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Abstract

In this paper, the computational method (CM) based on the standard polynomials
has been implemented to solve some nonlinear differential equations arising in
engineering and applied sciences. Moreover, novel computational methods have been
developed in this study by orthogonal base functions, namely Hermite, Legendre, and
Bernstein polynomials. The nonlinear problem is successfully converted into a
nonlinear algebraic system of equations, which are then solved by Mathematica®12.
The developed computational methods (D-CMs) have been applied to solve three
applications involving well-known nonlinear problems: the Darcy-Brinkman-
Forchheimer equation, the Blasius equation, and the Falkner-Skan equation, and a
comparison between the methods has been presented. In addition, the maximum error
remainder (MER,,) has been computed to demonstrate the accuracy of the proposed
methods. The results persuasively prove that CM and D-CMs are reliable and accurate
in obtaining the approximate solutions to the problems, with obvious superiority in
accuracy for D-CMs than to CM.

Keywords: Novel approximate solution; Hermite polynomials; Legendre
polynomials; Bernstein polynomials; Base functions.
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1. Introduction

In the classical theories of the various branches of science, differential equations are mainly
linear. In modern science, when certain phenomena cannot be explained by linear differential
equations, it is inevitable to resort to nonlinear differential equations to obtain the desired
information [1]. Solution methods for these types of equations are of great importance and have
appeared in the mathematical formulation of many phenomena, including engineering, fluid
mechanics, flow models, and mathematical physics [2]. Therefore, the need for reliable and
effective numerical or approximate methods to solve these types of equations has become a
very important requirement [3].

Many analytical and approximation methods for solving nonlinear differential equations
have been presented and modified by authors all over the world, such as the homotopy
perturbation method [4], the homotopy analysis method [5], the Adomian decomposition
method [6], the variational iteration method [7], the He-Laplace variational iteration method
[8], the modified Laplace decomposition method [9], the Bernstein collocation method [10],
the Wang-Ball operational matrix method [11], the differential transform-Pade technique [12],
the Taylor series method [13], and some other methods, see [14-18].

In 1973, Corrington [19] showed that linear differential and integral equations can be
converted into a system of algebraic linear equations with a least-squares approximation and
repeated integrations of Walsh functions. On the other hand, the orthogonal polynomials are
characterized, above all, by the fact that they effectively simplify the required solution by
transforming the nonlinear differential equations into nonlinear algebraic systems of equations
using the operational matrices technique, where they can be solved simply by using any
computational program. In addition, the classical operational matrix method based on
orthogonal polynomials such as Legendre polynomials [20], Bernstein polynomials [21], and
Hermite polynomials [22] attracted great interest from the authors as they were very useful
techniques for solving many different problems in approximation theory and numerical analysis

13].

In 2013, Turkyilmazoglu [23] proposed an analytic approximate method, namely the
effective computational method, and used it to solve various types of problems, for more details,
see [24-27]. Moreover, the approach depends upon standard base functions of the general type,
such as the standard polynomials [1, x, x2, ... ], and the exact solutions are given under certain
conditions. In addition, the solution of the nonlinear equations is converted into a nonlinear
algebraic system with unknown standard polynomial coefficients, which can be solved
numerically or analytically using modern software.

The current aim of this paper is to implement CM based on the standard polynomials to
solve three applications involving well-known nonlinear problems: the Darcy-Brinkman-
Forchheimer equation, the Blasius equation, and the Falkner-Skan equation, which appeared in
engineering and applied sciences. The main goals are to develop the CM by introducing various
orthogonal polynomials, such as Hermite, Legendre, and Bernstein polynomials, and to form a
novel D-CMs collection. The ultimate objective is to apply the D-CMs to solve these problems.

The outline of the paper is as follows: Section two describes the mathematical formulation
of three nonlinear models. Section three presents the basic concepts of the proposed methods.
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In section four, the convergence of the proposed methods will be given, and the problems will
be solved using the proposed methods, with a discussion of the numerical results. Finally, in
section five, the conclusions will be presented.

2. The mathematical formulation of nonlinear models

2.1 The Darcy-Brinkman-Forchheimer equation

Consider a steady-state, pressure-driven, fully developed parallel flow through a horizontal
channel filled with a porous medium [28], as shown in Figure 1:

L 2h

Figure 1: Parallel flow in a fluid-saturated porous channel [29].

The bottom and the top plates are located at y = h and y = — h, respectively. The flow is in
the direction of the x-axis and the velocity is also of the form u = (y(x), 0,0). It is known that
the flow in the channel is determined by the Darcy-Brinkman-Forchheimer equation, which is
as follows [30]:

d’y , 1

W_S y — Fsy +M_O' (D
with boundary conditions:

y'(©0) =0 y@)=0. (2)

where F represents the Forchheimer number, s represents the porous medium shape parameter,
and M is the viscosity ratio.

Several analytical and approximate methods have been presented for solving the Darcy-
Brinkman-Forchheimer equation, for instance, the finite difference method [31], the Tau
homotopy analysis method [28], the optimal Galerkin homotopy asymptotic method [30], and
the homotopy analysis method [32]. In particular, Motsa et al. [29] implemented the spectral
homotopy analysis approach to obtain an accurate result for the model. Adewumi et al. [33]
applied the hybrid method in combination with the Chebyshev collocation method with Laplace
and differential transform methods to obtain approximate solutions for the model. In addition,
Abbasbandy et al. [34] obtained a closed-form solution of forced convection in a porous
saturated channel.

