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Abstract

In this work, we present new types of compact and Lindelf spaces and some
facts and results related to them. There are also types of compact and Lindelof
functions and the relationship between them has been investigated. Further, we have
present some properties and results related to them.
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1- Introduction

Nowadays, compactness is one of the most significant, practical, and essential ideas in
both general topology and other high-level disciplines of mathematics. Numerous academics
have succinctly examined the core characteristics of compactness, and the findings are now
included in every introductory analysis and general topology textbook. The idea of
compactness' productivity and fruitfulness encouraged mathematicians to generalize it. As [1]
showed that a topological space (X,t) is strongly compact if and only if it is compact and the
family of dense sets in (X, 1) is finite. The concept of b-open sets was introduced in [2] with
properties by D. Andrijevic. And N-open sets are introduced in [3] by A.AL-Omari. Many
researchers lean on these two concepts and ramify. Sharma [4] gave us the basic definitions of
compact space and Lindelof space. [3] make a generalization of these concept in [5]. The
wb — open and b-Lindel6f represented by [6] with properties. Nb-open set are published by
[7] by mixing the two concepts b-open and N-open. [8] Posted m-structure with N-open. Also
[9] used N-open in bitopological spaces. A strong version of compactness defined in terms of
preopen subsets of a topological space which they called strongly compact [10]. Now we will
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present the concept of Nb-compact and Nb-Lindel6f with definitions, properties and examples
based on the two concepts b-open and N-open sets.

2- Preliminaries
Definition2.1 [2]:_If S is part of a space X that is b-open, then S € S U S°.

Definition2.2 [3]: A subset A of a space X is said to be an N-open if for every peA there
exists an open subset Up in X such that Up-A is a finite set.

The complement of an N-open set is said to be N-closed.
Definition2.3: A subset A of a space X is said to be an Nb-open set if for each xeA there
exists a b-open set U in X with xeU and U-A= finite.
The complement of Nb-open sets is called Nb-closed.

Definition2.4 [2]: A topological space X is said to be b-compact if every b-open cover of X
has a finite subcover.

Definition2.5: [2] Every b-compact space is compact but the converse is not true.

Definition2.6: [11] X is nearly compact if every regular open cover for X reduced to a finite
subcover.

Definition2.7: [11] If every regular open set cover of X has a countably sub-cover, it becomes
nearly Lindelof.

Definition2.8 [3]: A topological space X is said to be N-compact if every N-open cover of X
has a finite subcover.

Definition2.9: [12] A topological space X is said to be b-Lindel6f if every b-open cover of X
has a countable subcover.

Definition2.10 [11]: A topological space X is said to be nearly Lindel6f if every regular open
cover of X has a countable subcover.

Definition2.11: [12] A topological space X is said to be nearly b-Lindel6f if every b-regular
open cover of X has a countable subcover.

Definition2.12: A topological space X is said to be nearly N-Lindelof if every N-regular open
cover of X has a countable subcover.

Definition2.13: Let X be topological space and A ©X, A is called Nb-regular-open set in X if
_NbONb

A=A :

the complement of Nb-regular-open set is called Nb-regular-closed thus it is simple to

——Nb
observe that A is Nb-regular closed set if A =A°Nb |

3- Nb-compact spaces
We will explore a novel type of open sets of Nb-compact, we need the followed definitions

Definition3.1: The topological space X we name it b-space if every b-open set is open in it.
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Definition3.2: Every Nb-open cover of a topological space X is known to be Nb-compact if
X contains a finite subcover.

Definition 3.3: A function f:X =Y is said to be Nb* — compact (Nb** — compact) if
f~(L) is compact (Nb-compact), when Y contains L that is Nb-compact.

Remark 3.4: It is evident that each Nb-compact space is compact.
However, as the following example demonstrates, the opposite is not generally true.

Example 3.5: (R, t;,q) , although not Nb-compact, is a compact space. Since for each x€ R,

{x} is Nb-open set, where {x} is b-open set based on {x} = R and {x} =R’ =R so {x}-
{x}=0 which is finite, so ¢ = {{x}: x € R} is Nb-open cover for R which cannot reduce to a
finite subcover.

