ag}aen and {By}qen are two families of submodules of M such that A, is se-closed in
B, of M for all & € A, then Nyep Ay IS Se-closed in Ngep By

(iii) the intersection of any collection of se-closed submodules of M is se-closed.
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Proof. (i) = (ii) Assume that M has the se-CIP. If B, < M, so by Corollary 2.14 B, has the
se-CIP for a € A. Since A, is se-closed in B,, and Ngep B, < B, then by applying Theorem
2.17, we have A, N (Ngen By) 1s se-closed in Ngep By for a € A. 1t is clear that N gep By has
the se-CIP, implies NgeplAa N (Ngen Bg)] is se-closed in Ngep By; this means NgepAq 1S
se-closed in Nygep By-

(ii) = (iii) Consider the collection {A,| A, is se-closed in M for all « € A}. Put B, = M for
a € A, so by (i), Ngep A, 1S Se-closed in N,ep By, hence Ngep A, 1S Se-closed in M.

(iii) = (i) Obvious.

Now, we present the following definition.

Definition 2.19. Let N, N’ be submodules of R-module M such that N n N’ = 0. Then N’ is
called a se-complement of N in M if N’ is a se-closed submodule of M and N®N' 2,, M.
Moreover, a submodule N of a module M is called a se-complement if it is se-complement for
some submodule L of M.

Notice that se-complement always exists for a module. Every se-complement submodule is
se-closed, while there is a se-closed submodule of a module not be se-complement, as the
following example:

Example 2.20. In Q as Z-module, we see that Z is a se-closed submodule (see Example 2.6).
But the zero is the only submodule of Q has zero intersection with Z, while Z&(0) is not
strongly essential in Q. Thus Z is not se-complement in the Z-module Q.

Theorem 2.21. The module M has the se-CIP if and only if for any N <., M, N satisfies the
property (N n A) + (N n B) <, A + B for all submodules 4, B of M.

Proof. Suppose that M has the se-CIP. Let N <., M, so by Proposition 2.3(iii), we deduce
that NNA g, Aand NN B 2, B, hence (NN A) + (NNnB) 2, A+ B, by Theorem 2.13.
Conversely, let L,, L, be submodules of M such that L; N L, S, L;. Assume that K is a se-
complement of L; N L,, then K&(L; N L,) S5 M. Put H = KG(L, N L), by our assumption
(HNL)+(HNLy) A, Ly +L,. Now, if (0 #)x e KN L, then x € K and x € L,. Since
LyNnL, 2, L; and (0 #)x € L, so there is an r € R such that (0 #)rx € L, N L,, then
(0 #)rx € Kn (L N L,), that is a contradiction with K is a se-complement of L, N L, in M,
therefore K N L, = 0. Also, if he HNL; = (K&(L;NL,))NLy, h =a+ b where h € L,
a€eKand belinlL,then h—b=a€KNL; =0, and so h € L,, hence HNL; € L,.
Thus(HNL;))+(HNLy,) €L, S Ly+ L, Since (HNL;)+ (HNL,) D[ Ly +L,, Lemma
2.10(i) implies L, 2, Ly + L,, thus the result is obtained by Theorem 2.15.

Smith P.F. in [4] defined the following: for submodules L;,L, < M, LlpL2 if Ly N L, isan

essential submodule in both L, and L,. However, we will provide the following definition as
a stronger idea of previous concept.

Definition 2.22. For a module M, and submodules L,, L, of M, we say that LlpseLZ if, LN L,
is a strongly essential submodule in both L, and L.