2.2 The Blasius equation

The Blasius equation is a well-known third-order nonlinear ordinary differential equation
that appeared in certain boundary layer problems of the two-dimensional laminar viscous flow
of a fluid over a flat plate. It is the governing equation for fluid dynamics and is represented by
the following equation [35]:

By 1 dyE) _

Tty —5-=0, 3)
with boundary conditions:
y(0) =y'(0) =0,y'(») =1, (4)

The second derivative of y(x) at zero is important in the Blasius equation to determine the
shear stress on the plate. Many authors have tried to solve this equation and obtained different
numbers for this value. More details can be found in [36-38].
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Liao in [37] used the homotopy-Padé approximation technique to derive the initial condition
y"(0) = a from the boundary condition y’(c) = 1, where a = 0.3320573. This value will
be used in the current work. Thus, the boundary conditions of the Blasius equation become:

y(0) =y'(0) =0, y"(0) =a. (5)

The Blasius equation has been solved by various numerical and analytical methods like the
Adomian decomposition method [39], the variational iteration method [40], the optimal
homotopy asymptotic method [41], and the homotopy analysis method [42]. Moreover,
Khataybeh et al. [36] employed the classical operational matrices of the Bernstein polynomials
method to solve the Blasius equation. Parand and Taghavi [43] used a collocation method based
on a rational scaled generalized Laguerre function to solve this equation.

2.3 The Falkner-Skan equation

The boundary layer equations are an important type of nonlinear ordinary differential
equations with various applications in physics and fluid mechanics [44]. The stationary
Falkner-Skan boundary layer equation is one type of these equations. Falkner and Skan [45]
first proposed the Falkner-Skan equation in 1931. This equation has an important role in a
variety of applications, such as fluid mechanics, aerospace, heat transfer, glass applications,
and polymer studies [3].

The Falkner-Skan equation is a third-order ordinary differential equation over a semi-infinite
domain, which is as follows [46]:

d’y d*y , Ay,
with boundary conditions:
y(0)=0, y'(0)=1-¢ y'(x) =¢, (7)

Where k = 1 is constant, S refers to the pressure gradient parameter and € to the velocity ratio
parameter. If =0 and k = % then Eq. (6) refers to the Blasius equation; when g = % and

k = 1, Eq. (6) represents the Homann flow problem; and when 8 = 1 and k = 1, Eq. (6) is
called the Hiemenz flow problem [3].

The authors in [47] used the Padé approximation technique to obtain the initial condition
y"(0) = —0.832666 from the boundary condition y'(c0) = ¢, and this value will be used in
the current work. Thus, the boundary conditions of the Falkner-Skan equation become:

y(0) =0, y'(0) =1—¢, y"(0) = —0.832666. (8)
Various methods have been used to solve the Falkner-Skan equation, such as the Adomian
decomposition method [48], the homotopy analysis method [49], the homotopy perturbation
method [50], the differential transformation method [51], the shifted Chebyshev collocation
method [52], and the Legendre rational polynomials method [53].

3. The basic idea of the proposed methods

This section presents the basic concepts of the proposed techniques. Moreover, orthogonal
polynomials and operational matrices will be discussed as tools for developing the CM
technique to achieve approximate solutions to specific nonlinear models presented in section
two.
3.1 The basic concept of CM with their operational matrices

The following kt"*-order differential equation is the main concern here [26]:

F(x, v, v, y", ...,y(k)) = g(x), a<x<bh, 9
with the initial condition: y®@(a) =g;, 0<i<k-1, (10)
or in the case of boundary conditions: y®©(a) = y;, y®@((B)=6;, 0<i< S —1. (11)
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where g(x) is a known function and g;, y;, 6;, are constants.

The fundamental assumption is that the Eq. (9) has a unique solution when the initial or
boundary conditions are specified in the Egs. (10) or (11). Furthermore, a function y(x) €
C*[0,1] can be written by a linear combination of k*"-order functional series based on the
standard polynomials as follows [23]:

k

y() = ) @) =¥ C, (12)
i=0

where ¥(x) =[1 x x?2x3 ... x¥]and € = [y ¢; ¢; ...ci]7, such that ¢;,i =0, ..., k, are the
coefficients whose values will be determined later.
Assume the following derivatives of ¥ (x):

d¥(x) w00 D° d’¥P(x) _ W(x) (D)2 d*@(x) — W) (D)

dx 'dxz_x()""'dx"_x()'

where D* . 1)xk+1) 1S the operational matrix with the following entries in the standard
polynomials:

0 1 0 0
[0 0 2 O}
D* = I0 0 0 . (-)l

lo 00 kJ

0 00 0 (k+1)x(k+1)
Thus, the derivatives of the function y(x) can be defined in the following formats:
y®(x) = ®(x) (DH* C, where, k=1,2, .... (13)
Then, the Egs. (12) and (13) are substituted into the Egs. (9), (10), and (11), obtaining:
F(x, Y(x)C, Y(x)D*C, ¥(x) (D"?C,..., ¥(x) (D)*C) = g(x), (14)
with, ¥(a) (D*)'C=p;, 0<i<k-1, (15)
and, ¥(a) D) C=y;, ¥POB) (D) C=6, 0<i<>-1 (16)

Consider the Hilbert space H = L?[0,1], in which the inner product is defined as follows:

(L L) = j L () L (O dx. 17)

0

Moreover, the set of functions @ = {®,, @, ..., @;}, are linearly independent in H, where ®@; =
x%,0 < i < k, is the base function of standard polynomials [23, 24].
Thus, performing the inner product of the set of base functions @ with the left and right sides
of the Eq. (14) in the manner of the Eq. (17), we obtain the following matrix equation [25]:
U =R, (18)
where the i*" row of U and R of the matrix equation shown in the Eq. (18) consists of the
following:

(P, F(x, P(x)C, P(x)D*C, Y(x) (DH?C,.., P(x) (DHC) ), (¥;,g(x)), 0<i

<k (19)

Eventually, some entries in this matrix equation change when the initial or boundary conditions
for the Eqgs. (15) and (16) are substituted into the Eq. (18). As a result, a system of (k + 1)
nonlinear algebraic equations with their unknown coefficients, C, is created. These algebraic
equations can be solved numerically with available programs to obtain the values of the
coefficients C. These values are then substituted into the Eg. (12) to produce the approximate
solution of the Eq. (9).
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3.2 The Hermite polynomials with their operational matrices
The Hermite polynomials H,,(x), of nt"-order on (—oo, ©), are defined as [54]:

k .,
] (2 x)n—Zl
—al D ()i
H (%) n'ZO( Ve —zor
where k =22 if nisevenand k = n2_—1 if n is odd.

Moreover, the function y(x) can be defined by the (k + 1) —terms of Hermite polynomials
H, (x) given below.
k

(20)

y(x)= ) cuHy(x) =¥(x)C, (21)

n=0
where, ¥ (x) = [Hy(x), H,(x), ..., H(x)] and € = [cy ¢; ¢; ... ¢, ], such that ¢,,n = 0, ..., k,
are the unknown Hermite polynomials coefficients, whose values will be determined later.
Furthermore, the relevant matrix relation can be obtained as follows:
(r(0) =Dy (P@®)" and ¥Y(x) =¥(x) D),
Thus, the expression of ¥ (x) will be written as follows:
Y(x) =Y ((Dp™H".
and the derivatives of ¥(x) can be described as follows:

(n *N—
(P(x) " =¥Y™x)((Dp™HT, n=12,.. (22)
Where Y(x) = [1, x, ..., x¥], and for odd k, then the matrix D}, is defined as below [55]:
1 0 0 0 . 0
0 s 0 0 0
1 1 0 0
Dy=1|3 0 4
3 = 0
AR S ;
2D 2k(2-1 )11
and if k is even, then the matrix Dy is defined as below [55]:
1 0 0 0O .. 0
0 1 0 0 0
2
1 1
, 2 0 i 0 .. 0
Dy = 1
0 3 0 = 0
4 . 8
k! : Kl . o k!
zk(g)!ol 0 zk(§—1)!2! 0 .. 2k(0)1k!

In addition, the below relation can be implemented to obtain the ¥™ (x) using terms of the
Y (x):
Y™ (x) =¥ (x) wr, (23)
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0 1 0 0
0 0 2 0
where, w = [0 0 0 0
0 00 icJ
0 00 0+ )% (k+1)

Hence, using the expressions in the Egs. (22), (23) the derivatives of y(x) can be written as
follows:

ey _ (P( ))(") C=Yx)W"((Dp)™H" ¢ h =1,2 (24)
dx" X =¥ H ) where n=1,2,....

3.3 The Legendre polynomials with their operational matrices
The Legendre polynomials, P (x), of kt"-order on the interval [—1,1], are defined as [20,
56]:

P()Q2k+1)—kP,_
Py = 1, Pi(r) = x, v Pryy(a) = D k+)1 SIC

Also, the analytical formula of the Legendre polynomials is obtained by the following:

\ (k + !
P() = ) (~DH '
i=0

-ty ¢ (25)

Furthermore, any function y(x) can be expressed by the (k + 1)-terms of the Legendre
polynomials presented below:
k

y() = ) 6 Pix) = €', (26)
where, € = [cg &1 ¢ ..c]. and W(x) = [Py(x), P, (x), ... P (O]

The derivatives of ¥(x) can be regarded as:

w))" = 0w, k=12, ..
where D;,(k DX (k4 1) is the operational matrix of the derivatives and is defined by:
. . n=13..,k, if k odd,
;= 2i—=1), i=j-n where, {n =13,..,k—1, ifkeven
0 Otherwise.

Therefore, the derivatives of the function y(x) can be written as follows:
d*y .
Tk CT (DY) P (x), where, k=1,2,.... (27)

3.4 The Bernstein polynomials with their operational matrices

The Bernstein polynomials B; ,(x) of n‘"-degree on the interval [0,1] are defined by [57]
as follows:

n! x' (1 —x)*
Bin®) = =11
In general, y(x) can be approximated by the linear combination of the Bernstein polynomials
shown in the following formula:
n

y() = ) i Bin() = €T W), 29)

=0
where € = [cq ¢; €3 ...cp]”, and W(x) = [Bgn, B1n B, ...,,Bn,n]T.

, i=01.2,..,1n (28)
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Moreover, ¥ (x) can be defined as follows [57]: %(x) =NX,

where,
] ., M LM m-0 n— — 0y]
() o () - o (G0
N = 0 (-1D° (TZ) o (D (Tll) (Z:)
; S

X=[1xx2%..,x""
Thus, the derivatives of ¥(x) can be defined by:

“(n+1)x(n+1)

()™ = (D) P (), n=12, ..
where D*B(n+ Dx (n+ 1) is the operational matrix of the derivatives and is defined by:
Dy =NVB*,

0 0 0 .. 0 [N

[t 0 0 .. o | N:* |
where, V=0 2 0 = 0 ,and B* = | N5t |

EE - : |

0 0 0 n (n+1)xn lerl Jnx(n+1)
Therefore, the derivatives of the function y(x) can be expressed as below:
d™y T ) T *\n
T C"(P(x))  =CT(NVB)"¥(x), where n=12,.. (30)

4. The convergence of the proposed methods and numerical results

This section presents the convergence for the proposed methods. In addition, the CM and
D-CMs proposed methods will be applied to find the approximate solutions and discuss the
numerical results for the problems.

