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Abstract 

     The main goal of this paper is to introduce a new class in the category of modules. 

It is called quasi-invertibility monoform (briefly QI-monoform) modules.  This class 

of modules is a generalization of monoform modules. Various properties and another 

characterization of QI-monoform modules are investigated. So, we prove that an R-

module M is QI-monoform if and only if for each non-zero homomorphism 

f:M⟶E(M), the kernel of this homomorphism is not quasi-invertible submodule of 

M. Moreover, the cases under which the QI-monoform module can be monoform are 

discussed. The relationships between QI-monoform and other related concepts such 

as semisimple, injective and multiplication modules are studied. We also show that 

they are proper subclasses of QI-monoform modules. Furthermore, we focus on the 

relationship between QI-monoform and polyform modules. 

 

Keywords: Quasi-invertible submodules, Rational submodules, Monoform modules, 

QI-monoform modules. 

 

 

 المقاسات أحادية الصيغة الشبه عكوسة 
 

 منى عباس أحمد
 قسم الرياضيات، كلية العلوم للبنات، جامعة بغداد، بغداد، العراق 

 
  الخلاصة 

تقديم صنف جديد   الرئيس  إن الهدف        فئة الم  من هذا البحث هو  المقاسات    ماس   أطلقنا عليه ,  قاساتمن 
إن هذا النوع من    .(QI-احادية الصيغة من النمط    مختصر المقاسات أحادية الصيغة الشبه عكوسة )وبشكل  

يعتبر   الصيغة.  إعماما  المقاسات  احادية  إعطاء    للمقاسات  و تم  الخصائص  من  للمقاسات    اخرا  تشخيصا   عدد 
التي يمكن      مناسبة ال  شروط ال  مناقشةتم تسليط الضوء على  . إضافة الى ذلك،  أحادية الصيغة الشبه عكوسة 

. كما تطرقنا الى دراسة علاقة  لمقاسات أحادية الصيغة الشبه عكوسة لتكون مقاسات احادية الصيغةاضافتها ل
،  مقاسات اخرى مثل المقاسات الشبه بسيطة والمقاسات الاغمارية المقاسات أحادية الصيغة الشبه عكوسة مع  

   .وبرهنا ان تلك الأصناف من المقاسات تكون محتواة بشكل فعلي في المقاسات احادية الصيغة الشبه عكوسة 
   . الصيغ المتعددة  مقاسات  الب  أحادية الصيغة الشبه عكوسةالمقاسات    علاقة    ركّزنا على دراسة  فضلا عن ذلك، فقد 

 
 

1. Introduction  
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     Throughout this paper, all rings are commutative with identity, and all modules are unitary 

left modules. A ring and module are denoted by R and M respectively. A submodule N of M is 

called rational (shortly N≤rM) if HomR(M/N, E(M))=0, where E(M) is the injective hull of M 

[1, Proposition (8.6), P.274]. An R-module M is called monoform if every non-zero submodule 

of M is rational [2]. In this paper, we extend the notion of monoform modules, we named quasi-

invertibility monoform modules. This extension depends on the class of quasi-invertible 

submodules, where a submodule N of M is  called quasi-invertible if HomR(M/N, M)=0 [3, P.6].  

 

     Section 2 is devoted to the investigation of several properties of quasi-invertible 

submodules, that we need in our work, as well as other useful results are introduced. In section 

3, another characterization of a QI-monoform module is given, see Theorem (3.6). The 

relationship between this class of modules and monoform modules is discussed. In fact, we 

present sufficient conditions under which they are equivalent, see Theorems (3.8) and (3.9) as 

well as Corollary (3.11). Moreover, several results describe the connections of QI-monoform 

with semisimple and injective modules, see Propositions (3.12), (3.13) and (3.15). A submodule 

N of M is called essential (briefly N≤eM) if N∩L0 for each non-zero submodule L of M [4, 

P.15], and M is called polyform if every essential submodule of M is rational in M [2]. Section 

4 includes a study of the relationship between QI-monoform and polyform modules, see 

Propositions (4.2), (4.4) and (4.9). As well as Theorem (4.3) and (4.5). 

