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Abstract

This work discusses the beginning of fractional calculus and how the
Sumudu and Elzaki transforms are applied to fractional derivatives. This
approach combines a double Sumudu-Elzaki transform strategy to discover
analytic solutions to space-time fractional partial differential equations in Mittag-
Leffler functions subject to initial and boundary conditions. Where this method
gets closer and closer to the correct answer, and the technique's efficacy is
demonstrated using numerical examples performed with Matlab R2015a.
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1. Introduction

Fractional calculus has shown to be a useful tool for uncovering previously unknown
characteristics of a wide variety of material and physical processes [1-4] that deal with
derivatives and integrals of arbitrary orders. The theory of fractional differential equations
interprets matter-of factual reality very well and in a systematic way that is both beneficial
[5]. Because of it is used so often in fluid mechanics, mathematical biology, electrochemistry,
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and physics, the fractional differential equation has attracted much attention in recent years.
One can derive a space-time fractional partial differential equation by substituting fractional
derivatives for the time and space derivative terms in the classical partial differential equation.
This can be done to create a space-time fractional partial differential equation. As in common
knowledge, the linear integral transformation is utilized to solve differential equations. This is
done by transforming the linear partial differential equation into an algebraic equation that can
be solved relatively quickly. In order to find the solution to differential equations, which are
utilized in astronomy, physics, and engineering, integral transforms such as Mellin, Laplace,
Fourier, and Sumudu were extensively applied. When it was first presented in the early 1990s,
the Sumudu transformation method was immediately recognized as one of the most effective
transformation methods [6]. Elzaki transform [7] is a variation of the more traditional
Sumudu Transform. The double integral transform is a modern and updated study that fills the
gap left by those studies [8-11]. Previous work looked at definitions and straightforward
theories of PDEs [12-14]. The main objective of this paper is to provide some results obtained
by combining two transforms, i.e., the Double Sumudu-Elzaki transform method (DSETM) to
obtain accurate analytical and approximate solutions for space-time fractional partial
differential equations. The following outline constitutes the paper's structure: In the sections 2
and 3, we present some basic definitions and properties of fractional calculus as well as the
definitions of Sumudu and Elzaki Transforms and theorems which are relevant to the present
work. We provide a new algorithm (DSETM) for solving the space-time fractional partial
differential equations in Section 4. Several examples are given in Section 5 to illustrate the
suggested technique. Finally, the conclusion is presented in Section 6.

2. Fundamental Properties of DSETM and Fractional Calculus
In this section, the definitions and properties of Sumudu and Elzaki Transformation with
Fractional Calculus are explained.

Definition 2.1 [15]
The DSETM of S,E.[Y(z,t)] = Y(y, §) is defined as:

SEM( O] = §0r,8) = L[ [ Wz e ¢zt 2 > 0, ¢ >0

where Yi(z, t) is a continuous function of two variables. where y and & are complex values.
Clearly, the linearity of the DSETM is shown in the following relation:

S Edpw(z, 01+ iz, 0] = L[ [ e U owz,0) + 1z, O]zt
= %sfooo fooo e_(§+§)L|J(Z, t)dzdt + %fooo fooo e_(§+§))((z, t)dzdt

SZEt[plIJ(Zr t)] + TX(Z' t)] = pSzEt[q’(Zf t)] + TSZEt[X(Z' t)]
Where both p and t are constants.

Definition 2.2 [15]
The inverse of DSETM S,E. ' [{(y, 8)] = W(z, t) is defined by:

- oo _Z joo ., Lt —
SET 0,0 = (6 = 5 [0 e vdy o= [0 ¢T3 Py, 6)ds

Definition 2.3 [16]

A real function Yi(z),z > 0, is said to be in the space Cy, 9 € R, if there exists a real number

q,(q > 9), such that ¢(z) = z9y4(z), where Y, (2) € C[0, ). It is to be in the space Cg* if
Y™ e Cy,meN
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Definition 2.4 [16]
The Riemann Liouville fractional integral operator of order € > 0 of a function
Y(z) € Cﬁ,ﬁ > —1 is defined as:

Fe(z) = s -0 @dt, € > 0z>0,
I°W(z) = Y(2), £=0,

where I'(+) is the well-known Gamma function, some properties of the operator %, that will
use here, are as follows: For ¢y € Cy,9 = —1,e = 0,
1. IEIPY(z) = IP+E(2).
e 9 _ T@+1) Z9tE _
2.1z —r(+0+1) , 94+¢e>-1,2> 0.

