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Abstract 

     Optimization is the task of minimizing or maximizing an objective function f(x) 

parameterized by x. A series of effective numerical optimization methods have 

become popular for improving the performance and efficiency of other methods 

characterized by high-quality solutions and high convergence speed. In recent years, 

there are a lot of interest in hybrid metaheuristics, where more than one method is 

ideally combined into one new method that has the ability to solve many problems 

rapidly and efficiently. The basic concept of the proposed method is based on the 

addition of the acceleration part of the Gravity Search Algorithm (GSA) model in the 

Firefly Algorithm (FA) model and creating new individuals. Some standard objective 

functions are used to compare the hybrid (FAGSA) method with FA and the 

traditional GSA to find the optimal solution. Simulation results obtained by MATLAB 

R2015a indicate that the hybrid algorithm has the ability to cross the local optimum 

limits with a faster convergence than the luminous Fireflies algorithm and the ordinary 

gravity search algorithm. Therefore, this paper proposes a new numerical optimization 

method based on integrating the properties of the two methods (luminous fireflies and 

gravity research). In most cases, the proposed method usually gives better results than 

the original methods individually. 

 

Keywords: Firefly Algorithm (FA), Gravitational Search Algorithm (GSA), Machine 

Learning(ML), Numerical Optimization Method . 
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)الهجين( ، حيث يتم دمج أكثر من طريقة، بشكل مثالي، في طريقة واحدة جديدة تمتلك القدرة على حل العديد  
نموذج   منإضافة جزء التسارع على  مبنى المقترحة للطريقة من المشكلات بسرعة وكفاءة. إن المفهوم الأساسي  

. تُستخدم بعض دوال الهدف  (FA)عات المضيئة  نموذج خوارزمية اليرا   ( الى GSAخوارزمية بحث الجاذبية ) 
المضيئة   و خوارزمية بحث الجاذبية    FAالقياسية في مقارنة الطريقة المركبة مع كل من خوارزمية اليراعات 

GSA    التقليدية للعثور على الحل الأمثل. تشير نتائج المحاكاة التي تم الحصول عليها بواسطة برنامج ماتلاب
ارزمية المركبة ذات قدرة على تخطي الحدود المحلية المثلى بتقارب أسرع من خوارزمية  إلى أن الخو   2015ر  

. في معظم الحالات ، تعطي الطريقة المقترحة نتائج أفضل  اليراعات المضيئة وخوارزمية بحث الجاذبية العادية
 .بشكل فردي الطرق الأصلية من تنفيذ 

 
1. Introduction 

     In machine learning  (ML), classical optimization algorithms fail to give an appropriate 

solution to optimization problems with a high-dimensional search space, which grows 

exponentially with the problem size. Therefore, utilizing accurate techniques (such as 

exhaustive search) is recommended when exhaustive testing of these issues is impractical[1]. 

Hybrid approaches can be used to speed up the process of finding a satisfactory solution and 

improve the sustainability of energy production infrastructures in many areas such as 

households. Several metaheuristic hybridization methods are presented in ([2] and [3]). As a 

result, two or more algorithms can be hybridized as homogeneous or heterogeneous in high-

level or low-level systems via a relay or convolutionary methods.  

 

     Recently, several heuristic evolutionary algorithms have been enhanced. These algorithms 

include many different ones, such as the Bat Algorithm (BT)[4], Cuckoo Search (CS)[5], 

Genetic Algorithm (GA)[6], Firefly Algorithm (FA)([7] and [8]), Differential Evolution 

(DE)[9], Gravitation Search Algorithm (GSA)[10], Ant Colony (AC)[11], Particle Swarm 

Optimization (PSO)([12] and [13]), and Artificial Bee Colony (ABC)[14]. The main common 

objective for all of them is to search for and find a better solution from all available inputs. A 

heuristic algorithm should have two or more essential characteristics to ensure that a global 

optimum is found. 

 

     According to [15], exploration and exploitation are the two fundamental aspects that play an 

important role in describing the working of any algorithm. Exploration is an algorithm's ability 

to search for entire parts of a problem in dimension space, whereas exploitation is the 

algorithm's ability to find the near optimum solution. All heuristic optimization algorithms 

strive to find a global optimum by efficiently keeping a balance between exploitation and 

exploration abilities. The method allows controlling the balance between investigating 

unknown regions of the dimension space (exploration) and investigating further known regions 

of dimension space  to have low-energy structures (exploitation) [16]. 