4.1 Convergence Analysis of the proposed methods
This subsection will discuss the convergence analysis of the proposed methods and
fundamental theorem.

Theorem 4.1.1 Let a Banach space A c R be given with a norm || . || defined on it. Taking
y1(x) is an approximate solution that obtained from the first iteration n. The following
sequence is constructed regarding the solution of the ordinary differential equation:

vi() =y (), v () = () =y (), (k= 2).
Then, the assumptions are:
(i) Provided that for all k there exist 0 < B, < 1 such that ||vy..1 ()| < Brllve (x)]l, the series
Y=y Vi (x) is then convergent and so y(x) = X2, vk (x) in the interval of interest that
contains x.
(i) Otherwise, for all k there exist B, > 1 leading to ||[vi,1 ()|l = Billve (), the series
Y1 V(%) and thus, the proposed method diverges in the interval of interest that contains x.
Proof: See [58].

Remark 1. Defining a converge ratio S, via 8, = ”ﬁﬁ*—é’;ﬁ” suffices to ensure that this ratio
k

stays less than one for large values of k.
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4.2 Application of the CM and D-CMs and numerical results

In this subsection, the proposed methods of CM and D-CMs will be implemented to find the
approximate solutions and present the numerical results for the three problems: the Darcy-
Brinkman-Forchheimer equation, the Blasius equation, and the Falkner-Skan equation.

The D-CMs are based on the base functions of diverse polynomials such as Hermite,

Legendre, and Bernstein polynomials, presented in the Egs. (20), (25), and (28), respectively,
with related operational matrices. These polynomials are executed in two steps of the proposed
methods techniques to improve the accuracy of the CM. Firstly, to represent a function y(x)
and its derivatives; and secondly, to compute the inner product to solve the left and right sides
of the matrix equation shown in the Eq. (18).
Furthermore, by substituting the initial or boundary conditions, as given in the Egs. (15) and
(16), some entries of the Eq. (18) are adjusted. Then we get (k + 1) nonlinear algebraic
equations for the unknown C. By solving this system numerically by Mathematica®12, we get
unique values for the unknown elements ¢, ¢4, ¢, ... ¢ t0 achieve the best approximate solution
to the problems.

4.2.1 Solving the Darcy-Brinkman-Forchheimer equation by the CM and D-CMs

The procedures of CM and D-CMs that are presented in section three are applied to solve
the first problem with the boundary conditions shown in the Egs. (1) and (2). To be more
precise, we substitute the Eqgs. (12) and (13) into the Egs. (1) and (2) for the technique CM,
converting the function y(x) and its derivatives as matrices. Thus, we obtain the following
result:

1
P(x)(DH?C—s?WPHx)C)—Fs(P(x)C)?+—=0,

M
YO)D*C=0, ¥(1)C=0. (3D
Then, the processes have been used as shown in the Egs. (18) and (19), so:
. A |
(x!, P(x)(D)H?C—s?P(x)C) —Fs(¥P(x) C)?) = (x}, _M)' VO<i<k. (32)

Substituting the Egs. (21) and (24) into the Egs. (1) and (2) for the D-CMs based on the Hermite
polynomials, yields the following results:

Y(x) W2 (D)™ DT € —s? (W(x) C)—Fs(WP(x) €)% + % =0,
Y(O) W ((D;)™)T ¢=0, ¥(1)C = 0. (33)

and by applying the processes in the Egs. (18) and (19), the following result is obtained:
1
(H; (), Y(x) W? (DR)™H)" € —s? (P(x) €) — Fs(¥P(x) €)?) = (H;(x), —q VO
<k. (34

Implementing the D-CMs based on the Legendre polynomials by substituting the Egs. (26) and
(27) into the Egs. (1) and (2), the following is obtained:

2 1
CT (D) ¥P(x) —s? (C"P(x)) — Fs(CTP(x))" + =0
C"D,w(0)=0, C"¥(1) =0. (35)
Using the approaches described in the Egs. (18) and (19), as a result, the following equation
will be presented:

1
(Pi(x), CT (Dp)? P (x) —s? (C"P(x)) — Fs(CT¥(®))") = (P,(), —o) VO

<k (36)
Moreover, applying the D-CMs based on the Bernstein polynomials by substituting the Egs.
(29) and (30) into the Egs. (1) and (2), the results are as follows:
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C"(NVB)?>¥(x) —s? (C"¥(x)) — Fs(CT‘P(x))2 +% =0,
CCNVB*¥(0)=0, C"¥(1) =0. (37)

Then, the processes have been utilized as given in the Egs. (18) and (19), which will be shown:
1
(Bin(x), CT(NV B2 ¥(x) = 52 (CT¥(x)) — Fs(CT¥ (X)) = (Bipn(x),—77),¥ 0 <

