
Hassen et al.                                             Iraqi Journal of Science, 2023, Vol. 64, No. 6, pp: 3054-3065 

                                                                 DOI: 10.24996/ijs.2023.64.6.33 

________________________________ 
* Email: Adel_83_1983@yahoo.com 

 

3054 

 
Estimating the Rate of Occurrence of Extreme value process Using 

Classical and Intelligent Methods with Application: nonhomogeneous 

Poisson process with intelligent 

 
Adel.S.H. 1*, Khwazbeen Saida Fatah 2, Muthanna Subhi Sulaiman 3 

1IT Department, Amedi Technical Institutes, University of Duhok Polytechnic 
2Department of Mathematics, College of Science, University of Salahaddin 

3 Department of Statistics, College of Computer and Mathematics, University of Mosul 

 

   Received: 16/8/2022          Accepted: 10/10/2022          Published: 30/6/2023 

 

Abstract  

     In this paper, the propose is to use the xtreme value distribution as the rate of 

occurrence of the non-homogenous Poisson process, in order to improve the rate of 

occurrence of the non-homogenous process, which has been called the Extreme value 

Process. To estimate the parameters of this process, it is proposed to use the Maximum 

Likelihood method, Method of Moment and a smart method represented by the 

Artificial Bee Colony:(ABC) algorithm to reach an estimator for this process which 

represents the best data representation. The results of the three methods are compared 

through a simulation of the model, and it is concluded that the estimator of (ABC) is 

better than the estimator of the maximum likelihood method and method of moment 

in estimating the time rate of occurrence of the proposed Extreme value process. The 

research also includes a realistic application that deals with the operating periods of 

two successive stops for the raw materials factory from the General Company for 

Northern Cement / Badush Cement Factories (new) during the period from 1/4/2018 

to 31/1/2019, in order to reach the time rate of factory stops. 
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  الخلاصة 
استخدام توزيع القيمة المتطرفة كمعدل لحدوث عملية بواسون غير المتجانسة ،    تم أقتراحفي هذا البحث ،        

تقدير   ، والتي تسمى عملية القيمة القصوى. من أجل  من أجل تحسين معدل حدوث العملية غير المتجانسة 
لة بخوارزمية  معلمات هذه العملية ، تم اقتراح استخدام طريقة الاحتمالية القصوى وطريقة اللحظة وطريقة ذكية ممث

 (ABC  للوصول إلى مقدر لهذه العملية التي تمثل أفضل تمثيل للبيانات. تمت مقارنة نتائج الطرق الثلاث من )
( أفضل من مقدر طريقة الاحتمالية القصوى وطريقة  ABCخلال محاكاة النموذج ، وخلصت إلى أن مقدّر ) 

الزمني لحدوث النموذج المقترح.   عملية القيمة القصوى. كما تضمن البحث تطبيقا  اللحظة في تقدير المعدل 
  / الشمالية  للاسمنت  العامة  الشركة  من  الخام  المواد  لمصنع  متتاليتين  لمحطتين  التشغيل  فترات  تناول  واقعيا 

، للوصول إلى المعدل الزمني    2019/    1/ 31الى    2018/ 4/ 1مصانع اسمنت بادوش )جديد( خلال الفترة من  
 لتوقفات المصنع.

 
1. Introduction 

     Nonhomogeneous Poisson Process (NHPP), which is considered the best-known 

generalization of the Poisson process models, it is mainly used for analysing and modelling the 

failure data in recoverable systems. These models assume that the point process {N(τ),τ≥0} 

with independent increments is distributed as the Poisson distribution and the occurrence of 

events in the Poisson process is random and monotonous during a certain period and with a 

fixed incidence rate per unit time which is denoted by the symbol λ, while the rate at which 

events occur in a nonhomogeneous Poisson process is time-varying τ with the ratio called the 

time rate of occurrence or intensity function; it is denoted by the symbol λ(τ) . The Extreme-

value process, which is introduced by Extreme-value, is a special model for NHPP that has 

appeared as a special case of the Weibull distribution; it plays a key role in modelling and 

analysing failure data accumulated over time [1]. In this paper, Extreme-value distribution is 

introduced and different methods for estimating their parameters are presented. In this study, 

both ABC algorithm and the maximum   Likelihood Estimation (MLE), and the method of 

Moment (MM) are used to estimate Extreme value Process parameters.  

