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Abstract

The main goal of this paper is to introduce a new class in the category of modules.
It is called quasi-invertibility monoform (briefly QI-monoform) modules. This class
of modules is a generalization of monoform modules. Various properties and another
characterization of QI-monoform modules are investigated. So, we prove that an R-
module M is Ql-monoform if and only if for each non-zero homomorphism
f:M—E(M), the kernel of this homomorphism is not quasi-invertible submodule of
M. Moreover, the cases under which the Ql-monoform module can be monoform are
discussed. The relationships between QI-monoform and other related concepts such
as semisimple, injective and multiplication modules are studied. We also show that
they are proper subclasses of QI-monoform modules. Furthermore, we focus on the
relationship between QIl-monoform and polyform modules.

Keywords: Quasi-invertible submodules, Rational submodules, Monoform modules,
QIl-monoform modules.
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1. Introduction
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Throughout this paper, all rings are commutative with identity, and all modules are unitary
left modules. A ring and module are denoted by R and M respectively. A submodule N of M is
called rational (shortly N<,.M) if Homr(M/N, E(M))=0, where E(M) is the injective hull of M
[1, Proposition (8.6), P.274]. An R-module M is called monoform if every non-zero submodule
of M is rational [2]. In this paper, we extend the notion of monoform modules, we named quasi-
invertibility monoform modules. This extension depends on the class of quasi-invertible
submodules, where a submodule N of M is called quasi-invertible if Homr(M/N, M)=0 [3, P.6].

Section 2 is devoted to the investigation of several properties of quasi-invertible
submodules, that we need in our work, as well as other useful results are introduced. In section
3, another characterization of a QIl-monoform module is given, see Theorem (3.6). The
relationship between this class of modules and monoform modules is discussed. In fact, we
present sufficient conditions under which they are equivalent, see Theorems (3.8) and (3.9) as
well as Corollary (3.11). Moreover, several results describe the connections of QIl-monoform
with semisimple and injective modules, see Propositions (3.12), (3.13) and (3.15). A submodule
N of M is called essential (briefly N<.M) if NnL=0 for each non-zero submodule L of M [4,
P.15], and M is called polyform if every essential submodule of M is rational in M [2]. Section
4 includes a study of the relationship between QI-monoform and polyform modules, see
Propositions (4.2), (4.4) and (4.9). As well as Theorem (4.3) and (4.5).

2. Some Results on Quasi-invertible Submodules

The main tool of this paper is a quasi-invertible suomodule, we briefly write N<,,,M to
denote that N is a quasi-invertible submodule of M. In this section, we list some properties of a
quasi-invertible submodule and provide some new other results that will be useful in this article.

Remarks (2.1): In the following, we give the known properties which describe the relationships
of quasi-invertible submodules with essential and rational submodules, most of them were
appeared in [3]:

1. Inanyring R, every quasi-invertible ideal is an essential ideal of R [3, Corollary (2.3), P.12].
An R-module M is called singular if Z(M)=M, and nonsingular module if Z(M)=0, where
Z(M)={meM\ annr(M)<.R} [4, P. 31].

2. If M is a nonsingular module, then every essential submodule of M is quasi-invertible [3,
Proposition (3.13), P.19].

Recall that an R-module M is called multiplication if for each submodule N of M, there exists
an ideal | f R such that N=IM [5].

3. Let M be a multiplication R-module and anng(M) is a prime ideal of R, then N<,,,M if and
only if N<. M [3, Theorem (3.11), P.19].

4. Let M be multiplication and prime R-module. Then N<,,M if and only if N<.M [3,
Theorem (3.12), P.19].

Following [1, P.236], an R-module M is a quasi-injective R-module if for each monomorphism
f:N—M, where N is any submodule of M, and any homomorphism g: N—M, there exists a
homomorphism h: M—M such that hof=g, as the following figure shows:
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Fig. 1

The diagram of quasi-injective module

It is known that if M is a quasi-injective module, then: J(Endr(M))={feEndr(M)\
kerf<. M}, where Endr(M) is the endomorphism of M [4, Theorem (2.16), P.49].
5. Let M be a quasi-injective module such that J(Endr(M))= (0), and let N be a submodule of
M. Then N<,,,M if and only if N<.M [3, Theorem (3.8), P.17].

