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Abstract  
     By taking into account various food components in the ecosystem, the research 

intends to develop a set of difference equations to simulate a plant-herbivore 

interaction of Holling Type II. We determine the local stability of the equilibrium 

points for the scenarios of extinction, semi-extinction (extinction for one species), and 

coexistence using the Linearized Stability Theorem. For a suitable Lyapunov 

function, we investigate theoretical findings to determine the global stability of the 

coexisting equilibrium point. It is clear that the system exhibits both Flip and 

Neimark-Sacker bifurcation under particular circumstances using the central manifold 

theorem and the bifurcation theory. Numerical simulations are done by MATLAB 

which are used to validate our conclusions. 

 

Keywords: Plant-herbivore model; Discrete systems; Stability theory ; Neimark-

Sacker and Flip bifurcation; Semi-Cycle and Periodic Behavior. 

 

 نمذجة رياضية لمجتمع نباتي عاشب مع تأثيرات إضافية للغذاء على البيئة 
 

 اشرف عدنان ثرثار
 الفلوجة, رئاسة الجامعة, قسم الدراسات والتخطيط, الانبار, العراق جامعة 

 
 الخلاصة 

من خلال مراعاة المكونات الغذائية المختلفة في النظام البيئي ، يعتزم البحث تطوير مجموعة من معادلات       
المحلي لنقاط التوازن لسيناريوهات  الثاني. نحدد الاستقرار  الفروق لمحاكاة التفاعل بين النبات والعاشب من نوع 

الانقراض وشبه الانقراض )الانقراض لنوع واحد( والتعايش باستخدام نظرية الاستقرار الخطي. للحصول على  
وظيفة مناسبة ليابونوف ، نقوم بالتحقيق في النتائج النظرية لتحديد الاستقرار العالمي لنقطة التوازن التعايش. من  

ساكر في ظل ظروف معينة باستخدام نظرية المشعب المركزي  -رض تشعب فليب و نيماركالواضح أن النظام يع
 ونظرية التشعب. تستخدم عمليات المحاكاة العددية التي تم إجراؤها في ماتلاب للتحقق من صحة استنتاجاتنا.

 
1. Introduction 

     Mathematical modeling for biological problems and medicine are exciting research areas in 

the discipline of applied mathematics. Many environmental phenomena were formulated 

mathematically to explain the dynamical behavior of the constructed models [1-8]. It is well-

known that the Lotka-Volterra predator-prey model is one of the fundamental population 

models that is expanded to many biological models. The predator-prey interaction model was 
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established firstly by two well-known pioneers in biomathematics; Lotka and Volterra [9]. Later 

on, Liu and Xiao considered a predator-prey model in discrete time to analyze the local stability 

and the bifurcation solutions around the positive equilibrium point [2]. Both Kangalgil and 

Kartal worked on a  host-parasite  model as a piecewise constant argument system to study the 

Flip and Neimark-Sacker bifurcation [4]. However, to explain the environmental phenomena 

in the prey-predator interaction, more realistic studies were introduced by Holling, who 

suggested three different types of functional responses for  modelling  the phenomena of 

predation of species  [10]. From  [11 − 14], it was found that Holling Type II functional response 

is the most effective and essential functional response in explaining the interaction between two 

species in the habitat. 

  

     It is well known that prey refuge significantly influences the co-existence among both 

predator and prey populations. So, prey refuge effects on the interaction of the predator-prey 

dynamics are seen as an attractive research study. Many researchers [15−19] proved that the 

prey refuge stabilizes the dynamic of the predator-prey system and that prey biomass can be 

controlled and saved from extinction due to predation. Considering the prey refuge proportional 

to the biomass shows a more realistic biological system since the prey refuge affects both the 

prey and predator species. Incorporating an additional different food into the predator-prey 

population's habitat might reduce the prey's pressure since the predator species has another 

alternative of intake to survive. This additional food is an essential component of most 

predators’ diet, although they receive less attention than basal prey. The role of alternative prey 

(other food) in sustaining predator populations has been reported in laboratory studies and 

theoretical studies [20−21]. Predation by golden eagles (Aquila chrysaetos) has decimated three 

resident fox populations in the Channel Islands by nearly 95 percent. According to the review 

report, these predators are mostly supported by overabundant alternative prey species. [22]. In 

prey-predator models, the effects of various foods on predators have recently been explored 

[23-25]. Srinivasu et al. [24] studied the effect of quality and quantity of additional food on the 

prey-predator system dynamics in the presence of other food for predators. Discrete-time 

models are critical for comprehending complex ecosystems, especially for univoltine species, 

which have just one generation each year [29-31]. Because of the non-overlapping form, the 

species emerging the previous year is a discrete function of the population the next year.[27]. 

These dynamics apply to a variety of organisms in temperate and boreal climates, such as 

insects. In its most northern range, the speckled wood butterfly (Pararge aegeria) is univoltine. 

Adult butterflies emerge in late spring, mate, and deposit eggs before dying. After that, their 

young mature until pupation, at which point they undergo diapause in preparation for the winter. 

The following year, new adults emerge, resulting in a single generation of butterflies per year 

[28]. As a result, maps can accurately depict the structure of species interactions, and some 

investigations have provided experimental proof for the suggested dynamics [26-28]. 

 

     Further theoretical investigations that included spatial dynamics greatly broadened the scope 

of chaotic behavior as a possible result of discrete population dynamics [32, 33]. In continuous 

[34] and discrete [35] time models including evolutionary dynamics and genotype mutational 

exploration quickly lead to chaotic attractors. In the discrete multi-species models with victim-

exploiter dynamics, the so-called homeochaos have been identified[36, 37].  

This paper develops a discrete-time predator-prey model and considers the Mondal and 

Samanta [38] model to represent the prey population's growth, equivalent to the continuous-

time logistic growth, prey refuge, and supply of additional food for the predator. To study the 

effects of predation, we have used Holling Type II functional response,  we studied the impacts 

of supplying additional food to the predator.  
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2. Model Formulation 

     The origin of the plant-herbivore interactions is generally derived from the predator-prey 

systems [29, 30], which are considered in various studies using discrete and continuous-time 

[3-6]. This paper has developed a two-species prey-predator (plant-herbivore) model with plant 

protection behavior to stabilize the habitat. It is assumed that the plant grows logistically in the 

absence of herbivores. Therefore, the herbivore is provided with constant biomass 𝐴, distributed 

uniformly among the habitat. The number of encounters per predator (herbivore) with other 

food is proportional to the other food's biomass. This constant characterizes the ability of the 

predator to identify the different food. A refuge protecting 𝑛𝑥 (where 𝑛 ∈ (0, 1]) of the prey 

has been considered in this model. 

According to the above assumptions, Mondal and Samanta [38] have developed the following 

model 

{

𝑑𝑥(𝑡)

𝑑𝑡
= 𝑟𝑥(𝑡) (1 −

𝑥(𝑡)

𝐾
) −

𝑎(1−𝑛)𝑥(𝑡)𝑦(𝑡)

𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥(𝑡)

𝑑𝑦(𝑡)

𝑑𝑡
=

𝑐𝑎((1−𝑛)𝑥+𝜂𝐴)𝑦(𝑡)

𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥(𝑡)
− 𝑑𝑦(𝑡)                  

                                          (2.1) 

where 𝑥(𝑡) and 𝑦(𝑡) denote the prey (plant) and predator (herbivore) density, respectively. The 

term 
𝑎(1−𝑛)𝑥(𝑡)𝑦(𝑡)

𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥(𝑡)
 shows the functional response of the predator, where  𝜂𝐴  is the additional 

food level in the habitat. The parameter 𝛼 denotes the quality of the different food. It is noted 

that if 𝑛 = 1, i.e., the total prey population is a refuge, then the predator biomass is grown up 

in the presence of the additional food only. 

