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Abstract 

     The increased food requirement puts intense pressure on the agriculture 

community to grow more from the same resources resulting in people leaving the 

farming business. This happened not exclusively due to the industrial pressure to 

produce more but to the lack of technology adoption among growers. The use of the 

sensor in agriculture is not new, but its adoption among agriculture producers is a 

challenge for industry and scientists. This study aimed to determine sensors used in 

agricultural fields with challenges and prospects. The study found that sensors have 

successfully been used at the industry level with highly skilled labor; however, their 

adoption is challenging in rural agriculture systems due to the lack of a support 

system. The study found that the sensors used in predicting crop parameters, yield, 

quality, insect attacks, leaf damage, and several plants are crucial parameters to 

study. Sensors, particularly ground-based active optical sensors, have performed 

well while developing algorithms where soil parameters, environmental factors, and 

sensors have successfully predicted crop yield and quality. 

 

Keywords: Sensor, Remote Sensing, Agriculture, and Yield prediction. 

 

 ؟ما هي الآفاق ؟ة الاستشعار في الزراعة: أين نحنعمل أجهز 
 

 3طارق زيد حمود   2لاكيش ك شارما   1ليث عزيز جواد   1احمد اسعد زعين*
 وحدة الاستشعار عن بعد، كلية العلوم، جامعة بغداد، بغداد، العراق1
 والمياه، جامعة فلوريدا، الولايات المتحدة الامريكية قسم علوم التربة2

 قسم علوم الحاسوب، كلية العلوم، جامعة بغداد، بغداد، العراق3
 

 الخلاصة
تفرض الاحتياجات الغذائية المتزايدة ضغطًا شديدًا على المجتمع الزراعي لزيادة نموه من نفس الموارد مما      

يؤدي إلى ترك الناس أعمال الزراعة. لم يحدث هذا فقط بسبب الضغط الصناعي لإنتاج المزيد ولكن بسبب 
جديدًا ، لكن اعتماده بين المنتجين عدم تبني المزارعين للتكنولوجيا. استخدام المستشعر في الزراعة ليس 

الزراعيين يمثل تحديًا للصناعة والعلماء. هدفت هذه الدراسة إلى تحديد أجهزة الاستشعار المستخدمة في 
المجالات الزراعية مع التحديات والآفاق. وجدت الدراسة أن أجهزة الاستشعار قد تم استخدامها بنجاح على 

هرة للغاية؛ ومع ذلك ، فإن اعتمادها يمثل تحديًا في أنظمة الزراعة الريفية مستوى الصناعة مع العمالة الما
بسبب عدم وجود نظام دعم. ووجدت الدراسة أن المستشعرات المستخدمة في التنبؤ بمعلمات المحاصيل، 
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والمحصول، والجودة، والاصابة بالحشرات وتضرر اوراق النباتات هي عوامل أساسية للدراسة. لقد أدت 
وخاصة المستشعرات الضوئية النشطة الأرضية ، أداءً جيدًا أثناء تطوير الخوارزميات ، حيث  ،ستشعراتالم

 .تنبأت معلمات التربة والعوامل البيئية وأجهزة الاستشعار بنجاح بإنتاجية المحاصيل وجودتها
 

1. Introduction 

     The human population is increasing rapidly, leaving less farm income for the growers [1], 

and scientists are seeking new approaches to improve food productivity and nutrient 

efficiency [2]. The twenty-first century offers technology like soil sensors and normalized 

differential vegetative index (NDVI) to assist growers in producing high-quality crops. 

 

     Modern agricultural management depends on sensing methods like active optical and 

passive sensors: satellite and aerial images for accurate soil, crop, climate, and environmental 

conditions [3]. Sensing technology may play a role in the agriculture and food industries; for 

example, assessing the freshness or spoilage of fresh vegetables and fruit over processing and 

packaging can be achieved by employing an electronic nose [4,5]. 

 

     Remote sensing technologies are non-destructive and can predict crop yield and nutrient 

requirements [6]. Sunlight rays reach the surface of the soil and crop; the beams are either 

absorbed, reflected, or transmitted, relying on light's wavelength and target characteristics. 