Definition 2.5 [16]
The fractional derivative of Lp(z) in the Caputo sense is defined as:

Dic =M EDMy(z) = fOZ(Z —p) M=l yM()dt form —1<e< m, m € N,
z>0,¢ € C™,.
The basic properties of the operator D£ are as follows:

e.m . '+m) o
1. Dzz" = (1+m-¢)

2. DEI*Y(2) = Y(2).
3. FDEY(2)] = Y(z) — XIgtL = WO(0).
4. DY[DiY(z)] = DE+y(2).

Definition 2.6 [17]

The most crucial function in fractional calculus is the Mittag-Leffler function which is
generalized for the exponential function. The Mittag-Leffler function E, , (z) with u > 0
and v > 0 is defined as:

E, . (2) = Z,‘;‘;zOH;—M ,Z € C,Re(u) >0, Re(v) > 0.
The single Sumudu (S,) and Elzaki (E;) transforms for the function z¥~'E,, (1z*) that takes
the form:

S, [Zv_lE v()lz“)]
E[t"E,,(AzM)] =

I'(m—-¢)

1Al < Iv*l,
|A] < [6¥].

A/"

1- /16#’

3. Basic Derivative Properties of the DSETM [15]
In this section, we present the technique of DSETM for the partial derivatives of integer
order and for the Caputo fractional derivative in the following two theorems:

Theorem 3.1

Let Yi(z, t) be a continuous function of exponential order, if Y(y,8) = S,E,[W(z, t)], then the
first and second partial derivatives w.r.t z and t are given as follows:

L. 8,E [220] = 257, 8) - SE(W(0,0),

2. 5,8 [0 = 1y, 8) - 85,(W(z 0)),

3. S,E, %“)] = L90,6) — ZE(0(0, ) - 1B (1)
4. S,E, _a U(z0) =§$(% 8) — S,(V(z,0)) - 85, (6lIJ(Z 0))’

at2
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Yz _ 17 1 _ Y (z,0)
. SZEt[ dz 0t _yalp(y’(s) y&Et(“p(Z’O)) 652( 0z )

For the general formulas, forn,m > 1,
™Y(zt) _ _ aky(o,t)
6. S,E (Tohe) =y (y, 6) — Ny T HE, (),

azk
Aa™(z,t lY(z,0
7. SzEt( (;llt(: )) nll}()/,S) Zn 15 n+]+ZS ( ‘:;S ))’
Proof:

1 sZEt[a"’f”] SIS0y e () 200 e,

_t ——aljJ(zt)
=6f0 e ddt;fo e ¥——dz,

using integration by parts letu = e v,dv = Md

S,E; [mbft)] 5f°° e‘Sdt [ e yq;(z I +__f0 e_§¢(z, t)dz|,
= —w(y, )——Et(q;(o t)).
2. 5,5, [‘”""(”)] Iy M dar

_ L ay(zp)
_;fo e de6f0 e 6Tdt,

z, then:

6lIJ(z t)

t
Using integration by parts, letu = e 5, dv = dt, then:

w -Z _t
S,E; [alb;f’t)] = %fo e vdz [6e sY(z, )|y +36f0 e 6L|J(Z, t)dt],

= 29(1,8) — 85,((z,0)).

Similarly, we can prove 3,4,5,6 and 7.

Theorem 3.2
The DSETM formulas for the partial fractional Caputo derivatives of the function yi(z, t)
form—1<v<m,n—1<u<n,aregiven by:

= 1 aky(o,
L S,E[DYW(z 0] = y (1, 6) — Tpsy e, (The),

2. SZEt[DéLl.IJ(Z, t)] = S_HE()/) 6) Zn 16 “+]+ZS (a]l(l;t(j,O))’

Proof:
1. Applying DSETM on DZWi(z, t),

S,EDYW(z 0] = S,E: [ Jy (2 = ™7 T dg)

ggem
from the definition of the convolutlon
SB[zt = 5, [—— (zmt « E2))

4 azm

r(m-v)

