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Abstract

The dynamical behavior of an ecological system of two predators-one prey updated
with incorporating prey refuge and Beddington —DeAngelis functional response had
been studied in this work, The essential mathematical features of the present model
have been studied thoroughly. The system has local and global stability when certain
conditions are met, had been proved respectively. Further, the system has no saddle
node bifurcation but transcritical bifurcation and Pitchfork bifurcation are satisfied
while the Hopf bifurcation does not occur. Numerical illustrations are performed to
validate the model's applicability under consideration. Finally, the results are included
in the form of points in agreement with the obtained numerical results.

Keywords: Ecological system, Predator-prey model, Beddington-DeAngelis, Refuge,
Dynamical behavior.
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1. Introduction

The dynamical study of prey-predator model is one of the most important topics that is
studied in both ecology and mathematical ecology. The first well-known classical model was
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given by Lotka-Volterra in 1927[1], the model was developed by many researchers taking into
consideration many factors affecting the system like a refuge in [2, 3, 4, 5, 6] and the
Beddington—DeAngelis functional response in [6].

Functional response is defined as the rate of consumption of one prey by predators and it
plays an important role in population dynamic, there are many types of functional responses
that are particularly associated with the work of Holling through his classification of functional
responses into three basic types, namely I, 11 and Ill, Beddington—-DeAngelis functional
response is similar to the well-known Holling type Il functional response but has an extra term
in the denominator which models mutual interference between predators [8], It is well known
that refuge and harvesting are two of the most important factors affecting the dynamics of prey-
predator systems. By using refuges, the prey population is partially protected against predators.
The existence of refuges has a great influence on the coexistence of the prey-predator systems

3]

In this research, the system incorporates two systems studied in both [4] and [5], where they
studied the dynamical behavior of a two-predator model with prey refuge and the dynamical
behavior of an ecological system with Beddington—-DeAngelis functional response,
respectively. According to the above, the resulting system has overcrowded with parameters,
which are reduced by using the dimensionless technique to simplify the work, while preserving
carefully the mathematical properties which are introduced in section 2. Section 3 demonstrates
the existence and positive invariance of the resulting system, while section 4 sponsors the
persistence of the resulting system. Equilibrium points and their feasibility are discussed in
section 5. We represent an analytical study including local and global stability of the resulting
dynamical system in section 6. We also explain the bifurcation analysis for certain equilibrium
points in sections 7 and 8. Numerical illustrations are performed to validate the model's
applicability under consideration shown in section 9. Finally, conclusions are given in section
10.

2. Mathematical model
In this section, a Beddington—DeAngelis prey-predator model considers the effect of refuge,
the considered model is based on two predators and one prey system that is shown in [4]:

dx X X1X X1X
1=ax1(1__1)_ﬁ112_ﬁz13
dt k 1+a1x1 1+a2x1
dx; c1B1x1%3
d_t = —d1X2 + m - 51X2X3 (21)
D5 = gy x, + 2025 5y x
dt 1+3 1+a2x1 27273

The above system is updated by incorporating prey refuges proportionally to the prey density
viamx;,where 0 <m < 1.

It is considered that the first and the second predator species are compotation for food and other
essential resources, respectively, such as shelter. In addition, the predator function response in
the model (2.1) is known as Holling type II, which is replaced by Beddington—DeAngelis that
has extra terms b;x, and b,x; in the denominator that model mutual interference between

predators.
Thus, our final model is given as follows:
axy _ ax (1 _ﬁ) _ Bi(A-m)xax;  Ba(1-m)xixg
dt 1 k a1+(1—m)x1+b1x2 a2+(1_m)x1+b2x3
dx; c1B1%1%> _
dat - dlxz + a1+(1—m)x1+b1x2 61X2x3 ! (2l2)
dxs _ C1B2%1%3 _
dg - d1x3 + a2+(1—m)x1+b2x3 62x2x3
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where

Vi.

Vii.

viil.

x4, (%) is the prey population size at time t.

x,(t) and x5 (t) are the population sizes of the first and the second predator species at time
t, respectively. The prey grows logistically in the absence of the predator, in the same way,
that the predator declines directly in the absence of the prey.

The parameters a and k are the growth rate and the environmental carrying capacity of the
prey species, respectively.

The parameters d, and d, are the predators x;, x, death rates, respectively.

The parameters &;and &, are the rates at which the growth rate of the first predator x; is
annihilated by the second predator x, and vice versa.

The parameters c;and c, are the search rates of the first and second predators for each
captured prey species, respectively (0 < ¢q, ¢, < 1).

The parameters B, and [, are the maximum number of prey that can be eaten by the first

and second predator per unit time respectively, and aiai are their respective half saturation
1 2
rates.

The parameters b; and b, measure the coefficients of their mutual interference among the
first and the second predators, respectively.

. m represents the prey refuge where 0 < m < 1, it is considered that the first and the second

predator species are competing for food and other essential resources such as shelter.

The terms —22{1-Wx1x2 B2-mniXs  yanote the first and the second predator's
a1+(1—m)x1+b1x2 a2+(1—m)x1+b2x3

response respectively on prey species. This type of predator response function is known as
Beddington—-DeAngelis.

Now we will reduce the number of parameters and specify the control set of parameters, to
simplify the system, the following dimensionless variables and parameters are used:

S — xl Pl ﬁ1x2 PZ 32i3, t — at

aq bza

b1a
A1:7!€1 A2 '62 91_;'
Bic1 dz [”202 82k
1 a /1 ﬁl »yY2 a » /L2 a 12 ﬁz

Then the system (2.2) reduces the following dimensionless system:

S _ i _oy__ (-msp_ (a-m)sp,

- S(l S) A1+(1-m)S+e,P; Ay +(1-m)S+ey P,

apy _ _ @a-mysp,

at 0:1P1 + 4 A1+(1-m)S+e, Py rihib ’ (23)
& _ (1—m)SP2 _

dt - QZPZ + AZ Ay +(1—-m)S+e, P, V2P1P2

where S(0) = 0,P,(0) =0, and P,(0) = 0 are evident that the number of parameters is
reduced from fifteen in the system (2.2) to eleven in the system (2.3).