The difference in the chemical and physical properties of the target, texture, shape, and leaf 

color determines the portion of the absorbed, transmitted, and reflected light of a particular 

wavelength. Ahmed et al. (2020) [6] examined whether active sensors could be employed for 

yield prediction in the middle of the growing season for potatoes (Solanum tuberosum L.). 

chlorophyll index (CI) and NDVI data were acquired weekly from the active sensors, Crop 

Circle (CC) and GreenSeeker (GS). Indices measurements acquired at the 16th and 20th leaf 

growth stages were significantly associated with tuber yield. The regression analysis among 

potato yield as a dependent variable and vegetation indices, CI, and NDVI (as independent 

variables) could significantly enhance the forecast model's precision and improve the 

determination coefficient. The NDVI sensors could also determine nitrogen (N) use in plants 

and any deficiency [7]; detecting crop nutrient levels enables growers to determine the exact 

N requirements for high-yield output and perform a supplemental application. Soil sensors are 

valuable for determining soil's physical and chemical properties and moisture content [8]. 

Crops' water stress can be decreased through irrigation as determined by direct sensor 

readings from the field [9]. Sensing water stress within a field can increase yields and 

improve soil profile [10]. This article reviews the advanced sensor technology in practice to 

improve crop yield and farmer profit by improving efficiency and going through some points 

considered a gap in sensor work. 

 

1.2 The Gap in Sensor Work 

     Many factors, such as saturation, could affect sensor work and its relationship changes 

[12]. Sharma et al. (2017) [12] determined that red wavelengths are weak at determining yield 

due to the impact of saturation. The saturation happens in later growth stages as leaves cover 

most of the area, contaminating sensor readings [13]. This occurs as the LAI approaches four 

and continues until the end of the growing season [13]. The second factor affecting sensor 

reading is soil type. The soil has a certain level of reflectiveness based on its composition 

[14]. The soil's mineral composition can increase the soil's reflectiveness, causing interference 

with NDVI readings [15]. Some soil types, like clay, are heavy in minerals that can increase 

the reflectiveness of soil [15]. Heavily irrigated soil and overall moisture content do not affect 

red or near-infrared light unless the water is still on leaves [14].  
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Isaev (2012) [16] mentioned that GreenSeeker’s limitation is data logging frequency. 

GreenSeeker is programmed to record data faster than 1.0 HZ. However, the GS can record 

data once every second, negatively affecting the accuracy at the locations with a low reading. 

Since most studies were conducted by slow walking, recording frequency did not negatively 

impact the process. However, in the case of high-speed sensors installed on the tractor, long 

gaps between data locations negatively affect reading accuracy. Another gap issue mentioned 

by [17] is that when wheat grows under different nitrogen treatments, there is a slight 

difference in NDVI reading when the ground gets covered 100% by the plant, but the 

variability increases as the crop cycle progress. The highest variability was noticed at 

maximum head weight due to spike size and morphology similarity. There was a difference 

among cultivars at the heading and grain-filling stages. 

 

2. Methodology 

2. 1 How is Sensing Helping? 

     Spectral reflectance is the most standard sensing approach employed in agricultural 

measurements, in which spectral reflectance refers to the proportion of the reflected light to 

the incident light that is calculated as a function of wavelength [18,19]. Each target on the 

Earth's surface has a different reflectance curve depending on the target surface 

characteristics, known as the spectral signature. The visible regions (400-700 nm) to NIR and 

MIR (700-2500 nm) part of the electromagnetic spectrum are the wavelengths measured and 

most typically used in agricultural applications [20].  

 

     The spectral signatures offer valuable information about soil and crops' physiological and 

biological characteristics [20,21]. Radiometers, digital cameras, or spectrometers could be 

carried on different platforms, ground (truck or tractor), aircraft, and satellites to collect 

information. Successive measures of small-scale regions are derived from the sensor platform 

transferring, processing, and assembling measurement outcomes into an image [19]. 

 

     Remote sensing has spectral, temporal, and spatial resolution [3,19], where the spatial 

resolution points out the smallest area recognized in the image, directly associated with image 

pixel size. In contrast, the spectral resolution points out the width and number of the fractions 

of the electromagnetic spectrum calculated by the sensor. The temporal resolution points out 

how often the remote sensing platform could take measures of a location; agriculture and farm 

managing applications generally demand (2-5m) spatial resolution with one to three days 

temporal resolution, one-pixel geolocation precision, 24-hour outcome delivery time, and 

regular production of atmospherically updated products [21].  