Theorem 2.23. The module M has the se-CIP if and only if for all submodules A;, B; of M,
i = 1,2, AlpseAz and BlpseBZ |mp||es (A1 + Bl)pse(Az + Bz)
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Proof. Let M has the se-CIP. If AlpseAZ and BlpseBZ’ SO A; NA, 2, A1, A; N A, g, Ay,

B; N B, S, B; and B; N B, <, B,. By Theorem 2.13, it follows that A; N A, S, A; + A,
and B; N B, S, By + B, hence (A; N A,) + (B N B,) <, (A1 + A4,) + (By + B,), but we
deduce (4; NA;) + (B1NBy) € (A; + B1)N(A; + B,) € (A + By) + (A, + By), Lemma
2.10(i) implies (A; + By)N(A, + B,) 2. (A1 + By) + (4, + B,), so that (A, + B;)N(4, +
B,) is strongly essential in both (A; + B;) and (A, + B;). Thus (4, + By),, (A2 + B>).
Conversely, let A, 2, A, and B; 2,, B, of M. It follows that A; n A, = A; is strongly
essential in both A;, A,, also B; N B, is strongly essential in both B;, B, this mean AlpseAz

and BlpseBz, so that by assumption (A; + B;),,,(4; + By), thus 4; + By = (A; + B)) N
(A, + By) 2, A, + B,, and by applying Theorem 2.13, the result is obtained.

Theorem 2.24. Let M = M;®M, be a module has the se-CIP. If f € Homz(M;, M;), then
kerf is a se-closed submodule of M.

Proof. Suppose M = M;®M, has the se-CIP and let f: M; - M, be an R-homomorphism.
Consider W = {m; + f(m;)|m, € M;}, we claim that M = W®M,. Let m, € W n M,,
m, = my + f(m,) where m; € M; and m, € M,, then m;y = m, — f(m,) € M; N M, = 0,
som; =0 and m, = 0 and hence W n M, = 0. Now, if m € M then m = m; + m, where
my; € M; and m, € M,, so we can put m =m,; + f(my) — f(my) + m, € W + M,, then
M =W+ M,. Thus M = W@BM,. It follows that M, and W are both se-closed submodules of
M, implies M; N W is se-closed in M, as M has the se-CIP. It is enough to prove kerf =
M, N W, to see this; let a € kerf, so a =a+ f(a) € W thus kerf € W, implies kerf <
M;nW. Now, if be My nW, b =my + f(m,) where b,m; € M;, so we have f(m,) =
b—m; € M{NnM, =0impliesb =m, € kerf,so M, N W < kerf.

Theorem 2.25. Let M be a module has the se-CIP, and N < M. If f € Homg(N, M) with
N N f(N) = 0, then kerf is se-closed in N.

Proof. Assume M has the se-CIP. Let N < M such that f € Homg(N,M) and N n f(N) = 0.
Put L = N®f(N). By Corollary 2.14, L has the se-CIP. Define g: N = f(N) by g(n) = f(n)
for all n € N. It is easy to see g is well-defined and R-homomorphism. By Theorem 2.24,
kerg = kerf is se-closed in L, therefore in N, by Lemma 2.10(ii).

Lemma 2.26. Let M be a module and let N < K < M. If K is se-closed in M, then K/N is
se-closed in M/N. The converse hold, if N is se-closed in M.

Proof. Let K be a se-closed submodule of M. If K/N <,, L/N in M/N, it follows by
Proposition 2.3(i) that K S, L in M, so K = L and hence K/N = L/N. Therefore K/N is
se-closed in M/N. Conversely, let K 2., A in M. We claim that K/N 2., A/N in M/N. Let
(0 #)B/N < A/N implies (0 #)B < A, then there is an r € R such that (0 #)rB € K.
Since N is se-closed in M, then N is not strongly essential in K < M, so for all s € R, either
s(rB) =0 or s(rB) £ N. Choose s = 1, we deduce rB &£ N, so r(B/N) # 0. AsrB € K,
implies (0 #)r(B/N) € K/N, and hence K/N 2,, A/N in M/N, therefore K/N = A/N
and K = A.

Notice that a module M need not have the se-CIP whenever the factor module of M has the
se-CIP. Indeed, its well known that (Z®Z,)/(0®Z,) = Z has the se-CIP as Z-module, but
the Z-module Z&®Z, does not have the se-CIP. However, we are going to demonstrate that
under some cases, the class of modules with the se-CIP is closed under factors.
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Proposition 2.27. The module M has the se-CIP if and only if for all se-closed submodule N
of M, M/N has the se-CIP.