6. Every rational submodule is essential [1, Example (8.3), P.272].
7. Let M be a quasi-injective module, and N is a submodule of M, then N<,,,M if and only if

N <, M [3, Theorem (3.5), P.16].

8. Let M be a multiplication module. A submodule N of M is quasi-invertible if and only if N
<; M [3, Theorem (3.9), P.18].

Next, we give the following useful property.

Proposition (2.2): Let C be R-module and A, B are submodules of Cwith A<B<C. IfA<,,C,
then B<,,,C.

Proof Assume that A<,,,C, and we have to show that Homg(C/B, C)=0. Suppose there exists
a non-zero homomorphism f: C/B— C. Put f(C/B)=D, where D=0. Define h: C/A—C/B by
h(t+A) = t+B for each t+AeC/A. It is clear that h is an epimorphism. Consider the following
sequence of homomorphism:

calcmLe

Since A<,,C, then foh=0, so that (fo h)(C/A)=0. But h is an epimorphism, then
f(h(C/A))=f(C/B)=0. On the other hand, f(C/B)=D=0, so we have a contradiction. Thus f=0,
that is B<,,,C.

Corollary (2.3): Let C be R-module and A, B are submodules of C. If A<,,,C, then A+B<,,,C.

Proposition (2.4): Let C be R-module and A, B are submodules of C. If A<, A+B, then
ANB<,4,B.

Proof: Let feHomr(B/ANB, B). By the second isomorphism theorem (A+B)/A=z B/ANB,
consider the following sequence:

A+BIAS BIANB 5B A+B

Where 4 is the inclusion homomorphism. Since A<, A+B, then 4 ofo 1=0. Now, 0=(< ofo
Y)(A+B/A)= (i of)(B/ANB) since ¥ is epimorphism. But 4 is a monomorphism, so that
f(B/ANB)=0. This implies that f=0, thus ANB <., B.

Corollary (2.5): Let C be R-module and A, B be submodules of C, If A<,,, C, then AnB<,,,C.

Proof: Since AnB < AnB +C, then the result directly follows from Proposition (2.4).
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An R-module M is called injective if given any diagram of R-modules and R-homomorphism
(as in Fig.2), where the row is exact, there exists an R-homomorphism B—M such that the
resulting diagram (shown) is commutative [6, P.28]:

f

v

L
.

0 A B

Fig. 2
The diagram of injective module

Proposition (2.6): Let C be an injective module, and A, B be submodules of C with A <B <
C. If A<, C, then A<, B.

Proof: Assume that Homgr(C/A, C)=0, and we have to show that Homr(B/A, B)=0. Let f:
B/A— B be a homomorphism. Consider the following diagram:

kA

0 B/A C/A

f

B

!

C

Fig. 3

The R-meodule C satisfies the diagram of injective modules

where 4 and j are the inclusion homomorphism. Since C is injective, then there exists a
homomorphism g:C/A—C such that 4 og=fej. Now, g(C/A)=0. This implies that 4 og (B/A)=0,
so that 4 og=0= foj, hence f=0. This mean A<, B.

Proposition (2.7): Let M and M" be R-modules, and f: M— M’ be a homomorphism. If
A<M, then f(A)<,, f(M).

Proof: Let feHomgr(f(M)/f(A), f(M)). By the first isomorphism theorem f(M)zM\kerf and

f(A)=(A+kerf)\kerf, and by the third isomorphism theorem f(M)/f(A)= % =~ M/A+kerf.

Since A<, M, then Homgr(M/A, M)=0. By Corollary (2.3), we deduce Homg(M/A+kerf, M)=
0 = Homg(f(M)/f(A)). Thus f(A)<,,, f(M).

Corollary (2.8): Let M be an R-module, and N<M. If A<, M, then AIN<,,, M/N.

3. Quasi-invertibility Monoform Modules

This section is devoted to introducing the concept of quasi-invertibility monoform modules.
We examine the main properties and give another characterization of this class of modules.
Additionally, the relationship of this class of modules with monoform modules is discussed.
Firstly, we start by the following example:
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Example (3.1): Consider the Z-module M=Q&®Z>, where Q is the module of rational numbers.
A submodule N=Z&®Z> of M is quasi-invertible but not rational in M [3, Example (3.4)].

