On Γ-n- (Anti) Generalized Strong Commutativity Preserving Maps for Semiprime Γ-Rings

Ahmed A. Abdulridha, Abdulrahman H. Majeed
Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Received: 1/8/2022 Accepted: 7/10/2022 Published: 30/6/2023

Abstract
In this study, we prove that let N be a fixed positive integer and R be a semiprime Γ-ring with extended centroid \(C_\Gamma \). Suppose that additive maps \(f \) and \(g: R \rightarrow R \) such that \(f \) is onto, satisfy one of the following conditions (i) \(f \) and \(g \) belong to \(\Gamma \)-\(N \)-generalized strong commutativity preserving for short; \((\Gamma \text{-} N \text{-GSCP}) \) on \(R \) (ii) \(f \) and \(g \) belong to \(\Gamma \)-\(N \)-anti-generalized strong commutativity preserving for short; \((\Gamma \text{-} N \text{-AGSCP}) \) on \(R \). Then there exists an element \(\lambda \in C_\Gamma \) and additive maps \(\xi, \eta_1, \eta_2: R \rightarrow C_\Gamma \) such that is of the form \(g(x^n) = \lambda ax + \xi(x) \) and \(f(x) = \lambda^{-1}ax + \eta_1(x) \) when condition (i) is satisfied, and \(f(x) = -\lambda^{-1}ax + \eta_2(x) \) when condition (ii) is satisfied for all \(x \in R \) and \(\alpha \in \Gamma \).

Keywords: semiprime Γ-ring, extended centroid, Γ-N-anti-generalized strong commutativity preserving maps.

حوامل الدوال الحافظة للإيديالية القوية Γ-\(N \) من حلقات كاما شبه الأولية

احمد عباس عبد الرضا1, عبد الرحمان حميد مجيد2
قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق

الخلاصة
في هذا البحث نثبت الآتي ، لنفرض أن \(N \) عددًا صحيحًا موجبًا ثابتًا وأن يكون \(R \) شبه أوله حلقة كاما شبه الأولية \(\Gamma \) مع النقطة الوسطى الممتدة \(C_\Gamma \). فانه ي يوجد عنصر \(\lambda \)
من حلقة كاما شبه الأولية \(\Gamma \) حيث

\(f(x) = -\lambda^{-1}ax + \eta_2(x) \)

بما في ذلك
عندما يتم استيفاء الشروط (ii) "(ii) " على كاما شبه الأولية \(\Gamma \)

\(g \) و (ii) "(ii) " على كاما شبه الأولية \(\Gamma \)

بما في ذلك
عندما يتم استيفاء الشروط (ii) "(ii) " على كاما شبه الأولية \(\Gamma \)

*Email ahmedabasabad9@gmail.com
1. Introduction and Preliminaries

In 1964 the concept of a Γ-ring first introduced by Nobusawa [1]. In 1966 this Γ-ring is
generalized by Barnes [2]. Let and be additive abelian groups, if there exists a mapping for
such that (x, α, y) → xay which satisfies the conditions

(i) \(R → R \).
(ii) \((x + y)az = xaz + yaz, x(α + β)z = xaz + xβz, xα(y + z) = xay + xaz,\)
(iii) \((xay)βz = xαyβz\) for all \(x, y, z \in R \) and \(α, β \in Γ \).