 

To derive the discrete plant-herbivore model at time 𝑡, let 
𝑑𝑥

𝑑𝑡
=

𝑥𝑡+1−𝑥𝑡

ℎ
     and   

𝑑𝑦

𝑑𝑡
=

𝑦𝑡+1−𝑦𝑡

ℎ
 ,                                                (2.2) 

where 𝑥𝑡 and 𝑦𝑡 are densities of the plant and herbivore population in a non-overlapping 

generation for a discrete-time 𝑡. Moreover, let us consider that ℎ → 1 and 𝑑 = 1. Then we have 

for the (𝑛 + 1)th generation of the plant-herbivore population the difference equation system of 

order one, such as 

{
𝑥𝑡+1 = (𝑟 + 1)𝑥𝑡 − 𝑟

𝑥𝑡
2

𝑘
−

𝑎(1−𝑛)𝑥𝑡𝑦𝑡

𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥𝑡

𝑦𝑡+1 =
𝑐𝑎((1−𝑛)𝑥𝑡+𝜂𝐴)𝑦𝑡

𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥𝑡
.                               

                                         (2.3) 

The parametric values are described for our model as follows: 

 

Table 1: Parametric description of the discrete system 

Parameters Parametric Description 

r The intrinsic growth rate of the plant 

k Carrying capacity of the plant 

a The per capita herbivore consumption rate 

b The half-saturation constant in the absence of additional food and refuge 

d The death rate of the herbivore 

c The conversion rate of the plant 

𝜶 Quality of additional food 

𝜼𝑨 Effectual additional food level 

 

3. Fixed Points and Stability Analysis 

System (2.3) has the following possible equilibrium points which are; 

(a) The extinction equilibrium point  𝐸0 = (0, 0). 
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(b) Semi-extinction (extinction for one population group) 𝐸1 = (𝑘, 0). 
(c) Co-existing equilibrium point 𝐸∗ = (𝑥∗, 𝑦∗), where 

𝑥∗ =
𝑏+𝛼𝜂𝐴−𝑐𝑎𝜂𝐴

(1−𝑛)(𝑐𝑎−1)
      and    𝑦∗ =

𝑐𝑎(𝑏+𝜂𝐴(𝛼−1)){𝑘(1−𝑛)(𝑐𝑎−1)(𝑟+1)+𝑟(𝑏+𝛼𝜂𝐴−𝑐𝑎𝜂𝐴)}−𝑘(1−𝑛)(𝑐𝑎−1)2

𝑘𝑎(1−𝑛)2(𝑐𝑎−1)2
.            

(3.1) 

The positive equilibrium point 𝐸∗ = (𝑥∗, 𝑦∗) exists if the following conditions hold: 

𝑐𝑎(𝑏 + 𝜂𝐴(𝛼 − 1)){𝑘(1 − 𝑛)(𝑐𝑎 − 1)(𝑟 + 1) + 𝑟(𝑏 + 𝛼𝜂𝐴 − 𝑐𝑎𝜂𝐴)} > 𝑘(1 −
𝑛)(𝑐𝑎 − 1)2,                                         (3.2) 

0 ≤ 𝜂𝐴 < 𝑐𝑎𝜂𝐴 < 𝑏 + 𝛼𝜂𝐴                                           (3.3) 

 

To consider the dynamic behavior of system (2.3), the Jacobian matrix has been evaluated at 

any fixed point (𝑥, 𝑦), which is given by 

𝐽(𝑥, 𝑦) = (
𝑟 + 1 −

2𝑟

𝑘
𝑥 −

𝑎(𝑏+𝛼𝜂𝐴)(1−𝑛)𝑦

(𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥)2
−

𝑎(1−𝑛)𝑥

𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥

𝑐𝑎𝑦(𝑏+𝜂𝐴(𝛼−1))(1−𝑛)

(𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥)2

𝑐𝑎((1−𝑛)𝑥+𝜂𝐴)

𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥

).                            (3.4) 

  

To discuss the dynamic behavior of any fixed point, the following lemma is needed [39]. 

 

Lemma 3.1. Let 𝐹(𝜆) = 𝜆2 + 𝐴𝜆 + 𝐵. Suppose that 𝐹(1) > 0, 𝜆1 and 𝜆2 are the roots of 

𝐹(𝜆) = 0. Then 

• |𝜆1| < 1 and |𝜆2| < 1 if and only if 𝐹(−1) > 1 and 𝐵 < 1.  
• |𝜆1| > 1 and |𝜆2| < 1 if and only if 𝐹(−1) < 1.  
• |𝜆1| > 1 and |𝜆2| > 1 if and only if 𝐹(−1) > 1 and 𝐵 > 1.  
• |𝜆1| = −1 and |𝜆2| ≠ 1 if and only if 𝐹(−1) = 1 and 𝐴 ≠ 0, 2. 
 

Theorem 3.1. Let 𝐸0 = (0, 0) be the extinction equilibrium point of (2.3). The following 

statements hold. 

(i) The equilibrium point 𝐸0 is a saddle point if 𝑟 > 0 and 𝑐𝑎𝜂𝐴 < 𝑏 + 𝛼𝜂𝐴. 
(ii) The equilibrium point 𝐸0 is non-hyperbolic if 𝑟 = 0 and 𝑐𝑎𝜂𝐴 = 𝑏 + 𝛼𝜂𝐴. 
 

Proof. The eigenvalues of the Jacobian matrix at 𝐸0 = (0, 0) are 𝜆1 = 𝑟 + 1 and 𝜆2 =
𝑐𝑎𝜂𝐴

𝑏+𝛼𝜂𝐴
. 

Thus, 𝜆1 ≥ 1 for all its cases. That means  it is impossible to have |𝜆1| < 1. Therefore, if 𝑟 >
0, we obtain the trivial fixed point unstable, while for 𝑟 = 0, we have 𝜆1 = 1. Besides, if 

𝑐𝑎𝜂𝐴 < 𝑏 + 𝛼𝜂𝐴, we have |𝜆2| < 1, which means that we have a saddle point if 𝑟 > 0 and 

𝑐𝑎𝜂𝐴 < 𝑏 + 𝛼𝜂𝐴, while for 𝑐𝑎𝜂𝐴 = 𝑏 + 𝛼𝜂𝐴 we get |𝜆2| = 1 that leads to a non-hyperbolic 

trivial fixed point.□ 

 

Theorem 3.2. Let 𝐸1 = (𝑘, 0) be the semi-extinction point of system (2.3) and 0 < 𝑛 < 1. The 

following statements hold. 

(i) The equilibrium point 𝐸1 is stable (attractor) if  

0 < 𝑟 < 2 and 0 < 𝑐𝑎((1 − 𝑛)𝑘 + 𝜂𝐴) < 𝑏 + 𝛼𝜂𝐴 + (1 − 𝑛)𝑘. 

(ii) The equilibrium point 𝐸1 is unstable if one of the following  statements holds;  

(a)  𝑟 > 2  and  𝑐𝑎((1 − 𝑛)𝑘 + 𝜂𝐴) > 𝑏 + 𝛼𝜂𝐴 + (1 − 𝑛)𝑘  for an unstable node. 

(b) 0 < 𝑟 < 2   and  𝑐𝑎((1 − 𝑛)𝑘 + 𝜂𝐴) > 𝑏 + 𝛼𝜂𝐴 + (1 − 𝑛)𝑘 for a saddle point 

        or  

 𝑟 > 2  and 0 < 𝑐𝑎((1 − 𝑛)𝑘 + 𝜂𝐴) < 𝑏 + 𝛼𝜂𝐴 + (1 − 𝑛)𝑘 for a saddle point. 

(iii) The equilibrium point 𝐸1 is non-hyperbolic if one of the following statements  holds; 

(a) 𝑟 = 2  . 
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(b) 0 < 𝑟 < 2   and 𝑐𝑎((1 − 𝑛)𝑘 + 𝜂𝐴) = 𝑏 + 𝛼𝜂𝐴 + (1 − 𝑛)𝑘. 

(c) 𝑟 > 2    and 𝑐𝑎((1 − 𝑛)𝑘 + 𝜂𝐴) = 𝑏 + 𝛼𝜂𝐴 + (1 − 𝑛)𝑘. 

Proof. The eigenvalues of the Jacobian matrix at 𝐸1 = (𝑘, 0) are 𝜆1 = −𝑟 + 1 and 𝜆2 =
𝑐𝑎((1−𝑛)𝑥+𝜂𝐴)

𝑏+𝛼𝜂𝐴+(1−𝑛)𝑘
. Therefore, the dynamical behavior of the semi-trivial equilibrium point is as 

follows; 

(i) From |𝜆1| < 1, we obtain 0 < 𝑟 < 2, while |𝜆2| < 1 if 0 < 𝑐𝑎(1 − 𝑛)𝑘 + 𝜂𝐴 < 𝑏 + 𝛼𝜂𝐴 +
(1 − 𝑛)𝑘. This completes the proof of this part. 