Proof. Suppose M has the se-CIP. Let A/N and B/N are two se-closed submodules of M/N.
Since N is se-closed in M, so by Lemma 2.26 A and B are se-closed in M, and hence A N B is
se-closed in M. Again, by Lemma 2.26, we get (A/N) n (B/N) = (An B)/N is a se-closed
submodule of M/N. Therefore M /N has the se-CIP. The reverse is clear.

In general, the direct sum of two modules with the se-CIP has not se-CIP as seen by the
following: in the Z-modules Z and Z,2 where p is prime, any nonzero submodule is strongly

essential, so are both modules with the se-CIP. While the Z-module Z&®Z, does not be have
se-CIP.

Furthermore, we give a condition under which the direct sum of modules with the se-CIP,
also has the se-CIP. Before that, we need the following Lemma.

Lemma 2.28. Let M = M;®M, be a module, and let A; < M; for i = 1,2. Then A;®A, is
a se-closed submodule in M if and only if A; is a se-closed submodule in M; for i = 1,2.

Proof. Suppose that A;@A, is a se-closed submodule in M;®M,. Let A; 2, B; in M; for
i = 1,2, so by Proposition 2.3(iv) A;®A, 2, B1®B, in M, and hence A,®A, = B;®B,.
Thus A; = B; and A, = B,. Conversely, let A; be a se-closed submodule in M; for i = 1,2.
Suppose A;DA, 2, X in M. For i € {1,2}, it is easy to see that A; = (A;DA,) N M;. Thus
by Proposition 2.3(iii), A; = (A;PA,) N M; S,, X N M; in M; for i = 1,2. As 4; is se-closed
inM; fori =1,2, A, =XNM,. Let x € X, x=x; +x, Where x; € M; and x, € M,. For
i € {1,2}, the i component x; of x is in X N M; = A;, this mean x; € A; for i = 1,2, hence
X =x;+x, €A;PA, and A, DA, = X, therefore A; DA, is a se-closed submodule in M.

Corollary 2.29. Let M = @}, M; be a module, and let A; < M; for i € {1,2,...,n}. Then
*,4; is a se-closed submodule in M if and only if A; is a se-closed submodule in M; for
i €{1,2,..,n}.

Proposition 2.30. Let M = M; &M, be an R-module such that Ix(M,)®Ilz(M,) = R. Then
M; and M, has the se-CIP if and only if M has the se-CIP.

Proof. Suppose M;, M, has the se-CIP. Let N and L be se-closed submodules of M. Since
[r(M])®1z(M,) = R, so by a part from the proof of [6, Prop. 4.2] we have N = N;®N, and
L =L,®L,, where N;,L; < M, and N,, L, < M,. By using Lemma 2.28 N, L, are se-closed
in M, and N,, L, are se-closed in M,. It follows that Ny n L, and N, N L, are se-closed in
M;, M, respectively. Again, by Lemma 2.28, we havethat NN L = (N; N L)®(N, N L,) isa
se-closed submodule in M = M;®M,. The reverse is follows directly by Corollary 2.14.

Proposition 2.31. Let M = M;@®M, be a module has the se-CIP with Homg( M;, M;) # 0 for
1 <1i,j <2, thenthereisan h € Endgz(M) such that kerh is se-closed in M.

Proof. Consider f:M; - M, and g:M, - M, are two R-homomorphisms. Now, we will

define h:M - M by h(m; + my) = f(my) + g(m,) for all m; € M; and m, € M,. It is
easily to prove h € Endiz(M) and kerh = kerf@kerg. By Theorem 2.24, kerf and kerg
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are se-closed submodules of M; and M,, respectively, as M = M, @M, has the se-CIP. Hence
kerh = kerf@®kerg is se-closed in M = M;®M,, by Lemma 2.28.

Recall that a module M is called extending, or CS-module, if for every submodule N of M,
there is a decomposition M = A@B such that N < A, equivalently, a module M is extending
if any closed submodule of M is a direct summand [7]. Moreover, we will present a stronger
concept than the notion of extending modules, as follows.

Definition 2.32. A module M is called se-extending if for every submodule of M is strongly
essential in a direct summand of M. A ring R is called se-extending if R is a left se-extending
R-module.

