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Abstract

In this article, the backstepping control scheme is proposed to stabilize the
fractional order Riccati matrix differential equation with retarded arguments in
which the fractional derivative is presented using Caputo's definition of fractional
derivative. The results are established using Mittag-Leffler stability. The fractional
Lyapunov function is defined at each stage and the negativity of an overall fractional
Lyapunov function is ensured by the proper selection of the control law. Numerical
simulation has been used to demonstrate the effectiveness of the proposed control
scheme for stabilizing such type of Riccati matrix differential equations.

Keywords: Backstepping method, Method of steps, Mittag-Leffler stabilization,
Caputo fractional derivative, Riccati matrix differential equation.
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1. Introduction
Recently, the concept of fractional calculus has gained huge attention as it could be applied
in many real-life applications, since the dynamics of many system's reality in science and
engineering are described more accurately by using fractional order differential equations
rather than integer order differential equations, e.g., periodic functions and nuclear systems

(for more details see [1]). Also, one can find more details about fractional calculus in [2]. The
stability of such systems is discussed in the previous research via several different methods.
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The more effective and promising method for stabilizing such systems is the backstepping
method for controller design, which is first proposed by [3], see also, [4-6], where
backstepping approach provides a recursive method for stabilizing the system.

For nonlinear systems, a typical feedback linearization approach in most cases leads to the

cancellation of useful nonlinearities. Backstepping design has more flexibility compared to
feedback linearization since it does not require that the resulting input-output dynamics is to
be linear. The backstepping controller design method provides an effective tool for designing
controllers for a large system. The basic idea behind backstepping approach is to break a
design problem on the full system down to a sequence of sub-problems in lower-order
systems, and recursively use some states as "virtual controls” to obtain the intermediate
control laws with the control Lyapunov function. The advantages of backstepping control
include guaranteed global of regional stability. In [7] a different controller design approach
for the stability of large-scale systems is proposed.
Recently, the backstepping method for stabilizing nonlinear fractional partial differential
equations with constant coefficients is proposed in [8-10], where the semi-discretized
fractional order is introduced to find the boundary controller function, which stabilizes such
nonlinear equations with Dirichlet boundary conditions by transforming it into an equivalent
stable closed loop.

The stability properties of dynamical systems are affected by delays, "small" delays may
destabilize some systems, but "large” delays may stabilize others, [11,12]. Backstepping
method is also effective for controller design problems for dynamic nonlinear systems with
delay terms, as will be shown in this work for fractional order Riccati Matrix Differential
Equations (RMDE). Riccati differential equation, which is a class of nonlinear matrix
differential equations arises in various areas of control theory, scientific and engineering
disciplines such as computational fluid dynamics and in the construction of Lyapunov-
Krasorskii functional for time-delay systems, where the matrix differential equation is a
matrix contains more than one function stacked into vector form with a matrix relating the
functions to their derivatives. In reality, time delay appears in a natural way, that’s why we
have to consider delays in our research. The connection between the Riccati equation and the
stability of linear time-delay systems is considered in [13], it is also a special type of system
has been considered, known as positive system. In [14], the generalized backstepping method
has been used for stabilizing 2x2 Riccati matrix delay differential equation. Note that, in the
latter reference no fractional derivative has been considered. While in this work, the
stabilization of the fractional order Riccati matrix delay differential equation is considered.
This paper is set up as follows; some definitions for fractional calculus and a class of control
fractional Lyapunov functions are given in Section 2. Section 3, illustrates the methodology to
stabilize RMDE of fractional order by backstepping approach. In Section 4 backstepping
controller design is applied to the RMDE of fractional order with time delay in connection
with the method of steps. While Section 5 presents simulation examples for both cases of
fractional order RMDE with and without retarded argument. The conclusions are devoted in
Section 6.

2. Preliminaries
In this section, some definitions and the class of control Lyapunov functions are
introduced, which will be used further later on in this paper.

Definition 1, [15]. The fractional derivative of a function f(t) in Caputo sense is defined as:

DIf(t) = m:_q) [t =)™ fM(s) ds,form—1<q<m meN, t > 0.
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Definition 2, [16]. A smooth function V:[0,00) x R® - R is called a control fractional
Lyapunov function for the fractional-order system Du = f(u, U), u € R", £(0,0) = 0 with
the control law U = a(u) if there exist three K-class functions ¢;, i = 1,2,3; such that:

L &lul) S Ve, u@®) < &l ;

2. DIV (t,u(t)) < =&(lull).

Lemma 1, [16]. Let u(t) € R be a real continuously differentiable function. Then for any
=2" n €N, D" (t) < ru"V(t)Du(t), where 0 < q < 1 is the fractional order.

Lemma 2, [17]. A commensurate system D9x(t) = A x(t) is stable if |arg(eig(A))| >
qm /2, for all eigenvalues eig(A) of the matrix A.

Fractional Euler's method

The solution of the following initial value problem over the interval [a, b]

ch(t) = f(t'((t))' Z(a) = ZOI 0< q <1 t>0

can be presented as a set of points {(t;, {(t;)} that could be used as approximated values. The

value of each {(t;) is calculated by the general formula for the fractional Euler method

h4 . .
((ti+1) = C(ti) + F(q+1)f(ti'{(ti))l liv1 =t + hr L= 0'1' ] T 1'

where h = bj;,a, and j is the number of subintervals [¢;, t;,,] form the interval [a, b]. For more

details, we refer to [18].