 

2. Some Results on Quasi-invertible Submodules 

     The main tool of this paper is a quasi-invertible submodule, we briefly write N≤𝑞𝑢M to 

denote that N is a quasi-invertible submodule of M. In this section, we list some properties of a 

quasi-invertible submodule and provide some new other results that will be useful in this article. 

 

Remarks (2.1): In the following, we give the known properties which describe the relationships 

of quasi-invertible submodules with essential and rational submodules, most of them were 

appeared in [3]: 

1. In any ring R, every quasi-invertible ideal is an essential ideal of R [3, Corollary (2.3), P.12]. 

An R-module M is called singular if Z(M)=M, and nonsingular module if Z(M)=0, where 

Z(M)={mM\ annR(m)≤eR} [4, P. 31]. 

2. If M is a nonsingular module, then every essential submodule of M is quasi-invertible [3, 

Proposition (3.13), P.19]. 

Recall that an R-module M is called multiplication if for each submodule N of M, there exists 

an ideal I f R such that N=IM [5]. 

3. Let M be a multiplication R-module and annR(M) is a prime ideal of R, then N≤𝑞𝑢M if and 

only if N≤e M [3, Theorem (3.11), P.19].   

4. Let M be multiplication and prime R-module. Then N≤𝑞𝑢M if and only if N≤eM [3, 

Theorem (3.12), P.19]. 

Following [1, P.236], an R-module M is a quasi-injective R-module if for each monomorphism 

f:N⟶M, where N is any submodule of M, and any homomorphism g: N⟶M, there exists a 

homomorphism h: M⟶M such that h∘f=g, as the following figure shows: 
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     It is known that if M is a quasi-injective module, then: J(EndR(M))={fEndR(M)\ 

kerf≤e M}, where EndR(M) is the endomorphism of M [4, Theorem (2.16), P.49]. 

5. Let M be a quasi-injective module such that J(EndR(M))= (0), and let N be a submodule of 

M. Then N≤𝑞𝑢M if and only if N≤eM [3, Theorem (3.8), P.17].  

6. Every rational submodule is essential [1, Example (8.3), P.272]. 

7. Let M be a quasi-injective module, and N is a submodule of M, then N≤𝑞𝑢M if and only if 

N ≤r M [3, Theorem (3.5), P.16]. 

8. Let M be a multiplication module. A submodule N of M is quasi-invertible if and only if N 

≤r M [3, Theorem (3.9), P.18]. 

 Next, we give the following useful property. 

 

Proposition (2.2): Let C be R-module and A, B are submodules of C with A  B  C. If A≤𝑞𝑢C, 

then B≤𝑞𝑢C. 

 

Proof Assume that A≤𝑞𝑢C, and we have to show that HomR(C/B, C)=0. Suppose there exists 

a non-zero homomorphism f: C/B⟶ C. Put f(C/B)D, where D0. Define h: C/A⟶C/B by 

h(t+A) = t+B for each t+AC/A. It is clear that h is an epimorphism. Consider the following 

sequence of homomorphism: 

C/A 
h
→ C/B 

f
→ C 

     Since A≤𝑞𝑢C, then f∘h=0, so that (f∘ h)(C/A)=0. But h is an epimorphism, then 

f(h(C/A))=f(C/B)=0. On the other hand, f(C/B)=D0, so we have a contradiction. Thus f=0, 

that is B≤𝑞𝑢C. 

 

Corollary (2.3): Let C be R-module and A, B are submodules of C. If A≤𝑞𝑢C, then A+B≤𝑞𝑢C. 

 

Proposition (2.4): Let C be R-module and A, B are submodules of C. If A≤𝑞𝑢 A+B, then 

A∩B≤𝑞𝑢B. 

Proof: Let fHomR(B/A∩B, B). By the second isomorphism theorem (A+B)/A B/A∩B, 

consider the following sequence: 

A+B/A
ψ
→ B/A ∩ B 

f
→ B

𝒾
→ A+B 

Where 𝒾 is the inclusion homomorphism. Since A≤𝑞𝑢A+B, then 𝒾 ∘f∘ 𝜓=0. Now, 0=(𝒾 ∘f∘

𝜓)(A+B/A)= (𝒾 ∘f)(B/A⋂B) since 𝜓 is epimorphism. But 𝒾 is a monomorphism, so that 

f(B/A⋂B)=0. This implies that f=0, thus A⋂B ≤𝑞𝑢 B. 