  

1.1 Extreme-Value Process (EVP) 

     We will assume that the Poisson process {𝑌(𝜏), 𝜏 ≥ 0} represents the NHPP; Since the 

number of events that occur over a period (0, 𝜏)follows the Poisson distribution as a function 

of probability density: 

𝑝[𝑌(𝜏) = 𝑦] =
[𝜆(𝜏)]𝑦𝑒−𝑚(𝜏0)

𝑦!
      ,   𝑦 = 1,2,3, …                                                                      (1) 

𝑚(𝜏)represents the process parameter (mean rate), which is the cumulative function of the      

time-of-occurrence rate,  which is determined by the following formula [2]: 

m(τ) = ∫ λ(u) du
τ

0
              , 0 < 𝜏 < ∞                                                                                 (2) 

 because λ(u) represents the time rate of occurrence or intensity function, therefore, the 

Extreme-value process is a nonhomogeneous Poisson process[2], with the time rate of 

occurrence is defined as follows: 

  (𝑡) = 
1

𝜎
𝑒(

𝑡−𝜇

𝜎
)
    , −∞ ≤  𝑡 ≤  ∞;  −∞ < 𝜇 < ∞ , 𝜎  > 0                                                  (3) 

  m(t) = ∫ λ(u) du
t

0
              , 0 < 𝑡 < ∞                                                                              (4) 

         = ∫ λ(u) du
𝑡0

−∞
                    

         = ∫
1

𝜎
 e

u−μ

𝜎  du
𝑡0

−∞
 

                  = 𝑒
𝑡0−𝜇

𝜎       , −∞ ≤  𝑡 ≤  𝑡0                                                                             (5) 
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𝜎, 𝜇 are the parameters of the accident rate for the Extreme-value Process; parameters 

estimation for such processes has been extensively studied and a large number of techniques 

have been proposed.  

 

 

1.2 Artificial Bee Colony (ABC). 

     The Artificial Bee Colony (ABC) algorithm is a swarm-based on the developed 

metaheuristic algorithm for numerical problem optimization. Honey bees' creative foraging 

activity inspired it. The method is mainly based on the model for honey bee colony foraging 

Behavior. There are three categories of bees in the (ABC) algorithm, namely employed bees, 

onlooker bees, and scout bees. The employed bees hunt for food in their memory near the food 

source; in the meantime, they relay the information about these food sources to the onlooker 

bees. Onlooker bees tend to pick good food sources from those discovered by hired bees. The 

food supply with greater quality (fitness) will be more likely to choose onlooker bees than those 

with a lower rate. The scout bees are derived from a small number of employed bees that quit 

their food sources in quest of new ones. A colony of artificial forager bees (agents) hunts for 

rich artificial food sources in (ABC) (good solutions for a given problem). To apply (ABC) 

algorithm, the optimization problem at hand is first transformed into the problem of determining 

the optimum parameter vector that minimizes an objective function. The artificial bees then 

discover a population of initial solution vectors at random and then iteratively enhance them by 

utilizing the strategies: migrating towards better solutions via a neighbor search mechanism 

while abandoning inferior answers [3]. 

 

Foraging Behavior of Honey Bees 

     The minimal model of forage selection leads to the emergence of the collective intelligence 

of honeybee swarms consists of three basic components: food sources, employed and 

unemployed foragers. The model identifies two main modes of behavior: the recruitment of the 

wealthy. The source of nectar and give up the poor source.[4] 

 

• Food Sources: the values of a food source depend on several factors, such as its proximity to 

the nest, its richness or concentration of its energy, and the ease with which this energy can be 

extracted. For simplicity, the profitability of a food source can be represented by a single 

quantity. 

 

• Employed foragers: They are associated with a particular food source that they are currently 

exploited or employed. They carry with them information about this specific source to the hive. 

The information can be the distance and direction from the nest, sharing this information with 

a certain probability. 