= m-v-1 , 9"z t)
= E¢ ll‘(m -v) S, [ dzm ]l’
using the convolution property of Sumudu transform given in [18],
VP(z,t) 1 _ o™y (z,t)
SB[ = B[y (rSulzm s, [ 55

r(m-v) azm
Applying the derivative property of Sumudu transform given in [18],
(zt)] 1 _ m-v—1 (SzlW@O] v 1™ y(ot)
SZEt[ dzv ] T T(m-v) E [F(m v) Yy ( ym ym y 9zm-1 )]

After simple computations, we have:
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o™ 1Y(0,t)

azm—l

VY(z, _ _

S,E [TL2] = vy, 6) =y W(0,6) — - — Y™V |
av _ 1 aky(o,

S, [ o] = vy, 6) - Thd y U HE (—;f’z(,? %)

2. Applying DSETM on D! yi(z, t),

o™"(z,0)
SE[D{W(, 0] = S,E¢ [ fy (6 = it 222 g,
from the definition of the convolution

s[5 = Sebe g (7 + )
=5 w5

Using the convolution property of Elzaki transform given in [7],

[0 U(z,t)] _ 1 n—p—1 a™Y(z,t)
SB[ | = Sz [F(n u)( Eelt ]Et[ atm )]
Applying the derivative property of EIzakl transform given in [7],

2K (z,0)] 1 n-p+1 (Eb@D] _ wz0) 9" (z0)
SZEt_ otk | F(n W [F(n W5 6 ( sn sn—2 0 otn-1 )]
After simple computations, we have

[0 Y(z,0)] —uT - - " 1y(z,0)
S, [T ] = 67y, 6) = 677 Hp(z,0) — - — SIS, [P
S.E[DW(z, )] = 67P(y, 8) — Bzt s7w+iv7s, (TLLD)

For the existence condition and the properties of DSETM see [15].

4. Principle Of The DSETM Method

The DSETM s tested here to handle the numerical solution with several physical
applications. The purpose is to demonstrate the technique and demonstrate its viability.
Consider resolving the following problem:

n
e +eLy(z,t) = s(z,0),2,t = 0, (1)
where ¢, d, c real constants and L is the linear differential operator.
Withm—-1<v<mn-1<u<nmmnée€N, with s(z,t) is source term with initial
condition (1.C.s):

v lIJ(Z t)

(2,0 )
xgg ) fi(2),j=01,..,m—1, )
and the boundary condition (BCs):
akyi(o,
:(:t)_hk(t)k=01 n—1. @)

When we put m=n=2, e =1, d——q,s—OandL—co+01 , we get the multi-
terms fractional telegraph equation:

ca”:t(;t) + 0, 22+ ez t) = q° ;’(ft) 1<pv<2 (4)
Also,ifm=n=2,d=—-1,c=e=1landL = % , then we get the fractional Burger's
equation as:
MYzt VY@t | APzt _
ach Py + > —s(z_,t),O<uSl,1<vS2.
Applying the DSETM on both sides of (1), we get
I v
SEe[c 2] + 5B, [ ;"Z(f't)] +S,E JeLi(z t)] = S,Es(z, t)],z t = 0, (5)
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e [6750r,6) — gjs 5742, (PEE)] [y b, 8) — Sy e () +

eS,ELY(z,t)] =gy, o). (6)
Furthermore, applying single S, to the 1.C.s (2) and single E, to the B.C.s (3) we get,
(z, — _
SZ[ qajiz O)] =fi(y,j=01,..,m-1, o
k —
E [250] = R (8), k = 0,1,..,n — 1, 7

Then by replacing (7) and (8) in (6), we get : .
Y({,0) = m[ cYNg 8IS Fi]+ [dZnesy ™V he (8)] — eS,EclL(z )] +

g, ), (9)
Taking S,E. " [¢(y, 8)] of (9) to find the solution of (1);

Y& ) = S,E | [0 212 8742 FO)| + [d Tty ™+ T (6)] -
eS,E[Li(z, 0] + 5,8 | (10)

5. Elucidative Examples

In this part, we have four examples related to the fractional reaction-diffusion equation,
fractional telegraph equation, fractional wave equation, and fractional Burger's equation in
order to illustrate the applicability of the recommended technique DSETM. This part will
examine the numerical assessment of the conclusions reached from fractional equations that
have been put up for solution. We will also talk about the numerical behavior of a fractional
differential equation solution and compare it to that of an integer derivative equation.