Proposition 2.33. The module M is se-extending if and only if every se-closed submodule of
M is a direct summand.

Proof. Suppose that M is a se-extending module. If N is a se-closed submodule of M, there is
a direct summand L of M such that N =, L. It follows that N = L, N is a direct summand of
M. Conversely, let N < M. By Proposition 2.9, there is a se-closed submodule K of M such
that N 2., K. By the condition, K is a direct summand of M, and that ends the proof.

It is clear that every se-extending module is extending, in fact, every strongly essential
submodule is essential. But the reverse is not true, in general, as follows examples shows.

Examples 2.34. (i) Consider M = Z&Z,~ as Z-module. According to [8], M is extending.
Let N = (0,2+Z)Z, so N < M. It is easy to see that N is essential in (0)@Z,e then N is not
closed (therefore not a direct summand). Moreover, notice N has no proper strongly essential
extensions inside M, thus N is se-closed. Hence M is not se-extending.

(i) 1t is well know that Q as Z-module is extending. By Example 2.6, N = Z is a se-closed
submodule in @ but it is not a direct summand. Thus @ is not se-extending as Z-module.

Proposition 2.35. The following statements are equivalent for a se-extending module M.

(i) M has the SIP;

(if) M has the se-CIP.

Proof.(i) = (ii) Assume L, and L, are se-closed submodules of M where M is se-extending,
then L, and L, are direct summands of M, and hence from (i), we get L, n L, <® M, and
hence L, N L, is se-closed in M. Thus M has the se-CIP.

(ii) = (i) Let A, B be two direct summands of M, thus A and B are se-closed submodules in
M. By (ii), L; N L, is se-closed in M, implies An B <® M (since M is se-extending). Hence
M has the SIP.Q

Proposition 2.36. Let M = Z@Z be a Z-module and N a cyclic submodule of M. Then N is
se-closed in M ifand only if N = (a, b)Z forsome a,b € Z and gcd(a,b) = 1.

Proof. Suppose N is a cyclic se-closed submodule of M = Z@®Z. So N = (a, b)Z for some
a,b € Z. If gcd(a,b) = 1, then the proof is finish. Let gcd(a, b) = d(# 1), then there exists
X,y € Z such that a = dx and b = dy with gcd(x,y) = 1. We claim that N =, (x,y)Z in
M. If s =(a,b)r € N where r € Z, then s = (x,y)dr € (x,y)Z, thus N € (x,y)Z. Now, let
H=(x,y)L < (x,y)Z and H # 0. For d € Z and for all (x,y)l € H, (x,y)ld = (a,b)l €
(a,b)Z = N, then Hd S N. Since H # 0, so there is (x,y)l; € H and (0 #)l; € L, hence
(x,y)lid = (a,b)l; # 0;i.e., Hd # 0. Thus N 2, (x,y)Z in M, it follows that N =(x,y) Z
such that gcd(x,y) = 1, and that ends the proof. Conversely, assume N =(a,b) Z <, K in
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M =Z@®Z. Let 0+ (x,y) €K, so there is an r € Z and 0 # (x,y)r € N, then (x,y)r =
(a,b)r; for some r, €Z, i.e.,, xr =ar; and yr = bry, hence xb = ya. Thus (x,y)b =
(a,b)y. Since gcd(a,b) =1, then as+bt =1 for some s,t € Z. Hence (x,y)=
(x,y)(as + bt) = (xa,xb)s + (a,b)yt = (a,b)(xs + yt) € (a,b)Z = N, and then N = K.
Therefore N = (a, b)Z is a se-closed submodule of M = Z@7Z.

Remarks 2.37. (i) In the Z-module Z®Z, we know if N = (a, b)Z < Z@®Z for some a, b € Z
and gcd(a,b) =1, then N is a direct summand. By Proposition 2.36, we deduce that every
se-closed submodule of Z@Z as Z-module is a direct summand. Hence the Z-module Z®7Z is
se-extending.