 

 

• Unemployed foragers: They are continually on the lookout for a food source to exploit. There 

are two types of unemployed foragers: scouts, searching the nest's environment for new food 

sources and onlookers waiting in the nest and establishing a food source through the information 

shared by employed foragers. The mean number of scouts averaged over conditions is about 

when the above explained foraging behavior of honey bees  is reexamined, it is seen that the 

defined principles are fully satisfied.[5] 

 

Algorithmic Structure of (ABC) 

     As in the minimal model of forage selection of natural honey bees, the colony ofartificial 

bees in (ABC) contains three groups of bees: Employed Bees associated with specific food 
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sources, Onlooker Bees watching the dance of employed bees within the hive to choose a food 

source, and Scout Bees search for the food sources randomly. Both onlookers and scouts are 

also called Unemployed Bees. Initially, all food source positions were discovered by scout bees 

[6]. After that, the nectar of the food sources is exploited by employed bees and onlooker bees, 

and this continual exploitation will ultimately cause them to become exhausted. Then, the 

employed bee becomes a scout bee which searches for additional food sources using the 

exhausted food source. In other words, the employed bee whose food source has been exhausted 

becomes a scout bee. In (ABC), the position of a food source represents a possible solution to 

the problem, and the nectar amount of a food source corresponds to the quality (fitness) of the 

associated answer. In the basic form, the number of employed bees is equal to the number of 

food sources (solutions) since each employed bee is associated with one and only one food 

source. The general algorithmic structure of the (ABC) optimization approach. [7] 

In the initialization phase, the population of food sources (solutions) is initialized by artificial 

scout bees and set control parameters. In the employed bees phase, artificial employed bees 

search for new food sources having more nectar within the neighborhood of the food source in 

their memory. They find a neighbor food source and then evaluate its fitness. After producing 

the new food source, its fitness is calculated. A greedy selection is applied between it and its 

parent. After that, employed bees share their food source information with onlooker bees 

waiting in the hive by dancing in the dancing area. [8] In the onlooker bee's phase, artificial 

onlooker bees probabilistically choose their food sources depending on the information that is 

provided by the employed bees. For this purpose, a fitness-based selection technique can be 

used, such as the roulette wheel selection method. After a food source for an onlooker bee is 

probabilistically chosen, a neighborhood source is determined, and its fitness value is 

computed. As in the employed bee’s phase, a greedy selection is applied between two sources 

[9]. In the scout bee's phase, the employed bees whose solutions cannot be improved through a 

predetermined number of trials, which is called limit, become scouts, and their solutions are 

abandoned. Then, the scouts start to search for new solutions randomly. Hence, those sources 

which are initially poor or have been made destitute by exploitation are abandoned, and 

negative feedback Behavior arises to balance the positive feedback [9]. These three steps are 

repeated until a termination criterion is satisfied, for example, a maximum cycle number or a 

maximum (CPU) time. The artificial bee colony (ABC) algorithm is a recently proposed 

optimization technique that simulates honey bees' intelligent foraging Behavior. A set of honey 

bees is called a swarm that can accomplish tasks through social cooperation. In the ABC 

algorithm, the first half of the swarm consists of employed bees, and the second half constitutes 

the onlooker bees. The number of employed bees or the onlooker bees equal the number of 

solutions in the swarm. The (ABC) generates a randomly distributed initial population of (SN) 

solutions (food sources), where (SN) denotes the Swarm Size. Let 𝑋𝑖 = {𝑥𝑖,1, 𝑥𝑖,2 , … , 𝑥𝑖,𝐷} 

represent the (𝑖𝑡ℎ) solution in the swarm, where (D) is the dimension size. Each employed bee 

( 𝑋𝑖) generates a new candidate solution (𝑉𝑖 )[10]. 

 

1.3 Performance of estimation accuracy 

     In order to analyse the accuracy of the parameter estimation, different criteria were used. 

One of them is the Maximum Percentage Error (MPE); it is one of the measurements used to 

analyse the efficiency of the estimation by comparing different estimation methods. In this 

study, MPE was used to compare both MLE, MM methods and   ABC algorithm applied to 

estimate the Extreme-value process parameters; this measure is considered as a fitness function 

for ABC algorithm. If 𝑆𝑖  and 𝑆̂𝑖 are defined as follows: 

𝑆𝑖 =  ∑ 𝑌𝑗
𝑖
𝑗=1     ,         𝑎𝑛𝑑 𝑆̂𝑖 =  ∑ 𝑌̂𝑗

𝑖
𝑗=1     (6) 

Then MPE is evaluated by: 

 MPE = ∑1≤i≤n
max  [|Si − Ŝj|/Si]   (7) 
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2. Parameters Estimation  

In this part, we discuss the estimation problem for the extreme-value process. 