This example confirms that the quasi-invertible submodule may not be rational, and this
motivates us to introduce the following concept.
Definition (3.2): An R-module M is called quasi-invertibility monoform (briefly QI-
monoform) module if every non-zero quasi-invertible submodule of M is rational in M. A ring
R is called a quasi-invertibility monoform ring if R is quasi-invertibility monoform R-module.

Examples and Remarks (3.3):

1. Any zero R-module is a QI-monoform module, since (0) has no non-zero quasi-invertible
submodule which is not rational.

2. Every monoform module is QIl-monoform. Since in a monoform module, each non-zero
submodule of M is rational. In particular, every non-zero quasi-invertible submodule of M is
rational.

3. The converse of (2) is not true in general, for example, the Z-module Z4 is QI-monoform
since there is no non-zero quasi-invertible submodule N of Z4 which is not rational in Zs. In
fact, the only quasi-invertible submodule of Z4 is Z4 itself which is rational in Z4. On the other
hand, Z4 is not monoform Z-module, since the submodule (2) is not rational in Z4 [3, Example
(3.6), P.17]. Note that (2) is also not quasi-invertible submodule [3, Example (3.6), P.17].

4. Q@®Z; is not QlI-monoform Z-module, where Q is the module of rational numbers, since as
we saw in Example (3.1), that is Z©Z><,, Q®Z, but Z&Z%, QD Z>.

Recall that a non-zero module M is called uniform if every non-zero submodule of M is
essential [4, P.85].

5. The Z-module Z is a monoform module since Z is a uniform and nonsingular module [1,
Exc. (8.4), P. 284], hence it is Ql-monoform.

6. The simple module is a QI-monoform module since the only non-zero quasi-invertible
submodule of any simple module M is M itself which is rational in M.

7. Any integral domain QIl-monoform R-module.

Proof: Suppose that R is an integral domain. We claim that every non-zero quasi-invertible
ideal of R is rational, to show that: let | be a non-zero ideal of R, and assume that fe Homgr(R/I,
E(R)). Since every non-zero ideal (especially, every non-zero quasi-invertible) of any integral
domain is essential, (i.e I<.R), then R/I is a singular R-module. On the other hand, E(R) is a
field that is a nonsingular R-module, and it is known that there is only zero homomorphism
between any singular and nonsingular modules. Therefore f=0, that is R is a QI-monoform ring.
8. Ze is Ql-monoform Z-module, since it is a semisimple module, see Proposition (3.12). But
we can easily show that Zg is not monoform.

9. A direct sum of two QIl-monoform modules need not be monoform, for example, Z is a
simple module, hence it is QI-monoform, Also, by Remark (3.15), we will verify that the
module of rational number Q is QI-monoform, while Q&®Zz is not Ql-monoform module.

10. Z,= is a QI-monoform Z-module, since it is injective [7, Proposition (2.24), P.49], hence
it is Ql-monoform, see Proposition (3.13).

11. Z®Z is a Ql-monoform Z-module. In fact, for every non-zero quasi-invertible submodule
N of Z@Z; Homr((Z®Z)/IN, E(Z®Z)) = Homr((ZBZ)/N, Q&Q). One can easily show that
(Z®2Z)IN is a singular module for every submodule N of M except two submodules which are
N1=(0)®Z and N>=Z&(0), and these submodules are not quasi-invertible. On the other hand,
Q®Q is a nonsingular module, therefore Homr((Z®Z)/N, Q®Q)=0. So that N <, ZZ, and
hence Z@Z is Ql-monoform. Note that Z@Z is not monoform [10].

12. The Z-module Z>®Z3z is Ql-monoform. In fact, the only non-zero quasi-invertible
submodule of Z>@Z3 is Z,®Zs itself, and Z-PZ3<,.Z>®Z3. While Z,BZ3 is not monoform
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module, since there exists a submodule N=Z>&(0) of Z>&Z3 such that N is not rational in
Z>@Z3. Note that Homr(Z2DZ3)/(Z25(0)), E(Z2DZ3)) = HOMR(Z3, Z @ Z ) # 0.

It is known that if M is an R-module, then M is an R-module of M, where R=R/anngr(M) by
using the definition (r+anng(M))x=rx ¥xeM. Hence, every R-submodule of M is an R-
submodule of M and vice versa.