(i) A homomorphic image of module with the se-CIP may not has the se-CIP, for example,
we define f: Z®Z - ZDZ, by f(a,b) = (a,b) for all a,b € Z, so f is a Z-homomorphism.
By [3, Example 5] Z®Z has the SIP, but by (i) Z@Z is a se-extending as Z-module, thus
it has the se-CIP as Z-module, by Proposition 2.35. While Imf = Z@®Z, does not have the
se-CIP.

The proof of the following lemma is clear.

Lemma 2.38. (i) If f: M; = M, is an R-monomorphism, and L =g, M;, then f(L) S, Imf.
(i) If f: M; = M, is an R-monomorphism such that L < M;. Then L is se-closed in M, if and
only if f(L) is se-closed in Imf.

Proposition 2.39. Let f: M; — M, be an R-monomorphism. Then M; has the se-CIP if and
only if the image of M; has the se-CIP.

Proof. Suppose that M; has the se-CIP. Let A, B be two se-closed submodules of Imf, then
A= f(Ly) and B = f(L,) for some se-closed submodules L;, L, of M;, by Lemma 2.38(ii).
Thus L, N L, is a se-closed submodule of M;. Again, by Lemma 2.38(ii) ANB = f(L;) N
f(Ly) = f(Ly N Ly) is se-closed in Imf. Conversely, suppose Imf has the se-CIP. Let K3, K,
be se-closed submodules of M;, so by Lemma 2.38(ii) both of f(K;) and f(K>) is se-closed
in Imf, hence f(K; N K,) = f(K;) N f(K;) is se-closed in Imf. By Lemma 2.38(ii),K; N K,
is a se-closed submodule of M;.

3. Modules with the se-CIP and related concepts

In this section, we give many connections between modules with the se-CIP and other types
of modules such as se-extending, strongly uniform and se-closed simple modules. Clearly,
every semisimple module is a module with the se-CIP, so that any module over a semisimple
ring has the se-CIP. Notice, the Z-module Z has the se-CIP but not semisimple. Furthermore,
every multiplication module has the SIP, see [9, Cor. 1.1.12], so by applying Proposition 2.36,
every multiplication se-extending module has the se-CIP. An R-module M is called polyform
if for all nonzero f € Homz(N, M) and for all N < M, kerf is closed in N [10]. According to
[2, Lemma 11], if M is an extending polyform module, then M has the SIP. Thus, it follows
by Proposition 2.35, any polyform se-extending module has the se-CIP.

Ghashghaei, E. and Namdari, M. [11], recall that a nonzero module M is strongly uniform
if every nonzero submodule of M is strongly essential in M. Note that all nonzero submodules
of strongly uniform module are strongly uniform. It is clear that any strongly uniform module
is uniform. Moreover, if M is a strongly uniform module, so that the trivial submodules are
the only se-closed in M, implies M has the se-CIP. It is easy to see the Z-module Z is strongly
uniform, but the Z-module Q is not strongly uniform.
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Theorem 3.1. Let M =@}, M; be a finite direct sum of finitely many strongly uniform
submodules M;. If M has the se-CIP that for any se-closed submodule A of M, A n M; # 0 for
some 1 < i < n, then M is se-extending.

Proof. Suppose M =@, M; has the se-CIP. Let A be se-closed in M such that AN M; # 0
for some M; < M. By Theorem 2.17, A n M, is se-closed in M; which implies A N M; = M,,
since M, is strongly uniform, thus M; < A. By the modular law, A = M;®(A n (B}, M;)).
Put B=An (@, M;), so we have two cases: if B =0 then A = M, which is a direct
summand of M. Let B # 0then An M; # 0 for some 2 <i < n. Assume that An M, # 0,
so by a similar way A n M, = M,, hence M, € A. Thus B=ANn (DL, M;) = M,®(AN
(B M) If C=An(@~; M) =0, B=M, and so A =M,®B = M;®M, <® M. If
C #0 then AnM; #0 for some 3 <i <n. Hence by repeating this argument, we have
either A <® M or A = M and that ends the proof.

Proposition 3.2. Let M be a module over a se-extending ring R. If R®M has the se-CIP, then
every cyclic submodule of M is projective.