 

     Because of the aforementioned limitations, current heuristic optimization algorithms can 

only solve a limited set of problems. That is, there is no algorithm capable and sufficient to find 

a solution for all optimization problems  [17]. Therefore, a hybrid optimization algorithm is a 

way to make a balance between comprehensive exploration and exploitation when creating a 

new creative algorithm. Due to its simplicity, speed of convergence, and ability to search for a 

global optimum, in hybrid approaches, FA is one of the most extensively utilized evolutionary 

algorithms. 

 

     There have been various studies done in the literature to aggregate FA with other algorithms 

such as hybrid FireFly Particle Swarm Optimization (FFPSO)[18], where the main feature of 
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the FA algorithm is the attractiveness of brightness intensity that models the optimal solution 

and better exploitation due to the absence of the velocity vector (V) and personal best (pbest) 

terms in it, while PSO ([12] and [13]) is trying to take advantage of two characteristics to reach 

the best velocity; the first is based on the best personal position (pbest) and the second is the 

best global flight position (gbest) [19], Firefly Algorithm Deferential Evolution (FADE) 

enhances searching efficiency by executing FA and DE in parallel to promote information 

sharing among the Firefly population [20], and Hybrid FireFly Algorithm and Cuckoo Search 

(HFFACS) balances exploration and exploitation by its simplicity and low computational cost 

when applied to a wide range of problems  [21]. These hybrid algorithms are designed to reduce 

the likelihood of being trapped in a local optimum. GSA, a novel heuristic optimization method 

was recently introduced [22]. This study introduces a new hybrid model that combines FA and 

GSA algorithms, named FAGSA, and uses twenty-three benchmark functions to compare the 

performance of the heuristic algorithm of the FA and the GSA algorithm with the new hybrid 

algorithm, FAGSA. 

 

     Instead of using traditional feature extraction and optimization techniques, several 

metaheuristic techniques are developed to solve the problem of feature optimization, such as 

the Firefly Sequential quadratic programming (FaSqp) algorithm introduced by [23], the 

FFPSO algorithm introduced by [18], and the FADE algorithm introduced by [20]. For real-

world optimization problems, meta-heuristic algorithms have been proven to outperform 

gradient-based techniques. According to [24], the firefly algorithm has one of the optimization 

algorithms that can deal with multimodal functions more naturally and efficiently. Fireflies are 

created artificially and deployed randomly in decision space. Then, each firefly emits a flushing 

mechanism for other fireflies. This paper introduces the metaheuristic FAGSA as a feature 

extraction method. The FA and GSA sections contain a detailed formulation and an explanation 

of each algorithm. 

  

1.1. Standard Firefly Algorithm 

     FA is an evolutionary computation algorithm proposed by X.S. Yang in 2007. The firefly 

algorithm was developed by simulating firefly brightness (mating) behavior. Although this 

algorithm is similar to Particle Swarm Optimization (PSO) ([12], and [13]), Artificial Bee 

Colony (ABC) Optimization[14], and Ant Colony Optimization (ACO)[11] were significantly 

easier to implement [21]. 

 

     Fireflies are small insects that emit a bright light intended to attract other fireflies and also 

hunt prey [25]. They emit a short series of light flashes in a repetitive pattern. From elementary 

physics, it is clear the intensity of light ‘I’ is inversely proportional to the square of the distance 

‘r’ from the source, where the attractiveness ‘I’ of fireflies decreases as the distance ‘r’ 

increases. Hence, most fireflies can only be seen from a few hundred meters away. The 

implementation of the fitness function depends on the behavior of the brightness of the light 

emitted by the fireflies to implement this algorithm. For the aim of plainness, it is assumed that 

firefly light intensity attractiveness is specified by its brightness I, which correlates with the 

fitness function. 

 

 

a. Attractiveness and light intensity 

     The brightness of a firefly is determined from the encoded objective function depending on 

the equations below.  

Min  𝑓(𝒙𝒊) 𝑿 = (x1, ..., xd)
T        (1) 

where 
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X is the population size at a given position r,  

I  is the intensity of the light reflected by the source, which can be calculated using the firefly's 

total brightness as in I(r), which is proportional to fitness. As a result,  

I(r) follows the inverse square law, which is defined as:   

I(r) = 
𝐼𝑠

𝑟2            (2) 

The variation in firefly attractively β with nearby others by distance r  is proportional to I(r) 

and can be defined as follows: 

𝛽(𝑟) =  𝛽0 𝑒−𝛾𝑟2
.          (3) 

Where β0 is an attractiveness at r = 0 based on brightness, γ is the fixed light absorption 

coefficient and theory, γ ∈ [0, ∞), but in a traineeship γ=O(1) is determined by the characteristic 

length г of the system to be optimized and in most applications, it typically varies in range from 

0.01 to 100. 

r is the distance between fireflies at position 𝑥𝑖, 𝑥𝑗 and estimate the using following formula 

𝑟𝑖𝑗 =∥ 𝑥𝑖 −  𝑥𝑗 ∥ =  √∑ (𝑥𝑖,𝑘(𝑡) −  𝑥𝑗,𝑘(𝑡))2𝑑
𝑘=1   ,     (4) 

where d is a dimension in space, 𝑥𝑖 and 𝑥𝑗 are two fireflies and j>i. 