 

2.1 parameters Estimation for the Extreme-value Process using the Maximum Likelihood 

Estimator (MLE) 

     The Maximum Likelihood Estimator (MLE) is one of the most widely used methods for 

estimating the parameters of stochastic models due to its good properties, including stability 

and Minimum Variance Unbiased estimators, as the parameter values make the maximum 

likelihood function of the observations at its maximum limit. 

Assume that {𝑋(𝑡), 𝑡 ≥ 0} is a NHPP with the time rate of occurrences defined by the formula 

(3), then the joint probability function of the occurrence times (𝑡1, 𝑡2, … , 𝑡𝑛) in which (0 < 𝑡1 ≤
𝑡2 ≤ ⋯ ≤  𝑡𝑛 ≤ 𝑡0) is defined by the following [11]: 

 𝑓(𝑡1, 𝑡2, … , 𝑡𝑛) = ∏ λ(𝑡𝑖)e−m(t0)n
i=1                                                                                        (8) 

From the (3), (5) equations, we substitute them into the (8) to get the joint probability function: 

𝑓(𝑡1, 𝑡2, … , 𝑡𝑛) = ∏
1

𝜎

n
i=1 𝑒

𝑡𝑖−𝜇

𝜎 ∗  𝑒−𝑒
𝑡0−𝜇

𝜎                                                                                 (9) 

The Likelihood function for the formula (8) for the period (0, t]. 

𝐿 = ∏ λ(𝑡𝑖)e−m(t0)n
i=1                                                                                                             (10) 

L =
1

𝜎𝑛 𝑒
∑

𝑡𝑖−𝜇

𝜎
𝑛
𝑖=1 ∗ 𝑒−𝑒

𝑡0−𝜇
𝜎                                                                                                       (11) 

To simplify the calculations, the natural logarithm of the maximum function is taken instead of 

the maximum function itself represented by the equation (11). Hence, the following formula is 

obtained: 

ln L = ln(1) − n ln(σ) +
1

𝜎
∑ τi

n
i=1 −

nμ

σ
−  𝑒

𝜏0−𝜇

𝜎                                                                  (12) 

Since the parameters μ and σ of the function (𝜏) both are known. Then the maximum 

likelihood estimator for them is found by finding the first derivative of the equation (12) the 

equations are equal to zero and my comparisons[12]: 
∂ ln L

∂μ
=

n

μ
−

1

σ
𝑒

𝜏0−𝜇

𝜎   

 
∂ ln L

∂μ
|

μ=μ̂
= 0   

  
n

μ̂
−

1

σ̂
𝑒

𝜏0−𝜇̂

𝜎̂ = 0                                                                                                                                 (13) 

Therefore, the maximum likelihood estimator for the parameter (μ) in an extreme-value model 

is it: 

μ̂𝑀𝐿𝐸 = ln(𝑛) σ̂ +  𝜏0                                                                                                             (14) 

 

      The distribution of parameter b can be inferred through the conditional distribution of the 

variable S = ∑ ti
n
i=1  conditional on the number of incidents n, the reason is that the observations 

in the potential function of the nonhomogeneous Poisson process only comes from 𝑛, ∑ ti
n
i=1 . 

In order to find the maximum likelihood estimator for parameter b, we need to find the 

probability distribution for it, which represents the conditional distribution of the variableS =
∑ ti

n
i=1 , conditional on the number of events 𝑛. To get the probability distribution of the variable 

S conditioned by the number of incidents n, this is done by dividing the potential function of 

the nonhomogeneous Poisson process in the formula (8) as follows [2]: 

𝐿[𝑆|𝑁(𝑡) = 𝑛] =
n! 

1

𝜎𝑛 e
−

1
𝜎

∑ ti
n
i=1

(𝑒
𝑡0
𝜎 )

n   , σ ≠ 0                                                                              (15) 

The log-likelihood function for formula (15) is expressed as follows: 
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ln L = ln(n!) − n ln σ +
1

𝜎
∑ ti

n
i=1 −

n𝑡0

𝜎
  , σ ≠ 0                                                                 (16) 

     The derivative of the logarithm of the possible function concerning the parameter σ is found 

σ as follows: 
∂ln L

∂σ
=  −

n

σ
+  

1

𝜎2
∑ ti

n
i=1 +

𝑛𝑡0

𝜎2
             σ ≠ 0                                                                        (17) 

 

     As much as possible for the parameter σ it can be found by solving the following equation: 
∂ln L

∂σ
|

σ=σ̂
= 0                                                                                                                        (18) 

−
n

σ
+ 

1

𝜎̂2
∑ ti

n
i=1 +

𝑛𝑡0

𝜎2 = 0  
1

𝜎2
(𝑛𝑡0 − ∑ ti

n
i=1 ) =

n

σ
              

Therefore, 
1

𝜎
 (𝑛𝑡0 − ∑ ti

n
i=1 ) = 𝑛 .        