 

     Optical characteristics and nondestructive measurement of anthocyanin in plant leaf 

photobiology and photochemistry are the essential advantages of smart agriculture [22]. The 

sensors estimate leaf pigments such as chlorophyll, anthocyanin, and carotenoids; pigments 

are associated with the plant leaf structure and other metabolisms [23]. Sensors can calculate 

anthocyanin by discriminating the red and green wavelengths [22]. The pigment that could be 

distinguished using a sensor is the plant’s chlorophyll content, an indicator of the plant’s 

health. The plant’s chlorophyll content is essential to perceive the photosynthetic capacity, 

canopy stress, and production of productivity [24].  

 

     Sensors such as leaf clips have measured the carotenoids from the photochemical 

reflectance index (PRI) equation derived from the red wavelength proportion. Sensors can 

detect the difference between daylight and dark on leaves, thus recognizing the application 

reflectance [25]. Sensors can assess leaf pigment content and activity using a reflectometer. 
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The leaf area index (LAI) determines the potential photosynthesis and crop yield model [26]. 

The classic methods for calculating LAI include (length × maximum width × 0.75) for each 

leaf for each plant or the laboratory procedure for determining LAI [27, 28]. Generally, LAI is 

stated as choosing the leaves area per ground area. Nevertheless, these methods are both time 

and cost-consuming.  

 

Using sensing to estimate LAI is one of the most successful methods for obtaining accurate 

and valuable data; LAI could be derived from estimating the soil adjustment vegetation index 

(SAVIR) [29]. The hyperspectral indices evaluation for LAI can estimate and discriminate 

potato crops under various irrigation treatments. The role of RS in the last two decades in 

precision agriculture was due to the high demand to find innovative technology. Darker 

organic matter content has a higher significant absorption and lower spectral reflectance. This 

fact can be applied to any surface color changes so that soil with a dark color, due to 

significant organic content, would have higher absorption than soil with a light color [30]. 

The same concept was investigated, in the colored dissolved organic matter in lakes, based on 

changing the colors of the lake, where data was collected from satellite images, Landsat, 

IKONOS, and Advanced Land Imager (ALI). The IKONOS simulations provide a much more 

practical algorithm, while substantial uncertainty exists at the highest colored dissolved 

organic matter (CDOM) levels. Sensing is the science of gaining, processing, and interpreting 

images collected from the sensors placed on drones or satellites. This science could be applied 

to mineral exploration, either thermally recognizing the rock's spectral signature or localizing 

ore deposits. For instance, iron oxide is demonstrated brightly at visible wavelengths and 

decreased at NIR [31]. ASTRE image was used for mapping iron oxide, where band ratios, 

false color combinations, least square fitting, spectral angle mapper, and principal 

components analysis for mapping iron minerals were used in Hana district, Kerman province, 

Iran. The results displayed that the spectral angle mapper approach has high accuracy for 

mapping iron oxidation areas and minerals [32]. 

 

     Accurate deployment information of crop or field features is provided within the high 

spectral resolution of the hyperspectral system, which can provide a considerable volume of 

data [33,34]. Moreover, Scotford and Miller (2005) [20] mentioned that interpreting measured 

data requires understanding hyperspectral sensors and properties; remote sensing could study 

crop nutrition, crop disease, water deficit or surplus, weed invasion, insect injury, plant 

population, flood management, and other fields. 

 

2.2 Remote Sensing for Agricultural and Crop Management Applications 

     The consideration for selecting appropriate sensors and remote sensing datasets, based on 

some features, could differ among the applications [35]. Spatial resolution is on a spatial scale 

(pixel size) to collect data that differs from the required data, such as parcels, individual 

fields, states, and continents. The remote sensing instruments vary depending on satellite 

image sort; for example, IKONOS is 0.5m, the land sat thematic mapper is 30 m and 120 m 

(TIR; band 6), Advanced Spaceborne-Thermal Emission and Reflection Radiometer (ASTER) 

is 15, 30, and 90 m, SPOT (Satellite Pour observations de la Terre) is 60 km, LISS (Linear 

Imaging Self Scanning) is between 23 to 76.5 m according to the bands placed on it, AWiFS 

(Advanced Wide Field Sensors) is 56 m and image scene area is 710 km
2
, and MODIS is 1 

km. Increasing the spatial resolution means that the images show a more extensive area but 

less information. Even though the spatial resolution differs according to the differences 

among instruments such as satellites, aircraft, or drones, these images are still crucial for data 

acquisition. Higher spatial resolution images tend to have a lower temporal resolution [35].  