3. Existence and positive invariance
For t >0, let X = (S,P;,P,)T,F = (f1, f», f3)T, then the system (2.3) becomes % = F(X),
here f; € C* fori = 1,2,3, are given by:

_ . (1-m)Sp,; _ (1-m)SP,

fl = S(l S) A1+(1—m)5+51P1 A2+(1—m)5+62P2

fo=—61Pit 4 Ag+(1-m)S+e1 Py vihiFs G
__ __(-m)sh,

f3 = —0;P, + 4 Ay+(1-m)S+e,P, v2hiPs
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Clearly, the interaction functions in the system (2.3) are continuous and have continuous partial
derivatives on the positive three dimensional space R3 = {(S,P;, P,): S(0) = 0,P;(0) =
0, P,(0) > 0}. Therefore, these functions are Lipschitzian [9] over R3 and the system (2.3) has
a unique solution, see [2], [3], [4].

Theorem 1. The solutions of the system (2.3) are uniformly bounded over B =
{5.,P,P) eRE:W(D) < %}

Proof. From the first equation of the system (2.3), we observe that % <S(1-2S5), then by
solving the above differential inequality, we get that S(t) < 1 as t — oco. Now assume that

W) =S(t) +—— Pl(t) + P;(t) where W is the total population, we get that d—W g + %% +
1
%%, which glves ‘Z—t <S(1-$5)-= _% Pz, by simplifying the last differential
2
inequality and using the bound of S, we conclude
W< 2—uw, (3.2)

dt
where u = min {1, 6,,6,} that yields Z—V:+uws 2, finally by solving the differential

inequality (3.2) we obtain that W (t) < max {W(to),i}, and H™ supW(t) < % hence all
solutions of the system (2.3) are bounded over B.

4. Equilibrium Points and their feasibility
The system (2.3) has five equilibrium points they are as the following:

The points E, = (0,0,0), E; = (1,0,0) are always feasible.
The first planer equilibrium point is E, = (S,, 0, P,,), where S, is a unique positive root, see
[3], for the quadratic equation:

—(1-m)eyA,8? + (1 —-m)[(1—-m)b, —2,(1 —m—€,)]S+ (1 —m)A,6, =0, (5.1)
while

—(1-S; 1-m)S,+A

P2 = (—(1 2‘1)1’E§+62()1 252)2]' (5:2)
The equilibrium point E, exists uniquely in the interior of the positive quadrant of SP, — plane
provided that the following sufficient condition holds

0<e,(1-S5,)<(1—-m)

The second planer equilibrium point is E3 = (S3, P;3,0), where S5 is a unique positive root,
see [3], for the quadratic equation
—1-meAS?+ A -m[A-m)o;, —1,(1-m—€)]S+ (1 -m)A,0, =0, (5.3)
while

—-(1-S; 1-m)S3+A
Prs = (—(1 37)1£§+51()1 353)1]' (54)
The equilibrium point E5 exists uniquely in the interior of the positive quadrant of SP; — plane
provided that the following sufficient condition holds
0<e(1-53)<(1—m).
The last equilibrium point E, = E* = (S*, Py, P;) exists if the component (S*, P;) is a positive
intersection point of the following to isoclines:

- —m)2 —(1—
A2+(1—m)5+62P2 M,
_91+M_V1P2 = 01 (56)

2
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withM; = [(1 = m)S + 4, + Pye,], My, = [y,(A; + (1 = m)S) — 0,6, 1M; + (1 — m)SA,e;.
While

_ (1—m)S*AZ—[(1—m)S*+A2 +P;Ez]92

P = ¥,[(1-m)S*+4,+P;€)] (5.7)
The necessary condition for the existence of the positive equilibrium point is given by:
(1-m)S 2, — [(1 —m)S™ + A, + P3€,]0, > 0. (5.8)
4. Persistent
The work of this section is based on the method of the Average Lyapunov function.
Theorem 2. System (2.3) is persistent, provided that
6, < Ay~ (j(‘l”jn) (5.1a)
0, < A, Az(j(‘l’fll) (5.1b)
01+ ¥1Pas < Ay o (5.1¢)
0; +v2P13 < 4, ,42(41(_1—711)175353 (5.1d)

Proof. Considering a function of the form U(S, P, P,) = S¥1P/?P,® , where K, k,, k5 are
positive constants, obviously U(S, P;,P,) > 0 for all (S,P;,P,) € intR3 and U(S, P, P,) -

0as S, P,or P, —» 0, now define the function Z(S, P, P,) such that Z(S, P, P,) = % then

Y <(1_ §y__ Gmmn _ a-mn )

A1+(1—m)5+€1P1 A2+(1—m)5+€2P2

(1-m)s (1-m)S
T (_91 tA4 A +(1-m)S+e,Py lez) t K3 (_62 +4; Ay +(1-m)S+e,Py )/ZPI)

Now, the proof will be finished provided that Z(S, P;, P,) > 0 for all the boundary equilibrium
points with suitable choices of k; > 0,k, > 0 and k3 > 0. Note that,

U’
F(Eo) = Ky — K30, — K30, >0,

for suitable choice of positive constants with x; sufficiently large than x, and k5. Also, it is
clear that:

v’ . _ (1-m) _ (1-m)
U (E) =k, ( 0.+ 4 A1+(1—m)) + i ( 02 + 22 A2+(1—m)) >0,

if the conditions (4.1a) and (4.1b) hold for suitable choice of x, and k5. Moreover,
U py = e (= _a-ms,
F(Ez) =Ky ( 0, + A4 At-ms, V1P22) > 0,
if the condition (4.1c) holds for suitable choice of k,. Finally,
v’ _ (1-m)S;3
7(E3) = K3 (_92 + 1, ta-m)ss V2P13) >0,
provided that the condition (4.1d) holds for suitable choice of k5. Hence, the proof is completed.