(ii)  

(a) The equilibrium point is unstable if both eigenvalues are  |𝜆1| > 1 and |𝜆2| > 1, which 

holds for 

𝑟 > 2 and 𝑐𝑎((1 − 𝑛)𝑘 + 𝜂𝐴) > 𝑏 + 𝛼𝜂𝐴 + (1 − 𝑛)𝑘. 

(b) The semi-trivial equilibrium point shows a saddle point if the absolute value of one of the 

eigenvalues is less than one while the absolute value of the other eigenvalue is greater than 

one;      

                                                   |𝜆1| < 1 and |𝜆2| > 1 or |𝜆1| > 1 and |𝜆2| < 1.                                

The conditions hold if 

0 < 𝑟 < 2 and 𝑐𝑎((1 − 𝑛)𝑘 + 𝜂𝐴) > 𝑏 + 𝛼𝜂𝐴 + (1 − 𝑛)𝑘 

or 

𝑟 > 2 and 0 < 𝑐𝑎((1 − 𝑛)𝑘 + 𝜂𝐴) < 𝑏 + 𝛼𝜂𝐴 + (1 − 𝑛)𝑘, 

which completes the proof of this part. 

(iii) The equilibrium point 𝐸1 is non-hyperbolic if at least one of the absolute values of the 

eigenvalues is equal to one; |𝜆1| = 1 or |𝜆2| = 1. This condition holds  if we have  

a) 𝑟 = 2   
b) 0 < 𝑟 < 2   and 𝑐𝑎((1 − 𝑛)𝑘 + 𝜂𝐴) = 𝑏 + 𝛼𝜂𝐴 + (1 − 𝑛)𝑘. 

c) 𝑟 > 2    and 𝑐𝑎((1 − 𝑛)𝑘 + 𝜂𝐴) = 𝑏 + 𝛼𝜂𝐴 + (1 − 𝑛)𝑘. 
 This completes the proof.□ 

 

Now, we will discuss the local stability around the co-existing equilibrium point 𝐸∗ = (𝑥∗, 𝑦∗). 
The positive equilibrium point 𝐸∗ is stable if the following conditions hold [8]; 

{

1 + 𝑇𝑟(𝐽(𝐸∗)) + 𝐷𝑒𝑡(𝐽(𝐸∗)) > 0,

1 − 𝑇𝑟(𝐽(𝐸∗)) + 𝐷𝑒𝑡(𝐽(𝐸∗)) > 0,

1 − 𝐷𝑒𝑡(𝐽(𝐸∗)) > 0.                        

                                                 (3.5) 

To show the calculations in a more straightforward form, we will present the following 

quantities as 

𝐻 =
𝑟(𝑏 + 𝛼𝜂𝐴)[𝑘(1 − 𝑛)(𝑐𝑎 − 1) − 𝑏 + 𝛼𝜂𝐴 − 𝑐𝑎𝜂𝐴]

𝑘𝑐𝑎(𝑏 + 𝜂𝐴(𝛼 − 1))(1 − 𝑛)
 

and 

𝑍 =
𝑏 + 𝛼𝜂𝐴

𝑏 + 𝛼𝜂𝐴 − 𝑐𝑎𝜂𝐴
, 

which are positive provided the existence of (3.2)-(3.3). 

The characteristic form of the Jacobian matrix J around the co-existing equilibrium point 
(𝑥∗, 𝑦∗) can be written as 

𝐹(𝜆) = 𝜆2 − 𝑇𝑟(𝐽(𝐸∗))𝜆 + 𝐷𝑒𝑡(𝐽(𝐸∗)),                                                (3.6) 

where 

𝑇𝑟(𝐽(𝐸∗)) = 𝑟 + 2 − 2
𝑟

𝑘
𝑥∗ − 𝐻 

and 
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𝐷𝑒𝑡(𝐽(𝐸∗)) = 𝑟 + 1 − 2
𝑟

𝑘
𝑥∗ −𝐻 + 𝑍𝐻 

We notice that 1 + 𝑇𝑟(𝐽(𝐸∗)) + 𝐷𝑒𝑡(𝐽(𝐸∗)) > 0, provided that 

𝑘(𝑟 + 𝑍𝐻) < 2𝑟𝑥∗ + 𝑘𝐻 <
1

2
𝑘(2𝑟 + 4 + 𝑍𝐻)                                          (3.7) 

and 1 − 𝑇𝑟(𝐽(𝐸∗)) + 𝐷𝑒𝑡(𝐽(𝐸∗)) > 0 provided that (3.2) and (3.3) hold and 1 −

𝐷𝑒𝑡(𝐽(𝐸∗)) > 0,  if we have (3.7). 

 

Thus, the local stability of the positive equilibrium point is given as follows; 

 

Theorem 3.3. Let 𝐸∗ = (𝑥∗, 𝑦∗)  be the co-existing equilibrium point of the system (2.3). 

Furthermore, assume that  (3.2)-(3.3) hold. The conditions for the stability analysis are obtained 

as follows; 

(i) The equilibrium point is an attractor if and only if (3.7) hold. 

(ii) The equilibrium point shows an unstable behavior if and only if 

2𝑟𝑥∗ + 𝑘𝐻 < 𝑘(𝑟 + 𝑍𝐻).                                                            (3.8) 

(iii) The equilibrium point is non-hyperbolic if and only if we have 

𝑘(4 + 2𝑟 + 𝑍𝐻) = 4𝑟𝑥∗ + 2𝑘𝐻, 
where 𝑘(𝑟 + 4) ≠ 𝑟𝑥∗ + 𝐻 ≠ 𝑘(𝑟 + 2) , and  

𝑟 + 2 − 2
𝑟

𝑘
𝑥∗ − 𝐻 < 2(𝑟 + 2 − 2

𝑟

𝑘
𝑥∗ − 𝐻 + 𝑍𝐻)

1

2
.                                   (3.9) 

 

Theorem 3.4. Let 𝐸∗ = (𝑥∗, 𝑦∗) be the positive equilibrium point of the system (2.3) and 

assume that the conditions in Theorem 3.3./(i) hold. The co-existing equilibrium point is global 

asymptotic stable, if 

𝑥𝑡 > 𝑥∗  and 𝑦∗ >
(𝑏+𝜂𝐴(𝑐𝑎+𝛼)+(1−𝑛)(𝑐𝑎+1)𝑥𝑡){2(

𝑥𝑡−𝑥
∗

𝑥𝑡
)+𝑟(1−

𝑥𝑡
𝑘
)}

2𝑎(1−𝑛)
,                              (3.10) 

where 

(𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥𝑡)𝑟(1−
𝑥𝑡
𝑘
)

𝑎(1−𝑛)
< 𝑦𝑡 <

(𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥𝑡){2(
𝑥𝑡−𝑥

∗

𝑥𝑡
)+𝑟(1−

𝑥𝑡
𝑘
)}

𝑎(1−𝑛)
 .                         (3.11) 

Proof. Let  𝑉𝑡 be  a suitable Lyapunov function which is as follows:  

𝑉𝑡 = (𝑋𝑡, 𝑌𝑡) = [𝑢𝑡 − 𝑢
∗]2 for 𝑡 = 0, 1, 2, …,                                            (3.12) 

where 𝑢𝑡 = (𝑥𝑡, 𝑦𝑡) and 𝑢∗ = (𝑥∗, 𝑦∗). 
From (3.12), we can write  

Δ𝑉𝑡 = 𝑉𝑡+1 − 𝑉𝑡 = [𝑢𝑡+1 − 𝑢
∗]2 − [𝑢𝑡 − 𝑢

∗]2 

                                                                                = (𝑢𝑡+1 − 𝑢𝑡)(𝑢𝑡+1 + 𝑢𝑡 − 2𝑢
∗).                                         

(3.13) 

From the second equation of the system (2.3), we have 

Δ𝑌𝑡 = (𝑦𝑡+1 − 𝑦𝑡)(𝑦𝑡+1 + 𝑦𝑡 − 2𝑦
∗).                                                (3.14) 