The movement of a firefly i is attracted to another more attractive (brighter) firefly j is 

determined by 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) +  𝛽0 𝑒−𝛾𝑟2
(𝑥𝑗(𝑡) −  𝑥𝑖(𝑡)) +  𝛼𝜖𝑖      (5) 

where  𝑥𝑖(𝑡) 𝑖𝑠 the current position of a firefly. 

𝛽0 𝑒−𝛾𝑟2
(𝑥𝑗(𝑡) −  𝑥𝑖(𝑡)) is the attractiveness (β) of a firefly (the attraction towards 

neighbors 𝑥𝑗), 𝛼𝜖𝑖 indicates the random walk of a firefly with 𝛼 ∈ [0, 1] being the randomization 

parameter and ɛ𝑖 is Gaussian or uniformly distributed in [0, 1]. If the scales differ significantly 

in different dimensions such as −105 to 105 in one dimension while, say, −0.001 to 0.01 along 

with the other, it is recommended to replace α with αSk where the scaling parameters are Sk (k 

= 1, ..., d). 

 

If there is no brighter firefly j  𝛽0 = 0 , it will move randomly (simple random walk). 

𝒙𝒊(𝑡 + 1) = 𝒙𝒊(𝑡) +  𝛼(𝑟𝑎𝑛𝑑 −
1

2
) .        (6) 
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The pseudo-code for the firefly algorithm 

Algorithm 1 - FA [7] 

1: Define the objective function    f(x),   X = (x1, x2, …, xd)t) 

2: 

 

Set default values for randomization coefficient 𝜶, firefly attractiveness β0, media light absorption 

coefficient ƴ, population size P, and maximum generation number MGN. 

3: Generate random numbers for populations xi, i ={1, 2, …, P} {Initialization} 

4: Evaluate the fitness function f(x) of all solutions in the population 

5: Based on the light intensity of fireflies Ii at xi, calculate the fitness of the initial population f(xi). 

6: for t in range(1, MGN) 

7:  for i in range(1, P)  (fireflies) 

8:   for j in range(1, P) 

9:    by using Eq. 2, compute the light intensity (I). 

10:    by using Eq. 4, computing the distance between two fireflies 

11:    if  𝑰𝒊
(𝒕+𝟏)

 <  𝑰𝒋
(𝒕+𝟏)

 

12:     by using Eq. 5, move firefly Ii towards firefly Ij 

13:    else 

14:     else by using Eq. 6, firefly i is moved randomly towards firefly j 

15:    end 

16:    Obtain attractiveness 𝜷, where 𝜷(𝒓) =  𝜷𝟎  𝒆
−ƴ𝒓𝟐

 

17:    Evaluate the fitness function f(xi) of all population solutions 

18:    Update light intensity I 

19:   end 

20:  end 

21:  Sort the solution results and keep the best solutions that exist from the population so far. 

22: end 

  

 

1.2. Standard Gravitational Search Algorithm 

     The authors in [10] and [26]  have proposed a novel heuristic optimization method, GSA. 

According to Isaac Newton's law of gravitation, every particle in the universe attracts another 

with a gravitational force, which is directly proportional to the product of their masses and 

inversely proportional to the square of the distance between them. The following is a 

mathematical model of the GSA. Assume there are N particles in a system. The process begins 

by distributing all particles in the search space at random. The gravitational forces  exerted by 

particle j on particle i at any given time are defined as follows [10]:  

 

𝐹𝑖𝑗
𝑑(𝑡) =  𝐺(𝑡)

𝑀𝑝𝑖(𝑡)∗ 𝑀𝑎𝑗(𝑡)

𝑅𝑖𝑗(𝑡)+ ɛ
 (𝑥𝑗

𝑑(𝑡) −  𝑥𝑖
𝑑(𝑡)).      (7) 

 

     The active gravitational mass associated with particle j is denoted by Maj, the passive 

gravitational mass associated with particle i is denoted by Mpi, the gravitational constant at time 

t is denoted by G(t), ɛ is a small constant, and the Euclidian distance between two particles i 

and j is denoted by Rij: 

𝑅𝑖𝑗(𝑡) =  ǁ𝑥𝑖(𝑡), 𝑥𝑗(𝑡) ǁ2          (8) 

