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Abstract 

     The dynamical behavior of an ecological system of two predators-one prey updated 

with incorporating prey refuge and Beddington –DeAngelis functional response had 

been studied in this work, The essential mathematical features of the present model 

have been studied thoroughly. The system has local and global stability when certain 

conditions are met, had been proved respectively.  Further, the system has no saddle 

node bifurcation but transcritical bifurcation and Pitchfork bifurcation are satisfied 

while the Hopf bifurcation does not occur. Numerical illustrations are performed to 

validate the model's applicability under consideration. Finally, the results are included 

in the form of points in agreement with the obtained numerical results. 

 

Keywords: Ecological system, Predator-prey model, Beddington-DeAngelis, Refuge, 

Dynamical behavior.  

 

 ملجأ تعتمد فيه علىفريسة ئي الفي نظام بي وفريسة واحدةالسلوك الديناميكي لأثنين من المفترسات 
 ديانجلس-بدنكتن من النوع الة افتراسبوجود د

 

 2, رائد كامل ناجي* 1صبا نوري مجيد
 * قسم الحاسوب, كلية التربية للبنات, جامعة بغداد , بغداد, العراق 1

 الرياضيات, كلية العلوم, جامعة بغداد, بغداد, العراق قسم  2
 المستخلص

لبحث  ت و فريسة واحدة وسعي الفريسة ل فترسانين من الملأث السوك الديناميكي  في هذا البحث تمت دراسة       
من جانب    ديانجلس-بدنكتنمن النوع    )دالة افتراس(  وظيفية  استجابة من المفترس متزامنة مع    للاختباء  ملجأعن  

  وتعرفنا الى ان تمت دراسة السمات الرياضية الأساسية للنموذج الحالي بدقة ،    , حيث الفريسة  اتجاه  المفترس
إثباتها على التوالي ، وعدم    باستقرار محلي وغير محلي عند استيفاء شروط معينة تمالرياضي يتمتع  النظام  
( موجود مع  (transcriticalولكن التشعب الحرج     ( (saddle-node ب عقدة سرجالنظام على تشع  احتواء  

، تم تنفيذ  غير متحقق  فهو  (Hopf)تشعب هوبف  ل  اما بالنسبة مستوفى  Pitchforkوتشعب    توافر شروط تسنده
نتائج العمل مع  لخصت    ,اخيرا   من أجل التحقق من قابلية تطبيق النموذج قيد الدراسة    عددياالرسوم التوضيحية  

 . بشكل نقاط في نهاية البحث الحاصلين عليها  النتائج العددية تركيزعلى ادراجال
1. Introduction 

     The dynamical study of prey-predator model is one of the most important topics that is 

studied in both ecology and mathematical ecology. The first well-known classical model was 

              ISSN: 0067-2904 
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given by Lotka-Volterra in 1927[1], the model was developed by many researchers taking into 

consideration many factors affecting the system like a refuge in [2, 3, 4, 5, 6] and the 

Beddington–DeAngelis functional response in [6]. 

 

     Functional response is defined as the rate of consumption of one prey by predators and it 

plays an important role in population dynamic, there are many types of functional responses 

that are particularly associated with the work of Holling through his classification of functional 

responses into three basic types, namely I, II and III, Beddington–DeAngelis functional 

response is similar to the well-known  Holling type II functional response but has an extra term 

in the denominator which models mutual interference between predators [8], It is well known 

that refuge and harvesting are two of the most important factors affecting the dynamics of prey-

predator systems. By using refuges, the prey population is partially protected against predators. 

The existence of refuges has a great influence on the coexistence of the prey-predator systems 

[3]. 

  

     In this research, the system incorporates two systems studied in both [4]  and [5], where they 

studied the dynamical behavior of a two-predator model with prey refuge and the dynamical 

behavior of an ecological system with Beddington–DeAngelis functional response, 

respectively. According to the above, the resulting system has overcrowded with parameters, 

which are reduced by using the dimensionless technique to simplify the work, while preserving 

carefully the mathematical properties which are introduced in section 2. Section 3 demonstrates 

the existence and positive invariance of the resulting system, while section 4 sponsors the 

persistence of the resulting system. Equilibrium points and their feasibility are discussed in 

section 5. We represent an analytical study including local and global stability of the resulting 

dynamical system in section 6. We also explain the bifurcation analysis for certain equilibrium 

points in sections 7 and 8. Numerical illustrations are performed to validate the model's 

applicability under consideration shown in section 9. Finally, conclusions are given in section 

10. 

 

2. Mathematical model 

     In this section, a Beddington–DeAngelis prey-predator model considers the effect of refuge, 

the considered model is based on two predators and one prey system that is shown in [4]: 

 

𝑑𝑥1

𝑑ȶ
= 𝛼𝑥1 (1 −

𝑥1

𝑘
) −

𝛽1𝑥1𝑥2

1+𝑎1𝑥1
−

𝛽2𝑥1𝑥3

1+𝑎2𝑥1

𝑑𝑥2

𝑑ȶ
= −𝑑1𝑥2 +

𝑐1𝛽1𝑥1𝑥2

1+𝑎1𝑥1
− 𝛿1𝑥2𝑥3        

𝑑𝑥3

𝑑ȶ
= −𝑑1𝑥3 +

𝑐1𝛽2𝑥1𝑥3

1+𝑎2𝑥1
− 𝛿2𝑥2𝑥3        

                (2.1) 

The above system is updated by incorporating prey refuges proportionally to the prey density 

via 𝑚𝑥1, where 0 ≤ 𝑚 < 1. 

It is considered that the first and the second predator species are compotation for food and other 

essential resources, respectively, such as shelter. In addition, the predator function response in 

the model (2.1) is known as Holling type II, which is replaced by Beddington–DeAngelis that 

has extra terms 𝑏1𝑥2 and 𝑏2𝑥3 in the denominator that model mutual interference between 

predators. 

Thus, our final model is given as follows: 

 

𝑑𝑥1

𝑑ȶ
= 𝛼𝑥1 (1 −

𝑥1

𝑘
) −

𝛽1(1−𝑚)𝑥1𝑥2

𝑎1+(1−𝑚)𝑥1+𝑏1𝑥2
−

𝛽2(1−𝑚)𝑥1𝑥3

𝑎2+(1−𝑚)𝑥1+𝑏2𝑥3

𝑑𝑥2

𝑑ȶ
= −𝑑1𝑥2 +

𝑐1𝛽1𝑥1𝑥2

𝑎1+(1−𝑚)𝑥1+𝑏1𝑥2
− 𝛿1𝑥2𝑥3                             

𝑑𝑥3

𝑑ȶ
= −𝑑1𝑥3 +

𝑐1𝛽2𝑥1𝑥3

𝑎2+(1−𝑚)𝑥1+𝑏2𝑥3
− 𝛿2𝑥2𝑥3                             

,              (2.2) 
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where  

i. 𝑥1(ȶ) is the prey population size at time ȶ. 

ii. 𝑥2(ȶ) and 𝑥3(ȶ) are the population sizes of the first and the second predator species at time 

ȶ, respectively. The prey grows logistically in the absence of the predator, in the same way, 

that the predator declines directly in the absence of the prey. 

iii. The parameters 𝛼 and 𝑘 are the growth rate and the environmental carrying capacity of the 

prey species, respectively. 

iv. The parameters 𝑑1 and 𝑑2 are the predators 𝑥1, 𝑥2 death rates, respectively. 

v.  The parameters  𝛿1and 𝛿2 are the rates at which the growth rate of the first predator 𝑥1 is 

annihilated by the second predator 𝑥2 and vice versa. 

vi. The parameters 𝑐1and 𝑐2 are the search rates of the first and second predators for each 

captured prey species, respectively (0 < 𝑐1, 𝑐2 < 1). 

vii. The parameters  𝛽1 and 𝛽2 are the maximum number of prey that can be eaten by the first 

and second predator per unit time respectively, and 
1

𝑎1
,

1

𝑎2
 are their respective half saturation 

rates. 

viii. The parameters 𝑏1 and 𝑏2  measure the coefficients of their mutual interference among the 

first and the second predators, respectively. 

ix. 𝑚 represents the prey refuge where 0 ≤ 𝑚 < 1, it is considered that the first and the second 

predator species are competing for food and other essential resources such as shelter. 

x. The terms  
𝛽1(1−𝑚)𝑥1𝑥2

𝑎1+(1−𝑚)𝑥1+𝑏1𝑥2
  and  

𝛽2(1−𝑚)𝑥1𝑥3

𝑎2+(1−𝑚)𝑥1+𝑏2𝑥3
  denote the first and the second predator's 

response respectively on prey species. This type of predator response function is known as 

Beddington–DeAngelis.  