 



Zaeen et al.                                          Iraqi Journal of Science, 2023, Vol. 64, No. 11, pp: 6055- 6071 

 

6059 

     The satellite images have different spatial and temporal resolutions, leading to flexible 

time and spatial resolution sources that would serve agricultural research. Alternative 

resources to collect images, such as an unmanned aerial vehicle (UAV), could have a higher 

spatial and temporal resolution which is more flexible, meaning the sensors placed on a UAV 

have an appropriate spatial and temporal resolution [35]. Sensors can be placed on a UAV to 

help monitor crop life stages, nutrient deficits, and crop surface models (CSMs) with high 

resolution (1cm/pixel), where red, green, and blue wavelengths are shown to have a high 

correlation between the linear models. Estimating biomass of barley by using CSMs derived 

from UAV-based RGB imaging [36].  

 

     UAVs are widely prevalent in agriculture due to efficient scheduling in the field with 

available remote sensing instruments compared to other remote sensing sources such as 

satellites and aircraft [37]. The UAVs are amounted to an image conquest system to 

determine biomass and nitrogen deficiency for different crops and vegetables; the UAV 

system comes with a primarily digital system for taking images of objects. Some sensors are 

equipped with multiple filters, where the more sophisticated camera's filter has many bands 

like near-infra-red (NIR), red edge, and thermal infrared or short wavelengths. Output images 

are either actual images (natural images) or false images. These sensors mounted on UAVs 

are passive sensors that the sun is the primary energy source. These sensors or cameras are 

multispectral or hyperspectral, working based on the incident spectrum [38]. The UAVs are 

used widely in precision agricultural applications due to being easy to use and attracting 

farmers [39]. The lower price, flexibility to collect data, and the massive information 

obtainable from the UAVs as images or mosaic forms are successfully exploited and invested 

in detecting nutrient deficiency and plant diseases [40], encouraging researchers and farmers 

to obtain and use this technology.  

  

     Acquiring data using UAVs could cover a large area affected by bacteria or fungi that 

would influence crop production, reducing profit [41], a new type of precision disease, and 

plant stress management. Several studies included plant pathology detection either by the 

multispectral or hyperspectral signature [42]. These techniques discriminated between healthy 

and unhealthy plant leaves through the reflectance at near-infrared (NIR), which showed a 

highly sensitive peak in the spectrum curve for unhealthy plants at early stages. The blue band 

did not show significant differences in spectral reflectance [42].  

 

     Aerial photography successfully monitored insect activity by detecting changes in plant 

leaves or the plant density influenced by insects [45]. The UAV is considered an essential 

method due to its ability to mount any sensor based on the study purpose; it is a technical tool 

for monitoring an environmental contaminant [44], including software that allows processing 

and collecting data from drones. Drones become the easiest and best technology ever used; 

the system is circulated with GPS, sunshine, and various facilities such as speed, altitude, 

resolution, Region of Interest (ROI), and accurate data collecting tools [45].  

 

     Decisions can be made based on interpreted data from images processed by software 

available online, such as MicaSence uploader, or purchased with a drone such as pix4D. 

Consequently, discrimination wavelengths are used to extract bands and use the algorithms to 

explicate collected data and calculate the NDVI [46], LAI based on crop canopy (CC) [47], 

soil-adjusted vegetation index (SAVI), green and red vegetation index (GRVI), and red, green 

blue vegetation index (RGBVI) [48]. 
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     Crops' productivity is significantly reduced due to water stress; water stress affects seed 

germination, plant growth, and photosynthesis [49]. Water stress reduces plants' transpiration 

and leaf structure moisture and increases leaves' temperature. Unmanned aerial vehicles are 

provided with sensors that know the canopy structure [50]. Water stress could be determined 

using UAVs with passive sensors attached to drones. These sensors, either hyperspectral or 

multispectral, have Middle infra-red (MIR) or short wave (SWIR) (1300 nm to 2400 nm), in 

which cell walls in spongy mesophyll structure reflect the incident radiation. This reflectance 

happens at 1450 nm and 1950 nm; consequently, the low absorbance and high reflectance 

lead to exposure to water stress [51]. Bellvert et al. 2014 [52] found that at thermal 

wavelengths with high resolution and size pixels, there was a decreased correlation between 

crop water stress index, indicating to map the spatial variability in water deficit and ψ, which 

suggested leaf water potential caused by the pixels’ interactions between leaf and soil. 