 

     Therefore, the estimator of the maximum likelihood for parameter σ using the method of 

maximum likelihood is:     

𝜎̂𝑀𝐿𝐸 =  
1

𝑛
(𝑛𝑡0 − ∑ ti

n
i=1 )                                                                                                     (19) 

From formulas (14) and (19), we will get: 

μ̂𝑀𝐿𝐸 = 𝑡0 − ln(𝑛)
1

𝑛
(𝑛𝑡0 − ∑ ti

n
i=1 )                                                                                    (20) 

 

     A program has been prepared in the programming language MATLAB/R2019b to find the 

maximum possible estimators for the parameters σ , μ of the time rate of occurrences of the 

Extreme-value stochastic process. 

 

2.2 Estimation of Extreme-value Process by using ABC 

     In this section, extreme-value process parameters 𝜎,μ that represent the parameter for the 

time rate of occurrences is estimated using ABC algorithm. For the estimation process, an 

algorithm, Algorithm (1), is proposed; it is described as follows: 

 

Algorithm (1) 

Step1: input parameter (N=50) and the number of iterations with 𝑖𝑚𝑎𝑥 = 100. 
Step2: defining objective & Fitness function is the MPE, in which MPE = ∑1≤i≤n

max  [|Si − Ŝj|/Si] 

Step3: Generate an initial population   

Step4: Perform Employed and   Onlooker phases  

• Select variable and  partner  

• Generate New Solution 𝑋𝑛𝑒𝑤 = 𝑋 + ∅(𝑋 − 𝑋𝑝) , ∅ ∈ [−1,1]; 

• Calculate new fitness.  

• Perform Greedy Selection  

             Step5: Memorize the best solution  

             Step6: Perform the Scout phase  

             Step7: Plot the result 

 

2.3 Parameters Estimation of Extreme value Process using Moment of Method (MM) 

     The process {x(t); t  0} represents the extreme value process rate of time in the equation 

(9). The first sample moment 𝑚1is calculated by[13]: 

𝑚1 =
1

n
∑ ti

n
i=1                                                                                                                         (21) 
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     To calculate the first population moment for an extreme process, we need to find the  

𝐸(𝑋)which is denoted by the 𝜇𝑟that can be easily written as: 

𝜇𝑟 = 𝐸(𝑋𝑟) =  ∑ (
𝑘
𝑟

)𝑟
𝑘=0 𝜎𝑟−𝑘𝑀𝑘 ∫ 𝑦𝑟−𝑘 𝑒−(𝑦+𝑒−𝑦)𝑑𝑦                                                        (22) 

 

     In particular cases, namely r=1 and r=2, we get after computation and simplification: 

𝜇𝑛 = 𝐸(𝑋𝑛) = 𝑛𝜇 + 𝑛2𝜎𝛾                                                                                                   (23) 

 

     The mean of the Ext can be obtained by putting n=1 in formula (23), we get: 

𝜇1 = 𝐸(𝑋1) = 𝜇 + 𝜎𝛾                                                                                                           (24) 

 

     By equating the first sample moment with the first population moment, we obtain the 

parameter of the Ext process: 

𝜇1 = 𝑚1  

𝜇 + 𝜎𝛾 =
1

n
∑ ti

n
i=1   

𝜇 =
1

𝑛
∑ 𝑡𝑖

𝑛
𝑖=0 −  𝜎𝛾                                                                                                                (25) 

The second sample moment 𝑚2is calculated by: 

𝑚2 =
1

𝑛
∑ 𝑡𝑖

2𝑛
𝑖=0                                                                                                                      (26) 

If n=2 substitute in the formula (23), we get: 