G(t) is calculated as follows: 

G(t) = 𝐺0 ∗ exp(−α ∗ iter/maxiter)        (9) 
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      Where α and 𝐺0 represent the descending coefficient and initial value, iter represents the 

current iteration, and maxiter represents the maximum number of iterations. The total force 

acting on particle i in a problem space with dimension d is calculated as follows: 

 

Fi
d(t) =  ∑  α𝑗

𝑁
𝑗 𝜖 kbest  𝐹𝑖𝑗

𝑑(𝑡)   𝑤ℎ𝑒𝑟𝑒 𝑖 ≠  𝑗 𝑎𝑛𝑑 α𝑗 = [0,1]    (10) 

𝑘𝑏𝑒𝑠𝑡 = (𝑓𝑖𝑛𝑎𝑙𝑝𝑒𝑟 + (1 −
𝑡

𝑇
)  x (100 − 𝑓𝑖𝑛𝑎𝑙𝑝𝑒𝑟))  x 

𝑁

100
 , 𝑓𝑖𝑛𝑎𝑙𝑝𝑒𝑟 = 2           (11) 

 

     In Newton's law of motion, the acceleration of an object is caused by a net force inversely 

proportional to its mass, so all the acceleration of particles is computed by the following 

equation: 

aCi
d(t) =  

Fi
d(𝑡)

M𝑖𝑖(𝑡)
.          (12) 

 

     In the preceding equation (12), t represents a specific time and Mi represents the mass of the 

object i. The following equations are used to calculate the velocity and position of the objects: 

𝑣𝑒𝑙𝑖
𝑑(𝑡 + 1) =  ɛ𝑖𝑣𝑒𝑙𝑖

𝑑(𝑡) + αC𝑖
𝑑(𝑡)                                                                                    (13) 

 

     where ɛ is  uniformly distributed in the interval [0, 1].  

𝑥𝑖
𝑑(𝑡 + 1) =  𝑥𝑖

𝑑(𝑡) + 𝑣𝑒𝑙𝑖
𝑑(𝑡 + 1)       (14) 

 

     In each round, Equations (15) and (16) are used to update the velocity as well as the mass of 

each agent i. 

𝑚𝑖(𝑡) =  
𝑓𝑖𝑡𝑖(𝑡)− 𝑤𝑜𝑟𝑠𝑡(𝑡)

best(t)− 𝑤𝑜𝑟𝑠𝑡(𝑡)
  ,                                           (15) 

𝑀𝑖(𝑡) =  
𝑚𝑖(𝑡)

∑ 𝑚𝑗(𝑡)𝑘
𝑗=1  

    ,                                   (16) 

 

     Firstly, random values are assigned to GSA masses. Each mass is a potential solution. 

Following the initialization step, the velocities of all masses are defined using equations (13). 

Meanwhile, the gravitational constant total forces and accelerations are computed as (Eq. 8, 9, 

10), respectively. The mass position value is computed using (14). Finally, the GSA will be 

terminated once the meeting criteria are met. 

 

The pseudo-code for the Gravitational Search Algorithm 

Algorithm 2 - GSA [10] 

1: Establishing the local search space 

2: parameter initialization, 𝑿𝒊 = (𝒙𝒊
𝟏, 𝒙𝒊

𝟐, 𝒙𝒊
𝟑,…, 𝒙𝒊

𝒏), for i=1, 2, 3…,M 

3: Object (agent) fitness evaluation 

4: Kbest (Eq. 11), G(t) (Eq. 9), and Mi(t) (Eq. 16) should be updated, for i = 1,2,. . .,M. 

5: Compute the total force in different directions (Eq. 10). 

6: Determine the acceleration and velocity (Eq. 12, 13). 

7: Updating objects’ positions while producing 𝒙𝒊
𝒅(𝒕 + 𝟏), 𝒊 = 𝟏, 𝟐, … , 𝑴 (Eq. 14). 

8: Steps 3–7 must be repeated until the stopping criterion is met. 

 

1.3. Proposed approach: FAGSA Algorithm 

     In this section, the acceleration part of the GSA algorithm is used in the FA algorithm, which 

is similar to previous work in ([18], [20] and [23]). Such integration has the advantage of being 

better in convergence. Besides, it prevents falling into the local minimum. The FA algorithm 

has an advantage over other optimization techniques in its simplicity; only a few parameters 
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need to be modified. The FAGSA algorithm works in the same way as the FA algorithm, except 

that the position vector of the FA algorithm is modified as the following equation: 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) +  𝛽0 𝑒−𝛾𝑟2
(𝑥𝑗(𝑡) −  𝑥𝑖(𝑡)) + aCi

d(t) +  𝛼𝜖𝑖     (17) 

If there is no brighter, 𝛽0 = 0 and the firefly moves randomly (simple random walk): 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + aCi
d(t) +  𝛼𝜖𝑖 ,        (18) 

 

The pseudo-code for the proposed algorithm 

Algorithm 3 - FAGSA 

1: Define the objective function    f(x),   X = (x1, x2, …, xd)t) 

2: 
Set the initial values of randomization parameter α, firefly attractiveness β0, size of Fireflies 

(population) P, and a maximum of generation number T. 