Remark 3.6: The Nb-compactness of space is not a heritable trait.

Example 3.7: Let (R, Tgxciuaea) D€ €xcluded space, since R is Nb-compact but R-{x-} is not
Nb-compact, where x. is the excluded point to that space.

Remark 3.8: The relation between N-compact and b-compact is missed.

Lemma 3.9: A subset U is Nb-open in X if f every point in U is an Nb-interior point to U.
Proof: Since x € U € U, so x is an Nb-interior point of U and this way identically for all
points of U. Conversely, since every Nb-interior point x, to U then there is Nb-open set U,
contain this point and U, < U, S0 = Uep U , but the random union of Nb-open sets is Nb-
open, so U is Nb-open.

Lemma 3.10: If A'is b-openin X and Y is open in X, then ANY is b-openin.
Proof: Since A is b-open in X, then

ACA UL ANy C (Z°UE)nY= (ZonY)u(FnY) (Since Y is open)

:(Zo N Y)OY u@°ny)c (Z N Y)OY Uu(d°nvY°) (since Y is open)

=(@nY) UANY) C ((A nY) ul@n Y)°Y) ny = ((m)‘” N Y) U(AnY)")n
Y)

:((m)”.n Y°Y.) U ((A N Y)°YY) = ((m) N Y.)OY U ((A N Y)°YY) c

oY

((A ny )Y) VAN

Lemma 3.11: Let Y be open subset of X, if V be Nb-open set in X, then VN Y is Nb-open in
Y.

Proof: Put xe ¥ nY, so xe V and xe Y but V is Nb-open in X, then there is G which is b-
open in X containing x such that G-V=finite, also (GNY) — (V nY) =finite but by (lemma
3.9) GN Y is b-open in Y and containing x., so VN 'Y is Nb-open setin Y.

Lemma 3.12: [6] Let(X,t) serve as a topological space;

1. A b-open set is created when an open set and a b-open set intersect.
2. b-open sets are created by joining any family of them.
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Proposition 3.13: It is Nb-open when a Nb-open set intersects with a N open set.

Proof: A should be an Nb-open set, and B must be an N-open set in space X. Allowing X
as any point of A n B. Because of A is Nb-open, a b-open set is available Ua comprising x in
a way that |Ua — A is finite. Since B is N-open, An unclosed set exists Ug comprising x in a
way that |Ug — BJ is finite. By Lemma(3.12), UaNUg is b-open set that includes x and (Ua
NUg)N (AN B)¢

=(Ua N Up)~(AN B) =(UaN Ug) N [(X-A) U (X~ B)]

= [(Uan Ug) N (X~A)] U [(Ua N Ug) N (X - B)]

c (Uan (X-A)) U (Ug N (X—B)).

Since (Ua N(X —A))U (Ug N(X —B)) is a finite set, |(Ua N Ug)—(ANB)| is finite. This
demonstrates that ANB is Nb-open.

Corollary 3.14: An Nb-open set is created when such an open set and another Nb-open set
intersect.

Proof: Due to the fact that every open set is N-open, the intersection is maintained by the
aforementioned proposition.

Theorem 3.15: In a N-Hausdorff space, every Nb-compact subset is also a Nb-closed.
Proof: Set X be an N-Hausdorff space and Y be its Nb-compact subset, to demonstrate

YNb c VY, letx € Y, we demonstrate the existence of a N-open set that includes x and is
disjoint from Y, in each y € Y it is distinct from X, choose disjoint N-open sets Uy and Vy
contains x and y (respectively) since X is N-Hausdorff, the collection{V,:y€ Y} is N-open
cover which is Nb-open cover to Y but Y is Nb-compact, Consequently, they are limited in
number Vy1,Vyy, . ., Vyn the Y cover the N-open set V=Uj, Vyi includes Y and is not coupled
to the N-open set U =N, Uy, by obtaining the intersect of N-open sets that contain X, since
if z is a point of V so z€ Vy; for a few i, hence z& Uy and z¢ U, U is N-open so it is an Nb-

. C . . . . —Nb
open set contains x disjoint from Y, then x is not Nb-adherent point that is x ¢ Y  so
—Nb —Nb —Nb
Y CcYhbutalwaysYCY thatisY =Y, therefore Y is Nb-closed.

