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Abstract 

     In this paper, the computational method (CM) based on the standard polynomials 

has  been implemented to solve some nonlinear differential equations arising in 

engineering and applied sciences. Moreover,  novel computational methods have been 

developed in this study by orthogonal base functions, namely Hermite, Legendre, and 

Bernstein polynomials. The nonlinear problem is successfully converted into a 

nonlinear algebraic system of equations, which are then solved by Mathematica®12. 

The developed computational methods (D-CMs) have been applied to solve three 

applications involving well-known nonlinear problems: the Darcy-Brinkman-

Forchheimer equation, the Blasius equation, and the Falkner-Skan equation, and a 

comparison between the methods has been presented. In addition, the maximum error 

remainder (𝑀𝐸𝑅𝑛) has been computed to demonstrate the accuracy of the proposed 

methods. The results persuasively prove that CM and D-CMs are reliable and accurate 

in obtaining the approximate solutions to the problems, with obvious superiority in 

accuracy for D-CMs than to CM. 

 

Keywords: Novel approximate solution; Hermite polynomials; Legendre 

polynomials; Bernstein polynomials; Base functions. 

 

 الخطية الناشئة في الهندسة والعلوم التطبيقية طرق حسابية لحل المعادلات التفاضلية الاعتيادية غير 
 

 *عثمان مهدي صالح، مجيد احمد الجواري 
 قسم الرياضيات، كلية التربية للعلوم الصرفة  ابن الهيثم، جامعة بغداد، بغداد، العراق.

 
 الخلاصة 

( المستندة إلى متعددات الحدود القياسية لحل بعض  CMالطريقة الحسابية )   استخدام في هذا البحث، تم        
في الهندسة والعلوم التطبيقية. علاوة على ذلك، تم تطوير طرق  التي تظهر  المعادلات التفاضلية غير الخطية  

ليجندر،   هيرمت،  الحدود  متعددات  وهي  المتعامدة،  الاساس  دوال  من خلال  الدراسة  هذه  في  جديدة  حسابية 
ويل المسألة غير الخطية بنجاح إلى نظام جبري غير خطي من المعادلات، والذي يتم حله  بيرنشتاين. يتم تح

( لحل ثلاث تطبيقات  CMs-D. تم تطبيق الطرق الحسابية المطورة )١٢®بعد ذلك باستخدام برنامج ماثماتيكا
- دلة فالكنرفورشهايمر، معادلة بلاسيوس، ومعا-برينكمان-تتضمن مشاكل غير خطية معروفة: معادلة دارسي

 (𝑀𝐸𝑅𝑛)سكان، وتم تقديم مقارنة بين الطرق.  بالإضافة إلى ذلك، تم حساب الحد الأقصى للخطأ المتبقي  

              ISSN: 0067-2904 
  

mailto:majeed.a.w@ihcoedu.uobaghdad.edu.iq


Salih and AL-Jawary                             Iraqi Journal of Science, 2023, Vol. 64, No. 8, pp: 4070-4091 

 

4071 

موثوقة ودقيقة في الحصول على    D-CMsو    CMلإثبات دقة الطرق المقترحة. تثبت النتائج بشكل مقنع أن  
 .CMمقارنة بـ  D-CMsالحلول التقريبية للمشاكل، مع تفوق واضح في الدقة لـ 

 

1. Introduction 

     In the classical theories of the various branches of science, differential equations are mainly 

linear. In modern science, when certain phenomena cannot be explained by linear differential 

equations, it is inevitable to resort to nonlinear differential equations to obtain the desired 

information [1]. Solution methods for these types of equations are of great importance and have 

appeared in the mathematical formulation of many phenomena, including engineering, fluid 

mechanics, flow models, and mathematical physics [2]. Therefore, the need for reliable and 

effective numerical or approximate methods to solve these types of equations has become a 

very important requirement [3]. 

 

     Many analytical and approximation methods for solving nonlinear differential equations 

have been presented and modified by authors all over the world, such as the homotopy 

perturbation method [4], the homotopy analysis method [5], the Adomian decomposition 

method [6], the variational iteration method [7], the He-Laplace variational iteration method 

[8], the modified Laplace decomposition method [9], the Bernstein collocation method [10], 

the Wang-Ball operational matrix method [11], the differential transform-Pade technique [12], 

the Taylor series method [13], and some other methods, see [14-18]. 

 

     In 1973, Corrington [19] showed that linear differential and integral equations can be 

converted into a system of algebraic linear equations with a least-squares approximation and 

repeated integrations of Walsh functions. On the other hand, the orthogonal polynomials are 

characterized, above all, by the fact that they effectively simplify the required solution by 

transforming the nonlinear differential equations into nonlinear algebraic systems of equations 

using the operational matrices technique, where they can be solved simply by using any 

computational program. In addition, the classical operational matrix method based on 

orthogonal polynomials such as Legendre polynomials [20], Bernstein polynomials [21], and 

Hermite polynomials [22] attracted great interest from the authors as they were very useful 

techniques for solving many different problems in approximation theory and numerical analysis 

[3]. 

 

     In 2013, Turkyilmazoglu [23] proposed an analytic approximate method, namely the 

effective computational method, and used it to solve various types of problems, for more details, 

see  [24-27]. Moreover, the approach depends upon standard base functions of the general type, 

such as the standard polynomials [1, 𝑥, 𝑥2, … ], and the exact solutions are given under certain 

conditions. In addition, the solution of the nonlinear equations is converted into a nonlinear 

algebraic system with unknown standard polynomial coefficients, which can be solved 

numerically or analytically using modern software. 

 

     The current aim of this paper is to implement CM based on the standard polynomials to 

solve three applications involving well-known nonlinear problems: the Darcy-Brinkman-

Forchheimer equation, the Blasius equation, and the Falkner-Skan equation, which appeared in 

engineering and applied sciences. The main goals are to develop the CM by introducing various 

orthogonal polynomials, such as Hermite, Legendre, and Bernstein polynomials, and to form a 

novel D-CMs collection. The ultimate objective is to apply the D-CMs to solve these problems. 

 

     The outline of the paper is as follows: Section two describes the mathematical formulation 

of three nonlinear models. Section three presents the basic concepts of the proposed methods. 



Salih and AL-Jawary                             Iraqi Journal of Science, 2023, Vol. 64, No. 8, pp: 4070-4091 

 

4072 

In section four, the convergence of the proposed methods will be given, and the problems will 

be solved using the proposed methods, with a discussion of the numerical results. Finally, in 

section five, the conclusions will be presented. 

 

2. The mathematical formulation of nonlinear models 

2.1 The Darcy-Brinkman-Forchheimer equation 

Consider a steady-state, pressure-driven, fully developed parallel flow through a horizontal 

channel filled with a porous medium [28], as shown in Figure 1:  

 

 

 

 

 

 

 

 

Figure 1: Parallel flow in a fluid-saturated porous channel [29]. 

The bottom and the top plates are located at 𝑦 = ℎ and 𝑦 = − ℎ, respectively. The flow is in 

the direction of the 𝑥-axis and the velocity is also of the form 𝑢 = (𝑦(𝑥), 0,0). It is known that 

the flow in the channel is determined by the Darcy-Brinkman-Forchheimer equation, which is 

as follows [30]: 

𝑑2𝑦

𝑑𝑥2
− 𝑠2𝑦 − 𝐹𝑠𝑦2 +

1

𝑀
= 0,                                                                                                          (1) 

with boundary conditions: 

𝑦′(0) = 0, 𝑦(1) = 0.                                                                                                                 (2) 

where 𝐹 represents the Forchheimer number, 𝑠 represents the porous medium shape parameter, 

and 𝑀 is the viscosity ratio. 

Several analytical and approximate methods have been presented for solving the Darcy-

Brinkman-Forchheimer equation, for instance, the finite difference method [31], the Tau 

homotopy analysis method [28], the optimal Galerkin homotopy asymptotic method [30], and 

the homotopy analysis method [32]. In particular, Motsa et al. [29] implemented the spectral 

homotopy analysis approach to obtain an accurate result for the model. Adewumi et al. [33] 

applied the hybrid method in combination with the Chebyshev collocation method with Laplace 

and differential transform methods to obtain approximate solutions for the model. In addition, 

Abbasbandy et al. [34] obtained a closed-form solution of forced convection in a porous 

saturated channel. 