 

2.3 How Do Sensors Help the Food Industry? 

     Volatile organic compounds (VOCs) are a byproduct of daily physiological functions 

typically released from plants and trees. The specific quantities of VOCs indicate crop and 

field situations; for instance, humidity, temperature, light, fertilization, soil condition, insects, 

and plant diseases impact the discharge of VOCs [53]. Electronic noses are typically 

applications in farming to diagnose crop disease, identify insect invasion, and observe 

foodstuff quality. The electronic nose comprises a set of gas sensors with an expansive 

selectivity partially interfering and an electronic pattern recognition approach with multi-

change statistical data processing instruments. The electronic nose is programmed to compare 

the profile of VOCs emitted from healthy plants or fruits with the diseased ones. 

 

     Assessing the freshness or spoilage of harvested-farm products during the processing and 

packaging operation can be conducted by using an electronic nose [4,5]. The VOCs imply 

fruit ripening and compounds that activate fruit maturation, such as ammonia, [54,55] ethanol 

and ethylene, and trans-2-hexenal [56,57]. Brezmes et al. 2001 [58] utilized an electronic nose 

to monitor changes in aroma profile during apple storage to assess the quality after harvesting 

peaches, pears, and bananas [56, 59] and to detect spoilage in potatoes [60]. Most 

investigations are still in the preparatory stage because of limitations, such as stability, 

calibration, selectivity, longevity, and standardization of gas collection apparatus [61].  

Electronic noses and electro-antennogram monitor pheromone trap coverage area to captivate 

insect herbivores [62,63]. New studies stated that the electronic nose could specify earlier 

stages of insect invasions by noticing VOCs released by injured plants [64,65]. 

Rady and Guyer 2015 [66] mentioned the efficiency of selected wavelengths to predict 

sucrose and glucose of potato tubers of Russet Norkotah and Frito Lay 1879 cultivars to 

classify potatoes according to sugar levels relevant to the frying industry. Slices were scanned 

using 12.7 mm as tubers via VIS/NIR band ratio (446-1,125 nm). Artificial neural networks 

and the partial least squares regression were involved in building prediction models; R (RPD), 

correlation coefficients, were 0.95 (3.02) and 0.78 (1.61) for RN and FL using slice samples, 

and 0.97 (3.89) and 0.81 (1.72) for RN and FL, respectively, for whole tubers. R(RPD) for 

sucrose models were 0.78 (1.57) and 0.71 (1.43) for RN and FL with slice samples and 0.94 

(2.82) and 0.80 (1.64) for whole tubers. 

 

2.4 How Do Sensors Help with Nutrient Uptake and Yield Prediction? 

     Electrochemical sensors in agriculture are used to directly measure soil chemistry, such as 

pH and nutrient content [8], where two electrochemical sensors are commonly used to 

calculate the activity of specified ions in the soil (K+, H+, NO3-, Na+, etc.), first, ion-
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selective electrode (ISE) sensors, and second, ion-selective field-effect transistor (ISEFT) 

sensors. ISE and ISEFT sensors can investigate plants' uptake of ions [67].  

Furthermore, Mladenova et al. 2017 [68] mentioned that the correlation between soil moisture 

and evapotranspiration indices could provide critical information for predicting corn and 

soybean yields more than vegetation indices. The significance of the correlation relied on the 

interannual variability in yield measured at a given location. Soil moisture was studied as a 

factor for yield prediction. [1, 69] found that soil moisture was negatively associated with the 

yield of wheat grain (r= 
−
0.68 and 

−
0.53) at the depths (0–15 and 15–30 cm, respectively) at 

stage 5 of physiological growth. However, at stage 7 of Feeke's physiological growth, there 

was no association between soil moisture and wheat grain yield at any depth. Also, Soil Bulk 

density was negatively associated with the final grain yield (r = 
−
0.35).  