Corollary (2.5): Let C be R-module and A, B be submodules of C, If A≤𝑞𝑢 C, then A∩B≤𝑞𝑢C. 

 

Proof: Since A∩B  A∩B +C, then the result directly follows from Proposition (2.4). 
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An R-module M is called injective if given any diagram of R-modules and R-homomorphism 

(as in Fig.2), where the row is exact, there exists an R-homomorphism B⟶M such that the 

resulting diagram (shown) is commutative [6, P.28]: 

 
Proposition (2.6): Let C be an injective module, and A, B be submodules of C with A  B  

C. If A≤𝑞𝑢C, then A≤𝑞𝑢B. 

 

Proof: Assume that HomR(C/A, C)=0, and we have to show that HomR(B/A, B)=0. Let f: 

B/A⟶ B be a homomorphism. Consider the following diagram: 

 
 

      where 𝒾 and j are the inclusion homomorphism. Since C is injective, then there exists a 

homomorphism g:C/A⟶C such that 𝒾 ∘g=f∘j. Now, g(C/A)=0. This implies that 𝒾 ∘g (B/A)=0, 

so that 𝒾 ∘g=0= f∘j, hence f=0. This mean A≤𝑞𝑢 B. 

 

Proposition (2.7): Let M and M be R-modules, and f: M⟶ M be a homomorphism. If 

A≤𝑞𝑢M, then f(A)≤𝑞𝑢f(M). 

 

Proof: Let fHomR(f(M)/f(A), f(M)). By the first isomorphism theorem f(M)M\kerf and 

f(A)(A+kerf)\kerf, and by the third isomorphism theorem f(M)/f(A) 
M/kerf

A+kerf/kerf
  M/A+kerf. 

Since A≤𝑞𝑢M, then HomR(M/A, M)= 0. By Corollary (2.3), we deduce HomR(M/A+kerf, M)= 

0 = HomR(f(M)/f(A)). Thus f(A)≤𝑞𝑢f(M). 

 

Corollary (2.8): Let M be an R-module, and NM. If A≤𝑞𝑢M, then A/N≤𝑞𝑢M/N. 

 

3. Quasi-invertibility Monoform Modules 

     This section is devoted to introducing the concept of quasi-invertibility monoform modules. 

We examine the main properties and give another characterization of this class of modules. 

Additionally, the relationship of this class of modules with monoform modules is discussed. 

Firstly, we start by the following example: 
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Example (3.1): Consider the Z-module M=Q⨁Z2, where Q is the module of rational numbers. 

A submodule N=Z⨁Z2 of M is quasi-invertible but not rational in M [3, Example (3.4)].  

      This example confirms that the quasi-invertible submodule may not be rational, and this 

motivates us to introduce the following concept. 

Definition (3.2): An R-module M is called quasi-invertibility monoform (briefly QI-

monoform) module if every non-zero quasi-invertible submodule of M is rational in M. A ring 

R is called a quasi-invertibility monoform ring if R is quasi-invertibility monoform R-module. 

 

Examples and Remarks (3.3): 

1. Any zero R-module is a QI-monoform module, since (0) has no non-zero quasi-invertible 

submodule which is not rational.  

2. Every monoform module is QI-monoform. Since in a monoform module, each non-zero 

submodule of M is rational. In particular, every non-zero quasi-invertible submodule of M is 

rational.  

3. The converse of (2) is not true in general, for example, the Z-module Z4 is QI-monoform 

since there is no non-zero quasi-invertible submodule N of Z4 which is not rational in Z4. In 

fact, the only quasi-invertible submodule of Z4 is Z4 itself which is rational in Z4. On the other 

hand, Z4 is not monoform Z-module, since the submodule (2̅) is not rational in Z4 [3, Example 

(3.6), P.17]. Note that (2̅) is also not quasi-invertible submodule [3, Example (3.6), P.17].  