 

2.2 The Blasius equation 

     The Blasius equation is a well-known third-order nonlinear ordinary differential equation 

that appeared in certain boundary layer problems of the two-dimensional laminar viscous flow 

of a fluid over a flat plate. It is the governing equation for fluid dynamics and is represented by 

the following equation [35]: 

𝑑3𝑦(𝑥)

𝑑𝑥3
+

1

2
𝑦(𝑥)

𝑑2𝑦(𝑥)

𝑑𝑥2
= 0,                                                                                                            (3) 

with boundary conditions: 

𝑦(0) = 𝑦′(0) = 0 , 𝑦′(∞) = 1,                                                                                                          (4) 

     The second derivative of 𝑦(𝑥) at zero is important in the Blasius equation to determine the 

shear stress on the plate. Many authors have tried to solve this equation and obtained different 

numbers for this value. More details can be found in [36-38]. 
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     Liao in [37] used the homotopy-Padé approximation technique to derive the initial condition 

𝑦′′(0) = 𝑎 from the boundary condition 𝑦′(∞) = 1, where 𝑎 = 0.3320573. This value will 

be used in the current work. Thus, the boundary conditions of the Blasius equation become: 

𝑦(0) = 𝑦′(0) = 0,   𝑦′′(0) = 𝑎.                                                                                                        (5) 

 

     The Blasius equation has been solved by various numerical and analytical methods like the 

Adomian decomposition method [39], the variational iteration method [40], the optimal 

homotopy asymptotic method [41], and the homotopy analysis method [42]. Moreover, 

Khataybeh et al. [36] employed the classical operational matrices of the Bernstein polynomials 

method to solve the Blasius equation. Parand and Taghavi [43] used a collocation method based 

on a rational scaled generalized Laguerre function to solve this equation. 

 

2.3 The Falkner-Skan equation 

     The boundary layer equations are an important type of nonlinear ordinary differential 

equations with various applications in physics and fluid mechanics [44]. The stationary 

Falkner-Skan boundary layer equation is one type of these equations. Falkner and Skan [45] 

first proposed the Falkner-Skan equation in 1931. This equation has an important role in a 

variety of applications, such as fluid mechanics, aerospace, heat transfer, glass applications, 

and polymer studies [3]. 

 

     The Falkner-Skan equation is a third-order ordinary differential equation over a semi-infinite 

domain, which is as follows [46]: 

𝑑3𝑦

𝑑𝑥3
+ 𝑘𝑦 

𝑑2𝑦

𝑑𝑥2
+ 𝛽 [𝜖2 − (

𝑑𝑦

𝑑𝑥
)2] = 0,                                                                                            (6)  

with boundary conditions: 

𝑦(0) = 0,   𝑦′(0) = 1 − 𝜖,   𝑦′(∞) = 𝜖,                                                                                          (7) 

Where 𝑘 = 1 is constant, 𝛽 refers to the pressure gradient parameter and 𝜖 to the velocity ratio 

parameter. If 𝛽 = 0 and 𝑘 =
1

2
, then Eq. (6) refers to the Blasius equation; when 𝛽 =  

1

2
 and 

𝑘 = 1, Eq. (6) represents the Homann flow problem; and when 𝛽 =  1 and 𝑘 = 1, Eq. (6) is 

called the Hiemenz flow problem [3]. 

The authors in [47] used the Padé approximation technique to obtain the initial condition 

𝑦′′(0) = −0.832666 from the boundary condition 𝑦′(∞) = 𝜖, and this value will be used in 

the current work. Thus, the boundary conditions of the Falkner-Skan equation become: 

𝑦(0) = 0,   𝑦′(0) = 1 − 𝜖,   𝑦′′(0) = −0.832666.                                                                     (8) 

Various methods have been used to solve the Falkner-Skan equation, such as the Adomian 

decomposition method [48], the homotopy analysis method [49], the homotopy perturbation 

method [50], the differential transformation method [51], the shifted Chebyshev collocation 

method [52], and the Legendre rational polynomials method [53]. 

 

3. The basic idea of the proposed methods 

     This section presents the basic concepts of the proposed techniques. Moreover, orthogonal 

polynomials and operational matrices will be discussed as tools for developing the CM 

technique to achieve approximate solutions to specific nonlinear models presented in section 

two. 

3.1 The basic concept of CM with their operational matrices 

     The following 𝑘𝑡ℎ-order differential equation is the main concern here [26]: 

𝐹(𝑥, 𝑦, 𝑦′, 𝑦′′, … , 𝑦(𝑘)) = 𝑔(𝑥),          𝑎 ≤ 𝑥 ≤ 𝑏,                                                                           (9) 

with the initial condition:  𝑦(𝑖)(𝑎) = 𝛽𝑖,       0 ≤ 𝑖 ≤ 𝑘 − 1,                                                        (10) 

or in the case of boundary conditions: 𝑦(𝑖)(𝑎) = 𝛾𝑖,   𝑦
(𝑖)(𝑏) = 𝛿𝑖,    0 ≤ 𝑖 ≤

𝑘

2
− 1.           (11) 



Salih and AL-Jawary                             Iraqi Journal of Science, 2023, Vol. 64, No. 8, pp: 4070-4091 

 

4074 

where  𝑔(𝑥) is a known function and 𝛽𝑖, 𝛾𝑖, 𝛿𝑖, are constants. 

 

     The fundamental assumption is that the Eq. (9) has a unique solution when the initial or 

boundary conditions are specified in the Eqs. (10) or (11). Furthermore, a function 𝑦(𝑥)  ∈
 𝐶𝑘[0, 1]  can be written by a linear combination of 𝑘𝑡ℎ-order functional series based on the 

standard polynomials as follows [23]: 

𝑦(𝑥) = ∑𝑎𝑖 𝜔𝑖(𝑥) = 𝜳(𝑥) 𝑪,                                                                                                       (12)

𝑘

𝑖=0

 

where  𝜳(𝑥) = [1  𝑥  𝑥2 𝑥3 … 𝑥𝑘] and 𝑪 = [𝑐0 𝑐1 𝑐2 …𝑐𝑘]
𝑇 , such that 𝑐𝑖, 𝑖 = 0,… , 𝑘, are the 

coefficients whose values will be determined later. 

Assume the following derivatives of 𝜳(𝑥): 

𝑑𝜳(𝑥)

𝑑𝑥
= 𝜳(𝑥) 𝑫∗ ,   

𝑑2𝜳(𝑥)

𝑑𝑥2
= 𝜳(𝑥) (𝑫∗)2, … ,

𝑑𝑘𝜳(𝑥)

𝑑𝑥𝑘
= 𝜳(𝑥) (𝑫∗)𝑘, 

where 𝑫∗
(𝑘+1)×(𝑘+1) is the operational matrix with the following entries in the standard 

polynomials: 

𝑫∗ =

[
 
 
 
 
 
0 1 0
0 0 2
0 0 0

⋯
0
0
0

⋮ ⋱ ⋮
0 0 0
0 0 0

⋯
𝑘
0]
 
 
 
 
 

(𝑘+1)×(𝑘+1)

 

Thus, the derivatives of the function 𝑦(𝑥) can be defined in the following formats: 

𝑦(𝑘)(𝑥) = 𝜳(𝑥) (𝑫∗)𝑘 𝑪,                     where,   𝑘 = 1,2, ….                                                        (13) 

Then, the Eqs. (12) and (13) are substituted into the Eqs. (9), (10), and (11), obtaining: 

𝐹(𝑥,   𝜳(𝑥) 𝑪,   𝜳(𝑥) 𝑫∗ 𝑪,   𝜳(𝑥) (𝑫∗)2 𝑪,… ,𝜳(𝑥) (𝑫∗)𝑘 𝑪) = 𝑔(𝑥),                               (14) 

with,  𝜳(𝑎) (𝑫∗)𝑖 𝑪 = 𝛽𝑖,     0 ≤ 𝑖 ≤ 𝑘 − 1,                                                                                  (15) 

and, 𝜳(𝑎) (𝑫∗)𝑖 𝑪 = 𝛾𝑖,       𝜳(𝑏) (𝑫∗)𝑖 𝑪 = 𝛿𝑖,    0 ≤ 𝑖 ≤
𝑘

2
− 1.                                           (16) 

Consider the Hilbert space 𝐻 = 𝐿2[0,1], in which the inner product is defined as follows: 

〈𝑙1, 𝑙2〉 = ∫ 𝑙1(𝑥) 𝑙2(𝑥)𝑑𝑥

1

0

.                                                                                                               (17) 

Moreover, the set of functions 𝜱 = {𝛷0, 𝛷1 … ,𝛷𝑖}, are linearly independent in 𝐻, where 𝛷𝑖 =
𝑥𝑖 , 0 ≤ 𝑖 ≤ 𝑘, is the base function of standard polynomials [23, 24]. 