6. Local Stability of Equilibrium points
In this section, we analyze local stability for each equilibrium point of the system (2.3). The
Jacobian matrix of the system (2.3) at any point (S, P,, P,) is defined as

J =DF(X) = [c;j] (6.1)

3x3’
where
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11 (1-m)S+A;+P1e;  (1-m)S+A,+P,e;
_ (1-m)2p; (1-m)?pP, ] '
+5 [ 1+ ((1-m)S+A1+P1€1)?  ((1-m)S+Ay+P,€,)?

_ S[ (1-m)Pyeq _ 1-m ]
€12 = ((1—7’(n)S+;11+P161)2 (1-m)S+A+P1e1)’

_ 1-m)Py€, _ 1-m
13 =S ((1—m)S+A2+P%ez)2 (1—m)S+A2+P262]'

_ . (1-m)“SA4 (1-m)A4 ]

C21 - Pl [ ((1—m)S+A1+P161)2 (1—m)S+A1+P1€1 !

—_p —9, — (1-m)SPi€e114 (1-m)SAq
C22 2]/1 1 ((1—m)S+A1+P1€1)2 (1—m)S+A1+P1€1’
C23 = —Y1P1,

_p [_ (1-m)2S2, (1-m)A, ]

C31 - 2 ((1—m)S+A2+P262)2 (1—m)S+A2+P262 !

C32 = —Y2 Py,

C33 = —Piy, — 0, — (1-m)SPye34, (1-m)S2,

(1-m)S+A,+Py€3)2  (1-m)S+Ay+Pyep
Local stability of E,: the eigenvalues of the Jacobian matrix J, are 1, —6, and — 8, . Therefore,
E, is unstable actually it is a saddle point, where

1 0 0
Jo = DF(E,y) = [O -6, O ] (6.2)
0 0 -6,
Local stability of E;: The eigenvalues of the Jacobian matrix J; are
(1-m)A, (1-m)i,
-1, -6, +mand -0, +m .
Therefore, E; is locally asymptotically stable if the following conditions hold:
(A-m)d, 0, (6.3)
(1—m)+AA1
(1-m)4,
m 92. (64)
Otherwise, it is a saddle point where
1 __1m __m
(1-m)+A44 (1-m)+A4,
J,=DF(E)=|0 -6, +- 24 0 (6.5)
1 1 7 a-my+a, :
0 0 -9 +M

2
(1—m)+A2
Local stability of E,: The characteristic equation of the Jacobian matrix J, = DF(E,) =
|aij],,, is determined by
(AZ + Qlﬂ, + Qz)(azz - 2.) = 0 y
where Q, = —(a,; + as3),and Q, = a,,a33 — a;3a3;, hence by Routh-Hurwitz criterion [10]
for two dimensional system, the point E, is locally asymptotically stable if the following

conditions holds:
(1-m)?2P,,

((1-m)Sy+Az+Pyz€5)? <1 (66)
(1-m)SyA4
(L=m)s, +4, <01 +v1P (6.7)
Moreover, the Jacobian matrix J, = [a;;], . can be written as:
Ul3x3
|‘52 (_1 + (1-m)%P,, 2) _s, ( 1-m ) _ (1—m)((1—m)52+A2)522'|
((A1-m)Sz+Az+P2€2) (I-m)S,+4A, ((A-m)Sz+A2+P2€2)
(1—m)5211
I, = 0 —Pyy, — 6, + RE— 0 . (6.8)
(1-m)A3 (A3 +P22€2) Py (1-m)SyPyp€;
_PZZ)/Z -

((1-m)Sy+Az+Pp€2)? ((1-m)Sy+Az+Pp€2)?
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Local stability of E;: The characteristic equation of the Jacobian matrix J; = DF(E3) =
[bi]-]3X3 is

(}\2 + l'I'Ill + l'IJz)(b33 - A) = 0,
where ¥, = —(by; + by), and W, = b;,b,, — by,b,4, S0 by Routh-Hurwitz criterion for two
dimensional systems E; is locally asymptotically stable point if the following conditions hold

— 2
((1—rn()15321i1;1361)2 <1 (6.9)
Som <P + 6, (6.10)
Furthermore, the Jacobian matrix J; = [bij]3x3 are determined as
ST SGIEERE) -a
Ol B e e e e s | 61D
| 0 0 —Pi3y, — 0, + —(il__r:;liszj

Local stability of E*. Let J* = DF(E*) = [dij]gx3be the Jacobian matrix of the system (2.3) at
the interior equilibrium point E* = (S*, Py, P;), where:

o[ (1-m)?P; (1-m)?P; ]
diy =S [ 1 +(((1—m)5*+A1)+Pf61)2 ((1—m)s*JEA2+p;ez)2 ’)
(1-m)S*((1-m)S*+A (1-m)S*((1-m)S*+A
diz = — ((1—m)S*+A1+P{‘61); 13 = 7 ((1—m)s*+,42+P;ez)i ’
_ (1-m)A1(A1+P]e )P _ (1-m)S*Pieidy doa = pr
21 2 = = 23 = — Vi1,

T (A-m)S*+A+Pre)?’ 2
_ (1=m)A;(42+Pr€2)P; day = —V,P;, das = — (1-m)S*Py€32,

317 (1-m)s*+4,+P3e;)?" 32 2720733 (1-m)S*+A,+P;€3)?