Proof. Let (0 #)m € M. Consider the sequence 0 — kery SR ﬁ Rm5M =0 where
Y(r) =rm for all r € R, i and j are the inclusion maps. Since R@&M has the se-CIP and
h = jy:R - M is a homomorphism, then by Theorem 2.24, kery = kerh is se-closed in
R®M, so in R. Since R is se-extending, we get kery <® R and hence Rm is projective.

Now, we consider the following definition.

Definition 3.3. A nonzero module M is called se-closed simple if the trivial submodules are
the only se-closed submodules of M.

Remark 3.4. Obviously, every se-closed simple module has the se-CIP, but need not be
conversely, in general, such as example; every semisimple module has the se-CIP but it is not
se-closed simple. However, we have the following implications for modules:

simple = strongly uniform = se-closed simple = indecomposable = module with the SIP.

Proposition 3.5. Let M = M;@®M, such that M, is a se-closed simple (not simple) and M, is
simple R-modules. If Homgz(M,, M,) # 0, then M does not have the se-CIP.

Proof. Suppose Homy(M,, M,) # 0, then there is a nonzero homomorphism f: M; - M,. If
false, then f have two cases: if kerf =0 (i.e., f is @ monomorphism), but M, is a simple
module and f # 0, so by Schor’s Lemma f is an epimorphism, and then M; = M,. It follows
that M; is simple, which is a contradiction. Thus kerf # 0. If M has the se-CIP, Theorem
2.24 implies kerf is se-closed in M;. As M, is a se-closed simple module and kerf # 0,
hence kerf = A and so f = 0, a contradiction. Hence, M does not have the se-CIP.

Proposition 3.6. Let A be a se-closed simple and B be any R-modules. If A @ B has the se-
CIP, then for any f € Homy (A, B), either f = 0 or, f isamonomorphism.

Proof. Assume f € Homg(A,B) and f # 0. Since A @ B has the se-CIP, then by Theorem

2.24, kerf is a se-closed submodule of A. As A is a se-closed simple module and f # 0,
hence kerf = 0. Therefore f is a monomorphism.
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Roman C.S. in [12], recall that a module M is called mono-endo if all nonzero endomorphisms
are monomorphisms, or, equivalently, for any endomorphism f of M, kerf is either M or 0. It
is clear that every mono-endo module is indecomposable. However, we give the following.

Proposition 3.7. Let A be a se-closed simple and B be R-modules such that Homgz (A4, B) # 0.
If A @ B has the se-CIP, then A is an mono-endo R-module.

Proof. Let A @ B is a module with se-CIP. By Proposition 3.6, any 0 # f € Homgz (A, B) is
a monomorphism. If A is not an mono-endo module, there is an (0 #)g € Endg(A) such that
g is not a monomorphism. It is easy to see kerfg = kerg, thus (0 #)fg € Homgz(4A,B)
such that kerfg # 0; this mean fg is not a monomorphism which is a contradiction with
assumption.

Corollary 3.8. Let A @ A be a module has the se-CIP. If A is a se-closed simple module, then
A is mono-endo.

Proposition 3.9. Let A, B be two se-closed simple R-modules. If A @ B has the se-CIP such
that A is injective, then either Homgz(A,B) = 0 or A = B.

Proof. By Proposition 3.6, either Homgz(A,B) = 0 or any nonzero f € Homg(A4,B) is
a monomorphism. It is enough to show that f is an epimorphism. Since f is a monomorphism
and A is injective, then Imf is an injective submodule of B, so it is closed and hence it is
a se-closed submodule. Since B is a se-closed simple module and Imf # 0, thus Imf = B.

4. Conclusions

We defined the notions of modules which have the se-closed intersection property, briefly
se-CIP, and se-complement submodules as a proper generalizing of module with the SIP and
complement submodules, respectively. It is discussed and examine some different properties,
characterizations and examples of these classes. Also, we defined the idea of se-extending
modules and characterize these modules as a proper generalizing of extending modules.
Future desire will achieve deeper outcomes on issues raised in this work.
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