4. Q⨁Z2 is not QI-monoform Z-module, where Q is the module of rational numbers, since as 

we saw in Example (3.1), that is Z⨁Z2≤𝑞𝑢Q⨁Z2 but Z⨁Z2≰𝑟Q⨁Z2. 

Recall that a non-zero module M is called uniform if every non-zero submodule of M is 

essential [4, P.85].  

5. The Z-module Z is a monoform module since Z is a uniform and nonsingular module [1, 

Exc. (8.4), P. 284], hence it is QI-monoform. 

6. The simple module is a QI-monoform module since the only non-zero quasi-invertible 

submodule of any simple module M is M itself which is rational in M. 

7. Any integral domain QI-monoform R-module.  

Proof: Suppose that R is an integral domain. We claim that every non-zero quasi-invertible 

ideal of R is rational, to show that: let I be a non-zero ideal of R, and assume that fHomR(R/I, 

E(R)). Since every non-zero ideal (especially, every non-zero quasi-invertible) of any integral 

domain is essential, (i.e I≤eR), then R/I is a singular R-module. On the other hand, E(R) is a 

field that is a nonsingular R-module, and it is known that there is only zero homomorphism 

between any singular and nonsingular modules. Therefore f=0, that is R is a QI-monoform ring. 

8. Z6 is QI-monoform Z-module, since it is a semisimple module, see Proposition (3.12). But 

we can easily show that Z6 is not monoform. 

9. A direct sum of two QI-monoform modules need not be monoform, for example, Z2 is a 

simple module, hence it is QI-monoform, Also, by Remark (3.15), we will verify that the 

module of rational number Q is QI-monoform, while Q⨁Z2 is not QI-monoform module. 

10. 𝑍𝑝∞ is a QI-monoform Z-module, since it is injective [7, Proposition (2.24), P.49], hence 

it is QI-monoform, see Proposition (3.13). 

11. 𝑍⨁Z is a QI-monoform Z-module. In fact, for every non-zero quasi-invertible submodule 

N of 𝑍⨁Z; HomR((𝑍⨁Z)/N, E(𝑍⨁Z)) = HomR((𝑍⨁Z)/N, Q⨁Q). One can easily show that 

(𝑍⨁Z)/N is a singular module for every submodule N of M except two submodules which are 

N1=(0)⨁Z and N2=𝑍⨁(0), and these submodules are not quasi-invertible. On the other hand, 

Q⨁Q is a nonsingular module, therefore HomR((𝑍⨁Z)/N, Q⨁Q)=0. So that N ≤𝑟 𝑍⨁Z, and 

hence 𝑍⨁Z is QI-monoform. Note that 𝑍⨁Z is not monoform [10]. 

12. The Z-module Z2⨁Z3 is QI-monoform. In fact, the only non-zero quasi-invertible 

submodule of Z2⨁Z3 is Z2⨁Z3 itself, and Z2⨁Z3≤𝑟Z2⨁Z3. While Z2⨁Z3 is not monoform 
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module, since there exists a submodule N=Z2⨁(0) of Z2⨁Z3 such that N is not rational in 

Z2⨁Z3. Note that HomR(Z2⨁Z3)/(Z2⨁(0)), E(Z2⨁Z3))  HomR(Z3, 𝑍2∞⨁𝑍3∞)  0.   

 

     It is known that if M is an R-module, then M is an R̅-module of M, where R̅=R/annR(M) by 

using the definition (r+annR(M))x=rx xM. Hence, every R-submodule of M is an R̅-

submodule of M and vice versa.  

 

Proposition (3.4): An R̅-module M is QI-monoform if and only if M is QI-monoform R-

module. 

Proof: Suppose that M is a QI-monoform R̅-module, and let N be a non-zero quasi-invertible 

R-submodule of M. It is clear that N is an R̅-submodule of M. Assume that f: M/N⟶ M be an 

R̅-homomorphism. Firstly, we have to show that f is R-homomorphism. Let rR, and wM\N. 

f(rw)=f(r+annRM)(w) = (r+ annR(M))f(w) = rf(w). Therefore, f is an R-homomorphism. 

Because M is a QI-monoform R̅-module, then f is zero R̅-homomorphism, so that f is zero R-

homomorphism, that is HomR(M/N, M)=0. Thus, N is a quasi-invertible R-module. The proof 

of the converse side is similar. 