 

Now we will reduce the number of parameters and specify the control set of parameters, to 

simplify the system, the following dimensionless variables and parameters are used:   

 

𝑆 =
𝑥1

𝑘
, 𝑃1 =

𝛽1𝑥2

𝛼𝑘
, 𝑃2 =

𝛽2𝑥3

𝛼𝑘
, 𝑡 = 𝛼ȶ ,

𝐴1 =
𝑎1

𝑘
, 𝜖1 =

𝑏1𝛼

𝛽1
, 𝐴2 =

𝑎2

𝑘
, 𝜖2 =

𝑏2𝛼

𝛽2
, 𝜃1 =

𝑑1

𝛼
,

𝜆1 =
𝛽1𝑐1

𝛼
, 𝛾1 =

𝛿1𝑘

𝛽1
, 𝜃2 =

𝑑2

𝛼
, 𝜆2 =

𝛽2𝑐2

𝛼
, 𝛾2 =

𝛿2𝑘

𝛽2
 

  

    

  Then the system (2.2) reduces the following dimensionless system: 

 

𝑑𝑆

𝑑𝑡
= 𝑆(1 − 𝑆) −

(1−𝑚)𝑆𝑃1

𝐴1+(1−𝑚)𝑆+𝜖1𝑃1
−

(1−𝑚)𝑆𝑃2

𝐴2+(1−𝑚)𝑆+𝜖2𝑃2

𝑑𝑃1

𝑑𝑡
= −𝜃1𝑃1 + 𝜆1

(1−𝑚)𝑆𝑃1

𝐴1+(1−𝑚)𝑆+𝜖1𝑃1
− 𝛾1𝑃1𝑃2             

𝑑𝑃2

𝑑𝑡
= −𝜃2𝑃2 + 𝜆2

(1−𝑚)𝑆𝑃2

𝐴2+(1−𝑚)𝑆+𝜖2𝑃2
− 𝛾2𝑃1𝑃2             

,               (2.3) 

where 𝑆(0) ≥ 0, 𝑃1(0) ≥ 0, and 𝑃2(0) ≥ 0 are evident that the number of parameters is 

reduced from fifteen in the system (2.2) to eleven in the system (2.3).  

 

3. Existence and positive invariance  

For 𝑡 > 0, let X = (𝑆, 𝑃1, 𝑃2)
𝑇, 𝐹 = (𝑓1, 𝑓2, 𝑓3)

𝑇, then the system (2.3) becomes 
𝑑𝑋

𝑑𝑡
= 𝐹(𝑋), 

here 𝑓𝑖 ∈ 𝐶∞ for 𝑖 = 1,2,3, are given by: 

            𝑓1 = 𝑆(1 − 𝑆) −
(1−𝑚)𝑆𝑃1

𝐴1+(1−𝑚)𝑆+𝜖1𝑃1
−

(1−𝑚)𝑆𝑃2

𝐴2+(1−𝑚)𝑆+𝜖2𝑃2
  

𝑓2 = −𝜃1𝑃1 + 𝜆1
(1−𝑚)𝑆𝑃1

𝐴1+(1−𝑚)𝑆+𝜖1𝑃1
− 𝛾1𝑃1𝑃2                                                                      (3.1)            

𝑓3 = −𝜃2𝑃2 + 𝜆2
(1−𝑚)𝑆𝑃2

𝐴2+(1−𝑚)𝑆+𝜖2𝑃2
− 𝛾2𝑃1𝑃2  
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Clearly, the interaction functions in the system (2.3) are continuous and have continuous partial 

derivatives on the positive three dimensional space ℝ+
3 = {(𝑆, 𝑃1, 𝑃2): 𝑆(0) ≥ 0, 𝑃1(0) ≥

0, 𝑃2(0) ≥ 0}. Therefore, these functions are Lipschitzian [9] over ℝ+
3  and the system (2.3) has 

a unique solution, see [2], [3],  [4].  

 

Theorem 1.  The solutions of the system (2.3) are uniformly bounded over ℬ =

{(𝑆, 𝑃1, 𝑃2) ∈ ℝ+
3 : 𝑊(𝑡) ≤

2

𝜇
}. 

Proof. From the first equation of the system (2.3), we observe that 
𝑑𝑆

𝑑𝑡
≤ 𝑆(1 − 𝑆), then by 

solving the above differential inequality, we get that 𝑆(𝑡) ≤ 1 as 𝑡 → ∞. Now assume that 

𝑊(𝑡) = 𝑆(𝑡) +
𝑃1(𝑡)

𝜆1
+

𝑃2(𝑡)

𝜆2
, where W is the total population, we get that  

𝑑𝑊

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
+

1

𝜆1

𝑑𝑃1

𝑑𝑡
+

1

𝜆2

𝑑𝑃2

𝑑𝑡
, which gives 

𝑑𝑊

𝑑𝑡
≤ 𝑆(1 − 𝑆) −

𝜃1

𝜆1
𝑃1 −

𝜃2

𝜆2
𝑃2, by simplifying the last differential 

inequality and using the bound of  𝑆, we conclude 
𝑑𝑊

𝑑𝑡
≤ 2 − 𝜇𝑊,                                                                                      (3.2) 

 where 𝜇 = min {1, 𝜃1, 𝜃2} that yields 
𝑑𝑤

𝑑𝑡
+ 𝜇𝑤 ≤ 2, finally by solving the differential 

inequality (3.2) we obtain that 𝑊(𝑡) ≤ max {𝑊(𝑡0),
2

𝜇
}, and    sup𝑊(𝑡) ≤

2

𝜇𝑡→∞
𝑙𝑖𝑚 , hence all 

solutions of the system (2.3) are bounded over ℬ. 

 

4. Equilibrium Points and their feasibility  

     The system (2.3) has five equilibrium points they are as the following:  

The points 𝐸0 = (0,0,0), 𝐸1 = (1,0,0)  are always feasible. 

The first planer equilibrium point is 𝐸2 = (𝑆2, 0, 𝑃22), where 𝑆2 is a unique positive root, see 

[3], for the quadratic equation: 

−(1 − 𝑚)𝜖2𝜆2𝑆
2 + (1 − 𝑚)[(1 − 𝑚)𝜃2 − 𝜆2(1 − 𝑚 − 𝜖2)]𝑆 + (1 − 𝑚)𝐴2𝜃2 = 0,         (5.1) 

while           

𝑃22 =
−(1−𝑆2)[(1−𝑚)𝑆2+𝐴2]

−(1−𝑚)+𝜖2(1−𝑆2)
.                    (5.2) 

The equilibrium point 𝐸2 exists uniquely in the interior of the positive quadrant of 𝑆𝑃2 − plane 

provided that the following sufficient condition holds      
0 < 𝜖2(1 − 𝑆2) < (1 − 𝑚)          

 

     The second planer equilibrium point is 𝐸3 = (𝑆3, 𝑃13, 0), where 𝑆3 is a unique positive root, 

see [3], for the quadratic equation 
−(1 − 𝑚)𝜖1𝜆1𝑆

2 + (1 − 𝑚)[(1 − 𝑚)𝜃1 − 𝜆1(1 − 𝑚 − 𝜖1)]𝑆 + (1 − 𝑚)𝐴1𝜃1 = 0,         (5.3) 

while           

𝑃13 =
−(1−𝑆3)[(1−𝑚)𝑆3+𝐴1]

−(1−𝑚)+𝜖1(1−𝑆3)
.                    (5.4) 

The equilibrium point 𝐸3 exists uniquely in the interior of the positive quadrant of 𝑆𝑃1 − plane 

provided that the following sufficient condition holds      

0 < 𝜖1(1 − 𝑆3) < (1 − 𝑚).           

The last equilibrium point 𝐸4 = 𝐸∗ = (𝑆∗, 𝑃1
∗, 𝑃2

∗) exists if the component (𝑆∗, 𝑃2
∗) is a positive 

intersection point of the following to isoclines: 

1 − 𝑆 −
(1−𝑚)𝑃2

𝐴2+(1−𝑚)𝑆+𝜖2𝑃2
−

(1−𝑚)2𝑆𝜆2−(1−𝑚)𝜃2𝑀1

𝑀2
= 0,               (5.5) 

−𝜃1 +
𝜆1(1−𝑚)𝛾2𝑆𝑀1

𝑀2
− 𝛾1𝑃2 = 0,                  (5.6) 
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with 𝑀1 = [(1 − 𝑚)𝑆 + 𝐴2 + 𝑃2𝜖2], 𝑀2 = [𝛾2(𝐴1 + (1 − 𝑚)𝑆) − 𝜃2𝜖1]𝑀1 + (1 − 𝑚)𝑆𝜆2𝜖1. 

While  

𝑃1
∗ =

(1−𝑚)𝑆∗𝜆2−[(1−𝑚)𝑆∗+𝐴2+𝑃2
∗𝜖2]𝜃2

𝛾2
[(1−𝑚)𝑆∗+𝐴2+𝑃2

∗𝜖2]
.                      (5.7) 

The necessary condition for the existence of the positive equilibrium point is given by: 

(1 − 𝑚)𝑆∗
𝜆2 − [(1 − 𝑚)𝑆∗

+ 𝐴2 + 𝑃2
∗
𝜖2]𝜃2 > 0.                   (5.8) 

4. Persistent  

     The work of this section is based on the method of the Average Lyapunov function.  