Proposition 3.16: Within Nb-compact space (X,), every Nb-closed subset is Nb-compact.
Proof: Put C={V,: « € A} b an Nb-open cover to Nb-closed set Y, that is Y=U {V,: a € A},
but

X=YUY€so X=(U{V,: a € A}) U Y€, which is a Nb-open cover to X, which is actually Nb-
compact, so  X=(U {V,,:i € Nh U Y, then Y=u{V,,:i € N}, therefore Y is Nb-compact
subspace.

Theorem 3.17: Let f: X — Y serve as onto, Nb-continuous function, it follows that Y is
compact if X is Nb-compact.

Proof: Let {GA: A € I} serve as Y's open cover then {f(GA): A € I} is Nb-open cover of X,
due to the fact that X is Nb-compact, X has a finite subcover. Say { f*(GA)): i = 1, ...,n} and
Gy, € {GA: A € I} hence {GA;:i=1,....,n} is a finite sub cover of Y therefore, Y is compact.

Corollary 3.18: If f is onto, N-continuous, then Y is compact whenever X is Nb-compact.
Proposition 3.19: The propositions listed below are equal for every topological space X:

1- X' is Nb-compact.

2- Each family of Nb-closed sets {Va: a € A} of X such that n,ep V, = ¢ afterward, a finite
subset exists A. € A with Ny, V, = .
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Proof:(1)- (2)

Insist on X being Nb-compact, let {V,: « € A} be a group of Nb-closed subsets of X in such a
way that Ngep V, = ¢ then the family{X — V,:a € A} is Nb-open cover of the Nb-compact
(X, 1) so we have a finite subset A. of A thus X =U {X — V,:a €A, } therefore @ = X —U {X —
Vya eEnIEN{X — (X =V):a € A}=n{V,:a EA.}.

-

Set {U,: @ € A} be Nb-open cover of (X, 1) thatis X=U {U,:a € A}.

Then X — {U,: « € A} is a family of Nb-closed subset of (X, 7) with N{X —U,:a € A} = ¢
presumably, there is finite subset A. of A hence

N{.X—-Uga€A}=¢s0oX =X—-N{X—-U,:a €A }=U{U,:a € A-} in light of this, X is
Nb-compact.

Definition 3.20: [7] Let f:X—Y be function of a topological space (X,t) into a topological
space(Y, 7) then f is referred to be a Nb-irresolute function if f™(4) of each Nb-open set A in
Y corresponds to a Nb-open set in X.

Theorem 3.21: Let f: X — Y be an onto Nb-irresolute function, if X is Nb-compact then Y is
Nb-compact.

Proof: Let {B;:A € I}be Nb-open cover of Y thenY € U,g{B;}, so X=f"}r)c
F Y Uer{Bi})=Uer f~H(By), thus XS U,¢; f1(B,) since By is Nb-open set at Y

vA €1 and since f is Nb-irresolute hence f~1(B,) is Nb-open set at X {f~1(B;):1 € 1} is
Nb-open cover for X. Since X is Nb-compact space then 3 A4, 41,,...,4,Iwith
X=Ufe f7HBw), Y = f(X) = U?=1f(f_1(3/1i)) = Uiz, By therefore Y is Nb —
compact .

Definition 3.22: A subset B of a topological space (X,7) is allegedly Nb-compact relative to
X in the event that any cover of B by Nb-open sets of X has a finite subcover of B.

Proposition 3.23: Let Y be an open subspace of a space (X,7) and BS Y, then B is Nb-
compact set in Y iff B is Nb-compact in X.