𝜇2 = 2𝜇 + 4𝜎𝛾  

 2𝜇 + 4𝜎𝛾 =  
1

𝑛
∑ 𝑡𝑖

2𝑛
𝑖=0  

𝜇 =  
1

2𝑛
∑ 𝑡𝑖

2𝑛
𝑖=0 − 2𝜎𝛾                                                                                                          (27) 

 

      By equating the second sample moment with the second population moment, we obtain the 

parameter of the extreme process. We equal two equations (25) and (27) we will get: 

 
1

𝑛
∑ 𝑡𝑖

𝑛
𝑖=0 −  𝜎𝛾 =  

1

2𝑛
∑ 𝑡𝑖

2𝑛
𝑖=0 − 2𝜎𝛾  

𝜎𝑀𝑀 =  
1

𝛾
{

1

2𝑛
∑ 𝑡𝑖

2𝑛
𝑖=0 −

1

𝑛
∑ 𝑡𝑖

𝑛
𝑖=0  }                                                                                      (28) 

And substitute formula (28) in formula (25), we will get: 

𝜇𝑀𝑀 =
1

𝑛
∑ 𝑡𝑖

𝑛
𝑖=0 −  {

1

2𝑛
∑ 𝑡𝑖

2𝑛
𝑖=0 −

1

𝑛
∑ 𝑡𝑖

𝑛
𝑖=0  }                                                                     (29) 

Where, 𝛾 = 0.577215. 

  

3. Simulation 

     Simulation, which is a computer-based methodology that enables experimentation on a valid 

digital representation, is considered one of the best methods used for generating random 

variables from specific distribution functions; it is a flexible methodology characterized by 

showing the ability to conduct experiments and tests via repeating the process many times by 

easily changing the inputs of the estimation processes. The importance of the simulation lies in 

using simulated random numbers to estimate some parameters. The random numbers used in 

the first experiment are independent of those used in the second experiment and so on. The 

most common simulation method used in statistical analysis is the Monte Carlo simulation 

method used to estimate parameters or statistical measures, and examine the properties of the 

estimates. In this section, a comprehensive simulation study was conducted to compare the two 

estimation methods to reach the best estimate for the EVP parameters. The following four stages 

represent a description of the design simulation experiments [14]. 
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3.1 Stage of Assigning Virtual Values 

     This stage is considered as a basis for the other stages, in which the required virtual values 

are specified for generating random numbers; they are: 

 

1- Sample Size (n) 

To obtain efficient and accurate results, the size of the sample plays an important role. For this 

study, for generating random numbers, different sizes were practiced; a small-sized sample with 

(N=20), a middle-sized sample with (N=50), and a large-sized sample with (N=100). 

 

2- Parameter Values for EVP 

     To determine an estimate for EVP parameters, the probability distribution function for 

Extreme-value function is used to generate the extreme-value random variables using different 

uniform random numbers assuming values for σ̂ = 0.5 , 0.8 ;μ̂ =0.8. 

3- Sample Repetition Size (i) 

     To get high homogenous, the experiments were repeated (𝑖 = 50) once for each experiment. 

 

3.2 Generating random variables 

     Random variables are generated from the extreme-value distribution function based on each 

value of the virtual parametric values and the assumed sample size N as follows: 

1- Generate random numbers that follow continuous uniform distribution over [0,1]. 

2- Change the generated uniform data into data that follow the extreme-value probability 

distribution by using the cumulative density function and according to the inverse transform 

method; this method is one of the simplest simulation techniques and the most important 

methods to get random variables from continuous and discrete distributions. The algorithm of 

the inverse transform method for generating random variables from the extreme-value 

distribution. 

3- From the cumulative probability function for the extreme-value distribution, which is 

defined as: 

𝐹(𝑌) = 1 − e−e
−(

y−μ
σ

)

                                                                                            (30) 

Since 𝑈 = 𝑚(𝜏) 

             u = 1 −  e−e
−(

τ−μ
σ

)

  

            e−e
−(

τ−μ
σ

)

= 1 − u 

            By taking the natural logarithm of both sides, the following is obtained: 

            −e−(
τ−μ

σ
) = ln(1 − u)  

            Again, we will take the natural logarithm of both sides, the following is obtained: 

             (
τ−μ

σ
) = ln(− ln(1 − u))           

            The random generator for the extreme-value process is represented by the following 

equation: 