Proposition (3.4): An R-module M is QI-monoform if and only if M is Ql-monoform R-
module.

Proof: Suppose that M is a QI-monoform R-module, and let N be a non-zero quasi-invertible
R-submodule of M. It is clear that N is an R-submodule of M. Assume that f: M/N— M be an
R-homomorphism. Firstly, we have to show that f is R-homomorphism. Let reR, and we M\N.
f(rw)=f(r+annrM)(w) = (r+ anngM))f(w) = rf(w). Therefore, f is an R-homomorphism.
Because M is a QI-monoform R-module, then f is zero R-homomorphism, so that f is zero R-
homomorphism, that is Homr(M/N, M)=0. Thus, N is a quasi-invertible R-module. The proof
of the converse side is similar.

Proposition (3.5): Let M be an R-module. If M/N is a QI-monoform module, then M is QI-
monoform for each submodule N of M.

Proof: Let N be a non-zero quasi-invertible submodule of M, and assume that fe Homgr(L/N,
M), where L is a submodule of M with NcLcM. By the third isomorphism theorem,
Homgr(N/L, M) = HomR(Il\\Id—;E, M/N). On the other hand, by Corollary (2.8), N/L<,,, M/L. But
M/N is QI-monoform, then HomR(AI:—;z, M/N)=0, so that f=0. Therefore, M is a QI-monoform

module.

As an analogue of Theorem (2.16)(1) in [8], we give in the following another

characterization of a QI-monoform module.
Theorem (3.6): Let M be an R-module. The following statements are equivalent:

i. M is a QI-monoform module.

ii. For each non-zero homomorphism f:M—E(M), the kerf is not quasi-invertible

submodule of M.
Proof: (i)=(ii)
Suppose there exists a non-zero homomorphism f: M— E(M), such that kerf <,,,M. Define g:
M/kerf —E(M) by g(m+kerf)=f(m). It is clear that g is a non-zero homomorphism, therefore
Homgr(M/kerf, E(M))=0. But kerf<,,M and M is a Ql-monoform module, so we get a
contradiction.
(i)=(i)
Assume there exists a non-zero quasi-invertible submodule N of M and a non-zero
homomorphism he Homr(M/N, E(M)). Consider the following sequence:

M 5 MIN S E(M)

Where 1t is the natural epimorphism. Since h=0, then clearly he m is a non-zero homomorphism.
On the other hand, Ncker(he ) and N<,,,M, so by Proposition (2.2), ker(he ) is a quasi-
invertible submodule of M. But this contradicts our assumption, therefore, Homgr(M/N,
E(M))=0, that is M is QI-monoform.
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Under certain conditions, we can guarantee that every submodule of a QI-monoform module
is Ql-monoform. Before that, an R-module M is called quasi-Dedekind if every non-zero
submodule of M is quasi-invertible [3, P.24].

Proposition (3.7): Let M be a quasi-Dedekind R-module. If M is QI-monoform then every
submodule of M is QI-monoform.

Proof: Assume that M is a Ql-monoform module, and let N be a submodule of M. We have to
show that N is QI-monoform, so suppose that 0xK<,,N, and f:N/K—E(N) is a
homomorphism. Since M is quasi-Dedekind, then K<,,M. Now, consider the following
diagram:

iy

o N/K M/K

N

E(N

i

N
E(M)
Fig. 4

E{M) satisfies the definition of injective module

where 4, and 4, are the inclusion homomorphism. Since E(M) is injective, then there exists
a homomorphism h:M/K—E(M) such that fo 4,=4i, oh. This implies that f(N/K)=h(M/K)=0,
since M is Ql-monoform. Therefore, f=0.

Next, we focus on the relationship between QI-monoform and a monoform module.

Theorem (3.8): Let M be a nonsingular and uniform module, Then M is a monoform module
if and only if M is Ql-monoform.
Proof: The necessity direction is straightforward. For the converse, let N be a non-zero
submodule of M. Since M is a uniform module, then N<.M. Moreover, M is nonsingular, so
by Remark (2.1)(2), N is quasi-invertible. But M is Ql-monoform, thus N<,.M, hence M is
monoform.

In Example (3.3)(2), we show that a QI-monoform module may not be monoform. However,
that is true if M is quasi-Dedekind as the following theorem shows.