3: Generate the initial population xi randomly, i ={1, 2, …, P} 

4: Based on the intensity of the fireflies' light, compute the fitness of the initial population. 

5: for t in range(1, T) 

6: for i in range(1, P) 

7: for j in range(1, P) 

8: determine light intensity I, (Eq. 2). 

9: compute the distance of acceleration between xi and xj , (Eq. 4). 

10: calculate acceleration (Eq. 9, Eq. 7, Eq. 10, and Eq. 12) respectively. 

11: if (I(i) < I(j)) 

12: Firefly i is moved towards Firefly j (Eq. 17). 

13: Else 

14: Firefly i is moved randomly towards Firefly j (Eq. 18). 

15: end 

16: calculate the new solutions and update the light intensity value 

17: end 

18: end 

19: end 

20: 
descending order for the fireflies based on their light intensity. 

 

      

       A Firefly algorithm (FA) operator mutates the light intensity attraction step of each particle 

in the proposed method. That means each particle is attracted to the best position in the entire 

group at random. The modified attractiveness step of the FAGSA algorithm performs local 

searches in different regions. The FAGSA feature selection stage's main goal is to reduce the 

problem's features before supervising neural network classification. The FAGSA algorithm has 

the distinction of being able to be used to solve optimization problems using the methods of 

firefly flash behavior as a promising wrapper algorithm among all the ones used. 

To demonstrate FAGSA's efficiency, the following remarks are made: The quality of the results 

and good solutions (fitness) are taken into account when updating the FAGSA algorithm. 

Particles near good solutions attract others that explore the search space. When all the particles 

get close to the good solutions, they move slowly. In this case, the acceleration property of the 

GSA algorithm is used to combine with the FA algorithm to utilize the best solution and 

increase the acceleration to move into the best firefly brightness. The best FAGSA solutions 

are stored in memory where they can be extracted and accessed at any time. Therefore, each 

particle can be observed and attracted to the optimal solution. 
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2. Experimental results and discussion 

     The new hybrid (FAGSA), FA, and GSA models are implemented in MATLAB R2015a 

individually. FAGSA's performance is evaluated using twenty-three standard benchmark 

functions used for testing the performance of FA and GSA algorithms. Tables 1, 2, 3, and 4 

lists these benchmark functions, their dimensions, their search space ranges, and their optimum 

fitness values. A detailed description of these functions is available in [27]. 
 

Table 1: Benchmark Functions (unimodal function) 

Function Dima Range Optimum 

Sphere F1(x) = ∑ 𝒙𝒊
𝟐𝒏

𝒊=𝟏  30 [-100, 100] 0 

Schwefel 2.22 F2(x) = ∑ |𝒙𝒊| + 𝚷𝒊=𝟏
𝒏𝒏

𝒊=𝟏 |𝒙𝒊| 30 [-10, 10] 0.00032 

Schwefel 1.2 F3(x) = ∑ (∑ 𝒙𝒋
𝒊
𝒋=𝟏 )𝟐𝒏

𝒊=𝟏  30 [-100, 100] 0 

Schwefel 2.21 F4(x) = 𝒎𝒂𝒙𝒊|𝒙𝒊|, 𝟏 ≤ 𝒊 ≤ 𝒏 30 [-100, 100] 0 

Rosen Brock F5(x) = ∑ [𝟏𝟎𝟎(𝒙𝒊+𝟏 − 𝒙𝒊
𝟐)𝟐] − (𝒙𝒊 −  𝟏)𝟐𝒏

𝒊=𝟏  30 [-30, 30] 26.70000 

Step F6(x) = ∑ ([𝒙𝒊 −  𝟎. 𝟓])𝟐𝒏
𝒊=𝟏  30 [-100,100] 3 

Quartic F7(x) = ∑ 𝒊𝒙𝒊
𝟒𝒏

𝒊=𝟏 +  𝒓𝒂𝒏𝒅[𝟎, 𝟏) 30 [-1.28, 1.28] 0.01130 

a. Indicates the number of variables (dimension of the functions) 

Table 2- Benchmark Functions (multimodal function) 