3. Backstepping Method for Fractional Order Riccati Matrix Differential Equation

One of the most crucial nonlinear matrix equations arising in mathematics and
engineering is the Riccati equation. This equation has an important role in optimal control
problems, multivariable and large-scale systems, scattering theory, estimation and radiative
transfer. In this section, the backstepping method will be used to stabilize the following
fractional order RMDE.
cDIX(®) + X()A + ATX(t) — X(t)BX(t) + C(t) = 0, 1)
where A,B and C be real n x n matrices with B and C are symmetric. The fractional order
0 < q < 1,and ¢ D{ represent the Caputo fractional order derivative.
In order to stabilize the system (1), we use control function U(t) and then equation (1) may be
written as:
cDIX(t) + X(OA + ATX(t) — X(£)BX(t) + C(t) — U(t) = 0, 2)
or in matrix form:

CD?xn(t) ¢ D?xu(t) CD?Xm(t)

(CD?Xm(t) “Dixp(t) - CDng”(t))+

CD(tIxnl(t) CD?xnz(t) CD‘tIxnn(t)

x11(8)  x02(1) 0 xXa(O)\ /A1 QG2 o Qag
X21(t)  x52(t) o+ xpn(t) Qz1 QAzp =+ Qgp n
X1 () xpa () - Xpn(O) An1 Qnz ** Qpp
Ayp Q1 0 Qpq x11(1)  x12(8) - xp(0)
A1z Q22 = Qp2 X21(8)  X22(t) - xpu(t) |
Ain  A2n *° QApp Xn1(t)  Xpa(t) -+ Xpu(t)
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x11(8)  x92(8) X1n(t) bi1 by bin
X21(t)  x22(1) Xon (1) ?’21 ?’22 ban

Xn1 (t) Xn2 (t) Xnn (t) bnl bnz bnn
X11(8)  x12(8) X1n () C11 C12 Cin
X21(t)  x22(t) X2n (1) LG G2 G|
Xn1(t)  Xn2(t) Xnn (£) Ctn1 Cnz " Can

U1 (t)  up2(t) Upn(T) 0O 0 - 0

u21(t) u22 (t) u2n(t) _(0 O 0

Un1 (t) Uno (t) unn (t) 0 0 0

Hence, the foIIowmg fractlonal order system with control functions will be obtained:

¢ D?xll(t)

= —(a11x11(t) + az1x12(t) + -+ + ap1x10(t)) —

(a11x11(t) + azixp1 (1) + - +

An1Xn1 (1)) + x10(E) (B11X11 (1) + ba1X12(E) + =+ + bpy X1 (£)) + x21 (£) (b122x11(8) +
baox12(t) + -+ bpaX1n (£)) + -+ + Xp1 (€) (b1 X11 () + bopX12(E) + -+ + bppX1,(£)) —

€11+ U11,

¢ D?xln(t) =

—(a1nx11(t) + ApXx12(t) + -+ + Appx1n () —

(A1nXn1 (1) + azpxn2(t) +

o+ AppXnn (1)) + X147, (£) (b11x11(8) + ba1X12(E) + -+ + bry X1 (1)) + X5, (£) (12214 (£) +
by2x12(t) + -+ bpaX1n (£)) + -+ + Xy () (B1nX11 (£) + banX12 () + =+ + bppXny (£)) —

Cin T Uin,

Dx1 () = —(ag1%21 () + A21%22(8) + ++ + Ang X0 (8)) —

(a12%11(t) + azpxp1(t) +

o+ ApaXng (0) + X411 (8) (b11X21 (1) + ba1X22(8) + -+ bpy X2 (1)) + X1 (8) (b12%21 () +
ba2x22(8) + -+ + bpoXon(t)) + -+ + Xpq (£) (B1nX21 (£) + banXaa(£) + -+ + bppXon (£)) —

C21 T Up1,

¢ D‘ZXZn(t) =

—(A1nXx21 () + AzpX22(t) + -+ + AppX2n (t)) —

(a12X1n(t) + az2x2,(t) +

A Xpn (£)) + X130 (£) (b11X21 (1) + b21X22(8) + -+ + bryXon (1)) + X2 (8) (b12x21 (2) +
ba2x22(8) + -+ + bpaXon (£)) + -+ 4 Xy (£) (D1 X21 (t) + banXo2(t) + -+ + bppXon(t)) —

Can + Uzn

¢ D‘anl(t) = _(allxnl(t) + alenZ(t) + -+ anlxnn(t)) -

(@1nx11 () + aznxz1 () +

“F AppXng (£)) + x11(6) (b11Xn1 (1) + b1 Xp2(0) + -+ + by Xy (£)) + X210 (8) (b12Xp1 (£) +
bzzxnz (t) + +bn2xnn(t)) + -t xnl(t)(blnxnl(t) + bannZ(t) + -+ bnnxnn(t)) -

Cni + Un1,

¢ D‘zxnn(t) =

_(alnxnl (t) + AopXn2 (t) + o+ ApnXnn (t)) -

(alnxln(t) + aZnXZn(t) +

et annxnn(t)) + xln(t) (bllxnl (t) + blenZ (t) + ot bnlxnn(t)) + xZn(t) (blzxnl(t) +
bzzxnz (t) + -t bnzxnn(t)) + et xnn(t) (blnxnl(t) + bannZ (t) + et bnnxnn(t)) -
Con + Unn -

©)

To guarantee Mittag-Leffler stable performance of the system (3) the backstepping design
is used at the i-th step. The i-th order subsystem may be stabilized with respect to a Lyapunov
control function V;; by the design of control input u;; and a;;. Consider the stability of the
first equation of system (3)

Dix11(t) = —(a11%11(6) + A1 x12(8) + 4 A1 X1 (1)) — (@11%11 () + Az1 %21 (8) + - +
An1Xn1 (£)) + 211 (8) (b11211(8) + bp1X12(8) + -+ + b1 X152 (D)) + x21(£) (by2x11(8) +
byox12(t) + -+ + bpax17 (6)) + 4 21 () (b1nX11(€) + banX12(E) + -+ + brpx1,(£)) —
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€11+ U11, (4)

where x;, = a11(xq1) IS regarded as virtual controller. To design a;(x;,) for stabilizing
(4) choose the Lyapunov control function as follows:

Vi1(x11) = x;r1 G11 X11- (%)

The g-th order derivative of V,, is ¢D%V,; < —x1;Hy1x,,, Where Hy; is a positive
definite matrix. Thus system (4) is asymptotically Mittag-Leffler stable. The feedback input
uy; and the virtual control x,, = a;;(x;;) make equation (4) asymptotically Mittag-Leffler
stable. Consider x;, as a controller and evaluate a;,(x1;), then, the error between x;, and

a11(x11) ISWyp = Xq2 — @g1(X11).
Consider (x4, w;) is defined by:

©DIxy1(t) = —(ag1%11() + Ap1%12(t) + -+ + Apa X1, (1)) — (@11%11 (8) + A1 %21 (1) + -+ +
An1Xn1 (1)) + X110 (E) (b11X11 (1) + ba1X12(E) + =+ + bpy X1 (£)) + x21 (£) (b122x14(E) +
ba2x12(t) + + + braX1p (£)) + -+ + X1 (€) (D1 X11 (D) + bopX12(E) + -+ + byppX1,(£)) — €11,
“DIwio(t) = —(a12%11 (1) + A22%12() + -+ + Apax1n (1) — (Ag1%12(8) + Ap1%x22(t) +
ot A X2 (0) + X12(€) (br1X11 () + b1 X12(E) + -+ + bp1X1n (t)) + X225 (£) (b12x11 () +
baox12(t) + -+ bpaX1n (£)) + -+ + X2 (£) (b1 X11 () + bapX12(8) + -+ + bypX1,(8)) —

€12 — @11 (X11) + Uqz.

(6)

where x;5 is considered as a virtual controller in (6), assume that x;3 = a;,(x11, W12),
which makes (6) asymptotically Mittag-Leffler stable via defining the Lyapunov function as:

Via(X11, Wi2) = Vi1 (%11) + Wi Giawy, . (7)

The fractional derivative of (7) is ¢D?V,, < —x],Hy %1, — wi,Hiawy, < 0, where
Hy1, Hy, are positive definite matrices. Thus, equation (6) is asymptotically Mittag-Leffler
stable. The feedback input u;, and the virtual control x;5 = a;,(x11,w;,) make (6)
asymptotically Mittag-Leffler stable.

For the (n x n)'™" state, define the error wy,, as Wy, = Xp, — An(n-1)(X11, W12, ooy Win, Wa1,
W22, ey Wan, wee, Wnt, Wi, «, Wr(n—1)) and consider the (x11, ..., Win, W21, < Wany vy Wnt, -on
Wy)-subsystem defined by:

“DIx11(t) = —(@11%11(8) + =+ + Ay X1 (1)) = (A11%11 (1) + -+ + Ay Xy (1)) +

X11(£) (b11%11 () + =+ + bp1 X1 (£)) + 221 (£) (b12X11(8) + =+ + bpoxq5 (0)) + -+ +

.xnl(t) (blnxll(t) + -t bnnxln(t)) —C11,

¢ Dngn(t) = —(a1px11(t) + -+ Appx1n (1)) — (@1 Xn1 () + - + AppdXpn (t)) +
X1n(8)(b11211 (1) + - +bp1 X1 (1)) + X0 (8) (b12X11(E) + -+ + bpoxy5 (£)) + -+ +
Xnn (6) (B1nX11(t) + *+* + bppXnn (£)) — €1n — ®1(n-1) (X11, W12, -r) W1(n—1)) )
“DIwyy(t) = =(a11%21 (1) + = + A1 Xon () = (@12X11 (1) + -+ + AppXpg (1) +
%11 () (b11%21 () + =+ + b1 X (1)) + x21 (£) (b12X21 () + -+ + bpaXon (1)) + -+ +
X1 () (b1nX21 (1) + ++ + bppXon (1)) — €21 — A1n(X11, Wiz, s Win)
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¢ D?WZn(t) = _(alnx21(t) + -t annx2n(t)) - (allen(t) + -t anzxnn(t)) +
xln(t)(b11x21(t) + ot b1 Xon () + X200 (t) (1221 (1) + = + byaXxon(t)) + -+ +
Xnn (£) (D1nX21 (t) + =+ + bppXon(t)) — C2n — Aon—1)(X11, Wiz, oy Win, Wa1, vy Won—1))

¢ D?Wnl(t) = _(allxnl(t) + -t anlxnn(t)) - (alnxll(t) + o+ annxnl(t)) +
%11 (£)(b11Xn1 (8) + =+ + bp1Xpn (£)) + X21(£) (b12Xn1 (8) + -+ + bpaXnpn (£)) + - +
Xn1 (t) (blnxnl(t) + -+ bnnxnn (t)) —Cn1 —

d(n—1)n(x11» W12, oy Wi, W1, ooy Wap, oo, Wino 1)1 00 Win—1)n) »

¢ D?Wnn(t) = _(alnxnl (t) +-t annxnn(t)) - (alnxln(t) +-t annxnn(t)) +
X17(0) (D11 %01 () + -+ + Brg Xy (1)) + X2 (£) (B12%1 (£) + = + Brp X (1)) + -+ +

Xnn () (blnxnl &+ + bnnxnn(t)) — Cnn —

Apn-1)(X11, W12, ooy Win, Wa1, o, Wany ooy Wiy v Wnn—1)) + Unn - 8
Define the Lyapunov function as:

Van (X11, Wiz, oo, Win, Wo1, Waz, e, Wap, oo, W1, Wiz, oo, W) =

T
Vn(n—l) (xllr W12, -0y Win, Wa1, W22, s Wan, -0, Wnt, Wha, vy Wn(n—l)) + WnnGnann- (9)
The fractional derivative of V;,, is:
c nd T T T T T
DiVon < =x91H11X11 — WigHioWyp — - = Wi Hyn Wiy — Wy HyyWog — W Hppwyy —
T T T T
= WonHypWop — o = Wy Hpyy Wiy — Wop HpaWpp — =-- — Wy Hpowiy, <0,

where Hy1,Hq5,**, Hip, Hyq, Hyp, -+, Hyp, oo+, Hyq, Hy, o+, Hyy, are positive definite matrices.
Thus, system (8) is asymptotically Mittag-Leffler stable. The feedback input u,, and the
virtual control wyy, = apn-1)(X11, Wiz, s Win, Wa1, Waz, «os Wan, s Wnt, Wna, oo, Wnn—1))
make (8) asymptotically Mittag-Leffler stable for all initial conditions x;;(0),i,j = 1,2, ..., n.
In the next section, the backstepping method will be extended to stabilize fractional order
RMDE with time delay. Where a single time delay term has been considered in the system.

4. Backstepping Method for Fractional Order RMDE with Time Delay

In the current section, the backstepping method which is presented in Section 3 may now
be used for stabilizing nonlinear fractional order RMDE with time delay, again, we introduce
control functions w;;(t), i,j = 1,2,...,n, and combining with the well-known method of
solving delay differential equation which is abbreviated as "method of steps”. This method
will be introduced for the following differential equation model:

cDIX() + X(OA+ATX(t) —X()BX(t—1)+Ct)—U({t) =0, t >t,, (10)
with the initial condition:
x(t) = ¢o(t), tE€[to—71t0], (11)

where T > 0 is the time delay, ¢,(t) is a continuous function over [t, —7,t5], 0 < g <
1, ¢ D represents the Caputo fractional order derivative, A, B and C are real n X n matrices
with B and C are symmetric and U(t) is the control function to be evaluated to stabilize the
system. In connection with the method of steps, the initial conditions are given for a time step
interval with a length equal to zand then to find a solution for all t > t, divided into steps with
length = The resulting system of fractional order will be stabilized by using the backstepping
control method as it is discussed in Section 3. The resulting system will produce discrete
numerical results that may be interpolated using Lagrange interpolation polynomials in order
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to compute the initial condition for the next step, where the used method (method of steps)
needs an analytic function as initial condition for each step.

The analysis of applying the backstepping method for stabilizing nonlinear fractional order
RMDE with and without time delay may be illustrated as in the next numerical simulations
section.

5. Numerical Simulation

In this section, the effectiveness of our method (which is proposed in Sections 3 and 4) is
presented here in two subsections. The first subsection gives the simulation result of the
backstepping method for RMDE, while in the second subsection, the numerical simulation of
the backstepping method for RMDE with time delay is presented.

A- Simulation result for stabilizing nonlinear fractional order RMDE:
In this subsection, the backstepping method (which is discussed in Section 3) is applied to
nonlinear fractional order RMDE.
Consider the nonlinear 2 x 2 RMDE of fractional order 0 < g < 1:
DIX(t) + X(H)A+ ATX(t) — X(t) BX(t) + C(t) = 0,

with A = ((1) :;) B = (g 2) and C = (i ‘7}) where, as it is mentioned before, B

and C have to be symmetric. The above system with the given matrices may be rewritten as
the following system of differential equations:

Dix;1(t) = —2x1, +8x% +3 x5 X11 +3%x11 Xp1 +6X15 X1 — 5,

“DIx1p(t) = X1q + X1z +8X1q X1 +3 %5, +3x15 Xpp +6X1p Xpp — 4, (12)
DIxyy(t) = X910 + Xp1 + 8Xp1 X171 +3%Xpp X171 +3%x2, + 6 Xy Xp1 — 4,
DTy () = X310 + 4%pp + X153 + 8Xp1X15 + 3Xp0X15 + 62, — 7.
According to Lemma 2, since |arg(eig(A4))| < %, where q is the fractional order of the given
system (12), then the system is unstable.

In order to solve and stabilize the system (12), apply the backstepping approach by
introducing control functions u,q,uy2, Uz, Uz,, Which are defined below later. Hence, the
nonlinear system RMDE of fractional order will be modified to:

¢ D¥xy1(t) = —2x11 + 8x2, + 3x15%11 + 3%11X51 + 6X12%1 — 5 + Uqq,

“DIx15(t) = Xq1 + X1z + 8x11%15 + 3xF, + 3x11%55 + 6X12%55 — 4+ Upy, (13)
€ DTy () = X910 + X1 + 8Xp1%11 + 3%p0x11 + 3%2, + 6X55%001 — 4+ Uy, ,

€ DTxyn(t) = Xp1 + 4%pp + X15 + 8Xp1X15 + 3X0X15 + 6X2, — 7 + Uy, .

Firstly, consider the stability of the first equation of the system (13):

¢ D¥xy (t) = —2x11 + 8x2, + 3x15%x11 + 3x11Xp1 + 6X15%p1 — 5 + Uyq, (14)

where x;, is regarded as virtual controller. Consider the Lyapunov function which is
defined as V, (x11) = %xfl.