Then the following theorem studies the local stability of E*.

Theorem 3: The system (2.3) is locally asymptotically stable around the equilibrium point E*
if the following conditions are satisfied:
(1-m)?p; (1-m)?p;

((1-m)S*+A,+Pj€;)?’

,<1, (6.12)

((1_m)5*+A1+Pf61)2 ((1—m)S*+A2+P§‘ez)
ViV PiPs < ( (1-m)S*Pie; Ay )( (1-m)S*Ps €, ) (6.13)

((1—m)$*+A1+P161)2 ((1—‘m)S*+A2+P562)2

« ((1-m)A5(A2+P;€3)P; (1-m)A;(A1+P1€1)P] (1-m)S*Py €21,

y1P1 (((1—m)s*+A2+P2*ez)2) < (((1—m)5*+A1+P;61)2) (((1—m)5*+A2+P2*62)2)’ (6'14)
« ((1=m)A4 (A1 +P1€1)P] (1-m)S*"Pie1)q (1-m)A,(A2+P;€,)P;

)/ZPZ (((1—m)s*+A1+P;‘el)2) < (((1—m)5*+A1+P{el)2) (((1—m)5*+A2+P;ez)2)' (6'15)

Proof: The characteristic equation of the Jacobian matrix /* = DF(E™) = [dij]3><3 can be

determined as:

A%+ 0,47 + 0,4+ 05 =0,
where

0; = —[dyy + daz + ds3],

0, = dy1dyy — dy1diy — d31diz + dygdss + dypdsz — dspdas

03 = —dy1(dz2d33 — da3dsy) — di2(dy3dsy — dydss) — dy3(daids; — daadsy).
So by the Routh-Hurwitz criterion, E* is locally asymptotically stable if ®; > 0, ©; > 0, and
A > 0 where

A= 0,0, — 03 = —(dy; + d33)[d11dy2 — di2da1 ] — 2dy1dppd33 + dypdasdsy

+d13d21d32 - (dll + d33)[d11d33 - d13d31] - (d22 + d33)[d22d33 - d23d32]

Direct computation shows that all the Routh-Hurwitz requirements hold under the given
conditions. So E* is locally asymptotically stable, and the proof is complete.
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In the following, the global stability is studied for each locally stable equilibrium point using
a suitable Lyapunov function that is given in the following theorems:

Theorem 4. The equilibrium point E; = (1,0,0) is globally asymptotically stable in R® if the
following conditions are satisfied:

amh g, (6.16)
4
<6, (6.17)
Proof. Usirfg an appropriate Lyapunov consider
W1=(S—1—lnS)+%+% (6.18)

Clearly, W,(S,P;,P,) > 0 is a continuously differentiable real-valued function for all
(S, P, P,) € R3with (S,P;,P,) # (1,0,0) and W, (1,0,0) = 0. It is observed that
aws _ (E)E 1adp | 1dp
dt ~ \s A dt Ay dt
Direct computation gives that:
dt o = -D7 - [/11 Ay Py [/12 ]PZ
Therefore, d—tl < 0 provided that the conditions (6.16) and (6.17) hold.

Hence E, is globally asymptotically stable.

Theorem 5. The equilibrium point E, = (S,,0, P,,) is globally asymptotically stable in R® if
the following conditions are satisfied:

(1 —m)?P,, < A,G,. (6.19)

(1 —m)[A; + (1 —m)S, — 1,(A; + €,P5,)]°
2 (6.20)
< 4(A3G; — (1 —m)*Py;)(A2€,5;)
A% 4y, Py, < 2, (6.21)

Ay A1

Proof. Consider the Lyapunov function at E, = (S;, 0, P,,) that is given by:
Wy = (5=, =S;In(2)) + 2+ (P, = Py — P In(2)) (6.22)
2 2 2 S, A1 2 22 22 Py :
Clearly, W,(S,P;,P,) > 0 is a continuously differentiable real-valued function for all
(S, Py, P,) € R3 with (S, P, P,) # (S5, 0, P,,) and W,(S,, 0, P,,) = 0. Moreover, we have that
aw, _ (§=Sz)ds | 1 dPy + (P2—Pp3) dP;
dt S dt @ Ay dt P, dt
Accordingly, it is obtained that

aw, < _ [G1Gz (1-m)? Pzz] (S S )2 A2(1-m)e; S, (P _PZZ)

at — G1G,
_Qa- m)[A2+(1 mM)S,—A7(Az+€;P22)](S—S2) (P —Py3)
G1G2
7] (1-m)Ss.
- [A_i_A—lz_Vzpzz]Pp

where G; = (4, + (1 —m)S + €,P,) and G, = (4, + (1 — m)S, + €,P,,). Therefore, due to
the given conditions (6.19)-(6.20), the following is obtained:

sz < ——[\/G G, — (1 = m)2Py, (S — S;) + 4/ 2,(1 —m)eyS, (P, — Pzz)]

6 (1-m)s
_[ 1_—2_72P22]P1

A1 Aq
According to the condition (6.21) —= dWZ
proof is complete.

< 0. Hence E, is globally asymptotically stable and the
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Theorem 6. The equilibrium point E3 = (S3, P;3, 0) is globally asymptotically stable in R® if
the following conditions are satisfied:
(1 —m)?P;3 < A H,. (6.23)
(1-m)[A; + (1 —m)S; — A, (A1 + & P13)]?