Proof: Let B an Nb-compact in Y and let {V,,;: « € A} be Nb-open cover of B in X, thenB <
UaEA Va ’

sinceBSY,B=BnY=U{YNnV,:a € A}sinceY NV, is Nb — open relative to Y thus

{Y nV,:a € A} is Nb-open cover of B relative to Y, we have BS (Y NnV,) U .... U
(Y n By,) thatis B=UjL, V,; therefore B is Nb-compact in X.

Conversely; let B be Nb-compact set at X and let {U,: a € A} be a Nb-open cover of Bin 'Y,
then BS Ugea Ug, thus there exists V,, is Nb — open relative to X such that U, =Y N
V, Va € A hence BC Ugyep V, where {V,: « € A} Nb-open cover of B, relative to X, since B
is Nb-compact set in X, 3aq, @y, ....,a, € Asuch that B € U}, V,;, since BCY,B=Yn
BeYNn{Vy1,Voo, ., Vo = (Y NV ) U ... U (Y NV,,),sinceY NV,; = U,; therefore B is
Nb-compact in Y.

Definition 3.24: A collection C of sets is said to have finite-intersection-property iff the
intersection of members of each finite sub-collection of C is non-empty.

Proposition 3.25: A topological space (X,7) is Nb-compact iff any collection of Nb-closed
subsets of X with finite-intersection-property has a non-empty intersection.

Proof: Let X is Nb-compact and F={F,: « € A} is collection of Nb-closed subsets of X with
finite-intersection-property and suppose N {F,:a € A} = @. Then [N {F,: a € A}]¢ = X, this
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means that {F,“: « € A} is Nb-open cover of X (since F, is Nb-closed). Now, since X is Nb-
compact, we have that
U{F, :i=1,...,n}=X, so by De-Morgan Law we get N {F,;:i =1, ....,n} = @, but this
contradicts with finite intersection property of F. Hence we must have N {F,:a € A} # 0.
Conversely; let any collection of Nb-closed seubsets of X with finite intersection property
have a non-empty intersection and let C={G,: « € A} be a Nb-open cover of X so X=U
{Gp:a € A}, D = [U{G,: @ € A}]° =N {G, : aEA}.
Thus {G,“:a€A} be collection of Nb-closed sets with empty-intersection and so by
hypothesis this collection lacks the attribute of finite intersection. As a result, there are only a
finite number of sets {G,;“:i = 1, ....,n} such that @ =N {G,;“:i = 1, ....,n}=[U {G, :i =
.,n}]¢ (De-Morgan Law) which implies X=U {G,; :i=1,....,n}. As a result, X is Nb-
compact.

Proposition 3.26: If (X,7) is a topological space and Nb-open subset of X is Nb-compact
relative to X then any subset is Nb-compact relative to X.

Proof: A random subset of X might be B and let {V,: « € A} be cover of B by

Nb-open sets of X so the family {V,,: @ € A} is Nb-open cover of the Nb-open set

U{Vy: a € A} alimited subfamily is therefore implied by this {V,;:i = 1,2, ..., n} who
covers U{V,: a € A} this section also serves as the set B cover.

Definition 3.27: A topological space (X,7) is defined as nearly Nb-compact if each open Nb-
regular cover of X has a finite subcover.

Proposition 3.28: For any topological space (X,7), these two claims are interchangeable:
1 — Xis nearly Nb-compact.
2- Every Nb regular open cover p = {V,:a € A} of X, a limited subset exists A- € A with

NboNb
X = Ugen. Ugen.
Proof:(1)—(2)
°Nb

—Nb
Let p= {V,:a@ € A} be Nb-regular open cover for X then {V, :a € A} is Nb-regular open

cover for the nearly Nb-compact space X thus a limited subset exists A- € A
NbONb

Wlth X :U(XEAO V(XEAO
(2)—(1)

It is clear since Nb-regular open set is Nb-open.