Assume the COﬂtI’O”EI’ X12 = al(.xll). If al(xn) =0 and U1 = _8x%1 - 3x11x21 + 5,

then ¢ D7V, < —2x2,, which means ¢ D7V, < 0. The recursive feedback u;; and a; (x;;)
that makes (14) asymptotically Mittag-Leffler stable. Function a;(x;;) IS an estimating
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function when x,, is considered a controller. The error between x;, and a;(x;1) IS Wy, =
X12 — a1 (x11). Now, consider (x;1, wy,)-subsystem is given by:

€ DIx;1(t) = —2x11 + 3x11Wi5 + 6W5X0, (15)
¢ D?le(t) = X171 + Wqp + 8wyyxq1 + 3W122 + 3X11X25 + 6W X5 — 4 + Uy,

and x,; as a virtual controller in the system (15). Suppose that x,; = a,(x;1,W;5), then,
system (15) becomes asymptotically Mittag-Leffler stable. Consider the Lyapunov function
Wthh |S deflned as Vz(xll, le) = Vl(xll) + %lez
If  ay(x1,wi) =0 and  wyp = —kywip — X1 — Xq1 — 8X11Wip — 3W5, — 3xq1%5, —
6W;,X5, + 4, Where k; > 1, then €DTV, < —2x2, — (k; — 1)w3,, which is <D}V, < 0.
Then system (15) is asymptotically Mittag-Leffler stable via u;, and a,(x;1, wy,). Define the
error between x,; and a,(x;1,Wiz) 8 Wy = X1 — @y (X1, Wi2). Similarly, consider
(%11, W12, W, )-subsystem is given by:
©DIx11(t) = =2x11 + 3x11Wy; + 6WioWoy
¢ D?W12(t) = —(k1 — Dwy; —wyy, (16)
and x,, as a virtual controller in the system (16). Suppose that x,, = a3(x;1, W12, Wy1), then
system (16) is asymptotic Mittag-Leffler stable if the Lyapunov function is defined by:

1.2
V3 (%11, Wiz, Wa1) = Vo (x11, We2) + 7 War -
If a3(x11, Wi2, W21) =0 and Uy = _k2W21 — X11 — 8X11W21 - 3W221 + 4‘, Where k2 = 1,
then:
“DIVy < =2x%) — (ky — Dwi, — (ky — Vw3, ,
which means ¢ D7V, < 0. The recursive control u,, and as(x;1, Wy,, wy,) that make system
(16) asymptotically Mittag-Leffler stable.

Represent the error between x,, and a3 (x;1, Wiz, Wa1) @S Way = X5 — a3(X11, Wy2, Woq) and
finally consider the overall (x4, w;2, Woq, Wy,)-subsystem given by:

©DTx11(t) = —2x11 + 3x13 Wiy + 6WiaWoq

“Diwi,(t) = —(ky — Dwyp — wyy,

¢ D?W21(t) = —(ky — Dwyq + 3x11Wa5 + 6W,1 Wy,

S DIwyy (1) = Wyy + 4wy + Wiy + 8Wa Wiy + 3WiaWoy + 3Wa Woy + 6W2, — 7 + Uy,

(17)
with Lyapunov function defined by V, (x11, W12, Wa1, Wa2) = V3 (X1, Wiz, Woqp) + %wzzz. If:
Upy = — Wp1 — Wiy — BWpqWip — 3WioWop — 3Wp Wop — 6W3, — k3w, + 7,
where k3 > 4, then:
DIV, <=2 x{y — (ks — 1) wi, — (kpy — 1) w3y — (k3 —4) w3,,
which is a negative definite function. The recursive feedback u,, makes the system (17)
asymptotically Mittag-Leffler stable.

Numerical simulation has been carried out using fractional Euler's method to solve system
(12) with backstepping controls w44, uy,, u,; and u,,. Consider the fractional order g = 0.4.
The time step size is set to 0.01 and the initial state is (1.5,2,3,2.5). The values of designed
parameters (kq, k,, k,) are chosen as (3,5,8). The simulation results show the performance of
controller in regulations of the system state as graphically illustrated in Figures 1 and 2, which
are also tabulated in Table 1.
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Figure 1: The solutions of system (12) Figure 2: The control signals w4, U5, Uy
with g = 0.4. and u,,.

Table 1: Solutions of system (12) with backstepping controls w4, uy,, u,; and u,,.

t x(0) X12(t) x21(8)  x22(F) uy4 () uq,(t) Uy () Uz, (1)
1.5000 2.0000 3.0000 2.5000 —26.5000 —83.7500 —75.5000 —141.0000
0.0008 -0.5746 0.0047 0.0000 5.0000 4.7317 3.9757 7.0000
0.0000 —0.0069 0.0000 0.0000 5.0000 4.0207 4.0000 7.0000
0.0000 —-0.0001 0.0000 0.0000 5.0000 4.0003 4.0000 7.0000
0.0000 0.0000 0.0000 0.0000 5.0000 4.0000 4.0000 7.0000
0.0000 0.0000 0.0000 0.0000 5.0000 4.0000 4.0000 7.0000
0.0000 0.0000 0.0000 0.0000 5.0000 4.0000 4.0000 7.0000
0.0000 0.0000 0.0000 0.0000 5.0000 4.0000 4.0000 7.0000
0.0000 0.0000 0.0000 0.0000 5.0000 4.0000 4.0000 7.0000
0.0000 0.0000 0.0000 0.0000 5.0000 4.0000 4.0000 7.0000
0.0000 0.0000 0.0000 0.0000 5.0000 4.0000 4.0000 7.0000

B- Numerical simulation for RMDE with time delay

In the current subsection, the method which is proposed in Section 4, is applied and examined
for nonlinear fractional order RMDE with a time delay.