Computations show that we obtain 

𝑦𝑡+1 − 𝑦𝑡 =
𝑐𝑎((1−𝑛)𝑥𝑡+𝜂𝐴)𝑦𝑡

𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥𝑡
− 𝑦𝑡   = 𝑦𝑡 {

𝑐𝑎((1−𝑛)𝑥𝑡+𝜂𝐴)

𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥𝑡
− 1} > 0, 

if 
𝑐𝑎((1−𝑛)𝑥𝑡+𝜂𝐴)

𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥𝑡
− 1 > 0 ⟹ 𝑥𝑡 >

𝑏+𝛼𝜂𝐴−𝑐𝑎𝜂𝐴

(1−𝑛)(𝑐𝑎−1)
= 𝑥∗.                                    (3.15) 

Moreover, we get  

𝑦𝑡+1 + 𝑦𝑡 − 2𝑦
∗ =

𝑐𝑎((1−𝑛)𝑥𝑡+𝜂𝐴)𝑦𝑡

𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥𝑡
+ 𝑦𝑡 − 2𝑦

∗  

                       = 𝑦𝑡 {
𝑐𝑎((1−𝑛)𝑥𝑡+𝜂𝐴)

𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥𝑡
+ 1 − 2

𝑦∗

𝑦𝑡
} < 0  

if 
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𝑦𝑡 <
2𝑦∗(𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥𝑡)

𝑏+𝜂𝐴(𝑐𝑎+𝛼)+(1−𝑛)(𝑐𝑎+1)𝑥
 .                                                        (3.16) 

By considering (3.15) and (3.16), we have Δ𝑌𝑡 < 0. This implies that lim
𝑡→∞

𝑦𝑡 = 𝑦
∗. 

On the other side, from the first equation of the system (2.3), we have 

Δ𝑋𝑡 = (𝑥𝑡+1 − 𝑥𝑡)(𝑥𝑡+1 + 𝑥𝑡 − 2𝑥
∗).                                                (3.17) 

From (3.17), we get 

𝑥𝑡+1 − 𝑥𝑡 = (𝑟 + 1)𝑥𝑡 − 𝑟
𝑥𝑡
2

𝑘
−

𝑎(1−𝑛)𝑥𝑡𝑦𝑡

𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥𝑡
− 𝑥𝑡  

                = 𝑥𝑡 {𝑟 (1 −
𝑥𝑡

𝑘
) −

𝑎(1−𝑛)𝑦𝑡

𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥𝑡
} < 0, 

if 

 
(𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥𝑡)𝑟(1−

𝑥𝑡
𝑘
)

𝑎(1−𝑛)
< 𝑦𝑡.                                                       (3.18) 

Besides, computations show that 

𝑥𝑡+1 + 𝑥𝑡 − 2𝑥
∗ = (𝑟 + 1)𝑥𝑡 − 𝑟

𝑥𝑡
2

𝑘
−

𝑎(1−𝑛)𝑥𝑡𝑦𝑡

𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥𝑡
+ 𝑥𝑡 − 2𝑥

∗   

                            = 𝑥𝑡 {2 (
𝑥𝑡−𝑥

∗

𝑥𝑡
) + 𝑟 (1 −

𝑥𝑡

𝑘
) −

𝑎(1−𝑛)𝑦𝑡

𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥𝑡
} > 0  

if 

𝑦𝑡 <
(𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥𝑡){2(

𝑥𝑡−𝑥
∗

𝑥𝑡
)+𝑟(1−

𝑥𝑡
𝑘
)}

𝑎(1−𝑛)
.                                            (3.19) 

From (3.8) and (3.19), we get Δ𝑋𝑡 < 0, which implies that lim
𝑡→∞

𝑥𝑡 = 𝑥
∗. 

Moreover, from the inequalities in (3.16), (3.18), and (3.19), we obtain  

(𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥𝑡)𝑟(1−
𝑥𝑡
𝑘
)

𝑎(1−𝑛)
< 𝑦𝑡 <

(𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥𝑡){2(
𝑥𝑡−𝑥

∗

𝑥𝑡
)+𝑟(1−

𝑥𝑡
𝑘
)}

𝑎(1−𝑛)
<

2𝑦∗(𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥𝑡)

𝑏+𝜂𝐴(𝑐𝑎+𝛼)+(1−𝑛)(𝑐𝑎+1)𝑥𝑡
         

(3.20) 

which holds for  

(𝑏+𝜂𝐴(𝑐𝑎+𝛼)+(1−𝑛)(𝑐𝑎+1)𝑥𝑡){2(
𝑥𝑡−𝑥

∗

𝑥𝑡
)+𝑟(1−

𝑥𝑡
𝑘
)}

2𝑎(1−𝑛)
< 𝑦∗.  

This completes the proof.□ 

 

4. Semi-Cycle and Periodic Behavior of the Positive Solutions in System (2.3) 

     In this section, we introduce a study on the periodic solutions of the system (2.3). We show 

the  monotone increasing and decreasing behavior  of the system and the conditions of period 

two solutions. 

 

Theorem 4.1. Let {(𝑥𝑡, 𝑦𝑡)}𝑡=0
∞  be a positive solution to the system (2.3). The following 

statements hold. 

(i) If  

𝑥∗ < 𝑥𝑡 < 𝑘    and   𝑦𝑡 <
𝑟(𝑘−𝑥𝑡)(𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥𝑡)

𝑎𝑘(1−𝑛)
 ,                                      (4.1) 

then all positive solutions of (2.3) are increased monotonically. 

(ii) If  

𝑥𝑡 < 𝑥∗ < 𝑘    and   𝑦𝑡 >
𝑟(𝑘−𝑥𝑡)(𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥𝑡)

𝑎𝑘(1−𝑛)
 ,                                      (4.2) 

then all positive solutions of (2.3) are decreased monotonically. 

 

Proof. From (2.3), we can write 

𝑦𝑡+1
𝑦𝑡

=
𝑐𝑎((1 − 𝑛)𝑥𝑡 + 𝜂𝐴)

𝑏 + 𝛼𝜂𝐴 + (1 − 𝑛)𝑥𝑡
> 1, 
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which holds for the inequality 

𝑐𝑎((1 − 𝑛)𝑥𝑡 + 𝜂𝐴) > 𝑏 + 𝛼𝜂𝐴 + (1 − 𝑛)𝑥𝑡 ⟹ 𝑥𝑡 >
𝑏 + 𝛼𝜂𝐴 − 𝑐𝑎𝜂𝐴

(1 − 𝑛)(𝑐𝑎 − 1)
= 𝑥∗. 

Similarly, from the first equation in system (2.3), we have 
𝑥𝑡+1

𝑥𝑡
= (𝑟 + 1) − 𝑟

𝑥𝑡

𝑘
−

𝑎(1−𝑛)𝑦𝑡

𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥𝑡
> 1, 

which implies that 

       
((𝑟+1)𝑘−𝑟𝑥𝑡)(𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥𝑡)−𝑎𝑘(1−𝑛)𝑦𝑡

𝑘(𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥𝑡)
> 1  

⟹ ((𝑟 + 1)𝑘 − 𝑟𝑥𝑡)(𝑏 + 𝛼𝜂𝐴 + (1 − 𝑛)𝑥𝑡) − 𝑎𝑘(1 − 𝑛)𝑦𝑡 > 𝑘(𝑏 + 𝛼𝜂𝐴 + (1 − 𝑛)𝑥𝑡)  

⟹ ((𝑟 + 1)𝑘 − 𝑟𝑥𝑡)(𝑏 + 𝛼𝜂𝐴 + (1 − 𝑛)𝑥𝑡) − 𝑘(𝑏 + 𝛼𝜂𝐴 + (1 − 𝑛)𝑥𝑡) > 𝑎𝑘(1 − 𝑛)𝑦𝑡  

⟹ 𝑟(𝑘 − 𝑥𝑡)(𝑏 + 𝛼𝜂𝐴 + (1 − 𝑛)𝑥𝑡) > 𝑎𝑘(1 − 𝑛)𝑦𝑡  

⟹
𝑟(𝑘−𝑥𝑡)(𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥𝑡)

𝑎𝑘(1−𝑛)
> 𝑦𝑡, 

where 𝑥𝑡 < 𝑘. This completes the proof. 