Example 1:
Consider the following time-fractional telegraph equation as in [19], where c=cl =q =
1,co =0,v=2in(4)

okp(zt) | aY(zb) 32¢(z t) 2

b s +2t(2% — 2) (F(3 + 1) — 22, (12)
1<pu<2, Z,tZO,
Depending on the I.Cs and BCs:
ll)(Z, O) = lpt(zl 0) = 01 (12)
1/)(0; t) = 0! lpz(ol t) = _tz' (13)

Taking Sumudu-Elzaki for (11) and single Sumudu S, to the initial condition (12) and
single Elzaki E; to the boundary condition (13)

S,Bc [SLE] 45 E, [2420) = 5, |22 4 5, [20(27 — 2) (s
(14)
57 P(y, ) — 5-#+Zs ((z,0)) = 674435, (2222 + 5719(y, 6) — 65, (1(2,0)) =

ot 1)] — S, E[2t7],

S9(.8) — ZE(b(0,0) —E (2£29) 4+ 5, B, [26(z* - 2) (F(g ”) +1)] -
S.Ee[2t?], (15)
Substituting E, (01/)(;) t)) = 264,
and

S,E¢ [2t(2% - 2) (F(3 ';) +1)] = —2)/54_” + 4283 — 283 — 46% in (15)

571y, 8) + 571, 8) = S P(y,6) + - o 4y260E = 2y 84 4 4y25% — 2y 5% — 46%,
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§TMYP(y,8) + 8P (y,8) — y—ﬁ(y, 8) = —2y83 4 2y 716 — 48% — 2y8%H + 4y25+H +
4y2653,

0 — shtly 3 4—p 4

01,8) = (s ) (—2r8% + 2y8* (1 - 29) + 28 (™" - 2)), (16)

¥(y,8) =282y —y).

Applying inverse DSETM to (16), we get the answer to (11) in the following way:
Y(z,0) = S,B[28%(2y% ~ 1)),

Y(z,t) = (2% — 2)t2.

Example 2:
Consider the homogeneous fractional wave equation as given in [20]:
IMP(zt) _ 3VP(zt) (17)

atH azv '
1<v,u<s?2 zt=0,
Depending on the 1.C and BC:
u(z,0) = zE, ,(—2z"), u(z,0) = 2, (18)
u(0,t) = 2t,u,(0,t) = E,(—tH). (19
Taking Sumudu-Elzaki for (17) and single Sumudu S, to the initial condition (18) and single
Elzaki E; to the boundary condition (19)

SB[ ] = sk [ (20)
§7Hp(y, 8) — 574725, ((2,0)) — 64435, (E22) = yU3h(y, 8) — y E((0,0)) -
o, (202), =
and

5HB(y,6) =y B(y,8) = =y VE($(0,0) — y T E (Th2) + 67K+, (1(z, 0)) +
5ss, (255), @)

substituting ;
S.(¥(2,0)) =S, (2E,(—2z")) = 1+yv 5, (H20) =5,(2) = 2,

E, (al”f Y) = (Eu(=8%)) = = E((0,0)) = Ec(2¢) = 26% in (22), we have:
5HH(r, 8) =y U, 8) = 2y —y U () + 67 () 267, (29)

1+18

_ _ 1 30 -v _ s—uy 1 y vtis? 1 §THFT2y
(¥, 6) = ((5—ﬂ_y-V)) 26°(y 67 ((8-#—)/-”)) 1+86H# + ((6‘”—]/‘”)) 1+y? '
6—u+2y+y62_y—v+162_y62

o — 3
¥(.8) = 28"+ s e (24)
3 4 52
P, 8) =26 (1+y”) (1+5”)’ (25)
Applying inverse DSETM to (25), we get the answer to (17) in the following way:
_ -1 Y 52
¥(z,t) = S,E: [263 + (1+y") (1+6#)]’ (26)

Y(z,t) = 2t + zE, ,(—z") E, (—tH).
When v = u = 2 in (26), we have the general solution agreed with [20].
Y(z,t) = 2t + sin(z) cos(t).