 

Proposition (3.5): Let M be an R-module. If M/N is a QI-monoform module, then M is QI-

monoform for each submodule N of M. 

 

Proof: Let N be a non-zero quasi-invertible submodule of M, and assume that fHomR(L/N, 

M), where L is a submodule of M with NLM. By the third isomorphism theorem, 

HomR(N/L, M)  HomR(
M/L

N/L
, M/N). On the other hand, by Corollary (2.8), N/L≤𝑞𝑢M/L. But 

M/N is QI-monoform, then HomR(
𝑀/𝐿

𝑁/𝐿
, M/N)=0, so that f=0. Therefore, M is a QI-monoform 

module.  

               

     As an analogue of Theorem (2.16)(1) in [8], we give in the following another 

characterization of a QI-monoform module. 

Theorem (3.6): Let M be an R-module. The following statements are equivalent: 

i. M is a QI-monoform module. 

ii. For each non-zero homomorphism f:M⟶E(M), the kerf is not quasi-invertible 

submodule of M. 

Proof: (i)⇒(ii) 

Suppose there exists a non-zero homomorphism f: M⟶ E(M), such that kerf ≤𝑞𝑢M. Define g: 

M/kerf ⟶E(M) by g(m+kerf)=f(m). It is clear that g is a non-zero homomorphism, therefore 

HomR(M/kerf, E(M))0. But kerf ≤𝑞𝑢M and M is a QI-monoform module, so we get a 

contradiction. 

(ii)⇒(i) 

Assume there exists a non-zero quasi-invertible submodule N of M and a non-zero 

homomorphism h HomR(M/N, E(M)). Consider the following sequence: 

M 
π
→ M/N 

h
→ E(M) 

Where π is the natural epimorphism. Since h0, then clearly h∘ π is a non-zero homomorphism. 

On the other hand, Nker(h∘ π) and N≤𝑞𝑢M, so by Proposition (2.2), ker(h∘ π) is a quasi-

invertible submodule of M. But this contradicts our assumption, therefore, HomR(M/N, 

E(M))=0, that is M is QI-monoform. 
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     Under certain conditions, we can guarantee that every submodule of a QI-monoform module 

is QI-monoform. Before that, an R-module M is called quasi-Dedekind if every non-zero 

submodule of M is quasi-invertible [3, P.24]. 

 

Proposition (3.7): Let M be a quasi-Dedekind R-module. If M is QI-monoform then every 

submodule of M is QI-monoform. 

Proof:  Assume that M is a QI-monoform module, and let N be a submodule of M. We have to 

show that N is QI-monoform, so suppose that 0K≤𝑞𝑢N, and f:N/K⟶E(N) is a 

homomorphism. Since M is quasi-Dedekind, then K≤𝑞𝑢M. Now, consider the following 

diagram: 

 
 

     where 𝒾1 and 𝒾1 are the inclusion homomorphism. Since E(M) is injective, then there exists 

a homomorphism h:M/K⟶E(M) such that f∘ 𝒾2=𝒾1 ∘h. This implies that f(N/K)=h(M/K)=0, 

since M is QI-monoform. Therefore, f=0.  

 

     Next, we focus on the relationship between QI-monoform and a monoform module. 

Theorem (3.8): Let M be a nonsingular and uniform module, Then M is a monoform module 

if and only if M is QI-monoform. 

Proof: The necessity direction is straightforward. For the converse, let N be a non-zero 

submodule of M. Since M is a uniform module, then N≤eM. Moreover, M is nonsingular, so 

by Remark (2.1)(2), N is quasi-invertible. But M is QI-monoform, thus N≤𝑟M, hence M is 

monoform.  

 

     In Example (3.3)(2), we show that a QI-monoform module may not be monoform. However, 

that is true if M is quasi-Dedekind as the following theorem shows.  

 

Theorem (3.9): An R-module M is monoform if and only if M is a QI-monoform and quasi-

Dedekind module. 

Proof: The necessity is clear. For the converse, assume that M is a QI-monoform module, and 

let N be a non-zero submodule of M. Since M is quasi-Dedekind, then N≤𝑞𝑢M. Besides that, 

M is a QI-monoform module, therefore N≤𝑟M. Thus, M is monoform. 