Theorem (3.9): An R-module M is monoform if and only if M is a Ql-monoform and quasi-
Dedekind module.

Proof: The necessity is clear. For the converse, assume that M is a QI-monoform module, and
let N be a non-zero submodule of M. Since M is quasi-Dedekind, then N<,,, M. Besides that,

M is a QI-monoform module, therefore N<,.M. Thus, M is monoform.

Remark (3.10): The condition quasi-Dedekind cannot be dropped in Theorem (3.9). In fact,
the Z4 is a QI-monoform module but not monoform since it is not quasi-Dedekind.

Recall that an R-module M is said to be prime if anng(M)=annr(N) for every non-zero
submodule N of M [9].
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Corollary (3.11): Let M be a uniform and prime R-module, then M is monoform if and only if
M is a QI-monoform module.

Proof: If M is a monoform module then clearly it is QI-monoform. For the converse, since M
is uniform and prime, then M is quasi-Dedekind [3, Theorem (3.11), P.37]. By Theorem (3.9),
M is a monoform module.

Next, we discuss the relationships of a QI-monoform module with semisimple, injective and
multiplication modules, and we show that they are contained properly in the class of QI-
monoform modules. Before that, an R-module M is called semisimple if every submodule of
M is a direct summand of M [4, P.27].

Proposition (3.12): Every semisimple module is a QI-monoform module.
Proof: Let M be a semisimple module M, and assume that 0#N<,,,M with fe(M/N, E(M)),

then N is a direct summand of M, thus there exists a submodule K of M such that M=N®K. But
N is a quasi-invertible submodule of M, so that K = (0) [3, Remark (1.2), P.6]. Therefore N =
M, hence f=0. Thatis N <, M.

The converse of Proposition (3.12) is not true in general. As had been seen in Example
(3.3)(3), the Z-module Z4 is a Ql-monoform module, but clearly, it is not semisimple.

Proposition (3.13): Every quasi-injective module is a QI-monoform module.
Proof: Let M be a quasi-injective module and N <,,,M. Since M is quasi-injective, then N<, M
[3, Theorem (3.5), P.16], hence M is Ql-monoform.

The following example shows that the class of injective modules is contained properly in

the class of QI-monoform modules.

Example (3.14): Consider the Z-module Z. By Example (3.3)(5), Z is a QI-monoform module.
On the other hand, it is known that Z is not injective module. In fact, we can easily show that
by using the following diagram:

i

id f

Z
Fig. 5

This diagram shows that Z is not injective Z-module

where Q is the module of rational number, 4 is the inclusion homomorphism and id is the
identity homomorphism.

Corollary (3.15): Every module over a semisimple ring is a Ql-monoform module.
Proof: Let M be an R-module, where R is a semisimple ring. This implies that M is injective
[6, Proposition (3.7, P.61)]. By Proposition (3.13), the result follows.

Example (3.16): Consider the Zg-module Ze®Zs. Since ZsBZs is defined on the semisimple

ring Ze, then Ze¢@Zs is injective so that it is quasi-injective, and by Proposition (3.13), Ze®Zs
is QIl-monoform.
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Corollary (3.17): Let R be a principal ideal domain (simply P.1.D). If M is a cyclic R-module
with MR, then M is a QI-monoform module.

Proof: Since M is a cyclic module over P.1.D and not isomorphic to R, then M is quasi-injective
[1, Example (6.72)(3), P.237], and the result follows by Proposition (3.13).

As an example of Corollary (3.17), consider the Z-module Z>@Z3. This module is cyclic over
P.1.D and Z>®Zs % Z. Thus, it is QI-monoform.

Proposition (3.18): Every multiplication module is a QI-monoform module.
Proof: Let M be a multiplication module, and N is a non-zero quasi-invertible submodule of
M. By Remark (2.1)(8), N<.M , therefore M is Ql-monoform.

Remark (3.19): The converse of Proposition (3.18) is not true, for example, consider the Z-
module Q, it is well known that Q is uniform, and by [10], Q is polyform, so Q is a monoform
module [11, Proposition 2.3.19, P.74], hence Q is Ql-monoform. However, Q is not
multiplication Z-module [12].

Proposition (3.20): If M is a multiplication and a quasi-Dedekind module, then Endr(M) is a
QI-monoform module, where Endr(M) is the endomorphism ring of M.