Below is the absolute error of some 7-order approximating solutions of (17) for
v = 1.3, u = 1.7 which are included in Table 1. Also, Figure 1 shows the absolute error (AE)
between the exact solution (ES) and the approximate solution (AS) for (17), and Figure 2
shows the exact and the approximate solution when v = u = 2.
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Figure 1:

Exext Souron

Azpraxmate Sgior

Figure 2: Inthe case v = p = 2, (a) the ES and (b) the AS.

Table 1: The ES, AS and AE for ExamEIe 2 using 7-terms gDSETM!.

(z,1) Exact Solution Approximate Solution Absolute Error
v=13,pu=1.7

(0.1,0.25) 0.4755268 0.4616260 1.3900738e-02

(0.3,0.5) 1.0849076 1.0097326 7.5174975e-02

(0.6,0.75) 1.7846731 1.6224283 1.6224479e-01

(0.9,0.9) 2.3227753 2.1421624 1.8061294e-01

Example 3:
Consider the following fractional telegraph equation as given in [19]:

T4 o P b ol t) = L 1< uv < 2, (27)
When n= m—2,c—c0 =c =1,d=1, q 1 v = 2,and s(z,t) = 0 in (4), we have got
a”;"t(:’t)+avg’t(f’t)+¢( =2 18D 2120, 1<p<2, 1<vs<l, (28)
Depending on the I.C and BC:
lIJ(Z, O) = 01 lIJt(Z, O) = eZ) (29)
w(0,t) = tEu—v,Z(_t#_v) = U,(0,0). (30)

Taking Sumudu-Elzaki for (28) and single Sumudu S, to the initial condition (29) and single
Elzaki E; to the boundary condition (30)
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S,E, [Z2E0) 15, B, [TUEO] 4 5B (2, 0)] = S, B, [T, (31)
5Py, 8) — 674428, (1(z,0)) — 674435, (2522 4 53y, 8) — 6725, ((2,0)) +
P, 8) =5 9(1,8) - ZE(p(0,0) -~ E (T522). (32)

Substltutlng

5.0, 0) = (), 5:96. 00) = 0EW0.9) = (575) B (*527) = (575)

In (32), we have:

57y, 8) = 57 () + 5791, 8) + B, 8) = 91, 0) — = (o) — H(=2),
(33)

5 (90,8 - ) + 50O + P18 =y (P08 - s — ), (34)

8"y (l/)(% 8 — g) + 81y 2 P(y, 8) + 54y 2 P(y, 6) = 67 (1/1(% ) - 1+‘§Z_,, -

y&3 )
148KV} +v+43 +v+3 2 5v+3
v,,2 U2 4 Sut+Ba,2 _ sutBY __summR yskr y2s”
(6%y% + 8ty? + 64 Py2 — 54 P)p(y,6) = — s — Traws 1y

V.2 ) UV, 2 _ Sutv — _ _(1_y)6u+17+3_(1_y)y6u+17+3+(1+6[4—V)y2517+3

v.,,2 ., 2 U+v.,2 _ Su+vy,g, _ 83(=8MFV+y 25Ky 28V +y 28 H)
(6%y* + &ky* + 6477y 2 = 647 (y, 6) = ) , (35)
—_ 1 53
Y. 8) = (Ty) (1+5#—V)' (36)
Applying inverse DSETM to (36), we get the answer to (27) in the following way:

) = 557 [(25) ()

Y(z,t) = e tE,_p,(—th™).
Whenu =2, v=1,the ESis Y(z,t) = e?(1 —e™?).

Table 2: The ES, AS and AE for Example 3 using 7-terms (DSETM).
(z,v) Exact Solution Approximate Solution Absolute Error

(0.3,0.1) 0.2975473 0.2975473 1.7208457e-15
(0.4,0.8) 0.7560833 0.7560833 1.0236256e-13
(0.6,0.2) 0.5633580 0.5633580 6.5289996e-12
(0.9,0.9) 1.4843225 1.4843225 1.5626038e-09

(0.3,0.1) 0.2975473 0.2881293 9.4179892e-03
(0.4,0.8) 0.7560833 0.7301906 2.5892688e-02
(0.6,0.2) 0.5633580 0.5434271 1.8034233e-02
(0.9,0.9) 1.4843225 1.4388716 4.5450970e-02

(0.3,0.1) 0.2975473 0.2720176 2.5529764e-02
(0.4,0.8) 0.7560833 0.6881614 6.7921868e-02
(0.6,0.2) 0.5633580 0.5134601 4.9897948e-02
(0.9,0.9) 1.4843225 1.3759270 1.0839554e-01
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Exact Solution
Azprzxmate 8zuoer

Figure 3: Incase v = 1,u = 2, (a) the ES and (b) the AS.