6.24
< 4(AH, — (1 —m)?Py3)(A1€,S3) (6.24)
(1-m)ss ViPys < b2 (6.25)
Az Az
Proof. Consider the Lyapunov function at E, = (53, 0, P,,) that is given by:
—(c_¢ _ S —P..— P Lic)
Wy =(S=S5—S;In (53)) + (P = Py = PizIn (Plg)) 2 (6.26)

Clearly, W5(S,P;,P,) > 0 is a continuously differentiable real-valued function for all
(S, P, P,) € R3 with (S, P, P,) # (S3, P13,0) and W5(Ss, P;3,0) = 0. Moreover, we have that
dWs _ (S—S3)dS | (P1—P13)dP; |, 1 dP,
o - s ' m @ na
Accordingly, it is obtained that

% S _ |:H1H2—(1—m)2P13] (S _ 53)2 _ /11(1—m)6153 (Pl _ P13)2

dt H1H2 HlHZ
_ (1-m)[A1+(1-m)S3-21 (A1 +€1P13)](S—S3) (P1—P13)
HiH;
0 (1-m)s.
—[ﬁ—A—Zg_lem]Pz'

where H; = (A; + (1 —m)S + ¢,P;) and H, = (A; + (1 — m)S3 + €, P,3). Therefore, due to
the given conditions (6.23)-(6.24), the following is obtained:

dw- 1 2
dtg < ~ H, [\/H1H2 - (1-m)?P3(S—53) + \//11(1 —m)€;S;(Py — P13)]
0 (1-m)s
—[_2——3—)/1P13]P2

A2 Az
W < 0. Hence E; is globally asymptotically stable and the

dat

According to the condition (6.25)
proof is complete.

Theorem 7. The interior equilibrium point E* = (S*, Py, P;) is globally asymptotically stable
in R3, if the following conditions are satisfied:
(1-m)?p; |, (1-m)?P;

- —2 <1, (6.27)
A1Ky A2K;
/11(141 + Elpl*) < Al + (1 - m)S* y (6.28)
A2(Az + €,P3) <Ay + (1 —m)S™, (6.29)
Proof. Consider the following Lyapunov function
w'=(s=s"=s'm3)+ (P - P — P} n%) +(P,—P; - P; n;’—z) (6.30)

where W* is a real-valued function and W*(S, P;, P,) > 0 is a continuously differentiable
function for all (S,P;,P,) € R® with (S,P,P,) # (S*P;,P;) and W*(S",P31,P3) =0.
Moreover, we have that

dw* _ (5-S8")dS | (P1—P{)dP; , (P,—P;)dP,

at S dt P T P, dt
Direct computation using algebraic manipulation gives that
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aw* <_ [ _ (1—m)fpf _ (1—m)jpg] (S — 592 — 11(1—m)els**(P1—P;)2
dt K1K; KoK} K K}
A (1-m)e,S*(Py—P;3)? * *
—= mZK; —2— — [y1 + v2](P, — P))(P, — P;)
_ (a-m)[A;+(1-m)S" 24 (A1+€1P1)|(S=S) (P, —P1)
Ky K}
_ (1-m)[A;+(1-m)S* ~A, (A +€,P3)](S=S") (P, —P;)
KK}
EZPZ’ KZ* = AZ + (1 _m)S* + EZPZ*'
According to conditions (6.27)-(6.29), the derivative

globally asymptotically stable.

)

aw*
dt

< 0 is guaranteed. Therefore E* is

7. Bifurcation Analyses

It is well known that the occurrence of local bifurcation requires the existence of a non-
hyperbolic equilibrium point, which is a necessary but not sufficient condition for the
bifurcation to take place around that point. In the following theorems, the candidate bifurcation
parameter is selected so that the equilibrium point under study will be a non-hyperbolic point,
we study in this section the local bifurcation for the equilibrium points E;, E,, E5, and E* by
applying the Sotomayor’s theorem [11].

Theorem 8: Assume that condition (6.3) holds, then the system (2.3) has a transcritical
bifurcation and neither pitchfork bifurcation nor saddle-node bifurcation can occur near the

equilibrium point E; passes through the parameter 65 = 1, ((1_’”)’12

1-m)+A4,
Proof. It is easy to verify that the Jacobian matrix of system (2.3) at (E;, 8;) can be written as
1 1—-m 1-m
2
1 = (1-m)A,
0 —-60;+——"T—— 0
1t (1-m)+4,
0 0 0

The third eigenvalue ¢3p, in the P, — direction is zero while the first eigenvalue ¢; = —1 <

0, the second eigenvalue ¢, = —6; + 4, % < 0 under the conditions (6.3). Further the
- 1

eigenvectors v = (v11, V21, v31)7, and w; = (wq4, w1, w31)T that corresponding to ¢3p, Of
* * T
the ]fz and ( 192) are determined by:
1_
vy = (— —(l_mﬁAz ,0,1)7 and w, = (0,0,1)”

On the other hand, we obtained that:

oF * *

26, Fg, = (0,0,—P;)" = Fy,(E;,63) = (0,0,0)" = w,"Fy,(E,6;) =0
Consequently, according to the Sotomayor theorem, the system has no saddle-node bifurcation
near E; with 6, = 6. Now to investigate the occurrence of the other types of bifurcation, the

derivative of Fp, concerning vector X, say DFy, (E;, 8;) is computed

00 0
DFq,(E1,03) =10 0 0 |= w"DFy, (Ey,0;)v3=-1%0
0 0 -1

Also, it is obtained that:
w1"(D?F(Ey,05)(v4,11)) = —

2 (l—m) [(1—771)142 +é€, (1—m+A2)]12

(1-m+A4,)3 #0
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Hence, according to the Sotomayor theorem, system (2.3) has a transcritical bifurcation, while
pitchfork bifurcation cannot occur at E;, and the proof is complete.