 

Theorem 2.  System (2.3) is persistent, provided that 

             𝜃1 < 𝜆1
(1−𝑚)

𝐴1+(1−𝑚)
                                                                                                              (5.1a) 

             𝜃2 < 𝜆2
(1−𝑚)

𝐴2+(1−𝑚)
                                                                             (5.1b)   

             𝜃1 + 𝛾1𝑃22 < 𝜆1
(1−𝑚)𝑆2

𝐴1+(1−𝑚)𝑆2
                                                              (5.1c)   

            𝜃2 + 𝛾2𝑃13 < 𝜆2
(1−𝑚)𝑆3

𝐴2+(1−𝑚)𝑆3
                                                          (5.1d)  

Proof.  Considering a function of the form  𝑈(𝑆, 𝑃1, 𝑃2) = 𝑆𝜅1𝑃1
𝜅2𝑃2

𝜅3  , where 𝜅1, 𝜅2, 𝜅3 are 

positive constants, obviously 𝑈(𝑆, 𝑃1, 𝑃2) > 0 for all (𝑆, 𝑃1, 𝑃2) ∈ 𝑖𝑛𝑡ℝ3 and 𝑈(𝑆, 𝑃1, 𝑃2) →

0 as 𝑆, 𝑃1𝑜𝑟 𝑃2 → 0, now define the function Ζ(𝑆, 𝑃1, 𝑃2) such that Ζ(𝑆, 𝑃1, 𝑃2) =
𝑈′

𝑈
, then 

𝑈′

𝑈
= 𝜅1 ((1 − 𝑆) −

(1−𝑚)𝑃1

𝐴1+(1−𝑚)𝑆+𝜖1𝑃1
−

(1−𝑚)𝑃2

𝐴2+(1−𝑚)𝑆+𝜖2𝑃2
)                                 

+𝜅2 (−𝜃1 + 𝜆1
(1−𝑚)𝑆

𝐴1+(1−𝑚)𝑆+𝜖1𝑃1
− 𝛾1𝑃2) + 𝜅3 (−𝜃2 + 𝜆2

(1−𝑚)𝑆

𝐴2+(1−𝑚)𝑆+𝜖2𝑃2
− 𝛾2𝑃1)

 .                                                               

 

Now, the proof will be finished provided that Ζ(𝑆, 𝑃1, 𝑃2) > 0 for all the boundary equilibrium 

points with suitable choices of 𝜅1 > 0 , 𝜅2 > 0 and 𝜅3 > 0. Note that,  

 
𝑈′

𝑈
(𝐸0) = 𝜅1 − 𝜅2𝜃1 − 𝜅3𝜃2 > 0,   

for suitable choice of positive constants with 𝜅1 sufficiently large than 𝜅2 and 𝜅3. Also, it is 

clear that: 

 
𝑈′

𝑈
(𝐸1) = 𝜅2 (−𝜃1 + 𝜆1

(1−𝑚)

𝐴1+(1−𝑚)
) + 𝜅3 (−𝜃2 + 𝜆2

(1−𝑚)

𝐴2+(1−𝑚)
) > 0,  

if the conditions (4.1a) and (4.1b) hold for suitable choice of 𝜅2 and 𝜅3. Moreover, 

 
𝑈′

𝑈
(𝐸2) = 𝜅2 (−𝜃1 + 𝜆1

(1−𝑚)𝑆2

𝐴1+(1−𝑚)𝑆2
− 𝛾1𝑃22) > 0,   

if the condition (4.1c) holds for suitable choice of 𝜅2. Finally,  
𝑈′

𝑈
(𝐸3) = 𝜅3 (−𝜃2 + 𝜆2

(1−𝑚)𝑆3

𝐴2+(1−𝑚)𝑆3
− 𝛾2𝑃13) > 0,  

provided that the condition (4.1d) holds for suitable choice of 𝜅3. Hence, the proof is completed.  

 

6. Local Stability of Equilibrium points  

     In this section, we analyze local stability for each equilibrium point of the system (2.3). The 

Jacobian  matrix of the system (2.3) at any point (𝑆, 𝑃1, 𝑃2)  is defined as  

𝐽 = 𝐷𝐹(𝑋) = [𝑐𝑖𝑗]3×3
,                     (6.1) 

where 



Majeed and Naji                                 Iraqi Journal of Science, 2023, Vol. 64, No. 12, pp: 6383- 6400 

 

6388 
 

𝑐11 = 1 − 𝑆 −
(1−𝑚)𝑃1

(1−𝑚)𝑆+𝐴1+𝑃1𝜖1
−

(1−𝑚)𝑃2

(1−𝑚)𝑆+𝐴2+𝑃2𝜖2
                       

+𝑆 [−1 +
(1−𝑚)2𝑃1

((1−𝑚)𝑆+𝐴1+𝑃1𝜖1)2
+

(1−𝑚)2𝑃2

((1−𝑚)𝑆+𝐴2+𝑃2𝜖2)2
]

, 

𝑐12 = 𝑆 [
(1−𝑚)𝑃1𝜖1

((1−𝑚)𝑆+𝐴1+𝑃1𝜖1)2
−

1−𝑚

(1−𝑚)𝑆+𝐴1+𝑃1𝜖1
],  

𝑐13 = 𝑆 [
(1−𝑚)𝑃2𝜖2

((1−𝑚)𝑆+𝐴2+𝑃2𝜖2)2
−

1−𝑚

(1−𝑚)𝑆+𝐴2+𝑃2𝜖2
], 

𝑐21 = 𝑃1 [−
(1−𝑚)2𝑆𝜆1

((1−𝑚)𝑆+𝐴1+𝑃1𝜖1)2
+

(1−𝑚)𝜆1

(1−𝑚)𝑆+𝐴1+𝑃1𝜖1
],  

𝑐22 = −𝑃2𝛾1 − 𝜃1 −
(1−𝑚)𝑆𝑃1𝜖1𝜆1

((1−𝑚)𝑆+𝐴1+𝑃1𝜖1)2
+

(1−𝑚)𝑆𝜆1

(1−𝑚)𝑆+𝐴1+𝑃1𝜖1
, 

𝑐23 = −γ1P1,  

𝑐31 = 𝑃2 [−
(1−𝑚)2𝑆𝜆2

((1−𝑚)𝑆+𝐴2+𝑃2𝜖2)2
+

(1−𝑚)𝜆2

(1−𝑚)𝑆+𝐴2+𝑃2𝜖2
],  

𝑐32 = −γ2P2,  

 𝑐33 = −𝑃1𝛾2 − 𝜃2 −
(1−𝑚)𝑆𝑃2𝜖2𝜆2

((1−𝑚)𝑆+𝐴2+𝑃2𝜖2)2
+

(1−𝑚)𝑆𝜆2

(1−𝑚)𝑆+𝐴2+𝑃2𝜖2
. 

Local stability of 𝐸0: the eigenvalues of the Jacobian matrix 𝐽0 are 1, −𝜃1 𝑎𝑛𝑑 − 𝜃2 . Therefore, 

𝐸0  𝑖𝑠 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒 actually it is a saddle point, where   

𝐽0 = 𝐷𝐹(𝐸0) = [
1 0 0
0 −𝜃1 0
0 0 −𝜃2

]                                                                        (6.2) 

Local stability of E1: The eigenvalues of the Jacobian matrix 𝐽1 are  

−1, −𝜃1 +
(1−𝑚)𝜆1

(1−𝑚)+𝐴1
 and −𝜃2 +

(1−𝑚)𝜆2

(1−𝑚)+𝐴2
  .  

Therefore, 𝐸1 is locally asymptotically stable if the following conditions hold: 

            
(1−𝑚)𝜆1

(1−𝑚)+𝐴1
< 𝜃1                                                                                    (6.3) 

            
(1−𝑚)𝜆2

(1−𝑚)+𝐴2
< 𝜃2.                                                                                       (6.4)  

Otherwise, it is a saddle point where 

    𝐽1 = 𝐷𝐹(𝐸1) =

[
 
 
 
 −1 −

1−𝑚

(1−𝑚)+𝐴1
−

1−𝑚

(1−𝑚)+𝐴2

0 −𝜃1 +
(1−𝑚)𝜆1

(1−𝑚)+𝐴1
0

0 0 −𝜃2 +
(1−𝑚)𝜆2

(1−𝑚)+𝐴2]
 
 
 
 

                    (6.5) 

Local stability of E2: The characteristic equation of the Jacobian matrix 𝐽2 = 𝐷𝐹(𝐸2) =

[𝑎𝑖𝑗]3×3
 is determined by 

(λ2 + Ω1𝜆 + Ω2)(𝑎22 − 𝜆) = 0 ,  

where Ω1 = −(𝑎11 + 𝑎33), and Ω2 = 𝑎11𝑎33 − 𝑎13𝑎31, hence by Routh-Hurwitz criterion [10] 

for two dimensional system, the point E2 is locally asymptotically stable if the following 

conditions holds: 
(1−𝑚)2𝑃22

((1−𝑚)𝑆2+𝐴2+𝑃22𝜖2)2
< 1                                                                                               (6.6) 

(1−𝑚)𝑆2𝜆1

(1−𝑚)𝑆2+𝐴1
< θ1 + γ1P22                                                                                              (6.7) 

Moreover, the Jacobian matrix 𝐽2 = [𝑎𝑖𝑗]3×3
 can be written as: 

𝐽2 =

[
 
 
 
 𝑆2 (−1 +

(1−𝑚)2𝑃22

((1−𝑚)𝑆2+𝐴2+𝑃22𝜖2)2
) −𝑆2 (

1−𝑚

(1−𝑚)𝑆2+𝐴1

) −
(1−𝑚)((1−𝑚)𝑆2+𝐴2)𝑆2

((1−𝑚)𝑆2+𝐴2+𝑃22𝜖2)2

0 −𝑃22𝛾1
− 𝜃1 +

(1−𝑚)𝑆2𝜆1

(1−𝑚)𝑆2+𝐴1

0

(1−𝑚)𝜆2(𝐴2+𝑃22𝜖2)𝑃22

((1−𝑚)𝑆2+𝐴2+𝑃22𝜖2)2
−𝑃22𝛾2

−
(1−𝑚)𝑆2𝑃22𝜖2𝜆2

((1−𝑚)𝑆2+𝐴2+𝑃22𝜖2)2 ]
 
 
 
 

.       (6.8) 
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Local stability of E3: The characteristic equation of the Jacobian matrix 𝐽3 = 𝐷𝐹(𝐸3) =