Exoct Bowton
-

L J
-
Azprzxmate 8zumer

-o

Figure 4: In case v = 0.9, u = 1.75, (a) the ES and (b) the AS.

Below is the absolute error of some 7-order approximating solutions of (27) for different
values of v and p which are included in Table 2. We have observed that, as shown in Figures
3-4, the solutions obtained for the various fractional values of vand u which they are
compatible with the solution for closed-form forv = 1,u = 2.

Example 4:
Consider the following fractional Burger's Equation as given in [21]:
MYy (b | APz _
oh oz T5, - 00<pusl 87
Depending on the 1.C and BC:
u(z,0) =e %, (38)
$(0,1) = B, (2t), 2520 = —E, (2t4). (39)

Taking Sumudu-Elzaki for (37) and single Sumudu S, to the initial condition (38) and single
Elzaki E; to the boundary condition (39)

S,E, [Z2E0) s, [FUED) 4 5, [2U20] = (40)
57y, 8) = 57125, ((2,0)) — 57#+3s, ("’“’“’)) 00, 8) + S E($(0,0) +
“E(P572) +29(1,8) — SE((0,9) = 0, (41)
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5 (B0, 8) ~ 625, (w2, 00)) ~ v 2 (B0, 6) ~ E(w(0,0) — yE. (222 4
y~! (E(% &) — E(w(o, t))) =0,

5 (B0, 8) ~ 625, (w2, 00)) ~ v 2 (B0, 8) ~ E((0,0) — yE (222) -
(v 8 — vE(W (O, t)))) =0,

(42)

(43)

72 (30.8) - 875, 0) ) - 6+ ($(7,8) - E((0,0) — vE (2222) - (v, 8) -

YE($(0,9))) =0,

Y01, 8) — 1287S,((z 0)) — 845(y, 6) + SHE(p(0, ) + 6#yE, (2222) 4
§*yp(y, 8) — S*yE(W(0,0)) = 0,

(v2 = 84 + Y6y, 8) = 1287S,(¥(z,0)) — S“E(w(0,1)) — 8*yE, (2522) +
SHYE(W(0,1)).

Substituting

5,(¥(20) = 11 E(¥(0,9) = 255 B (P572) = — 557 in (46)

— 262 ne2 U, 82 e, 82
2 su u _Y 1) _ [ )afe) SHys SHyé
(v 8% +ysh)y(r, 6) 14y 1-286K  1-286K  1-26¢

2 _ su N _ Y282 (1-26M)—(8#6%-25My %) (1+y)
(vy? =" +y8")Y(y,6) ETeRr ,

2 su N _ 82(y?-5H+5ty)
()/ 6 +]/6 )1/)(% 6) - (1+y)(1_25p,) '

I 62
Yy, 8) = a2’
and

v (L) (L
¥(r,6) = (1+y) (1—26#)'
Applying inverse DSETM to (51), we get the answer to (37) in the following way:

Y(z,t) = SzEt_l [(ﬁ) (1—8226!‘)]’
V(z ) = e~ E,(2t").

L
‘

Exact Bowter
-~

~

. . -
e T L8 e
~ e 7 - L L
e 02 " 02
e : 0 e

L .
Ib) (A

Figure 5: Incase pu = 1.95, (a) the ES and (b) the AS.
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Figure 6: In case pu = 1, (a) the ES and (b) the AS.

Figure 5 shows the numerical result when u = 1.95. It is sufficient to remark that, as u
gets closer to 1, the fractional equation's solution becomes closer and closer to this precise
result, as as illustrated in Figure 6.

6. Conclusion

In order to achieve exact answers to space-time fractional partial differential equations in
certain formulations of Mittag-Leffler functions, an efficient integral transform named the
double Sumudu-Elzaki transform is devised. Some applicable definitions and properties are
included along with their functions to help in the solution of a variety of space-time fractional
partial differential equations. Finally, it can be concluded that the suggested integral transform
is a very efficient, effective, and reliable tool for determining the solution of fractional partial
differential equations based on the mathematical formulations, simplicity, and effectiveness of
this transform.
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