Proof: By assumption, Endr(M) is an integral domain [11, proposition (2.1.27), P.55], and the
result follows from Remark (3.3)(7).

4. Ql-monoform Modules and Polyform Modules

This section is about discussing the relationship between QI-monoform and polyform
modules. As we will see in Proposition (4.2), there is a direct implication between these kinds
of classes in the category of rings, but in the category of modules we think they are independent
for example, as we saw in Example (3.3)(3), the Z-module, Z4 is a QI-monoform module, while
it can be easily checked that Z4 is not polyform. In fact, the submodule (2) of Z4 is essential in
Z4 but not rational. We cannot find an example of a polyform module that is not QI-monoform.

It is well known that any quasi-invertible ideal of any ring R is essential [3, Corollary (2.3),
P.12], so we have the following.

Proposition (4.2): Every polyform ring is a QI-monoform ring.
Proof: Let | be a non-zero quasi-invertible ideal of a ring R. By Remark (2.1)(1), I<.R. Since
R is polyform, then | <,R. So that R is a QI-monoform ring.

Theorem (4.3): Let M be a multiplication module with prime annihilator (i.e. annr(M) is a
prime ideal of R), then M is a Ql-monoform module if and only if M is polyform.

Proof: Suppose that M is QI-monoform, and let N be an essential submodule of M. Since M is
a multiplication module and annr(M) is a prime ideal of R, then by Remark (2.1)(3), N<,,,M.
But M is QI-monoform, therefore N<,.M, thus M is a polyform module. Conversely, assume
that M is a polyform module and let 0=N<,,M. By Remark (2.1)(3), N<.M. Since M is
polyform, then N is rational, so M is a QI-monoform module.

Another proof for Theorem (4.3): Assume that M is not polyform. This implies that there
exists a non-zero homomorphism f:M—E(M), where E(M) is the injective hull of M, with
kerf <.M. Because M is a multiplication module and annr(M) is a prime ideal of R, then
kerf <4, M. Since M is Ql-monoform, then by Theorem (3.6), f=0, but this is a contradiction.
Thus, M is a polyform module. Conversely, let :M—E(M) be a non-zero homomorphism. If
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M is not Ql-monoform, then kerf <,,,M. But M is multiplication with prime annihilator, so by

Remark (2.1)(3), kerf <.M. Since M is polyform, then f=0 [8, Theorem (2.16)(1)], which is a
contradiction. Therefore, M is QI-monoform.

Proposition (4.4): Let M be a multiplication and prime module, then M is QI-monoform if and
only if M is a polyform module.
Proof: It follows directly from Remark (2.1)(4).

Theorem (4.5): Let M be a quasi-injective module with J(Endr(M))=(0), then M is a QI-
monoform module if and only if M is polyform.

Proof: Assume that M is a QI-monoform module and let N<,M. Since M is a quasi-injective
module and J(Endr(M))=(0), then by Remark (2.1)(5), N<,,M. But M is QIl-monoform,
therefore N<,.M, that is M is polyform. Conversely, let 0+N<,,,M, and because M is a quasi-
injective module and J(Endr(M))=(0), then by Remark (2.1)(5), N<.M. But M is a polyform
module, then N<,M, hence M is a Ql-monoform module.

The condition J(Endr(M))=(0) in Theorem (4.5) is necessary as we see in the following
example. Before that, a submodule N of M is rational if and only if Homgr(U/N, M)=0 for every
submodule U of M such that N<U<M [1, Proposition (8.6), P.274]. We apply this
characterization of a rational submodule in the following example.

Example (4.6): We saw in Example (3.3)(3), that Z4 is a Ql-monoform Z-module. Note that Z4
is not polyform, since it is easy to see that (2) is an essential submodule of Z4. But, it is not
rational submodule in Zs, since Homg(Z4/(2), Z4) = Z>#0. In fact, Z4 is quasi-injective [3,
Example (3.6), p.17], but Endz(Z4)=Z4, and J(Endz(Z4)=Z>#0.

It is well known that in any R-module M, not every essential submodule of M is quasi-
invertible, in fact, the submodule (2) is essential in Za, but it is not quasi-invertible. This leads
to using the following.