Consider the 2x2 RMDE with time delay of fractional order:

‘DIX®) + X(OA+ATX(t) —X(®)BX(t—1)+Ct)—-U({)=0,t=>0 (18)

with the initial condition:

x(t) =¥, (t), t € [-1,0], (19)
(4 7 _(5 6 _(1 3 _(t+1 t+2

where A = (3 2),B = (6 2),C = (3 2) and W, (t) = (t 43 4 4). System (18)

equivalent to:
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©DTx11(t) = —8x11(t) — 3x12(t) = 3x21(£) + 5x11 (£)x11(t — 1) + 6x1,(t)
x11 (8 — 1) 4+ 6x11(D)x21(t — 1) + 2x1,(O)x2:(E — 1) — 1+ uy4(2),
“DTx15(t) = =7x11(8) — 6x12(t) — 3x22(t) + 5x11 (£)x12(t — 1) + 6x1,(t)
X12(E — 1) 4 6x11 (D) x22(t — 1) + 2x15(O)x22(E — 1) — 3 +uy,(0),
€ DTxp1(t) = —6x1(t) — 3x22(8) — 7x11(t) + 5x21 ()11 (t — 1) + 6355 (t)
X11(t — 1) + 6x21 () X21(E — 1) + 2255 () %21 (¢ — 1) — 3+ uy4(0),
©DTxpp(t) = =7x21(t) — 4x52 (1) — 7x12(t) + 5321 ()x12(t — 1) + 635 (2)

X12(8 — 1) + 6x51 (£)X22(t — 1) + 222, (D) x22(t — 1) — 2 4+ uy,(8),
with the initial conditions:
Xll(t—l) = t, xlz(t_l) = t+1, le(t_l) =t+2, xzz(t_l) = t+3

(20)

Now, in connection with the method of steps (which is a well-known method used to
solve DDE's) and using the initial conditions, substitute the time step [0,1], the system may be
rewritten as a system of non-constant coefficients with time control as follows:

DIxy (t) = (4 + 116)x11(t) + (1 + 8)x15(t) — 3x,(t) — 1 + uq4(2),
©Dix15(t) = (16 4+ 116)x11 () + (6 + 8E)x1,(t) — 3x5(t) — 3 + ug,(2),
“DIx1 (1) = =7x11() + (6 + 11 £)x51(8) + (1 + 8t) x25(t) — 3 + up1 (1),
€ DTxyp(t) = =7x15() + (16 + 116)x5; + (8 + 88)x25(8) — 2 + ug;(0).

(21)

We shall present the backstepping method to design the controller u;;,i = 1,2, j = 1,2 for
the first-time step [0,1]. Firstly, let us consider the stability of the first equation of the system
(21):

CDIxy () = (A +116) x1(t) + (1 +81) x15(t) — 3x,1(t) — 1 +uy4(t), (22)

where x;,(t) is regarded as a virtual controller, and the Lyapunov function defined by
Vi(x11(1) = %xfl, assume the controller x;, = a;(xq1). If @;(x11) = 0 and the feedback
input  uq;(t) = 3x,1(t) — kyx11(t) +1 then €DV, < —(ky — 4 — 116)x2,(¢t), ky = 15,
t € [0,1], which means that ¢ DV, < 0. The recursive feedback u,; and a;(x;;) make

equation (22) asymptotically Mittag-Leffler stable. Function a, (x;;) is an estimating function
when x;,(t) is considered as a controller. The error between x;,(t) and a;(x;1) is

assumed to be wy, = x1,(t) — a1 (xq1). Consider (x;4, wy,)-subsystem given by:

¢ Dix;1(0) = —(ky — 4 — 11)x11(t) + (1 + 8t)wy,(b), ky = 15,

¢ DIwi,(t) = (16 + 11t)x11(t) + (6 + 8wy () — 3x55(t) — 3 + g, (b), 23)

where t € [0,1] and x,; in system (23) is treated as a virtual controller. Suppose that
X1 = ay(x11,Wq2) and it turns out that system (23) is asymptotically Mittag-Leffler stable.

Consider the quadratic form Lyapunov function V,(x11,wiz) = Vi(x11) + %wfz. If
az(x11,w12) = 0, and

Uy = —(16 + 11 t)xq1(t) — ky Wi (t) — x21(t) + 3x2,(t) + 3, k4 = 15,k, = 14,

then DV, < 0, and as a consequence, system (23) is asymptotically Mittag-Leffler stable

via u;, and a,(x;1,wy,). Let us introduce the error between x,; and a,(x;;,w;,) as
Wy = X1 — (X1, Wi2). Consider (x;1, Wy, Wyq)-Subsystem given by:
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¢ D‘lel(t) = _(kl - 4‘ - 11t)x11(t) + (1 + 8t)W12 (t) B

“Diw,(t) = —(k; — 6 — 8wy, (8) — Wiy (1), (24)
S DIwy (1) = —=7x11(t) + (6 + 11)wy1 () + (1 + 8t)x2,(t) — 3 + Uy (1),

and x,, = az(x11, Wy, W) is considered as a virtual controller in the system (24).
Following the same procedure as before, if a3(x;1, Wiz, Wy1) = 0 and uy,(t) = 7x41(t) —
ksw,1(t) + 3, for all k3 > 17, then system (24) is asymptotically Mittag-Leffler stable via
defining the Lyapunov function:

1
V3(x11, W12, W21) = Vo(X11, Wyp) + ;W221-

Define the error variable w,, as wy, = x5, — a3(x11, W12, W) and finally, consider the
overall (x;1, Wy, Wy1, Wyy)-System, which is:
¢ D(lel(t) = _(kl - 4‘ - 11t)x11(t) + (1 + 8t)W12(t),

“Diwgy(t) = —(ky — 6 — 8wy, (1) — wpy (1),
“Diwy (1) = —(kz — 6 — 11t)wyq (t) — (1 + 8wy, (1),

CDIw,, (1) = —Twip(6) + (16 + 11wy, (t) + (8 + 8t)wyy () — 2 + Uy, (t),

and the Lyapunov function defined by:

Va(X11, Wiz, Wa1, Wap) = V3 (X110, Wiz, Wa1) + %szz ’

and if the present stage controller is assumed as u,, = 7 wy,(t) — (16 + 11t)w,4(t) —
kawy,(t) + 2, k, = 16,t € [0,1], then:

“DIVy < —(ky — 4 — 11)xf1 (£) — (ky — 6 — 8OWH () — (ks — 6 — 11w, (£) — (ky —
8 — 8t)wi, (b),

which is a negative definite function, which means that system (25) is asymptotically Mittag-
Leffler stable via u,,.