 

     The plant's request determines the nutrient rate, which depends on the growth rate and 

nutrient content situation. Nitrogen, Phosphorous, and Potassium as macro-nutrients are 

actively absorbed. Observing ion concentrations of the plant is a significant opportunity for 

growers to design fertilization procedures to enhance production, where ion-selective sensors 

are used to detect an assortment of ions. The Nitrogen ion in soils or plants, such as potato 

and vegetable fertilization regimes, is monitored using ISE sensors [70, 3]. 

 

     The ion-selective electrode measures concentrations of ions such as iodide, chloride, 

fluoride, sodium, potassium, cadmium, and in plants and soil to examine the plant 

metabolism, nutrition, and toxicological consequences on plants [71,72].  

 

     The active optical sensor can work efficiently and non-destructively without weather 

conditions and solar elevation [73]. Active optical sensors can quickly collect canopy NDVI 

data and other indices of crops. GreenSeeker works with red (656 ± 10 nm) and near-infrared 

(774 ± 10 nm). The quantitative relationship between NDVI and indices of growth (LAI, DM 

(dry matter), and GY (grain yield)) give positive associations. The precision (R
2
), accuracy 

(k), and standard deviation of the RNDVI dynamic model for two types of rice are 0.999, 

1.017; 0.9084**, 0.803**; and 0.0232, 0.0170, respectively. The consequences indicate that 

the RNDVI dynamic model could accurately reflect crop growth and forecast dynamic 

modifications in high-yield crop populations, supplying a primary method for observing rice 

growth status [73].  These two bands are used widely to monitor nutrient conditions and crop 

growth; for instance, Osborne (2007) [65] utilized GreenSeeker in monitoring wheat growth 

and nutrient condition, showing that extracted NDVI values significantly with nitrogen 

content and dry matter. 

 

     As a standard, active optical sensors predict yield in the fields without nitrogen limitation. 

In contrast, fields that suffered from nitrogen limitation gave a lower yield prediction from 

sensor reading, indicating a need for supplemental nitrogen. The Red NDVI and red edge 

NDVI were utilized in corn yield prediction. The V6 of the growth stage, Red NDVI, and red 

edge NDVI gave a similar association with yield. In contrast, the red-edge NDVI was superior 

to the red NDVI at V12, indicating that red-edge NDVI would still be actively helpful until 

the late season of nitrogen application [6]. 

  

     The LAI is a direct biophysical parameter for observing crop conditions, which provides 

specific physical information regarding canopy functioning [75]. The NDVI and LAI were 

utilized in yield prediction; it was found that NDVI and LAI  have similar efficacy as a spatial 

yield variability prediction factor, which provided high correlations of 0.8 at specific times 

during the growing season. Sharma (2014) [76] used ground-based active optical sensors 
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(GBAO) to predict crop yield. Two GBAO sensors, GreenSeeker (GS) and crop circle (CC), 

within forty-six trials of N-rate for corn crop at (V6) and (V12) of leaf growth stages with 

plant height manually factor.  

     The relationship between GS, yield, and INSEY (INSEY= in-season estimate of yield = 

sensor NDVI/ growing degree-days from planting data) was enhanced by multiplying the 

sensor-NDVI by corn height at V6. The GreenSeeker GS and CC were used to identify the 

plants' sulfur deficiency [76]. Both sensors detected that the sensor reading values (NDVI) 

decreased at an increased N rate. Practitioners can use this connotation to test areas with an 

early-season sulfur deficiency. 

 

     Raun et al. (2002) [77] developed the GS algorithm for corn, connecting corn yield 

calculated in field experimentations with an in-season yield estimation, where GS data and 

NDVI were used to derive INSEY, divided by growing degree days from the planting date. 

“The algorithm depicted by the regression association between corn yield and INSEY 

employed to vary nitrogen rate of corn crop utilizing the difference between corn yield 

forecasted and the corn yield forecasted from a nitrogen-rich sector, within variety and field 

of interest, multiplied the 1.25 % nitrogen in corn grain estimate divided by a nitrogen 

fertilizer application efficiency factor (values from > 0 to 1)”. 

 

     The algorithm that Holland and Schepers (2010) [78] developed for the CropCircles sensor 

and corn crop calculated the ratio of the vegetarian index for corn plants in comparison with 

the reference plants that were considered to have a sufficient supply of nitrogen. The 

acceptable index (SI) ratio was supposed to keep the same during the growing season's 

residue unless further nitrogen fertilization was added. A good association was found between 

SI and yield estimation [79].  