Function Dima Range Optimum 

Schwefel F8(x) = ∑ −𝒙𝒊  𝐬𝐢𝐧(√|𝒙𝒊|)
𝒏
𝒊=𝟏  30 [-500, 500] (3,320) 

Rastrigin F9(x) = ∑ |𝒙𝒊
𝟐 − 𝟏𝟎 𝐜𝐨𝐬(𝟐𝛑𝒙𝒊) + 𝟏𝟎|𝒏

𝒊=𝟏  30 [-5.12, 5.12] 45.5 

Ackley F10(x) 
= -20exp(-0.2√

𝟏

𝒏
∑ 𝒙𝒊

𝟐𝒏
𝒊=𝟏 ) - 

exp(
𝟏

𝒏
∑ 𝐜𝐨𝐬 (𝟐𝛑𝒙𝒊)

𝒏
𝒊=𝟏 ) + 20 + e 

30 [-32, 32] 0 

Griewank F11(x) = 
𝟏

𝟒𝟎𝟎𝟎
∑ 𝒙𝒊

𝟐𝒏
𝒊=𝟏 − 𝚷𝒊=𝟏

𝒏 𝐜𝐨𝐬 (
𝒙𝒊

√𝒊
) + 𝟏 30 [-600, 600] 0.00740 

Penalized F12(x) 

= 
𝝅

𝒏
{𝟏𝟎𝐬𝐢𝐧(𝝅𝒚𝟏) + ∑ (𝒚𝒊 − 𝟏)𝟐[𝟏 +𝒏

𝒊=𝟏

𝟏𝟎𝒔𝒊𝒏𝟐(𝝅𝒚𝒊+𝟏) + (𝒚𝒏 −

𝟏)𝟐] + ∑ 𝒖(𝒙𝒊, 𝟏𝟎, 𝟏𝟎𝟎, 𝟒)𝒏
𝒊=𝟏 } 

30 [-50,50] 0 

Penalized2 F13(x) 

= 0.1{𝒔𝒊𝒏𝟐(𝟑𝝅𝒙𝟏) + ∑ (𝒙𝒊 − 𝟏)𝟐𝒏
𝒊=𝟏 [𝟏 +

𝒔𝒊𝒏𝟐(𝟑𝝅𝒙𝒊 + 𝟏)] + (𝒙𝒏 − 𝟏)𝟐[𝟏 +

𝒔𝒊𝒏𝟐(𝟐𝝅𝒙𝒏)]} + ∑ 𝒖(𝒙𝒊, 𝟏𝟎, 𝟏𝟎𝟎, 𝟒)𝒏
𝒊=𝟏  

30 [-50,50] 0 

a. Indicates the number of variables (dimension of the functions) 

Table 3- Benchmark Functions (fixed-dimensional multimodal function) 

Function Dima Range Optimum 

Foxholes F14(x) = (
𝟏

𝟓𝟎𝟎
+ ∑

𝟏

𝒋+∑ (𝒙𝒊−𝒂𝒊𝒋)
𝟔𝟐

𝒊=𝟏

𝟐𝟓
𝒋=𝟏 )−𝟏 2 

[-65.536, 

65.536] 
2.77 

Kowalik F15(x) = ∑ [𝒂𝒊 −
𝒙𝟏(𝒃𝒊

𝟐+𝒃𝒊𝒙𝟐)

𝒃𝒊
𝟐+𝒃𝒊𝒙𝟑+𝒙𝟒

]𝟐𝟏𝟏
𝒊=𝟏  4 [-5, 5] 0.00031 

Six Hump 

Camel 
F16(x) 

= 𝟒𝒙𝟏
𝟐 + 𝟐. 𝟏𝒙𝟏

𝟒 +
𝟏

𝟑
𝒙𝟏

𝟔 + 𝒙𝟏𝒙𝟐 − 𝟒𝒙𝟐
𝟐 +

𝟒𝒙𝟐
𝟒 

2 [-5, 5] (1.03) 

Branin F17(x) 
= ∑ (𝒙𝒊 − 

𝟓.𝟏

𝟒𝝅𝟐 𝒙𝟏
𝟐 +

𝟓

𝝅
𝒙𝟏 − 𝟔)𝟐 +𝒏

𝒊=𝟏

𝟏𝟎 (𝟏 −
𝟏

𝟖𝝅
) 𝒄𝒐𝒔𝒙𝟏 + 𝟏𝟎 

2 [-5, 5] 0.398 

Goldstein-

Price 
F18(x) 