 

Remark (3.10): The condition quasi-Dedekind cannot be dropped in Theorem (3.9). In fact, 

the Z4 is a QI-monoform module but not monoform since it is not quasi-Dedekind. 

Recall that an R-module M is said to be prime if annR(M)=annR(N) for every non-zero 

submodule N of M [9]. 
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Corollary (3.11): Let M be a uniform and prime R-module, then M is monoform if and only if 

M is a QI-monoform module.  

Proof: If M is a monoform module then clearly it is QI-monoform. For the converse, since M 

is uniform and prime, then M is quasi-Dedekind [3, Theorem (3.11), P.37]. By Theorem (3.9), 

M is a monoform module. 

 

     Next, we discuss the relationships of a QI-monoform module with semisimple, injective and 

multiplication modules, and we show that they are contained properly in the class of QI-

monoform modules. Before that, an R-module M is called semisimple if every submodule of 

M is a direct summand of M [4, P.27].  

 

Proposition (3.12): Every semisimple module is a QI-monoform module. 

Proof: Let M be a semisimple module M, and assume that 0N≤𝑞𝑢M with f(M/N, E(M)), 

then N is a direct summand of M, thus there exists a submodule K of M such that M=NK. But 

N is a quasi-invertible submodule of M, so that K = (0) [3, Remark (1.2), P.6]. Therefore N = 

M, hence f = 0. That is N ≤𝑟M. 

     The converse of Proposition (3.12) is not true in general. As had been seen in Example 

(3.3)(3), the Z-module Z4 is a QI-monoform module, but clearly, it is not semisimple. 

 

Proposition (3.13): Every quasi-injective module is a QI-monoform module.  

Proof: Let M be a quasi-injective module and N ≤𝑞𝑢M. Since M is quasi-injective, then N≤𝑟M 

[3, Theorem (3.5), P.16], hence M is QI-monoform. 

     The following example shows that the class of injective modules is contained properly in 

the class of QI-monoform modules. 

 

Example (3.14): Consider the Z-module Z. By Example (3.3)(5), Z is a QI-monoform module. 

On the other hand, it is known that Z is not injective module. In fact, we can easily show that 

by using the following diagram: 

 
 

      where Q is the module of rational number, 𝒾 is the inclusion homomorphism and id is the 

identity homomorphism. 

 

Corollary (3.15): Every module over a semisimple ring is a QI-monoform module. 

Proof: Let M be an R-module, where R is a semisimple ring. This implies that M is injective 

[6, Proposition (3.7, P.61)]. By Proposition (3.13), the result follows. 

 

Example (3.16): Consider the Z6-module Z6⨁Z6. Since Z6⨁Z6 is defined on the semisimple 

ring Z6, then Z6⨁Z6 is injective so that it is quasi-injective, and by Proposition (3.13), Z6⨁Z6 

is QI-monoform. 
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Corollary (3.17): Let R be a principal ideal domain (simply P.I.D). If M is a cyclic R-module 

with M≇R, then M is a QI-monoform module. 

Proof: Since M is a cyclic module over P.I.D and not isomorphic to R, then M is quasi-injective 

[1, Example (6.72)(3), P.237], and the result follows by Proposition (3.13). 

 

As an example of Corollary (3.17), consider the Z-module Z2⨁Z3. This module is cyclic over 

P.I.D and Z2⨁Z3 ≇ Z. Thus, it is QI-monoform. 

 

Proposition (3.18): Every multiplication module is a QI-monoform module. 

Proof: Let M be a multiplication module, and N is a non-zero quasi-invertible submodule of 

M. By Remark (2.1)(8), N≤rM , therefore M is QI-monoform. 

 

Remark (3.19): The converse of Proposition (3.18) is not true, for example, consider the Z-

module Q, it is well known that Q is uniform, and by [10], Q is polyform, so Q is a monoform 

module [11, Proposition 2.3.19, P.74], hence Q is QI-monoform. However, Q is not 

multiplication Z-module [12]. 

 

Proposition (3.20): If M is a multiplication and a quasi-Dedekind module, then EndR(M) is a 

QI-monoform module, where EndR(M) is the endomorphism ring of M. 