Now, for the second time step interval [1,2] we will first find the Lagrange interpolation
polynomials of degree 5, which interpolate the results of the first-time step. The updated
initial conditions are:

x11(t — 1) = —=25.1t° + 200.8t* — 638.2t3 + 1006.3t% — 787t + 232.9,
x12(t —1) = =51.5t> + 411.8t* — 1307.9¢3 + 2060.6t2 — 1610t + 476.3,
xy1(t —1) = —126.7t> + 1005t* — 3157.8t3 + 4913t2? — 3782.6t + 1108.3,
Xpp(t — 1) = —102.7t> + 821.5t* — 2609.5t3 + 4111.4t% — 3212.6t + 950.4,
So, the resulting system is given by:

¢DIx,, = 7806.3x1; + 3611x;, — 3x,, — 885.7t5x,1 + 7034t*x,, — 22137.8t3x,, +
34509.5t2x,, — 26630.6tx,, — 404t5x,, + 3214.8t*x,, — 10144.8t3x,, +
15863.8t%x,, — 12287.2tx;, — 1 + uy4,

¢Dx;, = 8076.9x;; + 4752.6x,, — 3x,, — 873.7t%x;; + 6988t*x,, — 22196.5t3x,, +
34971.4t%x,, — 27325.6tx,, — 514.4t5x,, + 4113.8t*x,, — 13066.4t3x,, +
20586.4t2x,, — 16085.2tx1, — 3 + Uyy,

cD%,, = —7x,1 + 7808.3x,, + 3611x,, — 885.7t5x,, + 7034t*x,, — 22137.8t3x,, +
34509.5t2x,; — 26630.6tx,, — 404t°x,, + 3214.8t*x,, — 10144.8t3x,, +
15863.8t%x,, — 12287.2txy, — 3 + Uy,

“Dix,, =

—7x1, + 8076.9x,, + 4754.6x,, — 873.7t5x,, + 6988t*x,; — 22196.5t3x,, +
34971.4t%x,, — 27325.6tx,, — 514.4t5x,, + 4113.8t*x,, — 13066.4t3x,, +
20586.4t2x,, — 16085.2tX,; — 2 + Uy,.

(25)

(26)

(27)
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Now, for the second time step [1,2], one should follow the same procedure as in the first-
time step [0,1] by applying backstepping method. Firstly, consider the stability of the first
equation of the latter system which is:
¢Dx;1(t) = 7806.3x;,(t) + (3611 — 404t5 + 3214.8t* — 10144.8t3 + 15863.8t2 —
12287.2t)x4,(t) — 3x,,(t) — 885.7t5x;; + 7034t*x,, — 22137.8t3x,; +
34509.5t2x;, — 26630.6tx3; — 1 + uy (). (28)

where x;,(t) is regarded as a virtual controller. Let's consider the Lyapunov function
defined by V;(x1,(¢t)) = %xlzl(t) and assume the controller x;, = a;(x11). If a;(x1;) =0
and the feedback input u;; = —kqx;; + 3x,,(t) — 7034t*x;; — 34509.5t%x,;, + 1, ky =
7806.3, then, € D{v, is negative definite function. The recursive feedback u;; and a;(x;;)
make equation (28) asymptotically Mittage-Leffler stable. Function a;(x;,) is an estimating
function when x,,(t) is considered as a controller. The error between x;, and a;(x;;) is
Wiy = X35 — Q1(Xq1).
Consider (x;1, w;,)-subsystem given by:
¢ DIx;1(t) = —(ky — 7806.3 + 885.7 t° + 22137.8 t3 + 26630.6 t)x,,(t) — (404 t° —
3214.8t* + 10144.8 t3 — 15863.8 t2 + 12287.2 t)w,, (),
¢ D(ZW12 ) =
8076.9 x11(t) + 4752.6 Wy, (t) — 3x,,(t) — 873.7 t3x1,(t) + 6988 t*x,,(t) —
22196.5 t3x,,(t) + 34971.4 t2x,,(t) — 27325.6 tx;1(t) — 514.4 t>wy,(t) +
4113.8 t* wy, — 13066.4 t3 wy,(t) + 20586.4 t2w,,(t) — 16085.2 twy,(t) — 3 +
uy2(t),

(29)
and x,; is considered as a virtual controller in the system (29). Suppose that x,; =
a,(x11, W12), then system (29) will be asymptotically Mittag-Leffler stable by considering the
Lyapunov function defined by V,(x11, w13) = Vi (xq11) + %wfz, then, if a, (x4, w,2) = 0and
Uy, = —(8076.9 — 873.7t5 4+ 6988t* — 22196.5t3 + 34971.4t% — 27325.6t)x1, — (k, +
4113.8t* + 20586.4t2)w;, — Xpq + 3%, + 3, ky = 4752.6,
then ¢ DIV, < 0. As a consequence, system (29) is asymptotically Mittag-Leffler stable via
Uy, and a, (x4, wy,). Produce the error between x,, and a,, and represent it as wy; = x,; —
a,(x11, W12). Consider the (x;1, Wy, Wy )-Subsystem given by:

D%, (t) = —(ky — 7806.3 + 885.7t> + 22137.8t3 + 26630.6t)x,,(t) — (404t° —
3214.8t* + 10144.8t% — 15863.8t2 + 12287.2t) wy,(t),

¢ DIwyo(t) = —(ky, — 4752.6 + 514.4t° + 13066.4t% + 16085.2t) wy,(t) — wyy (1),
¢ DIw,, (t) = —=7x41(t) + (7808.3 — 885.7t> + 7034t* — 22137.8t3 + 34509.5t2 —
26630.6t) w1 (t) + (3611 — 404t> + 3214.8t* — 10144.8t> + 15863.8t% —
12287.26) x5, (t) — 3 + uy (1),

(30)
and consider x,, as a virtual controller in the system (30). Assume that
Xy5 = a3(x11, W12, Wa1), then it make system (30) asymptotically Mittag-Leffler stable. Now,
the Lyapunov function is defined by:

V3(x11, Wiz, Wa1) = Vo(xq1, Wi2) + %szr
If a3(x11, W12, W21) = 0 and

Uy, = 7x1, — (ks + 7034t* + 34509.5t%)w,, + 3, for k5 > 7808.3,

then ¢ D{V; < 0. As a consequence, system (30) is asymptotically Mittag-Leffler stable via

Uy, and as (x4, W12, Woq ). Define the error variable w,, as wy, = x5, — a3(xq1, Wip, Wap).
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Consider the overall (x;1, Wy, Wy1, Wy5)-System given by:
¢D¥xy;(t) = —(ky — 7806.3 + 885.7 t> + 22137.8 t3 + 26630.6 t)x;,(t) — (404 t> —
3214.8t* + 10144.8 t3 — 15863.8 t2 + 12287.2 t)w,,(¢),
¢ DIwy,(t) = —(k, — 4752.6 + 514.4 t> + 13066.4 t* + 16085.2 Owi,(t) — wyq (1),
¢ DIw,,(t) = — (k3 — 7808.3 + 885.7 t> + 22137.8 t3 + 26630.6 t)w,, (t) + (3611 —
404 t5 4 3214.8 t* — 10144.8 t3 + 15863.8 t2 — 12287.2 t)w,, (1),
¢ DIw,, (t) = —7Twy,(t) + (8076.9 — 873.7 t° + 6988 t* — 22196.5 t3 + 34971.4 t2 —
27325.6 )Wy, (t) + (4754.6 — 514.4 t° + 4113.8 t* — 13066.4 3 + 20586.4 t? —
16085.2 t)Wy, (t) — 2 + Uy, (1),

(31)
and the Lyapunov function defined by:
Va(x11, Wiz, W1, Wa3) = V3 (X11, Wiz, Waq) + %Wgz-
If:
Upp =
7wy, — (8076.9 — 873.7 t° + 6988 t* — 22196.5 t3 + 34971.4 t? — 27325.6 t)w,; —
(ks +4113.8t* + 20586.4 t>)w,, + 2, k, = 4754.6.
Then € D7V, is negative definite function. The recursive feedback u,, will makes the system
(31) asymptotically Mittag-Leffler stable.
Numerical simulation has been carried out using fractional Euler's method. We consider the
fractional order g = 0.81. The time step size is set to 0.01 and the initial state is (1,2,3,4). The
obtained results for all ¢t € [0,2] are graphically illustrated in Figures 3 and 4, which are also
tabulated in Table 2.

4 T T 250 T T
| x11(t) u1l(t)
al x12(0) || 200 u12(t) I
| x21(t) 1501l u21(t)
x22(t) u22(t)
2 100
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Figure 3: The solutions x;4, x15,%,, and x,, Figure 4: The control signals u;q,uq,, Uyq
over [0,2] with g = 0.81. and Uyo over [0,2].
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Table 2: The solutions x;4,x42,x2; and x,, with backstepping controls u,4,u;,,u,; and
u,, over [0,2].

x11(1)  x12(0) x21(t) X22(t) uy4(t) us2(t) Uz (1) Uy, (1)

0] 1.0000 2.0000 3.0000 4.0000 —7.0000 —36.0000 —233.0000 —108.0000
A 0.0078 0.0046 -0.4012 0.0118 —-0.3365 3.2224 35.5538 9.0659
s 0.0002 -0.0001 —-0.0140 0.0001 0.9547 3.0117 4.1333 2.2815
W 0.0000 0.0000 -0.0001 0.0000 1.0000 3.0000 3.0099 2.0000
W 0.0000 0.0000 0.0000 0.0000 1.0000 3.0000 3.0000 2.0000
1 0.0000 0.0000 0.0000 0.0000 1.0000 3.0000 3.0000 2.0000
‘72 0.0000 0.0000 0.0000 0.0000 1.0000 3.0000 3.0000 2.0000
(/S 0.0000 0.0000 0.0000 0.0000 1.0000 3.0000 3.0000 2.0000
(8 0.0000 0.0000 0.0000 0.0000 1.0000 3.0000 3.0000 2.0000
(s 0.0000 0.0000 0.0000 0.0000 1.0000 3.0000 3.0000 2.0000
2 0.0000 0.0000 0.0000 0.0000 1.0000 3.0000 3.0000 2.0000

6. Conclusions

The analytical solution of fractional order RMDE is not easy to evaluate by traditional
methods, in which this difficulty arises from the nonlinearity of the RMDE in addition to the
matrix coefficient appear in the differential equation. In the first part of this article, the
backstepping method is used to stabilize fractional order RMDE while in the second part, it
has been proposed to stabilize RMDE of fractional order with time delay via combining it
with the method of steps in which the solutions are asymptotically Mittag-Leffler stable.
Numerical simulations are presented in order to validate and indicate the feasibility and
effectiveness of the proposed method.
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