Theorem 3.29: For all topological spaces (X,t), these three claims are interchangeable:
1 - X is nearly Nb-compact.
2- Any family of Nb-closed sets {V,,:a € A} of X with Nyep V, = @ then a finite subset exists

Nb
Ao S Ahence NgeaVy V2 = 0.
3- Any family of Nb-regular closed sets {V :a € A} of X such that Ngep V, = O then a limited

subset exists A- S A hence Ngep Vy W = @.
Proof: Let {,:a € A} be family of Nb-closed sets of X, with NgepV, =@ letC, = X =V,
the family {C,:a € A} is an Nb-open cover of space X, since X is nearly Nb-compact by

proposition(3.25) there exists a finite subset A- A such that
__Np°ND __Np°ND —Nb
X=U{Ca :aEAo},thenX—U{Ca :aEAo}=ﬂaeAVaNb =0=X-X

O ©)
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Let {V,:a € A} be family of Nb-regular closed set of X, wﬂhﬂaeAV @ ,V, is Nb-closed set

so by(2) a limited subset exists A. € A hence Ngea Vs o = Q.
3)—(1)
Let {C,:a € A} be family of Nb-regular open cover of X, then {X — C,:a € A} is Nb-

regular closed with Ngep X — €, = @ a finite subset exists A. S A hence
————Nb __Nb°ND
Nger.(X — C,)Nb =@ therefore X=Ugep Cy = Ugea. C, (since C, is Nb-regular

open for a € A.).

Definition 3.30: A space (X,t) is said to be countably Nb-compact if every countable cover
of X, by Nb-open sets has a finite subcover.

Remark 3.31: Every Nb-compact space is countably Nb-compact but the converse is not true.

Definition 3.32: [13] Let f:X—Y be function of space X into space Y consequently, f is known
as a compact function. If f~1(A) is compact set in X, for each small set Ain Y.

Definition 3.33: Let f: X—Y be a function of space X into Y, then f is referred to be a Nb-
compact function if f*(A) is Nb-compact set in X, for each small set AinY.

Remark 3.34: Every Nb-compact function is compact function, but the opposite is false, as
shown by the following example.

Example 3.35: The function I: (R, Ting) = (R, Ting) iS compact but not Nb-compact.

Proposition 3.36: Set X,Y and Z be topological spaces and f: X-Y, g: Y —Z be functions,
then:

1- fis an Nb-compact function and g is a compact function, so gof is Nb-compact function.
2- If g o f is an Nb-compact-function, fis onto and continuous; so g is compact-function.
3-If g of is Nb-compact function, g is continuous and onto so, f is Nb-compact-function.
Proof:

1- Put K be compact set in Z, since g is a compact, then g*(K) is compact set in Y, Since f is
an Nb-compact function thus f'(g™(K)) is Nb-compact set in X but f~1(g=*(K)) =
(gof)~L(K), hence gof: X - Z is Nb-compact-function.

2- Put K be compact in Z so (gof)*(k) is Nb-compact set at X so it is compact, since f is
continuous then f((gof)™) is compact set at Y, and since f is onto, thus f(gof)™ (K) = g*(K)
Is compact set at Y thus, g is Nb-compact.

3- Put K be compact at Y, Since g is continuous then, g(K) is compact set at Z thus,
(gof) ™ (g(K)) is Nb-compact set at X, because g is onto, then (g o f)*(g(K)) = f*(K), hence

f 1(K) is Nb-compact set at X, thus f is Nb-compact function.

4- Nb- Lindel6f spaces
We will use the open sets of type Nb to introduce a new concept of Lindelofian spaces.

Definition 4.1: A topological space (X,7) is known as Nb- Lindel6f, if any Nb-open cover
for X has countable subcover.

Remark 4.2: Without a doubt every b- Lindelof (Nb- Lindel6f) space is Lindeléf. However,
as the following illustration demonstrates, the opposite is generally not true.
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Example 4.3: Let A be uncountable set such that b¢ A, X =A U {b},let t = {X, @, {b}}be
a topology on X such that (X, 7) is Lindel6f, where is not a b- Lindelof, since {{b, a}: a € A
} is a b-open cover of X which has no countable subcover.