             
1

𝜎
τ =

𝜇

σ
+ ln(ln(1 − u))                                                                                       (31) 

             Hence, by implementing the inverse transform Method, various random variables  from 

the Extreme-value function are obtained using the MATHLAB program: 

             Therefore: 

              τ(i) = μ + 𝜎 log(log(1 − u(i)))        ; for  𝑖 = 1,2, … 𝑁                                     (32) 

              Where   𝑈(𝑖)  ~ 𝑈(0,1) 

 

 3.3 Comparison Stage 
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     After finding the model parameters estimator using different methods, a comparison is made 

between two different methods by using the Root Mean Squares Error (RMSE), according to 

the following form [15] :  

𝑅𝑀𝑆𝐸 =  √
∑ (𝛾𝑖̂−𝛾)2𝑄

𝑖=1

𝑄
                                                                                                       (33) 

𝛾𝑖̂ ∶ Represents the value of the parameter estimated in iteration i. 

𝛾 ∶ Represents the real parameter value. 

𝑄 ∶ Represents the number of iterations. 

 

3.4 Numerical Computations 

      The following results are shown in Table 1, which represents the results of performing a 

simulation to generate different random variables from the stochastic extreme-value process 

using different sample sizes (n=20,50,100), for two values for extreme-value process 

parameters 𝜇, 𝜎  (𝜎  =0.5 ,0.8 and μ=0.8) for the three methods, MLE, MM and the proposed 

intelligent ABC method. 

 

Table 1: The Simulated RMSE for the ML, MM and ABC Estimator for the parameters  

𝜇, 𝜎  for Extreme-value process. 

𝝁 𝝈 n Methods 𝑹𝑴𝑺𝑬(𝝁̂) 𝑹𝑴𝑺𝑬(𝝈̂) 

0.5 0.8 20 MLE 4.2036 1.9352 

   ABC 0.3648* 1.2411* 

  
 

50 

MM 

MLE 

5.4824 

2.6586 

5.0873 

1.2239 

   
ABC 

MM  

0.2307* 

3.4674 

07749* 

3.2175 

  100 

MLE 

MM 

ABC 

1.8799 

2.4518 

0.1631* 

0.8654 

2.2751 

0.5550* 

0.8 
0.8 

 

20 

 

 

50 

 

 

100 

MLE 

ABC 

MM 

MLE 

ABC 

MM 

MLE 

MM 

ABC 

4.0770 

0.7467* 

5.7726 

2.5785 

0.4723* 

3.6509 

1.8233 

2.5816 

0.3340*  

1.8817 

1.3864* 

5.2153 

1.1901 

0.8768* 

3.2984 

0.8415 

2.3324 

0.6200* 

From the table above, the numerical results show that the ABC method is better than the MLE, 

MM methods for estimating the Extreme-value process parameters. 

 

4. Application 

     To evaluate the applicability of the two methods, real data from Badush Cement Factory is 

used. The new Badush Cement Factory in Nineveh Governorate is one of the most important 

factories for the General Cement Company in the north of Iraq; it is the main source for cement 

production for the governorates of Iraq in general and Nineveh Governorate in particular.  The 

data represent the successive operating periods in days between two successive stops for the 

cement production during the period from 1/4/2018 to 31/1/2019. To ensure the adequacy fit of 

data, a test of goodness of fit is needed; it is explained below.  

   

4.1 Test of the Homogeneity of Extreme-value Process 

     The extreme-value process is A nonhomogeneous process because the time rate of accidents 

varies with change time (t), That means, it is affected by time t in its behavior. It is noted that 
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the parameter μ is coupled to time t, and so the Extreme-value process is homogeneous in the 

case 𝜇 = 0, and nonhomogeneous in the case 𝜇 ≠ 0,To conduct the test process, whether the 

process is homogeneous or nonhomogeneous, the following hypothesis is tested [16]: 

𝐻0: 𝜇 = 0 

𝐻1: 𝜇 ≠ 0 

which can be tested through the following statistics: 

𝑍 =  
∑ 𝜏𝑖

𝑛
𝑖=1 − 

1

2
𝑛𝜏0

√𝑛𝜏0
2

12

   .                                                                                                               (34) 

Where, ∑ 𝜏𝑖
𝑛
𝑖=1    is the sum of the accident times for a period (0, 𝜏0], 

𝑛  represents the number of accidents that occur in a period (0, 𝜏0]. 
 