Thus, performing the inner product of the set of base functions 𝜱 with the left and right sides 

of the Eq. (14) in the manner of the Eq. (17), we obtain the following matrix equation [25]: 

𝑼 = 𝑹,                                                                                                                                                   (18) 

where the 𝑖𝑡ℎ row of 𝑼 and 𝑹 of the matrix equation shown in the Eq. (18) consists of the 

following: 

〈𝛷𝑖, 𝐹(𝑥,   𝜳(𝑥) 𝑪,   𝜳(𝑥) 𝑫∗ 𝑪,   𝜳(𝑥) (𝑫∗)2 𝑪,… ,𝜳(𝑥) (𝑫∗)𝑘 𝑪)  〉,   〈𝛷𝑖, 𝑔(𝑥)〉,   0 ≤ 𝑖
≤ 𝑘.    (19) 

Eventually, some entries in this matrix equation change when the initial or boundary conditions 

for the Eqs. (15) and (16) are substituted into the Eq. (18). As a result, a system of (𝑘 + 1) 

nonlinear algebraic equations with their unknown coefficients, 𝑪, is created. These algebraic 

equations can be solved numerically with available programs to obtain the values of the 

coefficients 𝑪. These values are then substituted into the Eq. (12) to produce the approximate 

solution of the Eq. (9). 
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3.2 The Hermite polynomials with their operational matrices 

     The Hermite polynomials 𝑯𝑛(𝑥), of 𝑛𝑡ℎ-order on (−∞,∞), are defined as [54]: 

𝑯𝑛(𝑥) = 𝑛!∑(−1)𝑖
 (2 𝑥)𝑛−2𝑖

𝑖 !  (𝑛 − 2 𝑖)! 
,

𝑘

𝑖=0

                                                                                            (20) 

where 𝑘 =
 𝑛

2 
  if 𝑛 is even and 𝑘 =

 𝑛−1

2 
  if 𝑛 is odd.  

Moreover, the function 𝑦(𝑥) can be defined by the (𝑘 + 1) −terms of Hermite polynomials 

𝑯𝑛(𝑥) given below. 

𝑦(𝑥) = ∑ 𝑐𝑛 𝑯𝑛(𝑥)

𝑘

𝑛=0

= 𝜳(𝑥) 𝑪,                                                                                                     (21) 

where, 𝜳(𝑥) = [𝑯0(𝑥),𝑯1(𝑥),… ,𝑯𝑘(𝑥)] and 𝑪 = [𝑐0 𝑐1 𝑐2 …𝑐𝑘]
𝑇, such that 𝑐𝑛, 𝑛 = 0,… , 𝑘, 

are the unknown Hermite polynomials coefficients, whose values will be determined later. 

Furthermore, the relevant matrix relation can be obtained as follows: 

(𝜰(𝑥))
𝑇

= 𝑫𝑯
∗  (𝜳(𝑥))

𝑇
   and    𝜰(𝑥) = 𝜳(𝑥) (𝑫𝑯

∗ )𝑇 , 

Thus, the expression of 𝜳(𝑥) will be written as follows: 

𝜳(𝑥) = 𝜰(𝑥)((𝑫𝑯
∗ )−1)𝑇. 

and the derivatives of 𝜳(𝑥) can be described as follows: 

(𝜳(𝑥))
(𝑛)

= 𝜰(𝑛)(𝑥)((𝑫𝑯
∗ )−1)𝑇 ,                    𝑛 = 1,2, ….                                                          (22) 

Where 𝜰(𝑥) = [1, 𝑥, … , 𝑥𝑘], and for odd 𝑘, then the matrix 𝑫𝑯
∗  is defined as below [55]: 

𝑫𝑯
∗ =

(

 
 
 
 
 
 
 
 

1 0 0          0         … 0
 
0

 
1

2

 
0          

 
0         …

 
0

1

2
 
0
⋮
0

  

 

   
0
  
3

4

⋮
𝑘!

2𝑘(
𝑘−1

2
)!1!

1

4
  
0
⋮
0

 

   
0
  
1

8 
⋮
𝑘!

2𝑘(
𝑘−1

2
−1)!3!

…
…
⋱
…

0
 
0 
⋮ 
0

  

)

 
 
 
 
 
 
 
 

   

and if 𝑘 is even, then the matrix 𝑫𝑯
∗  is defined as below [55]: 

𝑫𝑯
∗ =

(

 
 
 
 
 
 

1     0 0              0 … 0

0    
 
1

2
0              0 … 0

1

2 
0 
⋮
𝑘!

2𝑘(
𝑘

2
)!0!

    

0   
3

4

 
 
⋮
0

1

4
              0 … 0

0              
1

8
 … 0

⋮              ⋮  ⋱ ⋮

 
𝑘!

2𝑘(
𝑘

2
−1)!2!  0 …

𝑘!

2𝑘(0)!𝑘!
 

  

)

 
 
 
 
 
 

  

In addition, the below relation can be implemented to obtain the 𝜰(𝑛)(𝑥) using terms of the 

𝜰(𝑥): 

𝜰(𝑛)(𝑥) = 𝜰(𝑥) 𝑾𝑛,                                                                                                                         (23) 
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where,  𝑾 =

[
 
 
 
 
 
0 1 0
0 0 2
0 0 0

⋯
0
0
0

⋮ ⋱ ⋮
0 0 0
0 0 0

⋯
𝑘
0]
 
 
 
 
 

(𝑘+1)×(𝑘+1)

 

Hence, using the expressions in the Eqs. (22), (23) the derivatives of 𝑦(𝑥) can be written as 

follows: 
𝑑𝑛𝑦

𝑑𝑥𝑛
= (𝜳(𝑥))

(𝑛)
 𝑪 = 𝜰(𝑥) 𝑾𝑛 ((𝑫𝑯

∗ )−1)𝑇  𝑪 ,         where   𝑛 = 1, 2, ….                         (24) 

 

3.3 The Legendre polynomials with their operational matrices 

     The Legendre polynomials, 𝑷𝑘(𝑥), of 𝑘𝑡ℎ-order on the interval [−1,1], are defined as [20, 

56]: 

 

𝑷0(𝑥) = 1,   𝑷1(𝑥) = 𝑥,   . . . ,   𝑷𝑘+1(𝑥) =
𝑥 𝑷𝑘(𝑥)(2 𝑘 + 1) − 𝑘 𝑷𝑘−1(𝑥)

𝑘 + 1
,   𝑘 = 1,2, …. 

Also, the analytical formula of the Legendre polynomials is obtained by the following: 

𝑷𝑘(𝑥) = ∑(−1)𝑘+𝑖
 (𝑘 + 𝑖)!

2𝑖(𝑘 − 𝑖)! (𝑖!)2
 (𝑥 + 1)𝑖.

𝑘

𝑖=0

                                                                        (25) 

Furthermore, any function 𝑦(𝑥) can be expressed by the (𝑘 + 1)-terms of the Legendre 

polynomials presented below: 

𝑦(𝑥) = ∑𝑐𝑖 𝑷𝑖(𝑥)

𝑘

𝑖=0

= 𝑪𝑇𝜳(𝑥) ,                                                                                                    (26) 

where, 𝑪 = [𝑐0 𝑐1 𝑐2 …𝑐𝑘]
𝑇, and 𝜳(𝑥) = [𝑷0(𝑥), 𝑷1(𝑥),… , 𝑷𝑘(𝑥)]𝑇. 

 

     The derivatives of 𝜳(𝑥) can be regarded as: 

(𝜳(𝑥))
(𝑘)

= (𝑫𝑷
∗ )𝑘 𝜳(𝑥),                    𝑘 = 1,2, ….  

where 𝑫𝑷
∗

(𝑘 + 1)× (𝑘 + 1) is the operational matrix of the derivatives and is defined by: 

𝑫𝑷
∗ = {

(2𝑖 − 1), 𝑖 = 𝑗 − 𝑛,   where, {
𝑛 = 1,3, … , 𝑘,       if 𝑘 odd,
𝑛 = 1,3, … , 𝑘 − 1, if 𝑘 even

   
0 Otherwise.               

                        

Therefore, the derivatives of the function 𝑦(𝑥) can be written as follows: 

𝑑𝑘𝑦

𝑑𝑥𝑘
= 𝑪𝑇 (𝑫𝑷

∗ )𝑘 𝜳(𝑥),           where,   𝑘 = 1,2, ….                                                                    (27) 

 

3.4 The Bernstein polynomials with their operational matrices 

     The Bernstein polynomials 𝑩𝑖,𝑛(𝑥) of 𝑛𝑡ℎ-degree on the interval [0,1] are defined by [57] 

as follows: 

𝑩𝑖,𝑛(𝑥) =
𝑛! 𝑥𝑖  (1 − 𝑥)𝑛−𝑖

𝑖!  (𝑛 − 𝑖)!
 ,   𝑖 = 0,1,2, … , 𝑛.                                                                             (28) 