<k (38
Furthermore, the values of € = [c, ¢; ¢, ...c,]T are computed by solving the algebraic system
of equations obtained by the inner product for the left and right sides of the Egs. (32), (34),
(36), and (38), respectively. Then, we apply the boundary conditions to the Egs. (31), (33), (35),
and (37), respectively, resulting in the desired approximate solutions.
If the parameter values are s=1, F =1, and M =1, as in [30], with n = 10, then the
approximate solutions to the Darcy-Brinkman-Forchheimer equation will be:
By implementing the CM based on the standard polynomials:
y(x) ~ 0.323852 — 0.285634 x2 + 2.29576 x 107°x3 — 0.0392379 x*
+ 0.0000786079 x° + 0.000355229 x® + 0.000352023 x”
+ 0.0000516179 x® + 0.00021914 x° — 0.0000397161 x1°.
Also, by applying the D-CMs based on the Hermite polynomials, the approximate solution is
as follows:
y(x) =~ 0.323852 — 0.285634 x2 + 8.09041 x 10~7x3 — 0.0392285 x*
+ 0.0000453107 x> + 0.00042653 x°® + 0.000257895 x”’
+ 0.000126615 x® + 0.000186053 x° — 0.0000335066 x°.
Moreover, by utilizing the D-CMs based on the Legendre polynomials, we obtain:
y(x) ~ 0.323852 — 0.285634 x2 + 8.72335 x 107 7x3 — 0.039229 x*
+ 0.0000475082 x° + 0.000421236 x® + 0.000265524 x”
+ 0.000120109 x® + 0.000189083 x° — 0.0000341013 x1°.
In addition, by using the D-CMs based on the Bernstein polynomials, the result is as follows:
y(x) =~ 0.323852 — 0.285634 x2 + 1.25704 x 107°x3 — 0.0392306 x*
+ 0.0000502471 x5 + 0.000421401 x° + 0.000257496 x”
+ 0.00013264 x® + 0.000180879 x° — 0.000032064 x1°.
Furthermore, since the exact solution to this problem is not available, the maximum error
remainder (MER,) [3] has been computed to verify the accuracy and efficiency of the
approximate solution obtained by the proposed methods. The MER,, is computed by:
dZ

MER, = max —y—s2 —Fs 2+i
n osx<1 |dx? Y Y M|

Figure 2 shows the logarithmic plots for the MER,, values obtained by the CM based on the
standard polynomials and by the D-CMs based on the Hermite, Legendre, and Bernstein
polynomials, which demonstrate the efficiency and accuracy of these methods by observation
of the error values for n = 2 to 10, as we found that the error decreases with increasing the
values of n.
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Figure 2: Logarithmic plots of MER,, to the Darcy-Brinkman-Forchheimer equation.

Figure 3 also shows the comparison between the approximate solutions computed by the
proposed methods forn = 10,s = 1,F = 1, and M = 1. It can be seen that good agreements
have been reached for all the proposed methods.
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0.05 D-CMs Bernstei
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Figure 3: The comparison of the solutions to the Darcy-Brinkman-Forchheimer equation by
proposed methods.

Moreover, Table 1 shows the values of the MER,, for the approximate solution using the
CM and D-CMs with n = 10 and parameters s = M = 1, versus the value of F, which shows
the efficiency of these methods. In addition, it can be observed that the D-CMs based on the
Hermite polynomials method provide slightly better accuracy with the lowest number of errors
compared to other methods.

Table 1: The comparison between the MER,, when s = M = 1, and versus the value of F for
the Darcy-Brinkman-Forchheimer equation

CM Standard D-CMs Hermite D-CMs Legendre D-CMs Bernstein
2 1.27523 x 107 2.5299 x 1077 2.7852 x 1077 7.89173 x 1077
4 5.33771 x 107 1.05117 x 107 1.15826 x 107 3.3408 x 107
6 0.0000118871 2.36983 x 107 2.5595 x 107° 7.55135 x 107°
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To prove the convergence of the proposed methods for the Darcy-Brinkman-Forchheimer
equation, we applied the convergence condition described in Theorem 4.1.1 for all n (n =

2 to 10) by calculating the values of g, = % as shown in Table 2. The results of the
k
values g forall k > 2 and 0 < x < 1, are less than one. Therefore, the approximate solutions

obtained by the proposed methods CM and D-CMs converge.

Table 2: The value of B_k to the approximate solutions of the proposed methods for n=2 to 10

for the Darcx-Brinkman-Forchheimer eguation.

B CM Standard D-CMs Hermite D-CMs Legendre D-CMs Bernstein
B> 0.173548 0.15834 0.160029 0.072699
B3 0.0953564 0.0286194 0.0360889 0.143561
Ba 0.162073 0.0534302 0.0468172 0.110772
Bs 0.223742 0.156357 0.14314 0.246433
Be 0.146797 0.113461 0.110536 0.159067
B 0.0897495 0.0637192 0.0636611 0.085619
Bs 0.400987 0.0145453 0.0154304 0.0142074
Bo 0.0331932 0.577301 0.552068 0.886542

4.2.2 Solving the Blasius equation by the CM and D-CMs

The procedures of CM and D-CMs that are presented in section three can be utilized to solve
the second problem illustrated in the Egs. (3) and (5). To do this, the Egs. (12) and (13) are
substituted into the Egs. (3) and (5) for the procedure CM, converting the function y(x) and its
derivatives into matrices. Thus, we obtain the following result:

¥Y(x) (D*)*C +% (P() OP ) (D) C) =0,

YO0)C=%0)D*C=0, ¥(0)(D"H*C=a. (39)
Then, the processes have been used as shown in the Egs. (18) and (19), so:

. 1 .
(x', ®P(x) (DH3C+ > (Px) O)(P(x) (DH?C) Y=(x', 0), VO<i<k. (40)

Substituting the Egs. (21) and (24) into the Egs. (3) and (5) for the D-CMs based on the Hermite
polynomials produce the following results:

Y(x) W3 (Dp)™M" € +% (P O ) w2 (D) H' ©) =0,

PO)C=YO)W (D H" €=0, Y(O)W?* (D) D" € =a. (41)

and by applying the procedures as presented in the Egs. (18) and (19), the following is obtained:
1