Definition (4.7): [11, Definition (1.2.1), P. 24]

An R-module M is called essentially quasi-Dedekind (Simply, we write E-quasi-Dedekind), if
every essential submodule of M is quasi-invertible. That is Homr(M/N, M)=0 for every
essential submodule N of M.

Example and Remark (4.8):

1. Itis clear that every quasi-Dedekind module is E-quasi-Dedekind.

2. Every semisimple module is E-quasi-Dedekind. Since if M is semisimple, then the only
essential submodule of M is M itself which is also quasi-invertible in itself.

3. Every nonsingular module is E-quasi-Dedekind. This follows directly from Remark (2.1)(2).
For example, Z is an E-quasi-Dedekind Z-module.

Proposition (4.9): Let M be an E-quasi-Dedekind. If M is a Ql-monoform module, then M is
polyform.
Proof: Let N be an essential submodule of M. Since M is E-quasi-Dedekind, then N<,,,M. But
M is Ql-monoform, so that N<,.M, hence M is a polyform module.

In the category of ring theory, from Proposition (4.2) and Proposition (4.9), we deduce the
following.

Corollary (4.10): Let R be a E-quasi-Dedekind ring, then R is a QI-monoform ring if and only
if R is a polyform ring.
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Theorem (4.11): Let M be uniform and E-quasi-Dedekind module. The following statements
are equivalent.

1. M is a monoform module.

2. M is a Ql-monoform module.

3. M is a polyform module.

Proof:

(1)=(2): It is straightforward.

(2)=(3): Assume that M is a Ql-monoform module. Since M is E-quasi-Dedekind, then the
result follows from Proposition (4.9).

(3)=(1): Suppose that M is a polyform module. Because of M is uniform, then M is monoform
[11, Proposition 2.3.19, P.74].

Corollary (4.12): Let M be a uniform and nonsingular (or semisimple) module. The following
statements are equivalent.
1. M is a monoform module.
2. M is a Ql-monoform module.
3. M is a polyform module.
Proof: By Remark (4.8), every nonsingular (semisimple) module is E-quasi-Dedekind, and the
result follows directly from Theorem (4.11).
For the category of rings, we have the following.

Theorem (4.13): Let R be a quasi-Dedekind ring. The following statements are equivalent.
1. R is a polyform ring.
2. Ris a QI-monoform ring.
3. R is a monoform ring.
Proof:
(1) =(2): It follows from Proposition (4.2).
(2) =(3): Assume that R is a Ql-monoform ring, Since R is quasi-Dedekind, then by Theorem
(3.9), R is a monoform ring.
(3) =(1): Itis obvious.
Corollary (4.14): Let R be an integral domain. The following statements are equivalent.
1. R is a polyform ring.
2. Ris a QI-monoform ring.
3. Ris a monoform ring.
Proof: Since every integral domain is a quasi-Dedekind ring [3, Example (1.4), P.24], then the
result is followed by Theorem (4.13).
As a sequel to this paper, we have the following conclusions.

Conclusions:

In this work, the class of monoform modules has been extended to a new class. It is called
QIl-monoform modules. Several characteristics of this type of module have been studied.
Another characterization of Ql-monoform modules is considered. Sufficient conditions under
which QI-monoform and monoform modules are discussed. In addition, some classes of
modules contained properly in a Ql-monoform module are examined such as semisimple, quasi-
injective and multiplication modules. Besides, the connection between QI-monoform and
polyform modules has been established. However, these relationships can be represented in the
following figure:
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Nonsingular and Uniform Modules
Ql-Monoform Modules Monoform Modules

Quasi-Dedekind Modules
aI-Monoform Modules ————— Monoform Modules

Uniform and Prime Modules
Ql-Monoform Modules Monoform Modules

multiplication modules with prime annihilator

Ql-Monoform Modules Polyform Modules

multiplication and Prime modules

QI-Monoform Modules Polyform Modules

Quasi-injective Modules with J(End{M)}=(0}
QI-Monoform Modules Polyform Modules

yields
Polyform Rings —— QI-Monoform Rings

) E-guasi-invertiblity Ring )
QI-Monoferm Rings &————————— Polyform Rings

E-guasi-invertiblity Modules
Ql-Monoform Modules Polyform Modules

Quasi-Injective Modules Multiplication Modules
w 0I-Monoform Modules w

Semisimple Modules

Fig. 6
QI-monoform modules and related concepts
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