Theorem 9: Assume that condition (6.6) holds, then the system (2.3) has a transcritical

bifurcation and neither pitchfork bifurcation nor saddle-node bifurcation can occur near the

equilibrium point E, passes through the parameter 8; = —P,,y, + ((11_’"% provided that the

—m)sz 1
following condition holds

_ 2(1-m)(A1T1 —S2€1)44

2Nl + = o — # 0. (7.1)

Proof. It is easy to verify that the Jacobian matrix of system (2.3) at (E,, 6;) can be written as

[an Az 43

0 0 0
az; Gz; a4z .
where a;; are given in (6.8). Direct computation shows that ]291 has the following eigenvalues

Q4+ /Q 2_40 -4 /Q 2_40
A = ;, A, =0, A3 = % where Q; = —(a;; +azz) >0 and Q, =

2
a;1a33 — a43a31 > 0. S0, A, and A5 have negative real parts due to condition (6.6). Further the
eigenvectors v, = (v4,, V55, V35)7, and w, = (w15, w,,, w3,)T that corresponding to 4, = 0

* * T
of the ]fl and ( 51) are determined by:

— _ T
v, = (‘112“33 a13032 1 ai1a32 a12a31) — (F1, 1, FZ)T and Wy = (0,1}0)T

@13031-11033  ~ @13031—011033
From the other hand, we obtained that:
JoF * *
0. = Fo, = (0,—P;,0)" = Fp (E;,67) = (0,0,0)" = w,"Fy, (E,,07) =0
Consequently, according to the Sotomayor theorem, the system has no saddle-node bifurcation
near E, with 8, = 6;. Now to investigate the occurrence of the other types of bifurcation, the

derivative of Fp, concerning vector X, say DFy, (E,, 61) is computed

61
St =

0 0 0
DFp (E2,07) =|0 —1 0= wy"DFp (E;61)v;=—-1%0
0 0 0

Also, it is obtained that:
. 2(1-m)(A Ty —S,€1)A
;" (D2F (Ez, 07)(v2,v2)) = =211 + ( (Z)is:—lms;)?) 1

Hence, according to condition (7.1), system (2.3) has a transcritical bifurcation, while pitchfork
bifurcation cannot occur at E,, and the proof is complete.

Theorem 10: Assume that condition (6.9) holds, then the system (2.3) has a transcritical
bifurcation and neither pitchfork bifurcation nor saddle-node bifurcation can occur near the

equilibrium point E3 passes through the parameter 8; = —y,Py; + % provided that the
—m)s3 2
following condition holds
2(—1+m)(A2r3—S362)).2
(A2+S3—mS3)2 ¢ Ol (7'2)
Proof. It is easy to verify that the Jacobian matrix of system (2.3) at (E5, 85) can be written as
9% bll b12 b13
32 = lbn b,, b23lv

0 0 0

—2y,0, —
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where b;; are given in (6.11). Direct computation shows that ]32 has the following eigenvalues
-+ /lp -4y -y, - /‘P —-4¥
/11 == ;, 12 = ;, /‘{3 = 0, Where l.IJl = _(bll + bzz) > 0 and l'pz =

2 2
by1b,, — by,b,1 > 0. S0, A, and A, have negative real parts due to condition (6.9). Further the
eigenvectors vy = (v13,v23,v33)T, and w3 = (w43, w,3, w33)7 that corresponding to A; = 0

of the ]3 and( 2) are determined by:

_ _ T
vy = (b12b23 bi3bzz bi13bz1—b11b23 1) — (F?,:FAL' 1)T and w3 = (O,O,l)T

b11b22_b12b21 b11b22 b12b21
From the other hand, we obtained that:
JoF * *
36, Fg, = (0,0, -P) = Fy,(E5,6;) = (0,0,0)T = w3TF92 (E5,05) = 0.
Consequently, according to the Sotomayor theorem, the system has no saddle-node bifurcation
near E; with 6, = 6;. Now to investigate the occurrence of the other types of bifurcation, the

derivative of Fy, concerning vector X, say DFy, (E3, 8;) is computed

0 0 0
DFp,(E3,63) =10 0 0 |= w3"DFy,(E365;)v3=—-1%0
0 0 -1

Also, it is obtained that:
% 2(—1+m)(ApI3—S3€3)A
03" (D?F (Es, 03) (3, v3)) = —2y,l, — = — 2

Hence, according to condition (7.2), system (2.3) has a transcritical bifurcation, while pitchfork
bifurcation cannot occur at E5, and the proof is complete.

Theorem 10. Assume that conditions (6.12) and (6.15) hold, then the system (2.3) has a saddle-
node bifurcation that can occur near the equilibrium point E*, when the parameter y, passes

through the value y; = d33(d“d22;f(1;d2;)+d;3(‘;21‘)132_0122‘131), provided that the following
1 124317%114%32

condition holds

[l + Tglyy + 13 # 0. (7.3)
Proof. According to the local stability analysis of system (2.3) at E, we have that the last
coefficient of the characteristic equation ©5 can be rewritten as:

93 = _d33(d11d22 - d12d21) + d23(d11d32 - d12d31) - d13(d21d32 - d22d31),
where d;; for all i,j = 1,2,3 are the Jacobian matrix J* = DF(E*) elements. So, when y; =
¥1, Which is positive under the conditions (6.12) and (6.15), the value of ®; becomes ©; = 0.

-0.+ /G) —40
Therefore, J*(y;) = DF(E*,y;) has the eigenvalues 1, =0, 4, = %2 and A; =

-0,— /@12—402

> , Where ©; and 0, are given in theorem 3.