 

     The photosynthetic rate of leaves depends strongly on nitrogen content, where any 

nitrogen deficiency could affect the photosynthetic rate [80], so selecting a particular 

wavelength to determine corn nitrogen status is very important [80, 81]. Shanahan et al. 

(2003) [82] suggested employing NDVI and Green NDVI (GNDVI), using two spectrums, 

NIR and the other 500-600 nm. Active-optical sensors, such as GS and CC, release four light 

bands, which are blue (460 nm), green (555nm), red (680 nm), and NIR (800 nm), where any 

difference in nitrogen rate and sampling date affects the NDVI reading. The results showed an 

increase in chlorophyll content correlated strongly with the nitrogen treatment r
2
≥96. Hansen 

and Schjoerring (2003) [83] said that NDVI could be employed effectively in assessing 

growth and small grains’ development.  

 

     Moges et al. (2005) [84] mentioned that sensor readings at Feekes growth stages (5) were 

correlated with grain yield more than other development stages. Raun et al. (2001) [85] 

mentioned that the sensor-based estimated reading could describe 83% grain product 

variability. At the same time, Inman et al. (2007) [86] found that the variability over space 

and time may affect the association between sensor reading and yield. The discrepancy in 

measuring yield was related to sampling date, seasonal changes, hybrid variation, nitrogen 

fertilization, and spatial differences [86, 87].  

 

2.5 Factors and Parameters That Could Help in Improving Sensing Technology 

2.5.1 Plant Height and Sensors for Yield Prediction 

     Plant height is used as a criterion for studying the vegetation growth of corn crops [76], 

where the height of corn plants is affected by all the soil water content [88], soil texture, 
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cultivation methods, and fertilizer application rate [89]. Plant height could be measured by 

employing high-resolution ultra-sound distance sensing of crop canopy [90].  

 

     The canopy height of sugar beet (Beta Vulgaris L) is multiplied by GS data to calculate 

leaf nitrogen concentration, sugar beet top nitrogen content, and dry matter yield [91]. The 

nitrogen content of sugar beet tops is associated with the two-dimensional leaf area and 

density. Multiplying NDVI reading times of canopy height results in a leaf volume instead of 

a leaf area index. Also, the NDVI reading was associated with alfalfa plant height (Medicago 

sativa L), where surface area coverage and plant height were developed simultaneously. Still, 

grasses were not associated with plant height, where surface coverage was nearly continuous 

[92].  

 

     Researchers considered plant height an indicator to assist crop prediction besides other 

sensors, where measuring plant height dramatically improved the relationship between the 

active optical sensor and crop yield [93]. A practical manual measuring plant height is not 

accepted for US commercial corn production. Therefore, commercial acoustic height and 

active optical sensors were utilized at two-corn growth stages (V6 and V12), supplying an 

improved yield association compared to the manual method. At V6, the improvement was 

more significant than in V12 regarding the relationship between active optical sensor readings 

multiplied by acoustic sensor reading and yield. 

 

     Researchers used light detection and ranging (LIDAR) to have a better crop height 

measurement [94], where a LiDAR-based high-throughput phenotyping (HTP) system was 

the tool developed for cotton plant phenotyping in the field. The HTP technique consists of 

two Dimensions LIDAR and Real-Time Kinematic-Global Positioning System (RTK-GPS) 

mounted on a high-clearance tractor. Three rows of cotton plots were scanned by LIDAR 

concomitantly from the top, and the RTK-GPS was employed to supply the spatial 

coordinates of the point cloud during data assembly. 

  

     LIDAR was utilized in the Lab to test a single plant using 0.5º angle resolution, where 

results showed an R
2
= 1.00 and RMSE = 3.46 mm compared to manual measures. Utilizing 

the exact angular resolution in the field tests, they achieved R
2
 =0.98 and 65 mm as RMSE 

compared to manual measurements. The HTP system benefits from extensive field 

applications because it provides highly accurate measurements.  