Remarks 4.4:

1- Every Nb- Lindel6f space is b- Lindel6f.

2- Every Nb-compact space is Nb- Lindel6f but, as this example shows, the opposite is not
generally true:

(Z,Ting) is Nb- Lindel6f but not Nb-compact.

Definition 4.5: A collection C of sets is said to have countable-intersection-property iff the
intersection of members of each countable subcollection of C is non-empty.

Proposition 4.6: A Topological space X is Nb- Lindel6f, if and only if for every collection
{F,: @ € A} of Nb- closed sets with countable intersection property then the family has
naeA Fa * @

Proof: Let X be an Nb- Lindel6f space and suppose that {F,: « € A} be a collection of Nb-
closed subsets of X, with countable intersection property suppose that Nep F, = @. Let us
consider the Nb- open sets V, ={X —F;:a € A} ,NgepFy = D. so (Ngep Fy = 0.)¢ =V
{F,:a € A} = X thatis U (X — F,) = X which implies U{V,: « € A} = X the family {V,: « €
A} is an Nb- open cover of space X, since X is Nb- Lindelof, so the cover {V,: « € A} has a
countable subcover {V,;:i € N} , hence X= U {V,:i € N} = U {(X — F,): iEN} = X-
N {F,:i € N} hence n{F,;:a; € N} = @ which is contradiction with countable intersection
property, then Ngep Fy # 9.

Conversely:

Let {V,: « € A} be an Nb- open cover of X, and suppose that for every family {F,: « € A} of
Nb- closed sets with countable intersection property N,ea F, # @. Then by a covering we
have X= U{V,:a € A} thus, =X —-X =n{(X—-V,):a € A} and {(X-V,):a € A} is a
family of Nb-closed sets with an empty intersection by the hypothesis there exists a countable
subset {(X-V,;): i € N}, hence N {(X — V,;):i € N} = @ such that X—{n (X —V,;):i € N} =
U {V,:i € N} = X therefore, X is Nb- Lindelof.

Proposition 4.7: Every Nb-closed subset of Nb- Lindel6f space X, is Nb- Lindel6f.

Proof: Put C={V,: @ € A} be a Nb-open cover to Nb-closed set Y, that is; Y=U {V,: a € A},
but X=YU Y€ so X=(U {V,: « € A}) U Y€, which is an Nb-open cover to X, which is actually
Nb- Lindelsf, so X=(U {V,,: i € N}) U Y, then Y=U {V.: i € N}, therefore Y is Nb-Lindelof
subspace.

Definition 4.8: A function f: X — Y is said to be Lindel6f function if f~1(L) is Lindelof in
X, whenever L is Lindelo6f in Y.

Definition 4.9: A function f: X — Y is said to be Nb-Lindelof if f~1(L) is Nb- Lindeldf in X,
whenever L is Lindel6f in Y.

Definition 4.10: A function f:X - Y is said to be Nb* — Lindelof (Nb** — Lindelof) if
f~1(L) is Lindelof (Nb- Lindelof), whenever L is Nb- Lindelof in Y.

Proposition 4.11: Letf be a Nb-continuous function from a space X onto a space Y, if X is
Nb- Lindel6f then Y is Lindelof.
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Proposition 4.12: Let f: X — Y be Nb** —open surjective function, if Y is Nb- Lindel6f, then
X is also Nb- Lindelof.

Proof: Put {I/,: « € A} be an Nb-open cover to X, that is X=U {V,: a € A}, but Y=f(X)=f(U
{V: a € AD=U {f (V,): « € A}, since f(V,) is Nb-open set in Y for each « € A and Y is Nb-
Lindelof covering by {f(V,): « € A}, then there is a countable set A, € A such that Y=uU
{f (V): @ € A.}, hence

X=f"1(Y) = fY (U {f(V): a € A,}), then X=U{f1f(V):a €A} CU{V,:a €A}
Therefore X is Nb- Lindel6f space.

Theorem 4.13: If a topological space (X,r) is a countable union of Nb-open Lindel6f
subspaces, then it is Nb- Lindel6f.