[𝑏𝑖𝑗]3×3
 is  

(λ2 + Ψ1𝜆 + Ψ2)(𝑏33 − 𝜆) = 0,  

where Ψ1 = −(𝑏11 + 𝑏22), and Ψ2 = 𝑏11𝑏22 − 𝑏12𝑏21, so by Routh-Hurwitz criterion for two 

dimensional systems E3 is locally asymptotically stable point if the following conditions hold 
(1−𝑚)2𝑃13

((1−𝑚)𝑆3+𝐴1+𝑃13𝜖1)2
< 1                                                                      (6.9) 

(1−𝑚)𝑆3𝜆2

(1−𝑚)𝑆3+𝐴2
< 𝛾2𝑃13 + 𝜃2                                                                     (6.10) 

Furthermore, the Jacobian matrix 𝐽3 = [𝑏𝑖𝑗]3×3
 are determined as 

𝐽3 =

[
 
 
 
 𝑆3 (−1 +

(1−𝑚)2𝑃13

((1−𝑚)𝑆3+𝐴1+𝑃13𝜖1)2
) −𝑆3 (

(1−𝑚)((1−𝑚)𝑆3+𝐴1)

((1−𝑚)𝑆3+𝐴1+𝑃13𝜖1)2
) −

(1−𝑚)𝑆3

(1−𝑚)𝑆3+𝐴2

(1−𝑚)𝜆1(𝐴1+𝑃13𝜖1)𝑃13

((1−𝑚)𝑆3+𝐴1+𝑃13𝜖1)2
−

(1−𝑚)𝑆3𝑃13𝜖1𝜆1

((1−𝑚)𝑆3+𝐴1+𝑃13𝜖1)2
−𝛾1𝑃13

0 0 −𝑃13𝛾2 − 𝜃2 +
(1−𝑚)𝑆3𝜆2

(1−𝑚)𝑆3+𝐴2]
 
 
 
 

.      (6.11) 

Local stability of 𝐸∗. Let 𝐽∗ = 𝐷𝐹(𝐸∗) = [𝑑𝑖𝑗]3×3
be the Jacobian matrix of the system (2.3) at 

the interior equilibrium point 𝐸∗ = (𝑆∗, 𝑃1
∗, 𝑃2

∗), where:                       

𝑑11 = 𝑆∗ [−1 +
(1−𝑚)2𝑃1

∗

((1−𝑚)𝑆∗+𝐴1+𝑃1
∗𝜖1)2

+
(1−𝑚)2𝑃2

∗

((1−𝑚)𝑆∗+𝐴2+𝑃2
∗𝜖2)2

], 

𝑑12 = −
(1−𝑚)𝑆∗((1−𝑚)𝑆∗+𝐴1)

((1−𝑚)𝑆∗+𝐴1+𝑃1
∗𝜖1)2

,  𝑑13 = −
(1−𝑚)𝑆∗((1−𝑚)𝑆∗+𝐴2)

((1−𝑚)𝑆∗+𝐴2+𝑃2
∗𝜖2)2

, 

𝑑21 =
(1−𝑚)𝜆1(𝐴1+𝑃1

∗𝜖1)𝑃1
∗

((1−𝑚)𝑆∗+𝐴1+𝑃1
∗𝜖1)2

, 𝑑22 = −
(1−𝑚)𝑆∗𝑃1

∗𝜖1𝜆1

((1−𝑚)𝑆∗+𝐴1+𝑃1
∗𝜖1)2

, 𝑑23 = −𝛾1𝑃1
∗, 

𝑑31 =
(1−𝑚)𝜆2(𝐴2+𝑃2

∗𝜖2)𝑃2
∗

((1−𝑚)𝑆∗+𝐴2+𝑃2
∗𝜖2)2

, 𝑑32 = −𝛾2𝑃2
∗, 𝑑33 = −

(1−𝑚)𝑆∗𝑃2
∗𝜖2𝜆2

((1−𝑚)𝑆∗+𝐴2+𝑃2
∗𝜖2)2

. 

Then the following theorem studies the local stability of 𝐸∗. 

Theorem 3: The system (2.3) is locally asymptotically stable around the equilibrium point 𝐸∗ 

if the following conditions are satisfied: 

             
(1−𝑚)2𝑃1

∗

((1−𝑚)𝑆∗+𝐴1+𝑃1
∗𝜖1)

2 +
(1−𝑚)2𝑃2

∗

((1−𝑚)𝑆∗+𝐴2+𝑃2
∗𝜖2)

2 < 1,                                              (6.12) 

𝛾1𝛾2𝑃1
∗𝑃2

∗ < (
(1−𝑚)𝑆∗𝑃1

∗𝜖1𝜆1

((1−𝑚)𝑆∗+𝐴1+𝑃1
∗𝜖1)2

) (
(1−𝑚)𝑆∗𝑃2

∗𝜖2𝜆2

((1−𝑚)𝑆∗+𝐴2+𝑃2
∗𝜖2)2

),                                  (6.13)  

 𝛾1𝑃1
∗ (

(1−𝑚)𝜆2(𝐴2+𝑃2
∗𝜖2)𝑃2

∗

((1−𝑚)𝑆∗+𝐴2+𝑃2
∗𝜖2)2

) < (
(1−𝑚)𝜆1(𝐴1+𝑃1

∗𝜖1)𝑃1
∗

((1−𝑚)𝑆∗+𝐴1+𝑃1
∗𝜖1)2

) (
(1−𝑚)𝑆∗𝑃2

∗𝜖2𝜆2

((1−𝑚)𝑆∗+𝐴2+𝑃2
∗𝜖2)2

),                (6.14) 

𝛾2𝑃2
∗ (

(1−𝑚)𝜆1(𝐴1+𝑃1
∗𝜖1)𝑃1

∗

((1−𝑚)𝑆∗+𝐴1+𝑃1
∗𝜖1)2

) < (
(1−𝑚)𝑆∗𝑃1

∗𝜖1𝜆1

((1−𝑚)𝑆∗+𝐴1+𝑃1
∗𝜖1)2

) (
(1−𝑚)𝜆2(𝐴2+𝑃2

∗𝜖2)𝑃2
∗

((1−𝑚)𝑆∗+𝐴2+𝑃2
∗𝜖2)2

).             (6.15)             

Proof: The characteristic equation of the Jacobian matrix 𝐽∗ = 𝐷𝐹(𝐸∗) = [𝑑𝑖𝑗]3×3
 can be 

determined as: 

 𝛬3 + Θ1𝛬
2 + Θ2𝛬 + Θ3 = 0,  

where  

Θ1 = −[𝑑11 + 𝑑22 + 𝑑33], 
Θ2 = 𝑑11𝑑22 − 𝑑21𝑑12 − 𝑑31𝑑13 + 𝑑11𝑑33 + 𝑑22𝑑33 − 𝑑32𝑑23  

Θ3 = −𝑑11(𝑑22𝑑33 − 𝑑23𝑑32) − 𝑑12(𝑑23𝑑31 − 𝑑21𝑑33) − 𝑑13(𝑑21𝑑32 − 𝑑22𝑑31).  

So by the Routh-Hurwitz criterion, 𝐸∗ is locally asymptotically stable if Θ1 > 0, Θ3 > 0, and 

∆ > 0 where  

 
∆= Θ1Θ2 − Θ3 = −(𝑑11 + 𝑑22)[𝑑11𝑑22 − 𝑑12𝑑21] − 2𝑑11𝑑22𝑑33 + 𝑑12𝑑23𝑑31       

+𝑑13𝑑21𝑑32 − (𝑑11 + 𝑑33)[𝑑11𝑑33 − 𝑑13𝑑31] − (𝑑22 + 𝑑33)[𝑑22𝑑33 − 𝑑23𝑑32]
 

Direct computation shows that all the Routh-Hurwitz requirements hold under the given 

conditions. So 𝐸∗ is locally asymptotically stable, and the proof is complete. 
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      In the following, the global stability is studied for each locally stable equilibrium point using 

a suitable Lyapunov function that is given in the following theorems: 

 

Theorem 4. The equilibrium point 𝐸1 = (1,0,0) is globally asymptotically stable in ℝ3 if the 

following conditions are satisfied:       
(1−𝑚)𝜆1

𝐴1
< 𝜃1.                                                                               (6.16) 

            
(1−𝑚)𝜆2

𝐴2
< 𝜃2.                                                                                 (6.17) 

Proof. Using an appropriate Lyapunov consider  

𝑊1 = (𝑆 − 1 − 𝑙𝑛𝑆) +
𝑃1

𝜆1
+

𝑃2

𝜆2
                                               (6.18) 

 Clearly, 𝑊1(𝑆, 𝑃1, 𝑃2) > 0  is a continuously differentiable real-valued function for all 

(𝑆, 𝑃1, 𝑃2)  ∈ ℝ3with (𝑆, 𝑃1, 𝑃2) ≠ (1,0,0) and 𝑊1(1,0,0) = 0. It is observed that                              
𝑑𝑊1

𝑑𝑡
= (

𝑠−1

𝑠
)

𝑑𝑆

𝑑𝑡
+

1

𝜆1

𝑑𝑃1

𝑑𝑡
+

1

𝜆2

𝑑𝑃2

𝑑𝑡
 .      

Direct computation gives that:                                                          
𝑑𝑊1

𝑑𝑡
≤ −(𝑆 − 1)2 − [

𝜃1

𝜆1
−

(1−𝑚)

𝐴1
] 𝑃1 − [

𝜃2

𝜆2
−

(1−𝑚)

𝐴2
] 𝑃2  

Therefore, 
𝑑𝑊1

𝑑𝑡
< 0 provided that the conditions (6.16) and (6.17) hold.  