 

2.6 Leaf Area Index (LAI) for Yield Prediction 

     The leaf area index was studied alongside NDVI sensors to create a perfect relationship in 

marketable potato yield (MPY) [12]. Sensor readings were taken at each growing stage and 

then multiplied by the proprietor-proxy leaf area index (PPLAI). This was done to see the 

impact of NDVI and PPLAI on MPY [12]. The method showed a healthy relationship 

between the N rate and NDVI-PPLAI than NDVI alone in MPY [12]. In addition, the method 

determined an inverse relationship between the rate of N application and S deficiency in the 

soil [12]. The LAI apparently can be used to determine MPY, where the PPLAI must be 

recorded in real-time rather than a system recommendation to correlate with sensor readings 

[12]. 

 

2.7 Red-Edge Wavelength: A High Performance to Detect Nutrients Deficiency 

     The symmetrical feature of the first derivative reflectance in the red edge wavelength 

range (690 nm to 730 nm) is related to the changes in leaf chlorophyll content. This could be 

beneficial for noticing leaf chlorophyll content under various growing states [95, 11]. Leaf 
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reflectance arranged between 680 and 750 nm is a measurement of vegetation indexes; 

consequently, reflectance and transmittance are correlated to chlorophyll concentration, leaf 

maturity, and leaf area index (LAI) [96]. The red edge demonstrates a high correlation 

between total chlorophyll content and crops' growth, but the red edge wavelength is still 

unrelated to a single stress issue. Factors such as insects or air pollution may reduce the 

correlations between red-edge wavelength and chlorophyll content [97].  Miller et al. (1990) 

[98] suggested that the red edge model helps explain the correlations between remote sensing 

and environmental changes derived from a high-resolution sensor. The red-edge region did 

show double peaks based on low pigment concentration, which suggested mapping vegetation 

stress [99]. Sibanda et al. (2017) [100] found that the soil background did not impact the red 

edge; consequently, the red edge was an excellent estimator for the LAI, chlorophylls a and b, 

and nitrogen stressed discrimination.  The red edge position (REP) determined by linear 

derivative from a wide wavelength range. Thus, the red edge peak could mitigate the 

differences between low or high nitrogen concentrations [101]. Curran et al. (1990) [102] 

mentioned that the red-edge wavelength could be influenced by background, such as dead 

pine needles, in a study that leads to extrapolation at all but low canopy levels. The red edge 

position estimated the carotenoids due to the correlations between chlorophyll and carotenoid 

content [103]. Red edge is found feasible to assess the water stress based on the correlation 

with crop stress [104]. Several methods, such as inverted Gaussian or linear curves, correlated 

the red edge and crop parameters [105, 106].  

  

3. What are the Prospects? 

     As a result of using active optical sensors, a smartphone application can be developed to 

help farmers directly detect and control nutrient deficiency and develop a fertilization 

recommendation for nitrogen supplements. Also, a smartphone application can be developed 

to identify and control plant insects and diseases that can help farmers immediately in the 

field. Since the GreenSeeker and Crop Circle work on the reflected light from crop leaves as 

an indicator of chlorophyll content, which gives sight of plant health regarding nutrients, the 

suggestion is to add a thermal band to help detect plant diseases is possible. In this case, 

growers can control plant health regarding nutrients and pathogens and delineate a map of 

plant conditions. Satellite imaging provides large-scale coverage but faces a hard limitation 

with any weather issue. Connecting the GreenSeeker online with a system would help send 

the data directly from the field to the office. The new remote sensing technology can evolve 

with several field measurements, such as groundwater estimation and management, which 

simulate traditional field data. Also, the advanced research in field emissivity estimations 

using thermal wavelength benefits scientists and growers by increasing the amplitude of 

knowledge [107,108]. 

  

3. Conclusion 

     The sensors could be used in agriculture to predict crop parameters such as crop yield and 

quality. Still, their consistency in data collection (e.g., NDVI, rainfall) and environmental 

variations were the biggest hurdles that needed more attention. However, using soil moisture, 

rainfall, LAI, and crop height with sensors are promising parameters that could help sensors 

provide reliable data and algorithms. It has been found that crop height and rainfall data were 

more effective than soil moisture and LAI derived from NDVI because they were impractical 

to use on large fields. Satellite imagery and UAVs were less valuable than ground-based 

active optical sensors due to easy use, no specific time required, and no conflict with 

atmosphere issues such as clouds, dust, and sunlight. However, developing more science, 

such as crop scouting and essential potato activity, could quickly be performed with ground 

devices. Still, UAVs can cover vast areas in a short period.  
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