In general, 𝑦(𝑥) can be approximated by the linear combination of the Bernstein polynomials 

shown in the following formula: 

𝑦(𝑥) = ∑𝑐𝑖 𝑩𝑖,𝑛(𝑥)

𝑛

𝑖=0

= 𝑪𝑇 𝜳(𝑥),                                                                                                  (29) 

where 𝑪 = [𝑐0 𝑐1 𝑐2 …𝑐𝑛]𝑇 , and 𝜳(𝑥) = [𝑩0,𝑛, 𝑩1,𝑛, 𝑩2,𝑛, … , , 𝑩𝑛,𝑛]
𝑇
. 
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Moreover, 𝜳(𝑥) can be defined as follows [57]:     𝜳(𝑥) = 𝑵 𝑿,  
where, 

𝑵 =

[
 
 
 
 
 
 

 

(−1)0  (
𝑛

0
) (−1)1  (

𝑛

0
) (

𝑛 − 0

1
) … (−1)𝑛−0  (

𝑛

0
) (

𝑛 − 0

𝑛 − 0
)

0 (−1)0  (
𝑛

𝑖
) … (−1)𝑛−𝑖  (

𝑛

𝑖
) (

𝑛 − 𝑖

𝑛 − 𝑖
)

⋮
0

⋮
0

⋱
…

                  
⋮

(−1)0  (
𝑛

𝑛
) ]

 
 
 
 
 
 

(𝑛 + 1)× (𝑛+ 1)

 

𝑿 = [1, 𝑥, 𝑥2, … , 𝑥𝑛]𝑇 

Thus, the derivatives of 𝜳(𝑥) can be defined by: 

(𝜳(𝑥))
(𝑛)

= (𝑫𝑩
∗ )𝑛 𝜳(𝑥),                    𝑛 = 1,2, ….  

where 𝑫𝑩
∗

(𝑛 + 1)× (𝑛 + 1) is the operational matrix of the derivatives and is defined by: 

𝑫𝑩
∗ = 𝑵 𝑽 𝑩∗ ,          

where,  𝑽 =

[
 
 
 
 
0 0 0 … 0
1 0 0 … 0
0
⋮
0

2
⋮
0

0
⋮
0

⋯
⋱
…

0
⋮
𝑛]
 
 
 
 

(𝑛+1)×𝑛

, and 𝑩∗ =

[
 
 
 
 

 

𝑁1
−1

𝑁2
−1

𝑁3
−1

⋮
𝑁𝑛

−1

 

]
 
 
 
 

𝑛×(𝑛+1)

. 

Therefore, the derivatives of the function 𝑦(𝑥) can be expressed as below: 
𝑑𝑛𝑦

𝑑𝑥𝑛
= 𝑪𝑇(𝜳(𝑥))

(𝑛)
= 𝑪𝑇(𝑵 𝑽 𝑩∗)𝑛 𝜳(𝑥),      where    𝑛 = 1, 2, ….                                   (30) 

 

4. The convergence of the proposed methods and numerical results 

     This section presents the convergence for the proposed methods. In addition, the CM and 

D-CMs proposed methods will be applied to find the approximate solutions and discuss the 

numerical results for the problems. 

 

4.1 Convergence Analysis of the proposed methods 

     This subsection will discuss the convergence analysis of the proposed methods and 

fundamental theorem. 

 

Theorem 4.1.1 Let a Banach space 𝐴 ⊂ ℝ be given with a norm ‖ . ‖ defined on it. Taking 

𝑦1(𝑥) is an approximate solution that obtained from the first iteration 𝑛. The following 

sequence is constructed regarding the solution of the ordinary differential equation: 

𝑣1(𝑥) = 𝑦1(𝑥), 𝑣𝑘(𝑥) = 𝑦𝑘(𝑥) − 𝑦𝑘−1(𝑥), (𝑘 ≥ 2). 
Then, the assumptions are: 

(i) Provided that for all 𝑘 there exist 0 < 𝛽𝑘 < 1 such that ‖𝑣𝑘+1(𝑥)‖ ≤ 𝛽𝑘‖𝑣𝑘(𝑥)‖, the series 
∑ 𝑣𝑘(𝑥)∞

𝑘=1  is then convergent and so 𝑦(𝑥) = ∑ 𝑣𝑘(𝑥)∞
𝑘=1  in the interval  of interest that 

contains 𝑥. 

(ii) Otherwise, for all 𝑘 there exist 𝛽𝑘 > 1 leading to ‖𝑣𝑘+1(𝑥)‖ ≥ 𝛽𝑘‖𝑣𝑘(𝑥)‖, the series 
∑ 𝑣𝑘(𝑥)∞

𝑘=1  and thus, the proposed method diverges in the interval of interest that contains 𝑥. 

Proof: See [58]. 

 

Remark 1. Defining a converge ratio 𝛽𝑘 via 𝛽𝑘 =
‖𝑣𝑘+1(𝑥)‖

‖𝑣𝑘(𝑥)‖
  suffices to ensure that this ratio 

stays less than one for large values of 𝑘. 

 

 



Salih and AL-Jawary                             Iraqi Journal of Science, 2023, Vol. 64, No. 8, pp: 4070-4091 

 

4078 

4.2 Application of the CM and D-CMs and numerical results 

     In this subsection, the proposed methods of CM and D-CMs will be implemented to find the 

approximate solutions and present the numerical results for the three problems: the Darcy-

Brinkman-Forchheimer equation, the Blasius equation, and the Falkner-Skan equation. 

 

     The D-CMs are based on the base functions of diverse polynomials such as Hermite, 

Legendre, and Bernstein polynomials, presented in the Eqs. (20), (25), and (28), respectively, 

with related operational matrices. These polynomials are executed in two steps of the proposed 

methods techniques to improve the accuracy of the CM. Firstly, to represent a function 𝑦(𝑥) 

and its derivatives; and secondly, to compute the inner product to solve the left and right sides 

of the matrix equation shown in the Eq. (18). 

Furthermore, by substituting the initial or boundary conditions, as given in the Eqs. (15) and 

(16), some entries of the Eq. (18) are adjusted. Then we get (𝑘 +  1) nonlinear algebraic 

equations for the unknown 𝑪. By solving this system numerically by Mathematica®12, we get 

unique values for the unknown elements 𝑐0, 𝑐1, 𝑐2, … 𝑐𝑘 to achieve the best approximate solution 

to the problems. 

 

4.2.1 Solving the Darcy-Brinkman-Forchheimer equation by the CM and D-CMs 

     The procedures of CM and D-CMs that are presented in section three are applied to solve 

the first problem with the boundary conditions shown in the Eqs. (1) and (2). To be more 

precise, we substitute the Eqs. (12) and (13) into the Eqs. (1) and (2) for the technique CM, 

converting the function 𝑦(𝑥) and its derivatives as matrices. Thus, we obtain the following 

result: 

𝜳(𝑥) (𝑫∗)2 𝑪 − 𝑠2 (𝜳(𝑥) 𝑪) − 𝐹𝑠(𝜳(𝑥) 𝑪)2 +
1

𝑀
= 0, 

𝜳(0) 𝑫∗ 𝑪 = 0,   𝜳(1) 𝑪 = 0.                                                                                                          (31) 

Then, the processes have been used as shown in the Eqs. (18) and (19), so: 

〈𝑥𝑖 ,   𝜳(𝑥) (𝑫∗)2 𝑪 − 𝑠2 (𝜳(𝑥) 𝑪) − 𝐹𝑠(𝜳(𝑥) 𝑪)2〉 = 〈𝑥𝑖 , −
1

𝑀
〉,   ∀ 0 ≤ 𝑖 ≤ 𝑘.              (32) 

Substituting the Eqs. (21) and (24) into the Eqs. (1) and (2) for the D-CMs based on the Hermite 

polynomials, yields the following results: 

𝜰(𝑥) 𝑾2 ((𝑫𝑯
∗ )−1)𝑇  𝑪 − 𝑠2 (𝜳(𝑥) 𝑪) − 𝐹𝑠(𝜳(𝑥) 𝑪)2 +

1

𝑀
= 0, 

𝜰(0) 𝑾 ((𝑫𝑯
∗ )−1)𝑇  𝑪 = 0,   𝜳(1) 𝑪 = 0.                                                                                     (33) 

and by applying the processes in the Eqs. (18) and (19), the following result is obtained: 