Proof: Assume that X =U {C,: neN}, where (C,, T,) is an Nb- Lindel6f subspace, for each
ne N, suppose A be an Nb-open cover of the space (X, t) for each neN, the family {ANC,:
A€ A} is Nb-open cover of the Nb- Lindelof subspace (C,t,) , we find a countable
subfamily A, of A, hence C,.=U{ANC,: A€ A,} put R = { A ,: neEN} then R is a countable
subfamily of A, thus X =U {C,:neN} =U,epfANC: A € A} S {A: A€ R} C X, that is X
= U{A:A € R} therefore (X,t) is Nb- Lindel6f.

Definition 4.14: A topological space is X said to be nearly N- Lindelof if every N-regular
open cover of X has a countable subcover.

Theorem 4.15: For any topological space X, the following statements are equivalent:

1- X is nearly b- Lindel6f.

2- Every Nb-regular open cover of X has a countable subcover.

Proof: (1) — (2)

Let {U,: @ € A} be any Nb-regular open cover of X, for each XeX, there exists a(x) € A
such that X€ Ug ), Since Ugqx) is Nb-regular open cover, there exists a regular open set Ve,
With XE€ Vi xy and Vi) — Uy is @ countable, the family {V,y:x € X} is a regular open
cover of X, since X is nearly Lindelof there exists a countable subset says
a(xy) ....,a(xy), .... such that

X =U{Vy(xi): 1 € N}, Now we have

X

UieN(Va(xi) - Ua(xi)) U Ua(xi)} =

(UiEN(Va(xi) - Ua(xi))) UieN(UieN Ua(xi)): fOT' each a(xi)Since (Va(xi) - Ua(xi)) is a
countable subset Agiy of A, such that (Vo) — Uany) S UfUq: @ € Agapy}, therefore we
have X< {UieN Ua: a € Aa(xi)} U {UiEN Ua(xi)}

2)- (D)

Since every regular open set is Nb-regular open the proof is obvious.

Proposition 4.16: Let f: X - Y and g:Y — M, then:

1- If fis Nb*™ — Lindelof and g is Nb- Lindel6f then gof is Nb- Lindelof.
2-1f fis Lindelof and g is Nb* — Lindelof then gof is Nb* — Lindelof.
3-If f is Lindel6f and g is Nb- Lindel6f then gof is Lindelof.

4-If fis Lindelof and g is Nb** — Lindelof then gof is Nb* — Lindelo6f.

5- If fis Lindel6f and g is Lindel6f then Lindel6f is Lindelof.

6- If f is Nb-Lindelof and g is Lindel6f then gof is Nb-Lindel6f.

7- 1f f is Nb-Lindel6f and g is Nb-Lindel6f then gof is Nb-Lindel6f.

8- If fis Nb-Lindelof and g is Nb* —Lindel6f then gof is Nb** —Lindelof.
9- If f is Nb-Lindel6f and g is Nb** —Lindelof, then gof is Nb* —Lindel6f.
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10- If fis Nb* —Lindelof and g is Nb-Lindelof, then gof is Lindeldf.

11- If fis Nb* —Lindel6f and g is Nb** —Lindel6f, then gof is Nb* —Lindelof.

Proof: (1) Let L be Lindelof subset of M, so g~1(L) is Nb- Lindeldf in Y (since g is Nb-
Lindelof). Also

£~ (g7*(L)) is Nb- Lindelsf in X (since f is Nb** — Lindeldf) but f~1(g=1(L)) =
(gof)~1(L) , then gof is Nb- Lindelof.

The other by the same way of (1).

5. Conclusion

In our work, we deduced a strong types of compact and Lindel6f spaces. Also, we obtained
some types of weak and strong functions of compact and Lindel6f functions by using open
sets of type Nb which will be powerful formulas to concepts Nb-compact and Nb- Lindel6f if
defined, which has a direct relationship with the functions wb — compact and wb — Lindel6f
as a future work.
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