Further the eigenvectors v, = (V14, V24, V34)7, and w4 = (w14, w,4, w34)T that corresponding
to A, = 0 of the J*(y;) and (J*(y3))T are determined by:

Vv, = (d12d23—d13d22 di3dp1—di1da3 1)T — (F T 1)T
4 dy1dzz—d12dz1 dyqdaz—dizday’ 56 ’

Wy = (d21d32—d22d31 dizd31—d11d32 1) _ (l—-7 I 1)T
dy1daz—dq2dz1 di1daz—di2da’ e

On the other hand, we obtained that:
oF * * * )k
6_1/1 = Fy1 = (0' _P1P210)T = Fyl(E 'yl) = (0' _P1P2'0)T
= w,"F, (E*,y;) = —TgPiP; # 0.

Moreover,
DZF(E*,)/{‘)(U4, vy) = [li1]3x1,
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where
(1—m)r6[—((1—m)5*+A1)A1r5+(—(2(1—m)5*+A1)P*1‘r5 +28" ((1—m)5*+A1)r6)el]

li1 =
1 ((1—m)5*+A1+P161>3

(1—m)[—((1+m)5*+A2)A2r5+(25*((1—m)S*+A2)—(2(1—m)S* +A2)P§r5)ez]

((1—m)5* +A4, +P;ez)3

* %2
(1-m)24, P (1-m)2P7 €
((1- m)S*+A1+P;el)3 ((1- m)S*+A1+P;el)3

+1y (21"5 [—1 +

1- m)zPZ(A2+P252) )[Fe (1-m)S" +AD A +2(1-m)S +A1)P1€1]

((1- m)S +A2+P262)3 = m)S +A1+P1€1)3

((1 -m)S +A2>A2+(2(1 m)S"+42)Pje;
((1- m)S*+A2+P§EZ)3
2(1-m)[-(A-m)P{ s +((1-m)S +A1)r6](A1rs+(P1Fs -S* UG
((1 m)S*+A1+P161)
2(1-m)[(1-m)S* +4,—(1— m)P2F5](A2F5+( S* +P21’5)52)/12
(- m)S*+A2+P262)
Therefore, w,” (D2F (E*,y;) (V4,v4)) = 711 + Tglyy + L34 Hence, due to condition (7.3), the
system (2.3) undergoes a saddle-node bifurcation and the proof is complete.

121 = —2]/1['6 +

l31 = —2}/21—'6

8. Numerical Analysis.
In this section, we studied the global dynamics of the system (2.3) numerically to verify the
obtained analytical results and specify the control set of parameters. For the following
hypothetical set of parameters system (2.3) is solved numerically and the obtained trajectories
are drawn in the form of phase portrait and time series. First, we examine the effect of varying
the value of each parameter on the dynamic behavior of the system (2.3). Second, we assure
our analytical results. It is noticed that the following set of parameters satisfies the stability
conditions of the positive equilibrium point E~* of the system (2.3). System (2.3) has a globally
asymptotically stable positive equilibrium point, as shown in Figure 1.
Ay = 05A, = 01,6, =09,¢, =0.9,y; = 0.001,y, = 0.01,
m=0.6,0, =0.1,0, = 0.01,4; = 0.486,1, = 0.064.

a)

(8.1)

)

—5
—

0.9

0.8+

0.7 4

0.6+

Populations

0.5 4

0.4+

0.3+

0.2 4

0.8
0.6 / 0.8 g
P 04 0202 04 2 o 0 50 100 150 200 250 300

! Time

Figure 1. The trajectory of the system (2.3) starts from different initial points using a data set
(8.1). (a) Phase portrait approaches globally to E* = (0.36,0.43,0.29). (b) The time series.

It is clear from Figure 1 that the data set (8.1) satisfies the stability conditions of theorem 7.
Now, it is observed that for the parameter A, in the ranges (0.0.22) and [0.22,1) the solution
of system (2.3) approaches asymptotically to E* and E, respectively, see Figure 1 for the first
range and Figure 2 for the value A; = 0.25.
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—
S -

Populations

100 200

300 400 500

04 0
P 0 02 0

Time
Figure 2. The trajectory of the system (2.3) starts from different initial points using a data set (8.1). (a) Phase
portrait approaches globally to E, = (0.53,0,0.99) when A; = 0.25. (b) The time series for A; = 0.25.

Similar behavior as that shown with varying of A; is obtained in the case of varying the
parameter y; with a bifurcation point of y; = 0.25. It is observed that for the parameter A, in
the ranges (0.0.17) and [0.17,1) the solution of system (2.3) approaches asymptotically to E*
and E5 respectively, see Figure 1 for the first range and Figure 3 for the value A, = 0.2. Again,

the effect of varying the parameter y, on the dynamic behavior of system (2.3) is similar to that
obtained with varying A4,.

(a) 14 . )

0.4 gR

0 100 200 300 400 500

Time
Figure 3. The trajectory of the system (2.3) starts from different initial points using a data set (8.1). (a) Phase
portrait approaches globally to E; = (0.52,1.24,0) when A, = 0.2. (b) The time series for A, = 0.2.