〈𝑯𝑖(𝑥), 𝜰(𝑥) 𝑾2 ((𝑫𝑯
∗ )−1)𝑇  𝑪 − 𝑠2 (𝜳(𝑥) 𝑪) − 𝐹𝑠(𝜳(𝑥) 𝑪)2〉 = 〈𝑯𝑖(𝑥),−

1

𝑀
〉,   ∀ 0 ≤ 𝑖

≤ 𝑘.      (34) 
Implementing the D-CMs based on the Legendre polynomials by substituting the Eqs. (26) and 

(27) into the Eqs. (1) and (2), the following is obtained: 

𝑪𝑇 (𝑫𝑷
∗ )2 𝜳(𝑥) − 𝑠2 (𝑪𝑇𝜳(𝑥)) − 𝐹𝑠(𝑪𝑇𝜳(𝑥))

2
+

1

𝑀
= 0, 

𝑪𝑇 𝑫𝑷
∗  𝜳(0) = 0,   𝑪𝑇𝜳(1) = 0.                                                                                                    (35) 

Using the approaches described in the Eqs. (18) and (19), as a result, the following equation 

will be presented: 

〈𝑷𝑖(𝑥),   𝑪𝑇 (𝑫𝑷
∗ )2 𝜳(𝑥) − 𝑠2 (𝑪𝑇𝜳(𝑥)) − 𝐹𝑠(𝑪𝑇𝜳(𝑥))

2
〉 = 〈𝑷𝑖(𝑥),−

1

𝑀
〉,   ∀ 0 ≤ 𝑖

≤ 𝑘.       (36) 
Moreover, applying the D-CMs based on the Bernstein polynomials by substituting the Eqs. 

(29) and (30) into the Eqs. (1) and (2), the results are as follows: 
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𝑪𝑇(𝑵 𝑽 𝑩∗)2 𝜳(𝑥) − 𝑠2 (𝑪𝑇𝜳(𝑥)) − 𝐹𝑠(𝑪𝑇𝜳(𝑥))
2
+

1

𝑀
= 0, 

𝑪𝑇 𝑵 𝑽 𝑩∗  𝜳(𝟎) = 0,   𝑪𝑇𝜳(1) = 0.                                                                                           (37) 

Then, the processes have been utilized as given in the Eqs. (18) and (19), which will be shown: 

〈𝑩𝑖,𝑛(𝑥), 𝑪𝑇(𝑵 𝑽 𝑩∗)2 𝜳(𝑥) − 𝑠2 (𝑪𝑇𝜳(𝑥)) − 𝐹𝑠(𝑪𝑇𝜳(𝑥))
2
〉 = 〈𝑩𝑖,𝑛(𝑥),−

1

𝑀
〉 , ∀ 0 ≤ 𝑖

≤ 𝑘.       (38) 

Furthermore, the values of 𝑪 = [𝑐0 𝑐1 𝑐2 …𝑐𝑘]
𝑇 are computed by solving the algebraic system 

of equations obtained by the inner product for the left and right sides of the Eqs. (32), (34), 

(36), and (38), respectively. Then, we apply the boundary conditions to the Eqs. (31), (33), (35), 

and (37), respectively, resulting in the desired approximate solutions. 

If the parameter values are 𝑠 = 1, 𝐹 = 1, and 𝑀 = 1, as in [30], with 𝑛 = 10, then the 

approximate solutions to the Darcy-Brinkman-Forchheimer equation will be: 

By implementing the CM based on the standard polynomials: 

𝑦(𝑥) ≈ 0.323852 − 0.285634 𝑥2 + 2.29576 × 10−6𝑥3 − 0.0392379 𝑥4

+ 0.0000786079 𝑥5 + 0.000355229 𝑥6 + 0.000352023 𝑥7

+ 0.0000516179 𝑥8 + 0.00021914 𝑥9 − 0.0000397161 𝑥10. 
Also,  by applying the D-CMs based on the Hermite polynomials, the approximate solution is 

as follows: 

𝑦(𝑥) ≈ 0.323852 − 0.285634 𝑥2 + 8.09041 × 10−7𝑥3 − 0.0392285 𝑥4

+ 0.0000453107 𝑥5 + 0.00042653 𝑥6 + 0.000257895 𝑥7

+ 0.000126615 𝑥8 + 0.000186053 𝑥9 − 0.0000335066 𝑥10. 
Moreover, by utilizing the D-CMs based on the Legendre polynomials, we obtain: 

𝑦(𝑥) ≈ 0.323852 − 0.285634 𝑥2 + 8.72335 × 10−7𝑥3 − 0.039229 𝑥4

+ 0.0000475082 𝑥5 + 0.000421236 𝑥6 + 0.000265524 𝑥7

+ 0.000120109 𝑥8 + 0.000189083 𝑥9 − 0.0000341013 𝑥10. 
In addition, by using the D-CMs based on the Bernstein polynomials, the result is as follows: 

𝑦(𝑥) ≈ 0.323852 − 0.285634 𝑥2 + 1.25704 × 10−6𝑥3 − 0.0392306 𝑥4

+ 0.0000502471 𝑥5 + 0.000421401 𝑥6 + 0.000257496 𝑥7

+ 0.00013264 𝑥8 + 0.000180879 𝑥9 − 0.000032064 𝑥10. 
Furthermore, since the exact solution to this problem is not available, the maximum error 

remainder (𝑀𝐸𝑅𝑛) [3] has been computed to verify the accuracy and efficiency of the 

approximate solution obtained by the proposed methods. The 𝑀𝐸𝑅𝑛 is computed by: 

𝑀𝐸𝑅𝑛 = 𝑚𝑎𝑥
0≤𝑥≤1

|
𝑑2𝑦

𝑑𝑥2
− 𝑠2𝑦 − 𝐹𝑠𝑦2 +

1

𝑀
| . 

Figure 2 shows the logarithmic plots for the 𝑀𝐸𝑅𝑛 values obtained by the CM based on the 

standard polynomials and by the D-CMs based on the Hermite, Legendre, and Bernstein 

polynomials, which demonstrate the efficiency and accuracy of these methods by observation 

of the error values for  𝑛 =  2 to 10, as we found that the error decreases with increasing the 

values of 𝑛. 
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Figure 2: Logarithmic plots of 𝑀𝐸𝑅𝑛 to the Darcy-Brinkman-Forchheimer equation. 

 

Figure 3 also shows the comparison between the approximate solutions computed by the 

proposed methods for 𝑛 =  10, 𝑠 = 1, 𝐹 = 1, and 𝑀 = 1. It can be seen that good agreements 

have been reached for all the proposed methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: The comparison of the solutions to the Darcy-Brinkman-Forchheimer equation by 

proposed methods. 

 

     Moreover, Table 1 shows the values of the 𝑀𝐸𝑅𝑛 for the approximate solution using the 

CM and D-CMs with 𝑛 = 10 and parameters 𝑠 = 𝑀 = 1, versus the value of 𝐹, which shows 

the efficiency of these methods. In addition, it can be observed that the D-CMs based on the 

Hermite polynomials method provide slightly better accuracy with the lowest number of errors 

compared to other methods. 

 

Table 1: The comparison between the 𝑀𝐸𝑅10 when 𝑠 = 𝑀 = 1, and versus the value of 𝐹 for 

the Darcy-Brinkman-Forchheimer equation 

𝑭 CM Standard D-CMs Hermite D-CMs Legendre D-CMs Bernstein 

2 1.27523 × 10−6 2.5299 × 10−7 2.7852 × 10−7 7.89173 × 10−7 

4 5.33771 × 10−6 1.05117 × 10−6 1.15826 × 10−6 3.3408 × 10−6 

6 0.0000118871 2.36983 × 10−6 2.5595 × 10−6 7.55135 × 10−6 
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To prove the convergence of the proposed methods for the Darcy-Brinkman-Forchheimer 

equation, we applied the convergence condition described in Theorem 4.1.1 for all 𝑛 (𝑛 =

 2 to 10) by calculating the values of 𝛽𝑘 =
‖𝑣𝑘+1(𝑥)‖

‖𝑣𝑘(𝑥)‖
, as shown in Table 2. The results of the 

values 𝛽𝑘 for all 𝑘 ≥ 2 and 0 ≤ 𝑥 ≤ 1, are less than one. Therefore, the approximate solutions 

obtained by the proposed methods CM and D-CMs converge. 

 

Table 2: The value of β_k to the approximate solutions of the proposed methods for n=2 to 10 

for the Darcy-Brinkman-Forchheimer equation. 