= [1+ (𝒙𝟏 + 𝒙𝟐 + 𝟏)𝟐 (19-14𝒙𝟏+3𝒙𝟏
𝟐 −

𝟏𝟒𝒙𝟐 + 𝟔𝒙𝟏𝒙𝟐 + 𝟑𝒙𝟐
𝟐)]+[30+(𝟐𝒙𝟏 −

𝟑𝒙𝟐)𝟐𝐱(18-32𝒙𝟏 + 𝟏𝟐𝒙𝟐
𝟐 + 𝟒𝟖𝒙𝟐 −

𝟑𝟔𝒙𝟏𝒙𝟐 + 𝟐𝟕𝒙𝟐
𝟐)] 

2 [-2, 2] 3 
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Hartman 3 F19(x) = ∑ 𝒄𝒊𝐞𝐱𝐩 (− ∑ 𝒂𝒊𝒋
𝟑
𝒋=𝟏 (𝒙𝒋 − 𝒑𝒊𝒋)

𝟐)𝟒
𝒊=𝟏  4 [1, 3] (3.86) 

Hartman 6 F20(x) = ∑ 𝒄𝒊𝐞𝐱𝐩 (− ∑ 𝒂𝒊𝒋
𝟔
𝒋=𝟏 (𝒙𝒋 − 𝒑𝒊𝒋)

𝟐)𝟒
𝒊=𝟏  6 [0, 1] (3.32) 

Shekel 5 F21(x) = ∑ [(𝑿 − 𝒂𝒊)(𝑿 − 𝒂𝒊)
𝑻]−𝟏𝟓

𝒊=𝟏  4 [0, 10] (8.45) 

Shekel 7 F22(x) = ∑ [(𝑿 − 𝒂𝒊)(𝑿 − 𝒂𝒊)
𝑻]−𝟏𝟕

𝒊=𝟏  4 [0, 10] (10.4) 

Shekel 10 F23(x) = ∑ [(𝑿 − 𝒂𝒊)(𝑿 − 𝒂𝒊)
𝑻]−𝟏𝟏𝟎

𝒊=𝟏  4 [0, 10] (10.5) 

a. Indicates the number of variables (dimension of the functions) 

     

      In this paper, our objective is minimization optimization. Therefore, many parameters 

should be initialized in the algorithms FA, GSA, and FAGSA. For FA was performed with the 

following parameters: absorption coefficient (gamma=0.01), randomness reduction factor 

(theta=10^(-5/maxiter) =~ 0.97), attractiveness constant/light amplitude (beta0=1.0), maximum 

iteration (maxiter)=1000, and stop when criteria equal maxiter. For GSA and FAGSA, the 

following settings were used: population size=50, G0=100, α=20, and maximum iteration = 

1000, and stopping when criteria equal maxiter. 

 

Table 4 : Results of twenty-three Benchmark Functions 

 