Hence 𝐸1 is globally asymptotically stable.          

 

Theorem 5. The equilibrium point 𝐸2 = (𝑆2, 0, 𝑃22) is globally asymptotically stable in ℝ3 if 

the following conditions are satisfied: 

(1 − 𝑚)2𝑃22 < 𝐴2𝐺2.                   (6.19) 

(1 − 𝑚)[𝐴2 + (1 − 𝑚)𝑆2 − 𝜆2(𝐴2 + 𝜖2𝑃22)]
2

< 4(𝐴2𝐺2 − (1 − 𝑚)2𝑃22)(𝜆2𝜖2𝑆2)
.                                                           (6.20) 

(1−𝑚)𝑆2

𝐴1
+ 𝛾2𝑃22 <

𝜃1

𝜆1
.                  (6.21)                

Proof.  Consider the Lyapunov function at 𝐸2 = (𝑆2, 0, 𝑃22) that is given by:    

𝑊2 = (𝑆 − 𝑆2 − 𝑆2 ln (
𝑆

𝑆2
)) +

𝑃1

𝜆1
+ (𝑃2 − 𝑃22 − 𝑃22 ln (

𝑃2

𝑃22
))                 (6.22) 

Clearly, 𝑊2(𝑆, 𝑃1, 𝑃2) > 0  is a continuously differentiable real-valued function for all 

(𝑆, 𝑃1, 𝑃2) ∈ ℝ3 with (𝑆, 𝑃1, 𝑃2) ≠ (𝑆2, 0, 𝑃22) and 𝑊2(𝑆2, 0, 𝑃22) = 0. Moreover, we have that  

 
𝑑𝑊2

𝑑𝑡
=

(𝑆−𝑆2)

𝑆

𝑑𝑆

𝑑𝑡
+

1

𝜆1

𝑑𝑃1

𝑑𝑡
+

(𝑃2−𝑃22)

𝑃2

𝑑𝑃2

𝑑𝑡
   

Accordingly, it is obtained that 
𝑑𝑊2

𝑑𝑡
≤ − [

𝐺1𝐺2−(1−𝑚)2𝑃22

𝐺1𝐺2
] (𝑆 − 𝑆2)

2 −
𝜆2(1−𝑚)𝜖2𝑆2

𝐺1𝐺2
(𝑃2 − 𝑃22)

2

−
(1−𝑚)[𝐴2+(1−𝑚)𝑆2−𝜆2(𝐴2+𝜖2𝑃22)](𝑆−𝑆2)(𝑃2−𝑃22)

𝐺1𝐺2

− [
𝜃1

𝜆1
−

(1−𝑚)𝑆2

𝐴1
− 𝛾2𝑃22] 𝑃1,

. 

where 𝐺1 = (𝐴2 + (1 − 𝑚)𝑆 + 𝜖2𝑃2) and 𝐺2 = (𝐴2 + (1 − 𝑚)𝑆2 + 𝜖2𝑃22). Therefore, due to 

the given conditions (6.19)-(6.20), the following is obtained: 

  

𝑑𝑊2

𝑑𝑡
≤ −

1

𝐺1𝐺2

[√𝐺1𝐺2 − (1 − 𝑚)2𝑃22(𝑆 − 𝑆2) + √𝜆2(1 − 𝑚)𝜖2𝑆2(𝑃2 − 𝑃22)]
2

− [
𝜃1

𝜆1
−

(1−𝑚)𝑆2

𝐴1

− 𝛾
2
𝑃22] 𝑃1

 

According to the condition (6.21) 
𝑑𝑊2

𝑑𝑡
< 0. Hence 𝐸2 is globally asymptotically stable and the 

proof is complete.  
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Theorem 6. The equilibrium point 𝐸3 = (𝑆3, 𝑃13, 0) is globally asymptotically stable in ℝ3 if 

the following conditions are satisfied: 

(1 − 𝑚)2𝑃13 < 𝐴1𝐻2.                   (6.23) 
(1 − 𝑚)[𝐴1 + (1 − 𝑚)𝑆3 − 𝜆1(𝐴1 + 𝜖1𝑃13)]

2

< 4(𝐴1𝐻2 − (1 − 𝑚)2𝑃13)(𝜆1𝜖1𝑆3)
.                         (6.24) 

(1−𝑚)𝑆3

𝐴2
+ 𝛾1𝑃13 <

𝜃2

𝜆2
.                               (6.25)                

Proof.  Consider the Lyapunov function at 𝐸2 = (𝑆2, 0, 𝑃22) that is given by:    

𝑊3 = (𝑆 − 𝑆3 − 𝑆3 ln (
𝑆

𝑆3
)) + (𝑃1 − 𝑃13 − 𝑃13 ln (

𝑃1

𝑃13
)) +

𝑃2

𝜆2
                 (6.26) 

Clearly, 𝑊3(𝑆, 𝑃1, 𝑃2) > 0  is a continuously differentiable real-valued function for all 

(𝑆, 𝑃1, 𝑃2) ∈ ℝ3 with (𝑆, 𝑃1, 𝑃2) ≠ (𝑆3, 𝑃13, 0) and 𝑊3(𝑆3, 𝑃13, 0) = 0. Moreover, we have that  

 
𝑑𝑊3

𝑑𝑡
=

(𝑆−𝑆3)

𝑆

𝑑𝑆

𝑑𝑡
+

(𝑃1−𝑃13)

𝑃1

𝑑𝑃1

𝑑𝑡
+

1

𝜆2

𝑑𝑃2

𝑑𝑡
   

Accordingly, it is obtained that 
𝑑𝑊3

𝑑𝑡
≤ − [

𝐻1𝐻2−(1−𝑚)2𝑃13

𝐻1𝐻2
] (𝑆 − 𝑆3)

2 −
𝜆1(1−𝑚)𝜖1𝑆3

𝐻1𝐻2
(𝑃1 − 𝑃13)

2

−
(1−𝑚)[𝐴1+(1−𝑚)𝑆3−𝜆1(𝐴1+𝜖1𝑃13)](𝑆−𝑆3)(𝑃1−𝑃13)

𝐻1𝐻2

−[
𝜃2

𝜆2
−

(1−𝑚)𝑆3

𝐴2
− 𝛾1𝑃13] 𝑃2,

. 

where 𝐻1 = (𝐴1 + (1 − 𝑚)𝑆 + 𝜖1𝑃1) and 𝐻2 = (𝐴1 + (1 − 𝑚)𝑆3 + 𝜖1𝑃13). Therefore, due to 

the given conditions (6.23)-(6.24), the following is obtained: 

  

𝑑𝑊3

𝑑𝑡
≤ −

1

𝐻1𝐻2

[√𝐻1𝐻2 − (1 − 𝑚)2𝑃13(𝑆 − 𝑆3) + √𝜆1(1 − 𝑚)𝜖1𝑆3(𝑃1 − 𝑃13)]
2

− [
𝜃2

𝜆2
−

(1−𝑚)𝑆3

𝐴2

− 𝛾
1
𝑃13] 𝑃2

 

According to the condition (6.25) 
𝑑𝑊3

𝑑𝑡
< 0. Hence 𝐸3 is globally asymptotically stable and the 

proof is complete.  

 

Theorem 7. The interior equilibrium point 𝐸∗ = (𝑆∗, 𝑃1
∗, 𝑃2

∗) is globally asymptotically stable 

in ℝ3, if the following conditions are satisfied: 
(1−𝑚)2𝑃1

∗

𝐴1𝐾1
∗ +

(1−𝑚)2𝑃2
∗

𝐴2𝐾2
∗ < 1 ,                                                                (6.27) 

            𝜆1(𝐴1 + 𝜖1𝑃1
∗) < 𝐴1 + (1 − 𝑚)𝑆∗   ,                                                              (6.28)                                         

            𝜆2(𝐴2 + 𝜖2𝑃2
∗) < 𝐴2 + (1 − 𝑚)𝑆∗ ,                                                             (6.29) 

Proof. Consider the following Lyapunov function  

𝑊∗ = (S − S∗ − S∗ ln
𝑆

S∗) + (𝑃1 − 𝑃1
∗ − 𝑃1

∗ ln
𝑃1

𝑃1
∗) + (𝑃2 − 𝑃2

∗ − 𝑃2
∗ ln

𝑃2

𝑃2
∗)              (6.30) 

where 𝑊∗ is a real-valued function and 𝑊∗(𝑆, 𝑃1, 𝑃2) > 0 is a continuously differentiable 

function for all (𝑆, 𝑃1, 𝑃2) ∈ ℝ3 with (𝑆, 𝑃1, 𝑃2) ≠ (𝑆∗, 𝑃1
∗, 𝑃2

∗) and W∗(𝑆∗, 𝑃1
∗ , 𝑃2

∗) = 0. 