𝜷𝒌 CM Standard D-CMs Hermite D-CMs Legendre D-CMs Bernstein 

𝜷𝟐 0.173548 0.15834 0.160029 0.072699 

𝜷𝟑 0.0953564 0.0286194 0.0360889 0.143561 

𝜷𝟒 0.162073 0.0534302 0.0468172 0.110772 

𝜷𝟓 0.223742 0.156357 0.14314 0.246433 

𝜷𝟔 0.146797 0.113461 0.110536 0.159067 

𝜷𝟕 0.0897495 0.0637192 0.0636611 0.085619 

𝜷𝟖 0.400987 0.0145453 0.0154304 0.0142074 

𝜷𝟗 0.0331932 0.577301 0.552068 0.886542 

 

4.2.2 Solving the Blasius equation by the CM and D-CMs 

     The procedures of CM and D-CMs that are presented in section three can be utilized to solve 

the second problem illustrated in the Eqs. (3) and (5).  To do this, the Eqs. (12) and (13) are 

substituted into the Eqs. (3) and (5) for the procedure CM, converting the function 𝑦(𝑥) and its 

derivatives into matrices. Thus, we obtain the following result: 

𝜳(𝑥) (𝑫∗)3 𝑪 +
1

2
 (𝜳(𝑥) 𝑪)(𝜳(𝑥) (𝑫∗)2 𝑪) = 0, 

𝜳(0) 𝑪 = 𝜳(0) 𝑫∗ 𝑪 = 0,    𝜳(0) (𝑫∗)2 𝑪 = 𝑎.                                                                         (39) 

Then, the processes have been used as shown in the Eqs. (18) and (19), so: 

〈𝑥𝑖 ,   𝜳(𝑥) (𝑫∗)3 𝑪 +
1

2
 (𝜳(𝑥) 𝑪)(𝜳(𝑥) (𝑫∗)2 𝑪)  〉 = 〈𝑥𝑖 ,   0〉,   ∀ 0 ≤ 𝑖 ≤ 𝑘.                 (40) 

Substituting the Eqs. (21) and (24) into the Eqs. (3) and (5) for the D-CMs based on the Hermite 

polynomials produce the following results: 

𝜰(𝑥) 𝑾𝟑 ((𝑫𝑯
∗ )−𝟏)𝑻  𝑪 +

𝟏

𝟐
 (𝜳(𝑥) 𝑪)(𝜰(𝑥) 𝑾𝟐 ((𝑫𝑯

∗ )−𝟏)𝑻  𝑪) = 0, 

𝜳(0) 𝑪 = 𝜰(0) 𝑾 ((𝑫𝑯
∗ )−1)𝑇  𝑪 = 0,    𝜰(0) 𝑾2 ((𝑫𝑯

∗ )−1)𝑇  𝑪 = 𝑎.                                   (41) 

and by applying the procedures as presented in the Eqs. (18) and (19), the following is obtained: 

〈𝑯𝒊(𝑥), 𝜰(𝑥) 𝑾𝟑 ((𝑫𝑯
∗ )−𝟏)𝑻  𝑪 +

𝟏

𝟐
 (𝜳(𝑥) 𝑪)(𝜰(𝑥) 𝑾𝟐 ((𝑫𝑯

∗ )−𝟏)𝑻  𝑪) 〉 = 〈𝑯𝒊(𝑥), 0〉,   ∀ 0

≤ 𝑖 ≤ 𝑘.         (42) 
Using the D-CMs based on the Legendre polynomials by substituting the Eqs. (26) and (27) 

into the Eqs. (3) and (5), the following is obtained: 

𝑪𝑻 (𝑫𝑷
∗ )𝟑 𝜳(𝑥) +

𝟏

𝟐
 (𝑪𝑻𝜳(𝑥)) (𝑪𝑻 (𝑫𝑷

∗ )𝟐 𝜳(𝑥)) = 0, 

𝑪𝑇𝜳(0) = 𝑪𝑇 𝑫𝑷
∗  𝜳(0) = 0,    𝑪𝑇 (𝑫𝑷

∗ )2 𝜳(0) = 𝑎.                                                                 (43) 

Also, by implementing the procedures as given in the Eqs. (18) and (19), it follows that: 

〈𝑷𝑖(𝑥),   𝑪𝑇 (𝑫𝑷
∗ )3 𝜳(𝑥) +

1

2
 (𝑪𝑇𝜳(𝑥))(𝑪𝑇 (𝑫𝑷

∗ )2 𝜳(𝑥))  〉 = 〈𝑷𝑖(𝑥),   0〉,   ∀ 0 ≤ 𝑖

≤ 𝑘.                   (44) 
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Moreover, applying the D-CMs based on the Bernstein polynomials by substituting the Eqs. 

(29) and (30) into the Eqs. (3) and (5), we get: 

𝑪𝑇(𝑵 𝑽 𝑩∗)3 𝜳(𝑥) +
1

2
 (𝑪𝑇𝜳(𝑥))(𝑪𝑇(𝑵 𝑽 𝑩∗)2 𝜳(𝑥)) = 0, 

𝑪𝑇𝜳(0) = 𝑪𝑇 𝑵 𝑽 𝑩∗  𝜳(0) = 0,    𝑪𝑇(𝑵 𝑽 𝑩∗)2 𝜳(0) = 𝑎.                                                  (45) 

Then, the procedures have been utilized as given in the Eqs. (18) and (19), will be presented: 

〈𝑩𝑖,𝑛(𝑥), 𝑪𝑇(𝑵 𝑽 𝑩∗)3 𝜳(𝑥) +
1

2
 (𝑪𝑇𝜳(𝑥))(𝑪𝑇(𝑵 𝑽 𝑩∗)2 𝜳(𝑥)) 〉 = 〈𝑩𝑖,𝑛(𝑥), 0〉, ∀ 0 ≤ 𝑖 ≤

𝑘.          (46)   

 

     Furthermore, the values of 𝑪 = [𝑐0 𝑐1 𝑐2 …𝑐𝑘]
𝑇 are computed by solving the algebraic 

system of equations achieved by the inner product for the left and right sides from the Eqs. (40), 

(42), (44), and (46), respectively. Then, we apply the initial conditions to the Eqs. (39), (41), 

(43), and (45), respectively, resulting in the required approximate solutions. 

 

     We consider the value of 𝑎 = 0.3320573, as in [37] with 𝑛 = 10, in this problem. The 

approximate polynomials for the Blasius equation are: 

 

     By applying the CM based on the standard polynomials: 

𝑦(𝑥) ≈ 0.166029 𝑥2 + 3.40035 × 10−9𝑥3 − 2.07849 × 10−8𝑥4 − 0.000459348 𝑥5

− 1.85524 × 10−7𝑥6 + 2.93847 × 10−7𝑥7 + 2.1901 × 10−6𝑥8

+ 2.05083 × 10−7𝑥9 − 8.02077 × 10−8𝑥10. 
 

     Also,  by using the D-CMs based on the Hermite polynomials, the approximate solution is 

as follows: 

𝑦(𝑥) ≈ 0.166029 𝑥2 + 1.53683 × 10−10𝑥3 − 2.71796 × 10−9𝑥4 − 0.000459406 𝑥5

− 6.94025 × 10−8𝑥6 + 1.50229 × 10−7𝑥7 + 2.29803 × 10−6𝑥8

+ 1.59957 × 10−7𝑥9 − 7.21516 × 10−8𝑥10. 
 

     Moreover, by utilizing the D-CMs based on the Legendre polynomials, we achieve: 

𝑦(𝑥) ≈ 0.166029 𝑥2 + 2.8487 × 10−10𝑥3 − 4.25209 × 10−9𝑥4 − 0.000459399 𝑥5

− 8.8161 × 10−8𝑥6 + 1.77815 × 10−7𝑥7 + 2.27448 × 10−6𝑥8

+ 1.70818 × 10−7𝑥9 − 7.42472 × 10−8𝑥10. 
In addition, by implementing the D-CMs based on the Bernstein polynomials, the result is as 

follows: 

𝑦(𝑥) ≈ 2.99841 × 10−116 − 2.53784 × 10−156𝑥 + 0.166029 𝑥2 + 3.40035 × 10−9𝑥3

− 2.07849 × 10−8𝑥4 − 0.000459348 𝑥5 − 1.85524 × 10−7𝑥6

+ 2.93847 × 10−7𝑥7 + 2.1901 × 10−6𝑥8 + 2.05083 × 10−7𝑥9

− 8.02077 × 10−8𝑥10. 
      

     The exact solution to this problem is not available. Therefore, the maximum error remainder 

(𝑀𝐸𝑅𝑛) has been computed to verify the accuracy and efficiency of the approximate solution 

obtained by the proposed methods. The 𝑀𝐸𝑅𝑛 is computed by [15]:  

  

𝑀𝐸𝑅𝑛 = 𝑚𝑎𝑥
0≤𝑥≤1

|
𝑑3𝑦(𝑥)

𝑑𝑥3
+

1

2
𝑦(𝑥)

𝑑2𝑦(𝑥)

𝑑𝑥2
| . 