Proof: By assumption, EndR(M) is an integral domain [11, proposition (2.1.27), P.55], and the 

result follows from Remark (3.3)(7). 

 

4. QI-monoform Modules and Polyform Modules 

     This section is about discussing the relationship between QI-monoform and polyform 

modules. As we will see in Proposition (4.2), there is a direct implication between these kinds 

of classes in the category of rings, but in the category of modules we think they are independent 

for example, as we saw in Example (3.3)(3), the Z-module, Z4 is a QI-monoform module, while 

it can be easily checked that Z4 is not polyform. In fact, the submodule (2̅) of Z4 is essential in 

Z4 but not rational. We cannot find an example of a polyform module that is not QI-monoform. 

     It is well known that any quasi-invertible ideal of any ring R is essential [3, Corollary (2.3), 

P.12], so we have the following. 

 

Proposition (4.2): Every polyform ring is a QI-monoform ring. 

Proof: Let I be a non-zero quasi-invertible ideal of a ring R. By Remark (2.1)(1), I≤eR. Since 

R is polyform, then I ≤rR. So that R is a QI-monoform ring.  

 

Theorem (4.3): Let M be a multiplication module with prime annihilator (i.e. annR(M) is a 

prime ideal of R), then M is a QI-monoform module if and only if M is polyform. 

Proof: Suppose that M is QI-monoform, and let N be an essential submodule of M. Since M is 

a multiplication module and annR(M) is a prime ideal of R, then by Remark (2.1)(3), N≤𝑞𝑢M. 

But M is QI-monoform, therefore N≤𝑟M, thus M is a polyform module. Conversely, assume 

that M is a polyform module and let 0N≤𝑞𝑢M. By Remark (2.1)(3), N≤𝑒M. Since M is 

polyform, then N is rational, so M is a QI-monoform module. 

 

Another proof for Theorem (4.3): Assume that M is not polyform. This implies that there 

exists a non-zero homomorphism f:M⟶E(M), where E(M) is the injective hull of M, with 

kerf ≤𝑒M. Because M is a multiplication module and annR(M) is a prime ideal of R, then 

kerf ≤𝑞𝑢M. Since M is QI-monoform, then by Theorem (3.6), f=0, but this is a contradiction. 

Thus, M is a polyform module.  Conversely, let f:M⟶E(M) be a non-zero homomorphism. If 
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M is not QI-monoform, then kerf ≤𝑞𝑢M. But M is multiplication with prime annihilator, so by 

Remark (2.1)(3), kerf ≤𝑒M. Since M is polyform, then f=0 [8, Theorem (2.16)(1)], which is a 

contradiction. Therefore, M is QI-monoform.  

 

Proposition (4.4): Let M be a multiplication and prime module, then M is QI-monoform if and 

only if M is a polyform module. 

Proof: It follows directly from Remark (2.1)(4). 

 

Theorem (4.5): Let M be a quasi-injective module with J(EndR(M))=(0), then M is a QI-

monoform module if and only if M is polyform.  

Proof: Assume that M is a QI-monoform module and let N≤𝑒M. Since M is a quasi-injective 

module and J(EndR(M))=(0), then by Remark (2.1)(5), N≤𝑞𝑢M. But M is QI-monoform, 

therefore N≤𝑟M, that is M is polyform. Conversely, let 0N≤𝑞𝑢M, and because M is a quasi-

injective module and J(EndR(M))=(0), then by Remark (2.1)(5), N≤𝑒M. But M is a  polyform 

module, then N≤𝑟M, hence M is a QI-monoform module. 

     The condition J(EndR(M))=(0) in Theorem (4.5) is necessary as we see in the following 

example. Before that, a submodule N of M is rational if and only if HomR(U/N, M)=0 for every 

submodule U of M such that NUM [1, Proposition (8.6), P.274]. We apply this 

characterization of a rational submodule in the following example. 