The second part of this theorem is similar to the proof, so that it is omitted.□ 

 

Theorem 4.2. Suppose that {(𝑥𝑡, 𝑦𝑡)}𝑡=0
∞  is a positive solution of system (2.3). Then, 

(i)  {𝑦𝑡}𝑡=0
∞  shows a period-2 behavior if 𝑥𝑡 = 𝑥∗,  

(ii) {𝑥𝑡}𝑡=0
∞  has a period-2 behavior if 

𝑦𝑡 =
(𝑟+2−

2𝑟𝑥∗

𝑘
)(𝑏+𝛼𝜂𝐴+(1−𝑛)(𝑥∗−𝑤))(𝑏+𝛼𝜂𝐴+(1−𝑛)(𝑥∗−𝑤))

𝑎(1−𝑛)(𝑏+𝛼𝜂𝐴)
.                                    (4.3) 

Proof. Assume that in (2.3), the second equation shows a periodic behavior of 

… ,𝜑, 𝜙, 𝜑, 𝜙,…,                                                                    (4.4) 

where 𝜑 = 𝑦∗ + 𝑝,   𝜙 = 𝑦∗ − 𝑝  and 𝑝 denote the length of the solution to the equilibrium 

point 𝑦∗. Thus, 

we have 

𝜑 =
𝑐𝑎((1−𝑛)𝑥𝑡+𝜂𝐴)𝜙

𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥𝑡
   and  𝜙 =

𝑐𝑎((1−𝑛)𝑥𝑡+𝜂𝐴)𝜑

𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥𝑡
.                                         (4.5) 

Substracting the equations on both sides, we get 

𝜑 − 𝜙 =
𝑐𝑎((1−𝑛)𝑥𝑡+𝜂𝐴)

𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥𝑡
(𝜙 − 𝜑) ⟹ (𝜑 − 𝜙) {1 −

𝑐𝑎((1−𝑛)𝑥𝑡+𝜂𝐴)

𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥𝑡
} = 0  

                                                      ⟹ 2𝑝 {1 −
𝑐𝑎((1−𝑛)𝑥𝑡+𝜂𝐴)

𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥𝑡
} = 0,  

which holds for 𝑥𝑡 = 𝑥
∗. 

On the other side, assume that in (2.3), the first equation shows a periodic behavior of 

… ,𝜓, 𝜉, 𝜓, 𝜉, …,                                                                    (4.5) 

where 𝜓 = 𝑥∗ + 𝑤,   𝜉 = 𝑥∗ − 𝑤  and w denotes the length of the solution to the equilibrium 

point 𝑥∗. Computations show that from the system, we have 

𝜓 = (𝑟 + 1)𝜉 − 𝑟
𝜉2

𝑘
−

𝑎(1−𝑛)𝜉

𝑏+𝛼𝜂𝐴+(1−𝑛)𝜉
𝑦𝑡     and   𝜉 = (𝑟 + 1)𝜓 − 𝑟

𝜓2

𝑘
−

𝑎(1−𝑛)𝜓

𝑏+𝛼𝜂𝐴+(1−𝑛)𝜓
𝑦𝑡 ,            

(4.6) 

then we obtain 

𝜓 − 𝜉 = −(𝑟 + 1)(𝜓 − 𝜉) +
𝑟(𝜓−𝜉)(𝜓+𝜉)

𝑘
+ 𝑎(1 − 𝑛)𝑦𝑡 (

(𝜓−𝜉)(𝑏+𝛼𝜂𝐴)

(𝑏+𝛼𝜂𝐴+(1−𝑛)𝜉)(𝑏+𝛼𝜂𝐴+(1−𝑛)𝜓)
)  

⟹−(𝑟 + 1) +
𝑟(𝜓+𝜉)

𝑘
+

𝑎(1−𝑛)(𝑏+𝛼𝜂𝐴)𝑦𝑡

(𝑏+𝛼𝜂𝐴+(1−𝑛)𝜉)(𝑏+𝛼𝜂𝐴+(1−𝑛)𝜓)
= 1  

⟹−(𝑟 + 1) +
2𝑟𝑥∗

𝑘
+

𝑎(1−𝑛)(𝑏+𝛼𝜂𝐴)𝑦𝑡

(𝑏+𝛼𝜂𝐴+(1−𝑛)(𝑥∗−𝑤))(𝑏+𝛼𝜂𝐴+(1−𝑛)(𝑥∗−𝑤))
= 1  

⟹ 𝑦𝑡 =
(𝑟+2−

2𝑟𝑥∗

𝑘
)(𝑏+𝛼𝜂𝐴+(1−𝑛)(𝑥∗−𝑤))(𝑏+𝛼𝜂𝐴+(1−𝑛)(𝑥∗−𝑤))

𝑎(1−𝑛)(𝑏+𝛼𝜂𝐴)
. 

This completes the proof.□ 
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5. Bifurcation Analysis at the Co-existing Equilibrium Point 

     In this section, we  study the bifurcation types of the constructed system (2.3). We obtain 

that the system undergoes period-doubling (PDB) and Neimark-Sacker bifurcation (NSB) 

under specific conditions. 

 

5.1. Period Doubling Bifurcation 

     In this case, one of the eigenvalues of the positive equilibrium point is 𝜆1 = 1 and the other  

eigenvalue 𝜆2  is neither 1 nor −1  which is presented in the following region; 

Ω = {(𝑏, 𝑟, 𝑐, 𝑎, 𝜂, 𝛼, 𝑘, 𝑛, 𝐴) ∈ 𝑅+
9 : 𝑘(4 + 2𝑟 + 𝑍𝐻) = 4𝑟𝑥∗ + 2𝑘𝐻, 𝑘(𝑟 + 4) ≠ 𝑟𝑥∗ +𝐻 ≠

𝑘(𝑟 + 2)}.    (5.1) 

Here, we assume that the parameters are vary in a small neighborhood of a period-doubling 

behavior. In studying the PDB, 𝛼 represents the bifurcation parameter.  

 

Theorem 5.1. [40, 41] For system (2.3), one of the eigenvalues is −1, and the other eigenvalue 

lies inside the unit circle if and only if  

{
 
 

 
 

1 + 𝑇𝑟(𝐽(𝐸∗)) + 𝐷𝑒𝑡(𝐽(𝐸∗)) > 0,

1 − 𝑇𝑟(𝐽(𝐸∗)) + 𝐷𝑒𝑡(𝐽(𝐸∗)) = 0,

1 + 𝐷𝑒𝑡(𝐽(𝐸∗)) > 0,                         

   1 − 𝐷𝑒𝑡(𝐽(𝐸∗)) > 0.                            

                                                          (5.2) 

 

Theorem 5.2. Let 𝛼 =
𝑐𝑎𝜂𝐴+𝑏−𝑘(1−𝑛)(𝑐𝑎−1)

𝜂𝐴
, where 𝑘 <

𝑐𝑎𝜂𝐴+𝑏

(1−𝑛)(𝑐𝑎−1)
. If, 

𝑟𝑘 < 2𝑟𝑥∗ + 𝑘𝐻 < 𝑘(2 + 𝑟)                                                           (5.3) 

then the system (2.3) shows flip bifurcation. 