(Hy(x), Y(x) W3 (D)™ €+ 7 W) O ) W2 (D)D" €)) = (Hi(x),0), VO

<i<k. (42)
Using the D-CMs based on the Legendre polynomials by substituting the Eqgs. (26) and (27)
into the Egs. (3) and (5), the following is obtained:

cT (D3)? ¥(x) +% (") (c" (Dp)? ®() =0,

C"Y0)=Cc"Dp¥w(0)=0, CT (Dp)?¥(0) =a. (43)
Also, by implementing the procedures as given in the Egs. (18) and (19), it follows that:

1
(Pi(x), CT (Dp)*¥(x)+ 3 (C"P(x))(C" (Dp)* P(x) ) =(Pi(x), 0), VO<i
<k. (44)
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Moreover, applying the D-CMs based on the Bernstein polynomials by substituting the Egs.
(29) and (30) into the Egs. (3) and (5), we get:

CT(NVB)3¥(x)+ % (CTP(x))(CT(NV B*)?¥(x)) =0,

C"P0)=C"NVB* #w0)=0, C'(NVB*)?%(0) =a. (45)
Then, the procedures have been utilized as given in the Egs. (18) and (19), will be presented:
(B n(x), CT(NV B*)}¥(x) +% (C"PX))(CT(NVB)? ¥ (x))) = (Bin(x),0),V0<i<
k. (46)

Furthermore, the values of € = [c, ¢; ¢, ..., ]T are computed by solving the algebraic
system of equations achieved by the inner product for the left and right sides from the Egs. (40),
(42), (44), and (46), respectively. Then, we apply the initial conditions to the Egs. (39), (41),
(43), and (45), respectively, resulting in the required approximate solutions.

We consider the value of a = 0.3320573, as in [37] with n = 10, in this problem. The
approximate polynomials for the Blasius equation are:

By applying the CM based on the standard polynomials:

y(x) = 0.166029 x? + 3.40035 x 10~°x3 — 2.07849 x 10~ 8x* — 0.000459348 x°
—1.85524 X 1077x% 4+ 2.93847 x 107 7x” 4+ 2.1901 X 10 6x?®
+ 2.05083 x 1077x° — 8.02077 x 10~ 8x10,

Also, by using the D-CMs based on the Hermite polynomials, the approximate solution is
as follows:
y(x) =~ 0.166029 x? + 1.53683 x 107 1%x3 — 2.71796 x 10~ °x* — 0.000459406 x°
—6.94025 x 1078x% + 1.50229 X 107 7x7 + 2.29803 x 10 x8
+ 1.59957 x 107 7x° — 7.21516 x 1078x1°,

Moreover, by utilizing the D-CMs based on the Legendre polynomials, we achieve:
y(x) =~ 0.166029 x2? + 2.8487 x 1071°%%3 — 4.25209 x 10™%x* — 0.000459399 x>
—8.8161 x 1078x® + 1.77815 x 107 7x” + 2.27448 x 107 °x8
+ 1.70818 x 107 7x° — 7.42472 x 107 8x1°,
In addition, by implementing the D-CMs based on the Bernstein polynomials, the result is as
follows:
y(x) =~ 2.99841 x 107116 — 2.53784 x 10~ %6x + 0.166029 x2 + 3.40035 x 10~ x3
—2.07849 x 1078x* — 0.000459348 x> — 1.85524 X 10~ 7x°
+2.93847 X 1077x7 4+ 2.1901 x 107°x® + 2.05083 x 107"x°
—8.02077 x 107 8x1O,

The exact solution to this problem is not available. Therefore, the maximum error remainder
(MER,,) has been computed to verify the accuracy and efficiency of the approximate solution
obtained by the proposed methods. The MER,, is computed by [15]:

dPy(x) 1 d’y(x)
MERn = B [Taws ¥ 27T |

Figure 4 presents the logarithmic plots for the MER,, values obtained by the CM based on

the standard polynomials as well as by the D-CMs based on the Hermite, Legendre, and
Bernstein polynomials for n = 3 to 10, with a value of a = 0.3320573, according to previous
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studies [37]. The accuracy of these methods can be shown by observing the error values for n,
as we observed that the error becomes smaller as the value of n is increased.

0.01 =
-4
mt 10 '.' MERCM Standard
g 10"6 1+ MERp_cms Hemite

- MERp_cws Legendre
"' MERD-CMs Bernstein

10°®

Figure 4: Logarithmic plots of MER,, for the Blasius equation.

Figure 5 also shows the comparison between the approximate solutions computed by the

proposed methods forn = 10,and a = 0.3320573. As can be seen from the figure, impressive
agreements have been obtained for all the proposed methods.

/|
0.15 /./
| CM Standard
< 0.10 ) A
> A 1 D-CMs Hermite
0.05 /‘/‘ -0~ D-CMs Legendre
0,00 iR ’_‘,‘*" - D-CMs Bernstein
00 02 04 06 08 1.0
X

Figure 5: The comparison of the solutions for the Blasius equation.

Moreover, Table 3 shows the MER,, values for the approximate solution using the CM and
D-CMs with n = 10, demonstrating the effectiveness of these approaches. In addition, it can

be observed that the D-CMs based on the Hermite polynomials method provide better accuracy
with less errors compared to the other methods.

4083



Salih and AL-Jawary Iraqgi Journal of Science, 2023, Vol. 64, No. 8, pp: 4070-4091

Table 3: The comparison between the [MER] _10 for the Blasius equation by proposed
methods

CM Standard D-CMs Hermite D-CMs Legendre D-CMs Bernstein

10 2.04021 x 1078 9.22099 x 10710 1.70922 x 107° 2.04021 x 1078

Furthermore, to prove the convergence of the proposed methods for the Blasius equation,

we implemented the convergence condition described in Theorem 4.1.1 for all n (n = 3 to 10)

by computing the values of 8, = % as presented in Table 4. The results of the values S,
k

forall k > 3 and 0 < x < 1, are less than one. Therefore, the approximate solutions achieved

by the proposed methods CM and D-CMs converge.