 

Example (4.6): We saw in Example (3.3)(3), that Z4 is a QI-monoform Z-module. Note that Z4  

is not polyform, since it is easy to see that (2̅) is an essential submodule of Z4. But, it is not 

rational submodule in Z4, since HomR(Z4/(2̅), Z4)  Z20. In fact, Z4 is quasi-injective [3, 

Example (3.6), p.17], but EndZ(Z4)Z4, and J(EndZ(Z4)Z20. 

     It is well known that in any R-module M, not every essential submodule of M is quasi-

invertible, in fact, the submodule (2̅) is essential in Z4, but it is not quasi-invertible. This leads 

to using the following. 

 

Definition (4.7): [11, Definition (1.2.1), P. 24] 

An R-module M is called essentially quasi-Dedekind (Simply, we write E-quasi-Dedekind), if 

every essential submodule of M is quasi-invertible. That is HomR(M/N, M)=0 for every 

essential submodule N of M. 

 

Example and Remark (4.8):  

1. It is clear that every quasi-Dedekind module is E-quasi-Dedekind. 

2. Every semisimple module is E-quasi-Dedekind. Since if M is semisimple, then the only 

essential submodule of M is M itself which is also quasi-invertible in itself. 

3. Every nonsingular module is E-quasi-Dedekind. This follows directly from Remark (2.1)(2). 

For example, Z is an E-quasi-Dedekind Z-module. 

 

Proposition (4.9): Let M be an E-quasi-Dedekind. If M is a QI-monoform module, then M is 

polyform. 

Proof: Let N be an essential submodule of M. Since M is E-quasi-Dedekind, then N≤𝑞𝑢M. But 

M is QI-monoform, so that N≤𝑟M, hence M is a polyform module.  

     In the category of ring theory, from Proposition (4.2) and Proposition (4.9), we deduce the 

following.  

 

Corollary (4.10): Let R be a E-quasi-Dedekind ring, then R is a QI-monoform ring if and only 

if R is a polyform ring. 
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Theorem (4.11): Let M be uniform and E-quasi-Dedekind module. The following statements 

are equivalent. 

1. M is a monoform module. 

2. M is a QI-monoform module. 

3. M is a polyform module. 

Proof:  

(1) ⟹(2): It is straightforward. 

(2) ⟹(3): Assume that M is a QI-monoform module. Since M is E-quasi-Dedekind, then the 

result follows from Proposition (4.9). 

(3) ⟹(1): Suppose that M is a polyform module. Because of M is uniform, then M is monoform 

[11, Proposition 2.3.19, P.74]. 

 

Corollary (4.12): Let M be a uniform and nonsingular (or semisimple) module. The following 

statements are equivalent. 

1. M is a monoform module. 

2. M is a QI-monoform module. 

3. M is a polyform module. 

Proof: By Remark (4.8), every nonsingular (semisimple) module is E-quasi-Dedekind, and the 

result follows directly from Theorem (4.11). 

          For the category of rings, we have the following. 

 

Theorem (4.13): Let R be a quasi-Dedekind ring. The following statements are equivalent. 

1. R is a polyform ring. 

2. R is a QI-monoform ring. 

3. R is a monoform ring. 

Proof:  

(𝟏) ⟹(2): It follows from Proposition (4.2). 

(𝟐) ⟹(3): Assume that R is a QI-monoform ring, Since R is quasi-Dedekind, then by Theorem 

(3.9), R is a monoform ring. 

(𝟑) ⟹(1): It is obvious. 

Corollary (4.14): Let R be an integral domain. The following statements are equivalent. 

1. R is a polyform ring. 

2. R is a QI-monoform ring. 

3. R is a monoform ring. 

Proof: Since every integral domain is a quasi-Dedekind ring [3, Example (1.4), P.24], then the 

result is followed by Theorem (4.13).  

    As a sequel to this paper, we have the following conclusions. 

 

Conclusions: 

     In this work, the class of monoform modules has been extended to a new class. It is called  

QI-monoform modules. Several characteristics of this type of module have been studied. 

Another characterization of QI-monoform modules is considered. Sufficient conditions under 

which QI-monoform and monoform modules are discussed. In addition, some classes of 

modules contained properly in a QI-monoform module are examined such as semisimple, quasi-

injective and multiplication modules. Besides, the connection between QI-monoform and 

polyform modules has been established. However, these relationships can be represented in the 

following figure: 
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