 Proof. From  

1 − 𝑇𝑟(𝐽(𝐸∗)) + 𝐷𝑒𝑡(𝐽(𝐸∗)) = 0 ⟹ 𝑍𝐻 = 0, 

we get that 

𝛼 =
𝑐𝑎𝜂𝐴+𝑏−𝑘(1−𝑛)(𝑐𝑎−1)

𝜂𝐴
,                                                             (5.4) 

where 𝑘 <
𝑐𝑎𝜂𝐴+𝑏

(1−𝑛)(𝑐𝑎−1)
. Moreover,  1 + 𝑇𝑟(𝐽(𝐸∗)) + 𝐷𝑒𝑡(𝐽(𝐸∗)) > 0 shows that 

𝑘(𝑟 + 2) > 2𝑟𝑥∗ + 𝑘𝐻.                                                                        (5.5) 

Finally, both conditions 1 + 𝐷𝑒𝑡(𝐽(𝐸∗)) > 0  and 1 − 𝐷𝑒𝑡(𝐽(𝐸∗)) > 0 holds, if  

𝑟𝑘 < 2𝑟𝑥∗ + 𝑘𝐻 < 𝑘(3 + 𝑟).                                                                (5.6) 

This completes the proof.□  

 

To compute the coefficients of the normal form,  we use the perturbation of 𝛼∗(|𝛼∗ ≪ 1|) to 

consider the new perturbated model as follows; 

{
𝑥𝑡+1 = (𝑟 + 1)𝑥𝑡 − 𝑟

𝑥𝑡
2

𝑘
−

𝑎(1−𝑛)𝑥𝑡𝑦𝑡

𝑏+(𝛼+𝛼∗)𝜂𝐴+(1−𝑛)𝑥𝑡
= 𝑓(𝑥𝑡, 𝑦𝑡, 𝛼

∗)

𝑦𝑡+1 =
𝑐𝑎((1−𝑛)𝑥𝑡+𝜂𝐴)𝑦𝑡

𝑏+(𝛼+𝛼∗)𝜂𝐴+(1−𝑛)𝑥𝑡
= 𝑔(𝑥𝑡, 𝑦𝑡, 𝛼

∗ ).                               
                          (5.7) 

If 𝑢𝑡 = 𝑥𝑡 − 𝑥
∗  and 𝑣𝑡 = 𝑦𝑡 − 𝑦

∗, then the equilibrium point 𝐸∗ is transformed to the origin 

and further expanding 𝑓 and 𝑔 as the Taylor series at (𝑢𝑡, 𝑣𝑡 , 𝛼
∗) = (0, 0, 0) to the third order, 

the system (5.2) becomes 

𝑢𝑡+1 = 𝜇1𝑢𝑡 + 𝜇2𝑣𝑡 + 𝜇11𝑢𝑡
2 + 𝜇12𝑢𝑡𝑣𝑡 + 𝜇13𝑢𝑡𝛼

∗ + 𝜇23𝑣𝑡𝛼
∗ + 𝜇111𝑢𝑡

3 + 𝜇112𝑢𝑡
2𝑣𝑡

+ 𝜇113𝑢𝑡
2𝛼∗ + 𝜇123𝑢𝑡𝑣𝑡𝛼

∗ + 𝑂((|𝑢𝑡|, |𝑣𝑡|, |𝛼
∗| )4) 

𝑣𝑡+1 = 𝜌1𝑢𝑡 + 𝜌2𝑣𝑡 + 𝜌11𝑢𝑡
2 + 𝜌12𝑢𝑡𝑣𝑡 + 𝜌13𝑢𝑡𝛼

∗ + 𝜌23𝑣𝑡𝛼
∗ + 𝜌111𝑢𝑡

3 + 𝜌113𝑢𝑡
2𝛼∗

+ 𝜌123𝑢𝑡𝑣𝑡𝛼
∗ + 𝑂((|𝑢𝑡|, |𝑣𝑡|, |𝛼

∗| )4) 
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  (5.8) 

 

where 

𝜇1 = 𝑓𝑥(𝑥
∗, 𝑦∗, 0 ) = 𝑟 + 1 − 2

𝑟

𝑘
𝑥∗ −

𝑎(𝑏+𝛼𝜂𝐴)(1−𝑛)𝑦∗

(𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥∗)2
,  

𝜇2 = 𝑓𝑦(𝑥
∗, 𝑦∗, 0 ) = −

𝑎(1−𝑛)𝑥∗

𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥∗
 , 

𝜇11 = 𝑓𝑥𝑥(𝑥
∗, 𝑦∗, 0 ) = −2

𝑟

𝑘
+
(2𝑎(𝑏+𝛼𝜂𝐴)(1−𝑛)2𝑦∗)

(𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥∗)3
,  

𝜇12 = 𝑓𝑥𝑦(𝑥
∗, 𝑦∗, 0 ) = −

𝑎(𝑏+𝛼𝜂𝐴)(1−𝑛)

(𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥∗)2
, 

𝜇13 = 𝑓𝑥𝛼∗(𝑥
∗, 𝑦∗, 0 ) =

(𝛼𝜂𝐴(1−𝑛)𝑦∗(𝑏+𝛼𝜂𝐴−(1−𝑛)𝑥∗))

(𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥∗)3
, 

𝜇23 = 𝑓𝑦𝛼∗(𝑥
∗, 𝑦∗, 0 ) =

𝛼𝜂𝐴(1−𝑛)𝑥∗

(𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥∗)2
,  

𝜇111 = 𝑓𝑥𝑥𝑦(𝑥
∗, 𝑦∗, 0 ) = −

6𝑎(1−𝑛)3(𝑏+𝛼𝜂𝐴)𝑦∗

(𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥∗)4
  

𝜇112 = 𝑓𝑥𝑥𝑦(𝑥
∗, 𝑦∗, 0 ) =

2𝑎(1−𝑛)2(𝑏+𝛼𝜂𝐴)

(𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥∗)3
  

𝜇113 = 𝑓𝑥𝑥𝛼∗(𝑥
∗, 𝑦∗, 0 ) =

2𝑎(1−𝑛)2𝑦∗(1−𝑛−2(𝑏+𝛼𝜂𝐴))

(𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥∗)4
  

𝜇123 = 𝑓𝑥𝑦𝛼∗(𝑥
∗, 𝑦∗, 0 ) =

𝛼𝜂𝐴(1−𝑛)(𝑏+𝛼𝜂𝐴−(1−𝑛)𝑥∗)

(𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥∗)3
  

𝜌1 = 𝑔𝑥(𝑥
∗, 𝑦∗, 0 ) =

𝑐𝑎(1−𝑛)(𝑏+𝛼𝜂𝐴−𝐴)𝑦∗

(𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥∗)2
  

𝜌2 = 𝑔𝑦(𝑥
∗, 𝑦∗, 0 ) =

𝑐𝑎((1−𝑛)𝑥∗+𝜂𝐴)

𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥∗
,  

𝜌11 = 𝑔𝑥𝑥(𝑥
∗, 𝑦∗, 0 ) =

𝑐𝑎𝜂𝐴(1−𝑛)2𝑥∗𝑦∗+2𝑐𝑎(𝜂𝐴)2(1−𝑛)𝑦∗−𝑐𝑎𝜂𝐴(1−𝑛)(𝑏+𝛼)

(𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥∗)3
,  

𝜌12 = 𝑔𝑥𝑦(𝑥
∗, 𝑦∗, 0 ) =

𝑐𝑎(1−𝑛)(𝑏+𝛼𝜂𝐴−𝜂𝐴)

(𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥∗)2
,  

𝜌13 = 𝑔𝑥𝛼∗(𝑥
∗, 𝑦∗, 0 ) =

𝑐𝑎𝜂𝐴(1−𝑛)(2+(1−𝑛)𝑥∗−(𝑏+𝛼𝜂𝐴))𝑦∗

(𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥∗)3
,  

𝜌22 = 𝑔𝑦𝑦(𝑥
∗, 𝑦∗, 0 ) = 0,  

𝜌23 = 𝑔𝑦𝛼∗(𝑥
∗, 𝑦∗, 0 ) =

𝑐𝑎𝜂𝐴((1−𝑛)𝑥∗+𝜂𝐴)

(𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥∗)2
 , 

𝜌111 = 𝑔𝑥𝑥𝑥(𝑥
∗, 𝑦∗, 0 ) =

2𝑐𝑎𝜂𝐴(1−𝑛)2𝑦∗(2(𝑏+𝛼𝜂𝐴)−(1−𝑛)𝑥∗−3𝜂𝐴)

(𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥∗)4
,  

𝜌113 = 𝑔𝑥𝑥𝛼∗(𝑥
∗, 𝑦∗, 0 ) =

2𝑐𝑎(𝜂𝐴)2(1−𝑛)𝑦∗(1−2(1−𝑛)𝑥∗−3𝜂𝐴(1−𝑛))

(𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥∗)4
,  

𝜌123 = 𝑔𝑥𝑦𝛼∗(𝑥
∗, 𝑦∗, 0 ) =

𝑐𝑎𝜂𝐴(1−𝑛)((1−𝑛)𝑥∗−2𝜂𝐴−(𝑏+𝛼𝜂𝐴))

(𝑏+𝛼𝜂𝐴+(1−𝑛)𝑥∗)3
,  

𝜌223 = 𝑔𝑦𝑦𝛼∗(𝑥
∗, 𝑦∗, 0 ) = 0.  