 

     Figure 4 presents the logarithmic plots for the 𝑀𝐸𝑅𝑛 values obtained by the CM based on 

the standard polynomials as well as by the D-CMs based on the Hermite, Legendre, and 

Bernstein polynomials for 𝑛 =  3 to 10, with a value of 𝑎 = 0.3320573, according to previous 
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studies [37]. The accuracy of these methods can be shown by observing the error values for 𝑛, 
as we observed that the error becomes smaller as the value of 𝑛 is increased. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Logarithmic plots of 𝑀𝐸𝑅𝑛 for the Blasius equation. 

 

      Figure 5 also shows the comparison between the approximate solutions computed by the 

proposed methods for 𝑛 =  10, and 𝑎 = 0.3320573. As can be seen from the figure, impressive 

agreements have been obtained for all the proposed methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: The comparison of the solutions for the Blasius equation. 

 

      Moreover, Table 3 shows the 𝑀𝐸𝑅𝑛 values for the approximate solution using the CM and 

D-CMs with 𝑛 = 10, demonstrating the effectiveness of these approaches. In addition, it can 

be observed that the D-CMs based on the Hermite polynomials method provide better accuracy 

with less errors compared to the other methods. 
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Table 3: The comparison between the 〖MER〗_10 for the Blasius equation by proposed 

methods 

𝒏 CM Standard D-CMs Hermite D-CMs Legendre D-CMs Bernstein 

10 2.04021 × 10−8 9.22099 × 10−10 1.70922 × 10−9 2.04021 × 10−8 

 

     Furthermore, to prove the convergence of the proposed methods for the Blasius equation, 

we implemented the convergence condition described in Theorem 4.1.1 for all 𝑛 (𝑛 =  3 to 10) 

by computing the values of 𝛽𝑘 =
‖𝑣𝑘+1(𝑥)‖

‖𝑣𝑘(𝑥)‖
, as presented in Table 4. The results of the values 𝛽𝑘 

for all 𝑘 ≥ 3 and 0 ≤ 𝑥 ≤ 1, are less than one. Therefore, the approximate solutions achieved 

by the proposed methods CM and D-CMs converge. 

 

Table 4: The value of 𝛽𝑘 to the approximate solutions of the proposed methods for 𝑛 = 3 to 10 

for the Blasius equation 

𝜷𝒌 CM Standard D-CMs Hermite D-CMs Legendre D-CMs Bernstein 

𝜷𝟑 0.0189971 0.00920355 0.000195189 0.0189971 

𝜷𝟒 0.279533 0.144859 0.1119 0.279533 

𝜷𝟓 0.0481304 0.00525318 0.0212143 0.0481304 

𝜷𝟔 0.227297 0.0556783 0.0835961 0.227297 

𝜷𝟕 0.0842867 0.0172857 0.0302655 0.0842867 

𝜷𝟖 0.0619229 0.0164596 0.0133762 0.0619229 

𝜷𝟗 0.126409 0.0769624 0.0378436 0.126409 

 

4.2.3 Solving the Falkner-Skan equation by the CM and D-CMs 

     The procedures of CM and D-CMs presented in section three can be implemented to solve 

the third problem explained in the Eqs. (6) and (8). To be more specific, for the CM approach, 

we transform the function 𝑦(𝑥) and its derivatives into matrices by substituting the Eqs. (12) 

and (13) into the Eqs. (6) and (8). Thus, we get the following result: 

𝜳(𝑥) (𝑫∗)3 𝑪 + (𝜳(𝑥) 𝑪)(𝜳(𝑥) (𝑫∗)2 𝑪) + 𝛽 [𝜖2 − (𝜳(𝑥) 𝑫∗ 𝑪)2] = 0, 
𝜳(0) 𝑪 = 0,   𝜳(0) 𝑫∗ 𝑪 = 1 − 𝜖,   𝜳(0) (𝑫∗)2 𝑪 = −0.832666.                                       (47) 

 

     Then, the procedures have been used as shown in the Eqs. (18) and (19), so: 

〈𝑥𝑖 ,   𝜳(𝑥) (𝑫∗)3 𝑪 + (𝜳(𝑥) 𝑪)(𝜳(𝑥) (𝑫∗)2 𝑪) + 𝛽 [−(𝜳(𝑥) 𝑫∗ 𝑪)2]  〉

= 〈𝑥𝑖 , − 𝛽 𝜖2〉,   ∀ 0 ≤ 𝑖 ≤ 𝑘.     (48) 

 

     Substituting the Eqs. (21) and (24) into the Eqs. (6) and (8) for the D-CMs based on the 

Hermite polynomials yield the following: 

𝜰(𝑥) 𝑾3 ((𝑫𝑯
∗ )−1)𝑇  𝑪 + (𝜳(𝑥) 𝑪)(𝜰(𝑥) 𝑾2 ((𝑫𝑯

∗ )−1)𝑇  𝑪) + 𝛽 [𝜖2

− (𝜰(𝑥) 𝑾 ((𝑫𝑯
∗ )−1)𝑇  𝑪)2] = 0, 

𝜳(0) 𝑪 = 0,   𝜰(0) 𝑾 ((𝑫𝑯
∗ )−1)𝑇  𝑪 = 1 − 𝜖,   𝜰(0) 𝑾2 ((𝑫𝑯

∗ )−1)𝑇   𝑪 = −0.832666. (49) 

and, by using the processes shown in the Eqs. (18) and (19), the following results: 

〈𝑯𝑖(𝑥), 𝜰(𝑥) 𝑾3 ((𝑫𝑯
∗ )−1)𝑇  𝑪 + (𝜳(𝑥) 𝑪)(𝜰(𝑥) 𝑾2 ((𝑫𝑯

∗ )−1)𝑇  𝑪)
+ 𝛽 [−(𝜰(𝑥) 𝑾 ((𝑫𝑯

∗ )−1)𝑇  𝑪)2] 〉 = 〈𝑯𝑖(𝑥), − 𝛽 𝜖2〉,   ∀ 0 ≤ 𝑖
≤ 𝑘.                    (50) 

 

     Applying the D-CMs based on the Legendre polynomials by substituting the Eqs. (26) and 

(27) into the Eqs. (6) and (8), it follows: 

𝑪𝑇 (𝑫𝑷
∗ )3 𝜳(𝑥) + (𝑪𝑇𝜳(𝑥))(𝑪𝑇 (𝑫𝑷

∗ )2 𝜳(𝑥)) + 𝛽 [𝜖2 − (𝑪𝑇 𝑫𝑷
∗  𝜳(𝑥))2] = 0, 
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𝑪𝑇𝜳(0) = 0,   𝑪𝑇 𝑫𝑷
∗  𝜳(0) = 1 − 𝜖,   𝑪𝑇 (𝑫𝑷

∗ )2 𝜳(0) = −0.832666.                                (51) 

 

      Also, by implementing the techniques that are given in Eqs. (18) and (19), the following is 

obtained: 

〈𝑷𝑖(𝑥),   𝑪𝑇 (𝑫𝑷
∗ )3 𝜳(𝑥) + (𝑪𝑇𝜳(𝑥))(𝑪𝑇 (𝑫𝑷

∗ )2 𝜳(𝑥)) + 𝛽 [−(𝑪𝑇 𝑫𝑷
∗  𝜳(𝑥))2] 〉

= 〈𝑷𝑖(𝑥), − 𝛽 𝜖2〉,   ∀ 0 ≤ 𝑖 ≤ 𝑘.                                                                          (52) 
 

      Moreover, using the D-CMs based on the Bernstein polynomials by substituting the Eqs. 

(29) and (30) into the Eqs. (6) and (8), we achieve: 

𝑪𝑇(𝑵 𝑽 𝑩∗)3 𝜳(𝑥) + (𝑪𝑇𝜳(𝑥))(𝑪𝑇(𝑵 𝑽 𝑩∗)2 𝜳(𝑥)) + 𝛽 [𝜖2 − (𝑪𝑇  𝑵 𝑽 𝑩∗  𝜳(𝑥))2] = 0, 
𝑪𝑇𝜳(0) = 0,   𝑪𝑇 𝑵 𝑽 𝑩∗  𝜳(0) = 1 − 𝜖,   𝑪𝑇(𝑵 𝑽 𝑩∗)2 𝜳(0) = −0.832666.                 (53) 

 

     Then, the processes have been utilized as given in the Eqs. (18) and (19), which will be 

shown: 

〈𝑩𝑖,𝑛(𝑥),   𝑪𝑇(𝑵 𝑽 𝑩∗)3 𝜳(𝑥) + (𝑪𝑇𝜳(𝑥))(𝑪𝑇(𝑵 𝑽 𝑩∗)2 𝜳(𝑥))

+ 𝛽 [−(𝑪𝑇 𝑵 𝑽 𝑩∗  𝜳(𝑥))2] 〉 = 〈𝑩𝑖,𝑛(𝑥),− 𝛽 𝜖2〉,   ∀ 0 ≤ 𝑖 ≤ 𝑘.              (54) 

 

      Furthermore, the values of 𝑪 = [𝑐0 𝑐1 𝑐2 …𝑐𝑘]
𝑇 are computed by solving the algebraic 

system of equations obtained by the inner product for the left and right sides of the Eqs. (48), 

(50), (52), and (54), respectively. Then, we apply the initial conditions to the Eqs. (47), (49), 

(51), and (53), respectively, resulting in the desired approximate solutions. 