Moreover, we have that 

 
𝑑𝑊∗

𝑑𝑡
=

(𝑆−𝑆∗)

𝑆

𝑑𝑆

𝑑𝑡
+

(𝑃1−𝑃1
∗)

𝑃1

𝑑𝑃1

𝑑𝑡
+

(𝑃2−𝑃2
∗)

𝑃2

𝑑𝑃2

𝑑𝑡
 

Direct computation using algebraic manipulation gives that 
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𝑑𝑊∗

𝑑𝑡
≤ − [1 −

(1−𝑚)2𝑃1
∗

𝐾1𝐾1
∗ −

(1−𝑚)2𝑃2
∗

𝐾2𝐾2
∗ ] (𝑆 − 𝑆∗)2 −

𝜆1(1−𝑚)𝜖1𝑆∗(𝑃1−𝑃1
∗)2

𝐾1𝐾1
∗

−
𝜆2(1−𝑚)𝜖2𝑆∗(𝑃2−𝑃2

∗)2

𝐾2𝐾2
∗ − [𝛾1 + 𝛾2](𝑃1 − 𝑃1

∗)(𝑃2 − 𝑃2
∗)

−
(1−𝑚)[𝐴1+(1−𝑚)𝑆∗−𝜆1(𝐴1+𝜖1𝑃1

∗)](𝑆−𝑆∗)(𝑃1−𝑃1
∗)

𝐾1𝐾1
∗

−
(1−𝑚)[𝐴2+(1−𝑚)𝑆∗−𝜆2(𝐴2+𝜖2𝑃2

∗)](𝑆−𝑆∗)(𝑃2−𝑃2
∗)

𝐾2𝐾2
∗ ,

 

where 𝐾1 = 𝐴1 + (1 − 𝑚)𝑆 + 𝜖1𝑃1, 𝐾1
∗ = 𝐴1 + (1 − 𝑚)𝑆∗ + 𝜖1𝑃1

∗, 𝐾2 = 𝐴2 + (1 − 𝑚)𝑆 +
𝜖2𝑃2, 𝐾2

∗ = 𝐴2 + (1 − 𝑚)𝑆∗ + 𝜖2𝑃2
∗.  

According to conditions (6.27)-(6.29), the derivative  
𝑑𝑊∗

𝑑𝑡
< 0 is guaranteed. Therefore 𝐸∗ is 

globally asymptotically stable.  

 

7. Bifurcation Analyses   

It is well known that the occurrence of local bifurcation requires the existence of a non-

hyperbolic equilibrium point, which is a necessary but not sufficient condition for the 

bifurcation to take place around that point. In the following theorems, the candidate bifurcation 

parameter is selected so that the equilibrium point under study will be a non-hyperbolic point, 

we study in this section the local bifurcation for the equilibrium points 𝐸1, 𝐸2, 𝐸3, and 𝐸∗ by 

applying the Sotomayor’s theorem [11]. 

 

Theorem 8: Assume that condition (6.3) holds, then the system (2.3) has a transcritical 

bifurcation and neither pitchfork bifurcation nor saddle-node bifurcation can occur near the 

equilibrium point 𝐸1 passes through the parameter 𝜃2
∗ = 𝜆2

(1−𝑚)𝜆2

(1−𝑚)+𝐴2
. 

Proof. It is easy to verify that the Jacobian matrix of system (2.3) at (𝐸1, 𝜃2
∗) can be written as 

 𝐽1
𝜃2

∗

=

[
 
 
 
 −1 −

1 − 𝑚

(1 − 𝑚) + 𝐴1
−

1 − 𝑚

(1 − 𝑚) + 𝐴2

0 −𝜃1 +
(1 − 𝑚)𝜆1

(1 − 𝑚) + 𝐴1
0

0 0 0 ]
 
 
 
 

 

The third eigenvalue 𝜍3𝑃2
 in the 𝑃2 − direction is zero while the first eigenvalue 𝜍1 = −1 <

0, the second eigenvalue  𝜍2 = −𝜃1 + 𝜆1
(1−𝑚)𝜆1

(1−𝑚)+𝐴1
< 0  under the conditions (6.3). Further the 

eigenvectors 𝒗𝟏 = (𝑣11, 𝑣21, 𝑣31)
𝑇, and 𝝎𝟏 = (𝜔11, 𝜔21, 𝜔31)

𝑇 that corresponding to 𝜍3𝑃2
 of 

the   𝐽1
𝜃2

∗

 and ( 𝐽1
𝜃2

∗

)
𝑇
 are determined by: 

 𝒗𝟏 = (−
1−𝑚

(1−𝑚)+𝐴2
, 0,1)𝑇 and 𝝎𝟏 = (0,0,1)𝑇 

On the other hand, we obtained that:   
𝜕𝐹

𝜕𝜃2
= 𝐹𝜃2

= (0,0, −𝑃2)
𝑇 ⇛ 𝐹𝜃2

(𝐸1, 𝜃2
∗) = (0,0,0)𝑇 ⇛ 𝝎𝟏

𝑇𝐹𝜃2
(𝐸1, 𝜃2

∗) = 0 

Consequently, according to the Sotomayor theorem, the system has no saddle-node bifurcation 

near 𝐸1 with 𝜃2 = 𝜃2
∗. Now to investigate the occurrence of the other types of bifurcation, the 

derivative of 𝐹𝜃2
 concerning vector 𝑋,  say 𝐷𝐹𝜃2

(𝐸1, 𝜃2
∗) is computed   

𝐷𝐹𝜃2
(𝐸1, 𝜃2

∗) = [
0 0 0
0 0 0
0 0 −1

] ⇛  𝝎𝟏
𝑇𝐷𝐹𝜃2

(𝐸1, 𝜃2
∗)𝒗𝟏 = −1 ≠ 0 

Also, it is obtained that: 

 𝝎𝟏
𝑇(𝐷2𝐹(𝐸1, 𝜃2

∗)(𝒗𝟏, 𝒗𝟏)) = −
2(1−𝑚)[(1−𝑚)𝐴2+𝜖2(1−𝑚+𝐴2)]𝜆2

(1−𝑚+𝐴2)3
≠ 0 
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Hence, according to the Sotomayor theorem, system (2.3) has a transcritical bifurcation, while 

pitchfork bifurcation cannot occur at 𝐸1, and the proof is complete. 

 

Theorem 9: Assume that condition (6.6) holds, then the system (2.3) has a transcritical 

bifurcation and neither pitchfork bifurcation nor saddle-node bifurcation can occur near the 

equilibrium point 𝐸2 passes through the parameter 𝜃1
∗ = −𝑃22𝛾1

+
(1−𝑚)𝑆2𝜆1

(1−𝑚)𝑆2+𝐴1

, provided that the 

following condition holds 

 −2𝛾1𝛤2 +
2(1−𝑚)(𝐴1𝛤1−𝑆2𝜖1)𝜆1

(𝐴1+𝑆2−𝑚𝑆2)2
≠ 0.                      (7.1) 

Proof. It is easy to verify that the Jacobian matrix of system (2.3) at (𝐸2, 𝜃1
∗) can be written as 

 𝐽2
𝜃1

∗

= [

𝑎11 𝑎12 𝑎13

0 0 0

𝑎31 𝑎32 𝑎33

],  

where 𝑎𝑖𝑗 are given in (6.8). Direct computation shows that  𝐽2
𝜃1

∗

 has the following eigenvalues 

𝜆1 =
−Ω1+√Ω1

2−4Ω2

2
, 𝜆2 = 0, 𝜆3 =

−Ω1−√Ω1
2−4Ω2

2
, where Ω1 = −(𝑎11 + 𝑎33) > 0 and Ω2 =

𝑎11𝑎33 − 𝑎13𝑎31 > 0. So, 𝜆1 and 𝜆3 have negative real parts due to condition (6.6). Further the 

eigenvectors 𝒗𝟐 = (𝑣12, 𝑣22, 𝑣32)
𝑇, and 𝝎𝟐 = (𝜔12, 𝜔22, 𝜔32)

𝑇 that corresponding to 𝜆2 = 0 

of the   𝐽2
𝜃1

∗

 and ( 𝐽2
𝜃1

∗

)
𝑇
 are determined by: 

 𝒗𝟐 = (
𝑎12𝑎33−𝑎13𝑎32

𝑎13𝑎31−𝑎11𝑎33
, 1,

𝑎11𝑎32−𝑎12𝑎31

𝑎13𝑎31−𝑎11𝑎33
)
𝑇

= (Γ1, 1, Γ2)
𝑇 and 𝝎𝟐 = (0,1,0)𝑇 

From the other hand, we obtained that:   
𝜕𝐹

𝜕𝜃1
= 𝐹𝜃1

= (0,−𝑃1, 0)𝑇 ⇛ 𝐹𝜃1
(𝐸2, 𝜃1

∗) = (0,0,0)𝑇 ⇛ 𝝎𝟐
𝑇𝐹𝜃1

(𝐸2, 𝜃1
∗) = 0 

Consequently, according to the Sotomayor theorem, the system has no saddle-node bifurcation 

near 𝐸2 with 𝜃1 = 𝜃1
∗. Now to investigate the occurrence of the other types of bifurcation, the 

derivative of 𝐹𝜃1
 concerning vector 𝑋,  say 𝐷𝐹𝜃1

(𝐸2, 𝜃1
∗) is computed   

𝐷𝐹𝜃1
(𝐸2, 𝜃1

∗) = [
0 0 0
0 −1 0
0 0 0

] ⇛  𝝎𝟐
𝑇𝐷𝐹𝜃1

(𝐸2, 𝜃1
∗)𝒗𝟐 = −1 ≠ 0 

Also, it is obtained that: 

 𝝎𝟐
𝑇(𝐷2𝐹(𝐸2, 𝜃1

∗)(𝒗𝟐, 𝒗𝟐)) = −2𝛾1𝛤2 +
2(1−𝑚)(𝐴1𝛤1−𝑆2𝜖1)𝜆1

(𝐴1+𝑆2−𝑚𝑆2)2
 

Hence, according to condition (7.1), system (2.3) has a transcritical bifurcation, while pitchfork 

bifurcation cannot occur at 𝐸2, and the proof is complete. 
 