It is shown that for the parameter €, in the ranges (0.0.2], (0.2,0.28], and (0.28,1) the solution

of system (2.3) approaches asymptotically to a periodic attractor in the SP; —plane, E5, and E*
respectively, see Figure 4.
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Populations

0 100 200 300 400 500
Time

— O
fl=0<4

Populations

0 I(.)(l 2(.)0 3(.)() 400 500

Time
Figure 4. The trajectory of the system (2.3) starts from different initial points using a data set (8.1). (a) Phase
portrait approaches globally to periodic attractor. (b) The time series for €; = 0.1. (c) Phase portrait approaches

globally to E; = (0.17,0.71,0). (d) The time series for €; = 0.25. (e) Phase portrait approaches globally to E* =

(0.28,0.71,0.09) (f) The time series for €; = 0.4.
(a)

o)
(2=l).1

3
S
0 100 200 300 400 500
Time
09 —@ .
08 €2=0<35 —_.; |
1
0.7 .|
3
S
0 H H H H
0 100 200 300 400 500
Time

Figure 5. The trajectory of the system (2.3) starts from different initial points using a data set (8.1). (a) Phase
portrait approaches globally to a periodic attractor. (b) The time series for €, = 0.15. (c) Phase portrait approaches
globally to E* = (0.27,0.19,0.44) (d) The time series for €, = 0.35.
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According to Figure 4, the parameter €, has two bifurcation points in its range. Moreover, it is
obtained that for the parameter €, in the ranges (0.0.22], and (0.22,1) the solution of system
(2.3) approaches asymptotically to a periodic attractor in the SP, —plane, and E* respectively,
see Figure 5.

Now, to study the effect of varying the parameter m on the dynamic behavior of the system
(2.3), it is concluded from Figure 6 that for the ranges m € [0,0.42), m € [0.42,0.97), m =
0.97, and m € [0.98,1) the system (2.3) approaches to 3D periodic attractor, E*, E5, and E;

respectively.
0.9 . —@ . 0.9 . —0) .
0.8 5% vy
0.7 (N B - - P,
0.7 2
06 '
Sos 1 506
3 w 3
s \ S
040 |l 305
= I R —
0.3 | | e
I\ 04
02 {1
0.1 03
0 L L 0.2 L L H i
0 100 200 300 400 500 0 100 200 300 400 500
Time Time
1 {) 12 . — @ .
s -
/ 1
0.8 » (
) 08
5 0.6 5
3 = 0.6
S S
y y
04
0.2
== —— — 1 0 A L L
0 100 200 300 400 500 0 100 200 300 400 500
Time Time

Figure 6. The trajectory of the system (2.3) starts from different initial points using a data set (8.1). (a) The time
series for m = 0.2 approaches globally to a periodic attractor. (b) The time series for m = 0.75 approaches
globally to E* = (0.6,0.44,0.3). (c) The time series for m = 0.97 approaches globally to E; = (0.99,0.03,0). (d)
The time series for m = 0.98 approaches globally to E; = (1,0,0).

It is observed that for the parameter 6, in the ranges (0.0.07], (0.07,0.2), and [0.2,1) the

solution of system (2.3) approaches asymptotically to E5, E* and E, respectively, see Figure 7.

—— : 09 : b . I -
— — —
—P, 0.8 g]:;l 15 —P, 0,=0.25 —P,
08
— 07 — —7
6,005 04 %06
Sos N
<o S04
0.3
02f
\
I e R 4
0 0 200 300 400 500 0 0 200 00 400 S0 0 0 200 00 400 S0
Time Time Tanie

Figure 7. The trajectory of the system (2.3) starts from different initial points using a data set (8.1). (a) The time
series for 6; = 0.05 approaches globally to E; = (0.43,2.46,0). (b) The time series for 6; = 0.15 approaches
globally to E* = (0.43,0.14,0.61). (c) The time series for 8; = 0.25 approaches globally to E, = (0.53,0,0.99).
Similar behavior as that shown with varying of 8, is obtained in the case of varying the

parameter A, with bifurcation points of A4, = 0.32, and 4, = 0.61 respectively. Finally, it is
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observed that for the parameter 6, in the ranges (0.0.06], (0.06,0.15), and [0.15,1) the solution
of system (2.3) approaches asymptotically to E,, E* , and E5 respectively, see Figure 8. Again,
the effect of varying the parameter A, on the dynamic behavior of a system (2.3) is similar to
that obtained with varying 8,.

—® . 09 . —0 . 14 . —@
—

6,012

£1s 4,004 — Y 4 g £,
) Sos) /

3 3
H Ep S 1/ 06
5 g <4 5

03

0.2 02

0 . L L . 0.1 L L s H 0 . L H
0 100 200 300 400 S00 0 100 200 300 400 S00 0 100 200 300 400 S00
Time Time Time

Figure 8. The trajectory of the system (2.3) starts from different initial points using a data set (8.1). (a) The time
series for 6, = 0.04 approaches globally to E, = (0.39,0,2.38). (b) The time series for 6, = 0.12 approaches
globally to E* = (0.41,0.67,0.16). (c) The time series for 8, = 0.2 approaches globally to E; = (0.52,1.24,0).

9. Results and Conclusion
In this paper, an ecological system consisting of one prey- two predators with Beddington —
DeAngelis functional response and refuge is proposed and studied. The existence, unigueness
and bounded of the solution of the proposed model are discussed. All possible equilibrium
points with their local stability conditions are obtained using the Routh-Hurwitz criterion.
Suitable Lyapunov functions are used to investigate the global dynamics of the equilibrium
points. The persistence of the system is investigated with the help of the average Lyapunov
method. The Local bifurcation analysis around the equilibrium points E;, E,, E; and E* are
carried out depending on Sotomayor’s theorem. Finally, the appearance of the Hopf bifurcation
around the positive equilibrium point E* is shown numerically. For the suitable set of
biologically feasible hypothetical data, the proposed system is solved numerically to verify the
obtained analytical results and specify the control set of parameters. Also, the obtained
numerical results depending on the data given by (8.1) can be summarized as follows:
1. Thesystem isrich in their dynamic behavior including stable points and stable periodic.\
2. The predator’s encounter rates (€;, and €,) have a stabilizing effect on the system’s
dynamics.
3. All other parameters work as destabilizing parameters on the system behavior and lead
to the extinction of either the first predator, second predator, or both.
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