Fun Standard of FA 
 

Standard of GSA 
 

FAGSA 

Fitness value Mean value 
 

Fitness value Mean value 
 

Fitness value Mean value 

F1 2.17E-22 -5.59E-13 
 

9.18E+02 9.18E+02 
 

4.45E-17 -1.68E-10 

F2 1.64E+02 -7.09E-01 
 

9.99E+00 9.99E+00 
 

3.17E-04 -2.19E-06 

F3 1.17E+05 -4.91E-01 
 

6.07E+02 6.07E+02 
 

2.18E-12 5.80E-09 

F4 8.58E+01 3.41E+00 
 

2.07E+01 2.07E+01 
 

4.19E-09 -2.20E-11 

F5 9.25E+07 -2.26E+00 
 

1.09E+04 1.09E+04 
 

2.67E+01 5.47E-02 

F6 5.94E+04 -7.46E+00 
 

1.68E+03 1.68E+03 
 

3.00E+00 3.78E-02 

F7 6.29E+00 1.06E-01 
 

3.81E-01 1.36E+01 
 

1.13E-02 -5.98E-03 

F8 -2.47E+03 1.05E+02 
 

-2.66E+03 -4.34E+01 
 

-3.32E+03 -3.80E+02 

F9 1.72E+02 1.88E-01 
 

4.10E+01 4.10E+01 
 

4.55E+01 1.56E-01 

F10 2.08E+01 -3.12E+00 
 

1.16E+01 1.50E+01 
 

1.73E-09 -3.50E-11 

F11 5.82E+02 -5.59E+01 
 

1.51E+00 1.51E+00 
 

7.40E-03 2.53E-01 

F12 5.69E+08 4.45E+00 
 

6.56E+00 6.56E+00 
 

1.82E-19 -1.00E+00 

F13 1.16E+09 6.56E-02 
 

1.12E+04 1.12E+04 
 

5.99E-17 1.00E+00 

F14 9.98E-01 -3.20E+01 
 

1.05E+00 4.63E+02 
 

2.77E+00 -3.14E+01 

F15 4.11E-03 1.57E+00 
 

6.11E-04 6.11E-04 
 

3.07E-04 1.61E-01 

F16 -9.07E-01 2.47E-01 
 

-1.03E+00 -1.03E+00 
 

-1.03E+00 3.11E-01 

F17 5.60E-01 2.87E+00 
 

3.98E-01 3.98E-01 
 

3.98E-01 2.71E+00 

F18 5.28E+01 -4.29E-01 
 

3.00E+00 3.00E+00 
 

3.00E+00 -5.00E-01 

F19 -3.06E+00 6.78E-01 
 

-3.85E+00 -1.09E+00 
 

-3.86E+00 5.08E-01 

F20 -1.45E+00 4.19E-01 
 

-3.32E+00 -3.32E+00 
 

-3.32E+00 3.44E-01 

F21 -1.94E+00 4.01E+00 
 

-2.68E+00 -2.68E+00 
 

-8.45E+00 3.98E+00 

F22 -3.12E+00 4.22E+00 
 

-5.26E+00 -4.45E-01 
 

-1.04E+01 4.00E+00 

F23 -2.56E+00 4.92E+00 
 

-1.05E+01 -1.05E+01 
 

-1.05E+01 4.00E+00 

 

      Table 4 shows the experimental results. According to dominated and non-dominated rules, 

the results are an average of 50 runs, with the best results highlighted in bold type.  
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     FA dominated FAGSA in terms of the best fitness on two functions: (F1 and F15) and in 

terms of the best mean on nine functions: (F2, F3, F5, F6, F10, F11, F13, F14, and F16). 

  

     GSA dominated FAGSA in terms of the best fitness values on eight functions only: F8, F9, 

F14, F16-F18, F20, and F23, and in terms of the best mean values on nine functions only: F8, 

F15-F17, and F19-F23. 

 

     That is, for the best fitness values of fifty iterations on twenty-three different fitness 

functions, the FAGSA performs best on seventeen functions, FA performs the best on two 

functions, GSA performs the best on four functions, and saddle point performs the best on the 

remaining four functions (F16-F18, F20, and F23). 

     As a result, the FAGSA performs nearly twice as many functions as the FA and the GSA. 

FAGSA achieves global minima in all benchmark functions except F8, F14, F15, and F19 for 

the best fitness of 50 runs. F19 is a noisy problem, and all algorithms exhibit similar 

characteristics. 

 

     FAGSA, like FA and GSA, can find global minima in 50 runs for the functions F8, F22, and 

F23. FAGSA performs better on functions with wide domains because the functions F22 and 

F23 all have narrow domains. FAGSA only finds global minima for high-dimensional functions 

(F1 to F13) on F8 and F12, This implies that FAGSA performs well on high-dimensional 

functions. Figure 1, Figure 2, and the following Figure 3 for the selected functions show the 

new algorithm FAGSA outperforms the standard FA and GSA in terms of the rate of 

convergence. 

 
Figure 1: Average best of benchmark functions F1 and F7 

 
Figure 2: Average best of benchmark functions F9 and F12 
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Figure 3: Average best of benchmark functions F14 and F18 

 

 

3. Conclusion 

     This paper proposes a new numerical optimization method based on the hybridization of the 

two methods, namely FA and GSA. The proposed method gives, in most cases, better results 

than the original ones. The core concept of the new approach is to hybridize the facility 

exploitation of the Firefly algorithm and the facility exploration of the capabilities of the 

Gravitational Search Algorithm. Twenty-three benchmark functions are used to validate the 

new algorithm FAGSA's performance in comparison to standard FA and GSA. According to 

the results, the new algorithm FAGSA performs better than both the FA algorithm and the GSA 

algorithm in most minimization function tasks. The results also prove that the new algorithm 

FAGSA has a faster convergence speed than FA and GSA.  

 

The main findings of this study can be summarized as follows: 

• The new numerical hybrid optimization technique  FAGSA  based on the FA and the GSA, 

is proposed in this paper to address energy consumption forecasting in residential households. 

• The performance of the proposed algorithm is compared with other well-known optimization 

techniques such as FA, GSA, and PSO using the objective function. 

• The computation time is almost the same for all algorithms analyzed in this study, so the 

complexity of the proposed algorithm remains comparable to the basic algorithms and is used 

as a benchmark for evaluating performance. 

 

     Hence, it can be inferred that the FAGSA outperforms the other optimization techniques 

(FA, GSA, and PSO). Therefore, it can be successfully applied for energy consumption 

forecasting. 
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