Theorem 10: Assume that condition (6.9) holds, then the system (2.3) has a transcritical 

bifurcation and neither pitchfork bifurcation nor saddle-node bifurcation can occur near the 

equilibrium point 𝐸3 passes through the parameter 𝜃2
∗ = −𝛾

2
𝑃13 +

(1−𝑚)𝑆3𝜆2

(1−𝑚)𝑆3+𝐴2

, provided that the 

following condition holds 

 −2𝛾2𝛤4 −
2(−1+𝑚)(𝐴2𝛤3−𝑆3𝜖2)𝜆2

(𝐴2+𝑆3−𝑚𝑆3)2
≠ 0.                      (7.2) 

Proof. It is easy to verify that the Jacobian matrix of system (2.3) at (𝐸3, 𝜃2
∗) can be written as 

 𝐽3
𝜃2

∗

= [
𝑏11 𝑏12 𝑏13

𝑏21 𝑏22 𝑏23

0 0 0

],  
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where 𝑏𝑖𝑗 are given in (6.11). Direct computation shows that  𝐽3
𝜃2

∗

 has the following eigenvalues 

𝜆1 =
−Ψ1+√Ψ1

2−4Ψ2

2
, 𝜆2 =

−Ψ1−√Ψ1
2−4Ψ2

2
, 𝜆3 = 0, where Ψ1 = −(𝑏11 + 𝑏22) > 0 and Ψ2 =

𝑏11𝑏22 − 𝑏12𝑏21 > 0. So, 𝜆1 and 𝜆2 have negative real parts due to condition (6.9). Further the 

eigenvectors 𝒗𝟑 = (𝑣13, 𝑣23, 𝑣33)
𝑇, and 𝝎𝟑 = (𝜔13, 𝜔23, 𝜔33)

𝑇 that corresponding to 𝜆3 = 0 

of the   𝐽3
𝜃2

∗

 and ( 𝐽3
𝜃2

∗

)
𝑇
 are determined by: 

 𝒗𝟑 = (
𝑏12𝑏23−𝑏13𝑏22

𝑏11𝑏22−𝑏12𝑏21
,
𝑏13𝑏21−𝑏11𝑏23

𝑏11𝑏22−𝑏12𝑏21
, 1)

𝑇
= (Γ3, Γ4, 1)𝑇 and 𝝎𝟑 = (0,0,1)𝑇 

From the other hand, we obtained that:   
𝜕𝐹

𝜕𝜃2
= 𝐹𝜃2

= (0,0, −𝑃2)
𝑇 ⇛ 𝐹𝜃2

(𝐸3, 𝜃2
∗) = (0,0,0)𝑇 ⇛ 𝝎𝟑

𝑇𝐹𝜃2
(𝐸3, 𝜃2

∗) = 0. 

Consequently, according to the Sotomayor theorem, the system has no saddle-node bifurcation 

near 𝐸3 with 𝜃2 = 𝜃2
∗. Now to investigate the occurrence of the other types of bifurcation, the 

derivative of 𝐹𝜃2
 concerning vector 𝑋,  say 𝐷𝐹𝜃2

(𝐸3, 𝜃2
∗) is computed   

𝐷𝐹𝜃2
(𝐸3, 𝜃2

∗) = [
0 0 0
0 0 0
0 0 −1

] ⇛  𝝎𝟑
𝑇𝐷𝐹𝜃2

(𝐸3, 𝜃2
∗)𝒗𝟑 = −1 ≠ 0 

Also, it is obtained that: 

 𝝎𝟑
𝑇(𝐷2𝐹(𝐸3, 𝜃2

∗)(𝒗𝟑, 𝒗𝟑)) = −2𝛾2𝛤4 −
2(−1+𝑚)(𝐴2𝛤3−𝑆3𝜖2)𝜆2

(𝐴2+𝑆3−𝑚𝑆3)2
 

Hence, according to condition (7.2), system (2.3) has a transcritical bifurcation, while pitchfork 

bifurcation cannot occur at 𝐸3, and the proof is complete. 

 

Theorem 10. Assume that conditions (6.12) and (6.15) hold, then the system (2.3) has a saddle-

node bifurcation that can occur near the equilibrium point 𝐸∗, when the parameter 𝛾1 passes 

through the value 𝛾1
∗ =

𝑑33(𝑑11𝑑22−𝑑12𝑑21)+𝑑13(𝑑21𝑑32−𝑑22𝑑31)

𝑃1
∗(𝑑12𝑑31−𝑑11𝑑32)

, provided that the following 

condition holds 

 Γ7𝑙11 + Γ8𝑙21 + 𝑙31 ≠ 0.                   (7.3) 

Proof. According to the local stability analysis of system (2.3) at E*, we have that the last 

coefficient of the characteristic equation Θ3 can be rewritten as:  

 Θ3 = −𝑑33(𝑑11𝑑22 − 𝑑12𝑑21) + 𝑑23(𝑑11𝑑32 − 𝑑12𝑑31) − 𝑑13(𝑑21𝑑32 − 𝑑22𝑑31), 

where 𝑑𝑖𝑗 for all 𝑖, 𝑗 = 1,2,3 are the Jacobian matrix  𝐽∗ = 𝐷𝐹(𝐸∗) elements.  So, when 𝛾1 =

𝛾1
∗, which is positive under the conditions (6.12) and (6.15), the value of Θ3 becomes Θ3 = 0. 

Therefore, 𝐽∗(𝛾1
∗) = 𝐷𝐹(𝐸∗, 𝛾1

∗) has the eigenvalues 𝜆1 = 0, 𝜆2 =
−Θ1+√Θ1

2−4Θ2

2
, and 𝜆3 =

−Θ1−√Θ1
2−4Θ2

2
, where Θ1 and Θ2 are given in theorem 3.  

Further the eigenvectors 𝒗𝟒 = (𝑣14, 𝑣24, 𝑣34)
𝑇, and 𝝎𝟒 = (𝜔14, 𝜔24, 𝜔34)

𝑇 that corresponding 

to 𝜆1 = 0 of the  𝐽∗(𝛾1
∗) and (𝐽∗(𝛾1

∗))𝑇 are determined by: 

 𝒗𝟒 = (
𝑑12𝑑23−𝑑13𝑑22

𝑑11𝑑22−𝑑12𝑑21
,
𝑑13𝑑21−𝑑11𝑑23

𝑑11𝑑22−𝑑12𝑑21
, 1)

𝑇
= (Γ5, Γ6, 1)𝑇, 

𝝎𝟒 = (
𝑑21𝑑32−𝑑22𝑑31

𝑑11𝑑22−𝑑12𝑑21
,
𝑑12𝑑31−𝑑11𝑑32

𝑑11𝑑22−𝑑12𝑑21
, 1)

𝑇
= (Γ7, Γ8, 1)𝑇. 

On the other hand, we obtained that:   
𝜕𝐹

𝜕𝛾1
= 𝐹𝛾1

= (0,−𝑃1𝑃2, 0)𝑇 ⇛ 𝐹𝛾1
(𝐸∗, 𝛾1

∗) = (0,−𝑃1
∗𝑃2

∗, 0)𝑇  

⇛ 𝝎𝟒
𝑇𝐹𝛾1

(𝐸∗, 𝛾1
∗) = −Γ8𝑃1

∗𝑃2
∗ ≠ 0. 

Moreover,  

 𝐷2𝐹(𝐸∗, 𝛾1
∗)(𝒗𝟒, 𝒗𝟒) = [𝑙𝑖1]3×1, 
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where 

 

𝑙11 =
(1−𝑚)𝛤6[−((1−𝑚)𝑆∗

+𝐴1)𝐴1𝛤5+(−(2(1−𝑚)𝑆∗
+𝐴1)𝑃1

∗
𝛤5+2𝑆∗

((1−𝑚)𝑆∗
+𝐴1)𝛤6)𝜖1]

((1−𝑚)𝑆∗
+𝐴1+𝑃1

∗
𝜖1)

3

+
(1−𝑚)[−((1+𝑚)𝑆∗

+𝐴2)𝐴2𝛤5+(2𝑆∗
((1−𝑚)𝑆∗

+𝐴2)−(2(1−𝑚)𝑆∗
+𝐴2)𝑃2

∗
𝛤5)𝜖2]

((1−𝑚)𝑆∗
+𝐴2+𝑃2

∗
𝜖2)3

+𝛤5 (2𝛤5 [−1 +
(1−𝑚)2𝐴1𝑃1

∗

((1−𝑚)𝑆∗
+𝐴1+𝑃1

∗
𝜖1)3

+
(1−𝑚)2𝑃1

∗2
𝜖1

((1−𝑚)𝑆∗
+𝐴1+𝑃1

∗
𝜖1)3

+
(1−𝑚)2𝑃2

∗
(𝐴2+𝑃2

∗
𝜖2)

((1−𝑚)𝑆∗
+𝐴2+𝑃2

∗
𝜖2)3

] − (1 − 𝑚) [
𝛤6[((1−𝑚)𝑆∗

+𝐴1)𝐴1+(2(1−𝑚)𝑆∗
+𝐴1)𝑃1

∗
𝜖1]

((1−𝑚)𝑆∗
+𝐴1+𝑃1

∗
𝜖1)3

+
((1−𝑚)𝑆∗

+𝐴2)𝐴2+(2(1−𝑚)𝑆∗
+𝐴2)𝑃2

∗
𝜖2

((1−𝑚)𝑆∗
+𝐴2+𝑃2

∗
𝜖2)3

])

. 