Table 4: The value of S, to the approximate solutions of the proposed methods forn = 3 to 10
for the Blasius equation

CM Standard D-CMs Hermite D-CMs Legendre D-CMs Bernstein
0.0189971 0.00920355 0.000195189 0.0189971
0.279533 0.144859 0.1119 0.279533
0.0481304 0.00525318 0.0212143 0.0481304
0.227297 0.0556783 0.0835961 0.227297
0.0842867 0.0172857 0.0302655 0.0842867
0.0619229 0.0164596 0.0133762 0.0619229
0.126409 0.0769624 0.0378436 0.126409

4.2.3 Solving the Falkner-Skan equation by the CM and D-CMs

The procedures of CM and D-CMs presented in section three can be implemented to solve
the third problem explained in the Egs. (6) and (8). To be more specific, for the CM approach,
we transform the function y(x) and its derivatives into matrices by substituting the Egs. (12)
and (13) into the Egs. (6) and (8). Thus, we get the following result:
P(x) (D*)° €+ (P(x) OF(x) (D)?*C) + B [¢* — (¥(x) D" €)*’] =0,
Y0)C=0, YO)D*C=1-¢ ¥(0)(D*)?C =—-0.832666. (47)

Then, the .procedures have been used as shown in the Egs. (18) and (19), so:
(x!, P(x) (D) C+ PX)O(FX) (D) C)+ B [-(P(x) D" €)?*] )
=(x',—Pe?), VO<i<k (48)

Substituting the Egs. (21) and (24) into the Egs. (6) and (8) for the D-CMs based on the
Hermite polynomials yield the following:
Y() W2 (D)D" €+ () O (x) W2 (DR)™HT €) + B [€?
- ¥ W (DR D" 0?1 =0,
YO)C=0, YOW(Dp)™HI c=1-¢ YO)W? (D) HT € =-0.832666.(49)
and, by using the processes shown in the Egs. (18) and (19), the following results:
(H; (), Y() W? (DR)™H)T €+ (P () O (x) W2 (DR)~HT 0)
+ B [-(r(x) ME ((?2)‘1? €)?])=(Hi(x),— B €*), VO<i
<k. 50

Applying the D-CMs based on the Legendre polynomials by substituting the Egs. (26) and

(27) into the Egs. (6) and (8), it follows:
CT (Dp)> P(x) + (CTP(x))(CT (Dp)* P(x)) + B [¢* — (€T Dp P(x))*] = 0,
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C"w(0)=0, C"Dp,¥(0)=1—¢, CT (Dp)*>¥(0) =-0.832666. (51)

Also, by implementing the techniques that are given in Egs. (18) and (19), the following is
obtained:
(Pi(x), €T (Dp)> ¥ (x)+ (CTP(x))(CT (Dp)* P(x)) + B [—(C" Dp ¥(x))?])
=(P;(x),—Be€?), VO<i<k. (52)

Moreover, using the D-CMs based on the Bernstein polynomials by substituting the Egs.
(29) and (30) into the Egs. (6) and (8), we achieve:
CT(NVB)*¥(x) + (C"P(x))(CT(NVB)?¥W(x))+ B [e2— (CT NV B* ¥(x))?*]=0,
C"TP(0)=0, C"NVB*¥(0)=1—¢, C'(NVB*)?¥(0) =—-0.832666. (53)

Then, the processes have been utilized as given in the Egs. (18) and (19), which will be
shown:
(Bin(x), C"(NVB*)*¥(x) + (C"¥(x))(CT(NV B*)* ¥(x))
+B[-(C"NVB* ¥(x))?]) = (B;,(x),—fe?), VO<i<k (54)

Furthermore, the values of € = [cy ¢; ¢, ...c,]T are computed by solving the algebraic
system of equations obtained by the inner product for the left and right sides of the Egs. (48),
(50), (52), and (54), respectively. Then, we apply the initial conditions to the Egs. (47), (49),
(51), and (53), respectively, resulting in the desired approximate solutions.

The approximate polynomials for the Falkner-Skan equation when the parameter values are
as follows: g = 0.5,€ = 0.1, as in [47], with n=8, will be:

By using the CM based on the standard polynomials:
y(x) ~ 0.9 x —0.416333 x2 + 0.0666511 x> + 0.0000592155 x* — 0.00313186 x°
+ 0.000639976 x° + 0.0000210854 x” — 0.0000188788 x8.

Also, by implementing the D-CMs based on the Hermite polynomials, the approximate
solution is given by:
y(x) ~ 0.9 x — 0.416333 x2 + 0.0666655 x> + 0.0000121427 x* — 0.00304735 x°
+ 0.000555141 x® 4+ 0.0000657991 x” — 0.0000285272 x8.

Moreover, by utilizing the D-CMs based on the Legendre polynomials, we obtain:
y(x) ~ 0.9 x —0.416333 x? + 0.0666643 x> + 0.0000188834 x* — 0.00306372 x°
+ 0.000574952 x°® + 0.0000539242 x” — 0.000025712 x5.

In addition, by applying the D-CMs based on the Bernstein polynomials, the result is as

follows:

y(x) ~ 5.26016 X 107 + 0.9 x — 0.416333 x2 + 0.0666446 x> + 0.0000758482 x*
—0.00315636 x° + 0.00066085 x® + 0.0000115058 x”
—0.0000170425 x8.