4.2 The consistency test of the data under study 

     The homogeneity of the data under study was tested using the statistical laboratory in the 

formula (32. We use a program prepared for this purpose in MATLAB/R2019b.  The calculated 

value has been obtained |Z|=74.4596. It is more than its corresponding tabular value of 1.96 at 

a morale level of 0.05 Therefore, the null hypothesis is rejected and the alternative hypothesis 

is accepted. This means the process under study is heterogeneous. 

 

4.3 Estimation of the rate of occurrence of Extreme-value process: for Raw Material Mill 

Runtimes 

     To evaluate the performance of the ABC method for estimating Extreme-value Process 

Parameters, the parameters of the process under study, then we compare it with the traditional 

MLE and  MM the real data, which represent the number of days for operating periods between 

two successive stops and the times of occurrence, is used. The data is raw materials for a 

laboratory of the new Badush cement factory in Mosul in Iraq. The programming language 

MATLAB/R2019b is used to run the algorithm for the estimation process. 

 

Table 2: Estimating of Extreme-value process parameters applied to real data representing 

Operating periods in days for raw materials mill. 

Methods Parameter estimation 𝝁̂ Parameter estimation 𝝈̂ 

MLE -117.8811 62.4340 

ABC -13.5889 6.4639 

MM -2.8524 1.4539 

Table 2 shows the estimation of the extreme-value process parameters for the operating periods 

between two consecutive stops in days for the mill for raw materials using the proposed 

estimation methods ABC, MOM and MLE; several runs were conducted in the estimation 

process and different values for the parameters were used. Then, the best estimated values for 

the  μ̂,  σ̂  were obtained based on the following values: Consecutive operating periods between 

two successive stops of the raw materials mill in days during the extended period of time from 

1/4/2018 to 31/1/2019Which represent 53 runs / day are: 

t = [3 8 2 4 1 1 2 3 1 1 1 1 3 2 3 1 1 1 2 3 5 6 5 2 1 1 4 1 4 3 1 3 1 1 7 2 5 1 2 1 1 3 3 1 6 1 2 3 

3 1 3 2 1] 

 

 

4.4 Discussion of Results 

     To compare the used methods for estimating the parameters of the Extreme-value process, 

the criterion for the error of the greatest proportion was used MPE by formula (30), By using 

the program that is prepared for this purpose in the programming language MATLAB\R2019b, 
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the expected number of consecutive operating periods between two successive stops was 

obtained for the raw materials mill for the new Badush Cement Factory during the period under 

study. Standard was calculated MPE between the real and the estimated values of the average 

plant shutdown time as in the following table: 

 

Table 2: MPE values for the method used to estimate Extreme-value process parameters 

Methods MPE 

MLE 0.9988 

MM 0.9923 

ABC 0.9886 

 

     It is noted from Table 3 that the value of the MPE method capabilities ABC is less than the 

value of the maximum likelihood method and MM in appreciation, this indicates the efficiency 

of the smart method in the estimation of Extreme-value Process Parameters. The following 

figure represents the Extreme-value process function estimated using conventional and 

intelligent estimation methods used in the research, compared with the real cumulative values 

that represent the successive operating periods between two successive stops of the raw 

materials mill for the new Badush Cement Factory: 

 

 
 

Figure 1: Estimated functions for the cumulative number of successive operating periods 

between two successive mill stops using different methods. 

 

      Figure 1 shows the estimated functions of the cumulative number of successive operating 

periods between two successive mill stops raw materials for the new Badush cement plant using 

estimation methods. Using estimation methods for the operating periods between two stops and 

been noticed the ABC method was the closest to the real data, which indicates the efficiency of 

this method of estimation compared with the maximum likelihood method and MM for search 

data. 

5. Conclusions 

     In this paper, ABC was used as a tool for estimating the EVP parameters and   compared 

with MLE and MM. The results show that the ABC is a powerful technique that performs which 

is better than the MLE and MM for estimating a value for the parameter of the distribution. In 
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addition, this model was applied to real data representing the operating periods of two 

successive stops for the raw materials factory from the General Company for Northern Cement; 

it was examined graphically that the extreme value function fits the data. Finally, it is 

recommended to use ABC approach to estimate parameters for other distribution functions that 

represent NHPP such as Weibull, exponential or many others. 
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