 

     The approximate polynomials for the Falkner-Skan equation when the parameter values are 

as follows: β = 0.5, 𝜖 = 0.1, as in [47], with 𝑛=8, will be: 

 

     By using the CM based on the standard polynomials: 

𝑦(𝑥) ≈ 0.9 𝑥 − 0.416333 𝑥2 + 0.0666511 𝑥3 + 0.0000592155 𝑥4 − 0.00313186 𝑥5

+ 0.000639976 𝑥6 + 0.0000210854 𝑥7 − 0.0000188788 𝑥8. 
 

     Also,  by implementing the D-CMs based on the Hermite polynomials, the approximate 

solution is given by: 

𝑦(𝑥) ≈ 0.9 𝑥 − 0.416333 𝑥2 + 0.0666655 𝑥3 + 0.0000121427 𝑥4 − 0.00304735 𝑥5

+ 0.000555141 𝑥6 + 0.0000657991 𝑥7 − 0.0000285272 𝑥8. 
 

     Moreover, by utilizing the D-CMs based on the Legendre polynomials, we obtain: 

𝑦(𝑥) ≈ 0.9 𝑥 − 0.416333 𝑥2 + 0.0666643 𝑥3 + 0.0000188834 𝑥4 − 0.00306372 𝑥5

+ 0.000574952 𝑥6 + 0.0000539242 𝑥7 − 0.000025712 𝑥8. 
 

     In addition, by applying the D-CMs based on the Bernstein polynomials, the result is as 

follows: 

𝑦(𝑥) ≈ 5.26016 × 10−96 + 0.9 𝑥 − 0.416333 𝑥2 + 0.0666446 𝑥3 + 0.0000758482 𝑥4

− 0.00315636 𝑥5 + 0.00066085 𝑥6 + 0.0000115058 𝑥7

− 0.0000170425 𝑥8. 
The maximal error remainder (𝑀𝐸𝑅𝑛) is evaluated since there is no exact solution to the 

problem and also to check the accuracy and efficiency of the approximate solution obtained by 

the CM and D-CMs. The 𝑀𝐸𝑅𝑛 is computed by [15]: 

𝑀𝐸𝑅𝑛 = 𝑚𝑎𝑥
0≤𝑥≤1

|
𝑑3𝑦

𝑑𝑥3
+ 𝑦 

𝑑2𝑦

𝑑𝑥2
+ 𝛽 [𝜖2 − (

𝑑𝑦

𝑑𝑥
)2]| . 
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      Figure 6 shows the logarithmic plots for the 𝑀𝐸𝑅𝑛 values obtained by the CM based on the 

standard polynomials and by the D-CMs based on the Hermite, Legendre, and Bernstein 

polynomials for the parameters 𝛽 = 0.5 and 𝜖 = 0.1, according to studies [47], which show the 

reliability and efficiency of these methods by observing the error values for 𝑛 =  2 to 8. We 

find that the error decreases with increasing values of 𝑛. Also, it can be observed that the D-

CMs based on the Hermite polynomials method provide better accuracy with less errors 

compared to the other methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Logarithmic plots of 𝑀𝐸𝑅𝑛 for the Falkner-Skan equation by proposed methods. 

 

      Moreover, Figure 7 demonstrates the comparison between the approximate solutions 

computed by the proposed methods for 𝑛 =  8, 𝛽 = 0.5, and 𝜖 = 0.1. As can be seen from the 

figure, good agreement was obtained for all the proposed methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: The comparison of the solutions to the Falkner-Skan equation by proposed methods. 

 

      In addition, Figures 8 and 9 show the logarithmic plots of the 𝑀𝐸𝑅𝑛 for the approximate 

solution of the Falkner-Skan equation with 𝑛 = 2 to 8, using the CM and D-CMs when fixed 

the pressure gradient parameter 𝛽 = 0.5, and increasing the values of the velocity ratio 
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parameter as  𝜖 = 0.1, 0.2, 0.3, and 0.4, as chosen in [47]. In Figures 8 and 9, the errors decrease 

when the value of 𝜖 is increased. 

(a)                                                                          (b) 

Figure 8: Logarithmic plots of 𝑀𝐸𝑅𝑛 for the Falkner-Skan equation by (a) CM based on the 

standard polynomials and (b) D-CMs based on the Hermite polynomials. 

 

(a)                                                                         (b) 

Figure 9: Logarithmic plots of 𝑀𝐸𝑅𝑛 for the Falkner-Skan equation by (a) D-CMs based on 

the Legendre polynomials and (b) D-CMs based on the Bernstein polynomials. 

 

      Furthermore, Figures 10 and 11 show the logarithmic plots of the 𝑀𝐸𝑅𝑛 for the approximate 

solution of the Falkner-Skan equation with 𝑛 = 2 to 8, using the CM and D-CMs for different 

values of 𝛽 when fixed the parameter 𝜖 = 0.1. In Figures 10 and 11, it is clear that as the values 

of 𝛽 increase, the errors also incre 

 

(a)                                                             (b) 

 

Figure 10: Logarithmic plots of 𝑀𝐸𝑅𝑛 for the Falkner-Skan equation by (a) CM based on the 

standard polynomials and (b) D-CMs based on the Hermite polynomials. 
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(a)                                                              (b) 

Figure 11: Logarithmic plots of 𝑀𝐸𝑅𝑛 for the Falkner-Skan equation by (a) D-CMs based on 

the Legendre polynomials and (b) D-CMs based on the Bernstein polynomials. 

 

      To prove the convergence of the proposed methods for the Falkner-Skan equation, we 

applied    the convergence condition described in Theorem 4.1.1 for all 𝑛 (𝑛 =  2 to 8) by 

calculating the values of 𝛽𝑘 =
‖𝑣𝑘+1(𝑥)‖

‖𝑣𝑘(𝑥)‖
, as indicated in Table 5. The results of the values 𝛽𝑘 for 

all 𝑘 ≥ 2 and 0 ≤ 𝑥 ≤ 1, are less than one. Therefore, the approximate solutions obtained by 

the proposed methods CM and D-CMs converge. 

 

Table 5: The value of 𝛽𝑘 to the approximate solutions of the proposed methods for 𝑛 = 2 to 8 

for the Falkner-Skan equation 

𝜷𝒌 CM Standard D-CMs Hermite D-CMs Legendre D-CMs Bernstein 

𝜷𝟐 0.0672421 0.0719283 0.0912813 0.0672421 

𝜷𝟑 0.234975 0.124291 0.0310187 0.234975 

𝜷𝟒 0.128144 0.0978703 0.57351 0.128144 

𝜷𝟓 0.498221 0.05618 0.167595 0.498222 

𝜷𝟔 0.0808742 0.0107073 0.019594 0.0807772 

𝜷𝟕 0.131467 0.0458754 0.0676503 0.109996 

 

5. Conclusions 

     In this paper, the computational method (CM) based on standard polynomials and the novel 

computational methods (D-CMs)  based on different types of orthogonal polynomials, Hermite, 

Legendre, and Bernstein polynomials have been presented and implemented to solve three 

nonlinear problems, the Darcy-Brinkman-Forchheimer equation, the Blasius equation, and the 

Falkner-Skan equation. The nonlinear problems are reduced to a nonlinear algebraic system of 

equations, which is solved using Mathematica®12. The approximate solutions were obtained 

and appeared to be accurate and efficient even within polynomials of low orders. Moreover, the 

𝑀𝐸𝑅𝑛 was computed for the proposed methods. The results show that the proposed methods 

have better accuracy with lower errors. In addition, it is observed that the results of the 𝑀𝐸𝑅𝑛 

by the proposed methods D-CMs decreased significantly compared to the CM. Therefore, the 

suggested novel methods D-CMs have better accuracy than the CM. It can be concluded that 

the D-CMs based on the Hermite polynomials are better than the other methods for the three 

nonlinear problems. 
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