The maximal error remainder (MER,,) is evaluated since there is no exact solution to the

problem and also to check the accuracy and efficiency of the approximate solution obtained by

the CM and D-CMs. The MER,, is computed by [15]:

MER, = d3+d2y+ o @y

n = 5 3 T dx Ble (dx) Il
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Figure 6 shows the logarithmic plots for the MER,, values obtained by the CM based on the
standard polynomials and by the D-CMs based on the Hermite, Legendre, and Bernstein
polynomials for the parameters § = 0.5 and € = 0.1, according to studies [47], which show the
reliability and efficiency of these methods by observing the error values for n = 2 to 8. We
find that the error decreases with increasing values of n. Also, it can be observed that the D-
CMs based on the Hermite polynomials method provide better accuracy with less errors
compared to the other methods.

0.100
& 0.010 @ MERGw standard
g 0.001 - MERp_cws Hemite
107 ©- MERD_cwis Legendre
10°° 2% MERp_cwis Bemstein

Figure 6: Logarithmic plots of MER,, for the Falkner-Skan equation by proposed methods.

Moreover, Figure 7 demonstrates the comparison between the approximate solutions
computed by the proposed methods forn = 8, 8 = 0.5, and € = 0.1. As can be seen from the
figure, good agreement was obtained for all the proposed methods.
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Figure 7: The comparison of the solutions to the Falkner-Skan equation by proposed methods.
In addition, Figures 8 and 9 show the logarithmic plots of the MER,, for the approximate

solution of the Falkner-Skan equation with n = 2 to 8, using the CM and D-CMs when fixed
the pressure gradient parameter 8 = 0.5, and increasing the values of the velocity ratio
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parameter as € = 0.1, 0.2, 0.3,and 0.4, as chosen in [47]. In Figures 8 and 9, the errors decrease
when the value of € is increased.

CM Standard, =0.5 D-CMs Hermite, =0.5
0.100 0.100(X
5 @ ¢=01 0010 @ €=0.1
& & e=02 F 0.001 o €=02
S 0.001 s, 4
-4~ €=0.3 10 -4 €=0.3
10 A =04 107 A €=04

105 10°°

n n

(@) (b)
Figure 8: Logarithmic plots of MER,, for the Falkner-Skan equation by (a) CM based on the
standard polynomials and (b) D-CMs based on the Hermite polynomials.

D-CMs Legendre, g=0.5 D-CMs Bernstein, p=0.5
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- 1e=0it = 0.010 ®c
& =02 g - e=0.2
- =03 _ 00 - €=03
- €=0.4 107 - €=04

n n

(a) (b)
Figure 9: Logarithmic plots of MER,, for the Falkner-Skan equation by (a) D-CMs based on
the Legendre polynomials and (b) D-CMs based on the Bernstein polynomials.

Furthermore, Figures 10 and 11 show the logarithmic plots of the MER,, for the approximate
solution of the Falkner-Skan equation with n = 2 to 8, using the CM and D-CMs for different
values of 8 when fixed the parameter e = 0.1. In Figures 10 and 11, it is clear that as the values
of 8 increase, the errors also incre

CM Standard, =0.1 D-CMs Hermite, €=0.1
1 1
0.100
o i o
= 0.001 - ‘3=1'5§ 0.001 = =15
' Rl Uy - B=2
10 - p=25 107 e pe25
1078 105
? ’ ¢ ° : ! s 2 3 4 5 6 7 8
n

() (b)

Figure 10: Logarithmic plots of MER,, for the Falkner-Skan equation by (a) CM based on the
standard polynomials and (b) D-CMs based on the Hermite polynomials.
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D-CMs Legendre, €=0.1 D-CMs Bernstein, e=0.1

(@) (b)
Figure 11: Logarithmic plots of MER,, for the Falkner-Skan equation by (a) D-CMs based on
the Legendre polynomials and (b) D-CMs based on the Bernstein polynomials.

To prove the convergence of the proposed methods for the Falkner-Skan equation, we

applied  the convergence condition described in Theorem 4.1.1 for all n (n = 2 to 8) by

calculating the values of 8, = % as indicated in Table 5. The results of the values g, for
k

all k > 2 and 0 < x < 1, are less than one. Therefore, the approximate solutions obtained by

the proposed methods CM and D-CMs converge.

Table 5: The value of S, to the approximate solutions of the proposed methods for n = 2 to 8
for the Falkner-Skan equation

CM Standard D-CMs Hermite D-CMs Legendre D-CMs Bernstein
B> 0.0672421 0.0719283 0.0912813 0.0672421
B3 0.234975 0.124291 0.0310187 0.234975
Bs 0.128144 0.0978703 0.57351 0.128144
Bs 0.498221 0.05618 0.167595 0.498222
Bs 0.0808742 0.0107073 0.019594 0.0807772
B 0.131467 0.0458754 0.0676503 0.109996

5. Conclusions

In this paper, the computational method (CM) based on standard polynomials and the novel
computational methods (D-CMs) based on different types of orthogonal polynomials, Hermite,
Legendre, and Bernstein polynomials have been presented and implemented to solve three
nonlinear problems, the Darcy-Brinkman-Forchheimer equation, the Blasius equation, and the
Falkner-Skan equation. The nonlinear problems are reduced to a nonlinear algebraic system of
equations, which is solved using Mathematica®12. The approximate solutions were obtained
and appeared to be accurate and efficient even within polynomials of low orders. Moreover, the
MER,, was computed for the proposed methods. The results show that the proposed methods
have better accuracy with lower errors. In addition, it is observed that the results of the MER,,
by the proposed methods D-CMs decreased significantly compared to the CM. Therefore, the
suggested novel methods D-CMs have better accuracy than the CM. It can be concluded that
the D-CMs based on the Hermite polynomials are better than the other methods for the three
nonlinear problems.
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