𝑙21 = −2𝛾
1
𝛤6 +

2(1−𝑚)[−(1−𝑚)𝑃1
∗𝛤5+((1−𝑚)𝑆∗+𝐴1)𝛤6](𝐴1𝛤5+(𝑃1

∗𝛤5−𝑆∗𝛤6)𝜖1)𝜆1

((1−𝑚)𝑆∗+𝐴1+𝑃1
∗𝜖1)

3 . 

𝑙31 = −2𝛾
2
𝛤6 +

2(1−𝑚)[(1−𝑚)𝑆∗+𝐴2−(1−𝑚)𝑃2
∗𝛤5](𝐴2𝛤5+(−𝑆∗+𝑃2

∗𝛤5)𝜖2)𝜆2

((1−𝑚)𝑆∗+𝐴2+𝑃2
∗𝜖2)

3 . 

Therefore, 𝝎𝟒
𝑇(𝐷2𝐹(𝐸∗, 𝛾1

∗)(𝒗𝟒, 𝒗𝟒)) = Γ7𝑙11 + Γ8𝑙21 + 𝑙31. Hence, due to condition (7.3), the 

system (2.3) undergoes a saddle-node bifurcation and the proof is complete. 

 

8. Numerical Analysis. 

     In this section, we studied the global dynamics of the system (2.3) numerically to verify the 

obtained analytical results and specify the control set of parameters. For the following 

hypothetical set of parameters system (2.3) is solved numerically and the obtained trajectories 

are drawn in the form of phase portrait and time series. First, we examine the effect of varying 

the value of each parameter on the dynamic behavior of the system (2.3). Second, we assure 

our analytical results. It is noticed that the following set of parameters satisfies the stability 

conditions of the positive equilibrium point E^* of the system (2.3). System (2.3) has a globally 

asymptotically stable positive equilibrium point, as shown in Figure 1. 
A1  =  0.5, A2  =  0.1, 𝜖1 = 0.9, 𝜖2 = 0.9, 𝛾1 = 0.001, 𝛾2 = 0.01,

 𝑚 = 0.6, 𝜃1 = 0.1, 𝜃2 = 0.01, 𝜆1 =  0.486, 𝜆2 = 0.064.  
              (8.1) 

 
Figure 1. The trajectory of the system (2.3) starts from different initial points using a data set 

(8.1). (a) Phase portrait approaches globally to 𝐸∗ = (0.36,0.43,0.29). (b) The time series. 

 

It is clear from Figure 1 that the data set (8.1) satisfies the stability conditions of theorem 7. 

Now, it is observed that for the parameter A1 in the ranges (0.0.22) and [0.22,1) the solution 

of system (2.3) approaches asymptotically to 𝐸∗ and 𝐸2 respectively, see Figure 1 for the first 

range and Figure 2 for the value 𝐴1 = 0.25. 
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Figure 2. The trajectory of the system (2.3) starts from different initial points using a data set (8.1). (a) Phase 

portrait approaches globally to 𝐸2 = (0.53,0,0.99) when 𝐴1 = 0.25. (b) The time series for 𝐴1 = 0.25. 

Similar behavior as that shown with varying of 𝐴1 is obtained in the case of varying the 

parameter 𝛾1 with a bifurcation point of 𝛾1 = 0.25. It is observed that for the parameter A2 in 

the ranges (0.0.17) and [0.17,1) the solution of system (2.3) approaches asymptotically to 𝐸∗ 

and 𝐸3 respectively, see Figure 1 for the first range and Figure 3 for the value 𝐴2 = 0.2. Again, 

the effect of varying the parameter 𝛾2 on the dynamic behavior of system (2.3) is similar to that 

obtained with varying 𝐴2. 

 
Figure 3. The trajectory of the system (2.3) starts from different initial points using a data set (8.1). (a) Phase 

portrait approaches globally to 𝐸3 = (0.52,1.24,0) when 𝐴2 = 0.2. (b) The time series for 𝐴2 = 0.2. 

It is shown that for the parameter 𝜖1 in the ranges (0.0.2], (0.2,0.28], and (0.28,1) the solution 

of system (2.3) approaches asymptotically to a periodic attractor in the 𝑆𝑃1 −plane, 𝐸3, and 𝐸∗ 

respectively, see Figure 4.  
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Figure 4. The trajectory of the system (2.3) starts from different initial points using a data set (8.1). (a) Phase 

portrait approaches globally to periodic attractor. (b) The time series for 𝜖1 = 0.1. (c) Phase portrait approaches 

globally to 𝐸3 = (0.17,0.71,0). (d) The time series for 𝜖1 = 0.25. (e) Phase portrait approaches globally to 𝐸∗ =

(0.28,0.71,0.09) (f) The time series for 𝜖1 = 0.4. 

 
Figure 5. The trajectory of the system (2.3) starts from different initial points using a data set (8.1). (a) Phase 

portrait approaches globally to a periodic attractor. (b) The time series for 𝜖2 = 0.15. (c) Phase portrait approaches 

globally to 𝐸∗ = (0.27,0.19,0.44) (d) The time series for 𝜖2 = 0.35. 
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According to Figure 4, the parameter 𝜖1 has two bifurcation points in its range. Moreover, it is 

obtained that for the parameter 𝜖2 in the ranges (0.0.22], and (0.22,1) the solution of system 

(2.3) approaches asymptotically to a periodic attractor in the 𝑆𝑃2 −plane, and 𝐸∗ respectively, 

see Figure 5.  
 

Now, to study the effect of varying the parameter 𝑚 on the dynamic behavior of the system 

(2.3), it is concluded from Figure 6 that for the ranges 𝑚 ∈ [0,0.42), 𝑚 ∈ [0.42,0.97), 𝑚 =
0.97, and 𝑚 ∈ [0.98,1) the system (2.3) approaches to 3D periodic attractor, 𝐸∗, 𝐸3, and 𝐸1 

respectively. 

 
Figure 6. The trajectory of the system (2.3) starts from different initial points using a data set (8.1). (a) The time 

series for 𝑚 = 0.2 approaches globally to a periodic attractor. (b) The time series for 𝑚 = 0.75 approaches 

globally to 𝐸∗ = (0.6,0.44,0.3). (c) The time series for 𝑚 = 0.97 approaches globally to 𝐸3 = (0.99,0.03,0). (d) 

The time series for 𝑚 = 0.98 approaches globally to 𝐸1 = (1,0,0). 

It is observed that for the parameter θ1 in the ranges (0.0.07], (0.07,0.2), and [0.2,1) the 

solution of system (2.3) approaches asymptotically to 𝐸3, 𝐸∗ and 𝐸2 respectively, see Figure 7. 

 
Figure 7. The trajectory of the system (2.3) starts from different initial points using a data set (8.1). (a) The time 

series for θ1 = 0.05 approaches globally to 𝐸3 = (0.43,2.46,0). (b) The time series for θ1 = 0.15 approaches 

globally to 𝐸∗ = (0.43,0.14,0.61). (c) The time series for θ1 = 0.25 approaches globally to 𝐸2 = (0.53,0,0.99). 

Similar behavior as that shown with varying of 𝜃1 is obtained in the case of varying the 

parameter 𝜆2 with bifurcation points of 𝜆2 = 0.32, and 𝜆2 = 0.61 respectively. Finally, it is 
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observed that for the parameter 𝜃2 in the ranges (0.0.06], (0.06,0.15), and [0.15,1) the solution 

of system (2.3) approaches asymptotically to 𝐸2, 𝐸∗ , and 𝐸3 respectively, see Figure 8. Again, 

the effect of varying the parameter 𝜆1 on the dynamic behavior of a system (2.3) is similar to 

that obtained with varying 𝜃2. 
 

 
Figure 8. The trajectory of the system (2.3) starts from different initial points using a data set (8.1). (a) The time 

series for θ2 = 0.04 approaches globally to 𝐸2 = (0.39,0,2.38). (b) The time series for θ2 = 0.12 approaches 

globally to 𝐸∗ = (0.41,0.67,0.16). (c) The time series for θ2 = 0.2 approaches globally to 𝐸3 = (0.52,1.24,0). 

 

9. Results and Conclusion  

     In this paper, an ecological system consisting of one prey- two predators with Beddington –

DeAngelis functional response and refuge is proposed and studied. The existence, uniqueness 

and bounded of the solution of the proposed model are discussed. All possible equilibrium 

points with their local stability conditions are obtained using the Routh-Hurwitz criterion. 

Suitable Lyapunov functions are used to investigate the global dynamics of the equilibrium 

points. The persistence of the system is investigated with the help of the average Lyapunov 

method. The Local bifurcation analysis around the equilibrium points 𝐸1, 𝐸2, 𝐸3 and 𝐸∗ are 

carried out depending on  Sotomayor’s theorem. Finally, the appearance of the Hopf bifurcation 

around the positive equilibrium point E* is shown numerically. For the suitable set of 

biologically feasible hypothetical data, the proposed system is solved numerically to verify the 

obtained analytical results and specify the control set of parameters. Also, the obtained 

numerical results depending on the data given by (8.1) can be summarized as follows: 

1. The system is rich in their dynamic behavior including stable points and stable periodic.\ 

2. The predator’s encounter rates (𝜖1, and 𝜖2) have a stabilizing effect on the system’s 

dynamics. 

3. All other parameters work as destabilizing parameters on the system behavior and lead 

to the extinction of either the first predator, second predator, or both.  
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