We define 

𝑇 = (
𝜇2 𝜇2

−1 − 𝜇1 −𝜆 − 𝜇1
),                                                                    (5.9) 

where it is evident that 𝑇 is non-singular. According to the transformation 

(
𝑢𝑡
𝑣𝑡
) = 𝑇 (

�̃�𝑡
�̃�𝑡
)                                                                                (5.10) 

the system (5.7) becomes 

{
�̃�𝑡+1 = −�̃�𝑡 + 𝑓1(�̃�𝑡, �̃�𝑡 , 𝛼

∗)

�̃�𝑡+1 = −�̃�𝑡 + 𝑔1(�̃�𝑡, �̃�𝑡 , 𝛼
∗).

                                                                   (5.11) 

 

      The functions 𝑓1 and 𝑔1 refer to the terms in system (5.8) in the variables (𝑢𝑡, 𝑣𝑡 , 𝛼
∗ ) of the 

order two or more. Considering the center manifold theorem, we know that there is a central 
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manifold 𝑊𝑐(0, 0, 0) of the form (5.8) at (0, 0) in a small neighborhood of 𝛼∗ = 0, which can 

be roughly characterized as follows; 

𝑊𝑐 = {(�̃�𝑡, �̃�𝑡 , 𝛼
∗) ∈ 𝑅3: �̃�𝑡+1 = 𝜇1�̃�𝑡

2 + 𝜇2�̃�𝑡𝛼
∗ + 𝑂((|�̃�𝑡| + |𝛼

∗|)3)},                           (5.12) 

 where 

𝜇1 =
𝜇2[(1+𝜇1)𝜇11+𝜇2𝜌11]

1−𝜆2
2 −

(1+𝜇1)[𝜇12(1+𝜇1)𝜇1𝜌12]

1−𝜆2
2 , 

𝜇2 =
(1+𝜇1)[𝜇23(1+𝜇1+𝜇2𝜌23)]

𝜇2(1+𝜆2)2
−
(1+𝜇1)[𝜇13+𝜇2𝜌13]

(1+𝜆2)2
.  

 

     The following formula is the model (5.8) that is restricted to the center manifold 𝑊𝑐(0, 0, 0): 

�̃�𝑡+1 = −�̃�𝑡 + 𝑣1�̃�𝑡
2 + 𝑣2�̃�𝑡𝛼

∗ + 𝑣3�̃�𝑡
2𝛼∗ + 𝑣4�̃�𝑡𝛼

∗2 + 𝑣5�̃�𝑡
3 + 𝑂((|�̃�𝑡| + |𝛼

∗|)3) ≡ 𝐹(�̃�𝑡, 𝛼
∗),        

(5.13) 

where 

𝑣1 =
�̃�2[(𝜆2−�̃�1)𝜇11−�̃�2𝜌11]

1+𝜆2
−
(1+�̃�2)[(𝜆2−�̃�2)𝜇12−�̃�2𝜌12]

1+𝜆2
 , 

𝑣2 =
(𝜆2−�̃�1)𝜇13−�̃�2𝜌13

1+𝜆2
−
(1+�̃�1)[(𝜆2−�̃�1)𝜇23−�̃�2𝜌23]

�̃�2(1+𝜆2)
 , 

𝑣3 =
𝜇23𝜌23�̃�1(𝜆2−𝜇1)

2

1+𝜆2
+
(𝜆2−𝜇1)�̃�1𝜇13−𝜇1𝜌13+𝜇2[(𝜆2−𝜇1)𝜇113−𝜇2𝜌113]

1+𝜆2
+
𝜇2�̃�1[(𝜆2−𝜇1)𝜇11−𝜇1𝜌11]

1+𝜆2
+

(1+𝜇1)[(𝜆2−𝜇1)𝜇113−𝜇2𝜌123]

1+𝜆2
   +

�̃�2[(𝜆2−𝜇1)𝜇12−𝜇2𝜌12](𝜆2−1−2𝜇1)

1+𝜆2
 , 

𝑣4 =
�̃�2[(𝜆2−𝜇1)𝜇13−𝜇2𝜌13]

1+𝜆2
+
[(𝜆2−𝜇1)𝜇23−𝜇2𝜌23](𝜆2−𝜇1)�̃�2

𝜇2(1+𝜆2)
+
2𝜇2�̃�2[(𝜆2−𝜇1)𝜇11−𝜇2𝜌11]

1+𝜆2
+

�̃�2[(𝜆2−𝜇1)𝜇12−𝜇2𝜌12](𝜆2−1−2𝜇1)

1+𝜆2
,  

𝑣5 =
2𝜇2�̃�1[(𝜆2−𝜇1)𝜇11−𝜇2𝜌11]+�̃�2

2[(𝜆2−𝜇1)𝜇111−𝜇2𝜌11]

1+𝜆2
+
[(𝜆2−𝜇1)𝜇11−𝜇1𝜌11](𝜆2−1−2𝜇1)�̃�1

1+𝜆2
−

�̃�2(1+𝜇1)[(𝜆2−𝜇1)𝜇112−𝜇2𝜌112]

1+𝜆2
 .  

To achieve the presence of flip bifurcation, we obtained the quantities 𝜉1  and 𝜉2 nonzero, 

𝜉1 = (
𝜕2𝐹

𝜕�̃�𝑡𝜕𝛼∗
+
1

2

𝜕2𝐹

𝜕𝛼∗𝜕�̃�𝑡
2)|

(0,0)
  and  𝜉2 = (

1

6

𝜕3𝐹

𝜕�̃�𝑡
3 + (

1

2

𝜕2𝐹

𝜕�̃�𝑡
2)
2

)|
(0,0)

.                                  (5.14) 

Keeping the above information in view, we can give the following theorem.□ 

 

Theorem 5.3. If 𝜉1 ≠ 0 and 𝜉2 ≠ 0, then model (2.3) undergoes period-doubling bifurcation 

(Flip Bifurcation) at 𝐸∗ = (𝑥∗, 𝑦∗). Moreover, if 𝜉2 > 0 (𝜉2 < 0), then the bifurcation shows a 

stable (unstable) behavior.   

 

5.2. Neimark-Sacker Bifurcation 

This section discusses the existence of Neimark-Sacker bifurcation, where 

Ω = {(𝑏, 𝑟, 𝑐, 𝑎, 𝜂, 𝛼, 𝑘, 𝑛, 𝐴) ∈ 𝑅+
9 : 𝑟 + 2 − 2

𝑟

𝑘
𝑥∗ − 𝐻 < (𝑟 + 2 − 2

𝑟

𝑘
𝑥∗ − 𝐻 + 𝑍𝐻)

1

2
}. 

 

      The eigenvalue assignment is similar to Theorem 5.3. and will be omitted. We will consider 

only the existence of Neimark-Sacker Bifurcation in using Theorem 5.4.  

 

Theorem 5.4. [40, 41]  For the system in (2.3), a pair of complex-conjugate roots are on the 

unit circle if and only if  
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{
 
 

 
 

1 + 𝑇𝑟(𝐽(𝐸∗)) + 𝐷𝑒𝑡(𝐽(𝐸∗)) > 0,

1 − 𝑇𝑟(𝐽(𝐸∗)) + 𝐷𝑒𝑡(𝐽(𝐸∗)) > 0,

1 + 𝐷𝑒𝑡(𝐽(𝐸∗)) > 0,                         

   1 − 𝐷𝑒𝑡(𝐽(𝐸∗)) = 0.                            

                                         (5.15) 

 

Theorem 5.5. Let 𝛼 >
𝑐𝑎𝜂𝐴+𝑏−𝑘(1−𝑛)(𝑐𝑎−1)

𝜂𝐴
, where <

𝑐𝑎𝜂𝐴+𝑏

(1−𝑛)(𝑐𝑎−1)
 . Moreover, assume that 0 <

𝑍𝐻 < 4. If 

𝑥∗ =
𝑘(𝑍𝐻+𝑟−𝐻)

2𝑟
 <
𝑘(4+2𝑟+𝑍𝐻−2𝐻)

4𝑟
                                                 (5.16) 

then the eigenvalue assignment of Theorem 5.4 holds, and the system undergoes Neimark-

Sacker bifurcation. 

Proof. Considering both  1 + 𝑇𝑟(𝐽(𝐸∗)) + 𝐷𝑒𝑡(𝐽(𝐸∗)) > 0 and 1 − 𝑇𝑟(𝐽(𝐸∗)) +

𝐷𝑒𝑡(𝐽(𝐸∗)) > 0, we obtain that 

𝑘(2𝑟 + 4 + 𝑍𝐻) > 4𝑟𝑥∗ + 2𝑘𝐻                                                        (5.17) 

and  

𝑍𝐻 > 0 ⟹ 𝛼 >
𝑐𝑎𝜂𝐴+𝑏−𝑘(1−𝑛)(𝑐𝑎−1)

𝜂𝐴
,                                                       (5.18) 

where 𝑘 <
𝑐𝑎𝜂𝐴+𝑏

(1−𝑛)(𝑐𝑎−1)
. Besides, 1 + 𝐷𝑒𝑡(𝐽(𝐸∗)) > 0, if 

𝑘(𝑟 + 2 + 𝑍𝐻) > 2𝑟𝑥∗ + 𝑘𝐻.                                                        (5.19) 

Considering both (5.17) and (5.19), we obtain  

𝑥∗ <
𝑘(4+2𝑟+𝑍𝐻−2𝐻)

4𝑟
.                                                                (5.20) 

Finally, from 1 − 𝐷𝑒𝑡(𝐽(𝐸∗)) = 0, we have 

𝑥∗ =
𝑘(𝑍𝐻+𝑟−𝐻)

2𝑟
,                                                                (5.21) 

which holds with  (5.20) if 𝑍𝐻 < 4. This completes the proof. 

 

It is seen that the Jacobian has the  complex eigenvalues 

𝜆1,2 =
(𝑟+2−2

𝑟

𝑘
𝑥∗−𝐻)∓𝑖√4(𝑟+2−2

𝑟

𝑘
𝑥∗−𝐻+𝑍𝐻)−(𝑟+2−2

𝑟

𝑘
𝑥∗−𝐻)

2

2
 .                                      (5.22) 

Moreover, for (3.11), the eigenvalues become |𝜆1,2| = 1 as seen in Theorem 3.3.□ 

 

6. Numerical Simulations 

      The numerical simulations of the system (2.3) is verified using MATLAB 2019. For the 

parameter values, 𝑎 = 1, 𝑐 = 1.5, 𝑛 = 0.2, 𝑏 = 0.2, 𝛼 = 1.5, 𝜂 = 0.6, 𝐴 = 0.8, 𝑘 = 10 and  

𝑟 = 1.5,  the initial conditions are given as densities in the habitat such as 𝑥(0) = 0.025 and 

𝑦(0) = 0.02.  
 

      In Figure 1, the quality of the additional food is high, and therefore the herbivore population 

increases according to time. It is also expected that the plant population increases since mainly 

the herbivore species consume additional food. However, after the plant density reaches a 

carrying capacity in the habitat and on the other side, when the additional food is not enough 

for the herbivore species, and they start to consume also from the plant, both population 

densities show after that a stable behavior. 
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Figure 1: The plant-herbivore interaction at         Figure 2: The plant-herbivore interaction at 

           time t for 𝑟 = 1.5                                                       time t for 𝑟 = 3 

 

      Figure 2 shows the unstable behavior of the plant population if we change the growth rate 

to 𝑟 = 3 and keep the remaining parametric values the same as in Figure 1. In this case, it is 

clear that the plant population exceeds the carrying capacity in the habitat and shows an unstable 

structure. The additional food for the herbivore species avoids any adverse effects from the 

plant compartment. Therefore, it is preferred to see a variation in alternative foods for any 

herbivore species, if the habitat faces a problem like drought, flood, or diseases that affect the 

plant compartment. 

 
Figure 3: The plant-herbivore interaction in       Figure 4: Dynamical behavior of plant-

herbivore  time t for 𝑟 = 2                                    species for the low quality of additional food 

 

      For the parameter values, 𝑎 = 0.9, 𝑐 = 1.5, 𝑛 = 0.2, 𝑏 = 0.2, 𝛼 = 9, 𝜂 = 0.6, 𝐴 = 0.8, 𝑘 =
5 and  𝑟 = 2,  the initial conditions are given as densities in the habitat such as 𝑥(0) = 0.025 

and 𝑦(0) = 0.02.  Figure 3 shows a non-hyperbolic behavior in the plant-herbivore interaction. 

Since the quality of the additional food for the herbivore species is acceptable,  the herbivore 

compartment does not show the same effect as the plant species. 

 

     Hereafter, we want to establish a different scenario that assumes that the additional food is 

not enough and the quality is not as expected. We mainly want to avoid the herbivore species 

from the plant population; in other words, we want to interfere with the magnificent cycle of 

the habitat. Therefore, we choose the parameter values as 𝑎 = 0.201, 𝑐 = 7, 𝑛 = 0.2, 𝑏 =
0.145, 𝛼 = 0.3, 𝜂 = 0.2, 𝐴 = 0.2, 𝑘 = 0.0231 and where ∈ [2, 3] , while the initial conditions 

are the same;  𝑥(0) = 0.025 and 𝑦(0) = 0.02.  Figure 4 shows the dynamic behavior of system 

(2.3). The red graph denotes the herbivore population while the blue one the plant population. 

For a specific density, the supplemental food and the plant species are enough for the herbivore 

population to exist and expand; however, when the plant species are avoided from the 

herbivores to increase to a carrying capacity, the supplemental food is not enough anymore for 

the herbivore species to exist. Thus, they decrease to a low positive density. Figure 5 
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emphasizes that the herbivore species depends on both additional food and the plant population 

to exist.  

 

     In Figure 6, we consider the fitness shown in each species in the environmental cycle, where 

we discovered the breakdown of the non-overlapping herbivore existence. Therefore, we 

humans actually may destroy a food cycle  in a habitat, interfering with the species' existence. 

        

 
Figure 5: Herbivore-Plant dynamic behavior     Figure 6: Per capita of the plant-herbivore               

species 

 

7. CONCLUSION 

     In this paper, a plant-herbivore model of Holling Type II is established. The herbivore is 

provided with additional functional food to stabilize the habitat and protect the plant 

population's logistic growth. The discrete model shows the environmental dynamical system of 

non-overlapping species on seasonal changes. 

  

     The linearized stability theorem is used to analyze the local stability of the extincted point, 

the semi-extinction case, and the co-existing equilibrium points. Theorem 3.1. shows that the 

extinction equilibrium point is always unstable for both populations in the habitat. However, 

the food quality and the effectual additional food level for the herbivore and the plant 

population's logistic growth are significant in the non-hyperbolic case. Thus, if the plant 

population's density stops growing and the additional food quality for the herbivore population 

is not sufficient good, the habitat for both species reaches a non-hyperbolic scenario. 

  

     In the stability analysis of the semi-extinction point, the plant population's growth rate 

should reach a significant level considering the environment's carrying capacity. Moreover, the 

half-saturation constant in the absence of the additional food, including the quality of the food, 

shows a critical role in the stability of the equilibrium point 𝐸1(see both Thereom 3.2 and Table 

2). 

 

     The local and global stability of the co-existing equilibrium point showed that both species' 

habitats could exist if there is a positive equilibrium point for the plant species. Two control 

parameters, namely,  the growth rate of the plant population, which is given as 𝑟, and the 

carrying capacities which is denoted by  𝑘. These parameters lead to the herbivore population's 

density even if there is a different food to keep the equilibrium point the herbivore species 

positive. The per capita herbivore consumption rate and the quality of additional food 

supplements keep asymptotic stability in the habitat. This shows that the dynamical stability 

cycle of a plant-herbivore interaction needs various food supplements for the herbivore 

population to avoid extinction of the plant population.  
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     The plant-herbivore population's semi-cycle and periodic behavior have been considered. 

The considering both species' non-overlapping seasonal effects. Finally, the system undergoes  

Flip and Neimark-Sacker bifurcation under specific conditions are obtained. It was mainly seen 

that the quality of the additional food supplement for the herbivore species was an essential 

parameter that affected the plant density directly. 
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