Then \(R \) is called a Γ-ring. Let \(R \) be an additive subgroup \(A \) of \(R \) is called a right
(left) ideal of \(R \) if \(AΓR \subseteq A (RΓA \subseteq A) \). If \(A \) is both a right and a left ideal, then we say \(A \) is an
ideal of \(R \). A Γ-ring \(R \) is said to be prime if \(xΓΓy = (0) \) with \(x, y \in R \), implies \(x = 0 \) or \(y = 0 \)
and semiprime if \(xΓΓy = (0) \) with \(x \in R \) implies \(x = 0 \). Let \(R \) be a Γ-ring and \(A \) be a subset of
\(R \), the subset \(Ann_Γ(A) = \{ r \in R : Aαr = (0) for all α \in Γ \} \) is called a left annihilator of \(A \). A
right annihilator \(Ann_r(A) \) can be defined similarly. If \(A \) is a left and right annihilator in \(R \), then
\(Ann(A) \) denotes its annihilator. Moreover, if \(= Ann(Ann(A)) \), then an ideal \(A \) of \(R \) is closed
and the annihilator of any ideal \(A \) of \(R \) is a closed ideal. The set \([R] = \{ x \in R : xay = yax for all \alpha \in Γ \text{ and } y \in R \} \) is called the
center of the Γ-ring \(R \) [3]. Let \(R \) be a Γ-ring and \(Q \) the quotient Γ-ring of \(R \) then a set \(C_Γ = \{ g \in Q : gaf = fag \text{ for all } f \in Q \text{ and } \alpha \in Γ \} \) is called the
extended centroid of a Γ-ring \(R \) [4]. If \(R \) is a Γ-ring then \([x, y]_α = xαy − yαx \text{ for all } x, y \in R \) and \(α \in Γ \) is called the commutator of \(x \) and \(y \) with respect to \(α \) in \(Γ \). A mapping \(f \) of a Γ-ring
\(R \) into itself is said to be commuting if \([f(x), x]_α = 0 \text{ for all } x \in R \) and \(α \in Γ \). A
mapping \(f \) of a Γ-ring \(R \) into itself is said to be centralizing if \([f(x), x]_α \) lies in the center of \(R \)
for every \(x \in R \) and \(α \in Γ \) [5]. The concept that strong commutativity preserving maps of
semiprime rings (SCP) was first introduced by Bell and Mason in [6]. In a Γ-ring \(R \), a map
\(f : R → R \) is Γ-strong commutativity preserving (Γ-SCP) on a set \(S \subseteq R \) if \([f(x), f(y)]_α = [x, y]_α \text{ for all } x, y \in S \) and \(α \in Γ \) [7]. In [8] Hamil and Majeed introduced the concept of a
generalized strong (co)commutativity preserving right centralizers on a subset of a Γ-ring. An
additive mapping \(d : R → R \) is called a derivation of a Γ-ring \(R \) if \(d(x, y) = d(x)αy + xαd(y) \)
for all \(x, y \in R \) and \(α \in Γ \). Let \(R \) be a Γ-ring, an additive mapping \(d : R → R \) is called a semi-
derivation associated with a map \(g : R → R \), if every \(x, y \in R \) and \(α \in Γ \), then \(d(x, y) = d(x)αg(y) + xαd(y) = d(x)αy + g(x)αd(y) \) and \(d(g(x)) = g(d(x)) \). Also Γ-ring \(R \) is
said to be 2-torsion free if \(2x = 0, x \in R \) implies that \(x = 0 \) [9]. In this study, assumption the
identity.

Let \(R \) be a Γ-ring additive maps \(f, g : R → R \) then
\[
f(x)αyβg(z) = g(x)αyβf(z) \text{ for all } x, y, z \in R \text{ and } α, β \in Γ \quad (*)\.
\]

We will extend the results of Bresar and Miers [10] to semiprime Γ-ring.

Now, we will present some new definitions and proven results.

\textbf{Definition 1.1:} Let \(R \) be a Γ-Ring, two maps \(f, g : R → R \) are said to be Γ-generalized strong
commutativity preserving for short; (Γ-GSCP) on a set \(S \subseteq R \) if
\[
[f(x), g(y)]_α = [x, y]_α \text{ for all } x, y \in S \text{ and } α \in Γ.
\]

\textbf{Definition 1.2:} Let \(R \) be a Γ-Ring, two maps \(f, g : R → R \) are said to be Γ-anti-generalized
strong commutativity preserving for short; (Γ-AGSCP) on a set \(S \subseteq R \) if
\[
[f(x), g(y)]_α = [y, x]_α \text{ for all } x, y \in S \text{ and } α \in Γ.
\]

\textbf{Definition 1.3:} Let \(N \) be a fixed positive integer and \(R \) be a Γ-Ring, two maps \(f, g : R → R \) are
said to be Γ-N- generalized strong commutativity preserving for short; (Γ-N-GSCP) mapping
on a set \(S \subseteq R \) if
\[f(x), g(y^n) \] for all \(x, y \in S \) and \(\alpha \in \Gamma \).

Definition 1.4: Let \(N \) be a fixed positive integer and \(R \) be a \(\Gamma \)-Ring, two maps \(f, g : R \to R \) are said to be \(\Gamma \)-anti-generalized strong commutativity preserving for short: \((\Gamma \text{-N-AGSCP}) \) mapping on a set \(S \subseteq R \) if
\[f(x), g(y^n) \] for all \(x, y \in S \) and \(\alpha \in \Gamma \).

Definition 1.5: Let \(R \) be a \(\Gamma \)-ring. A biadditive mapping \(B : R \times R \to R \) is called a biderivation if
\[B(xay, z) = B(x, z)ay + xzB(y, z) \text{ and } B(x, yaz) = B(x, y)az + yzB(x, z) \text{ for all } x, y \in R \text{ and } \alpha, \beta \in \Gamma \).

Definition 1.6: Let \(R \) be a \(\Gamma \)-ring, an element \(x \in R \) is called an idempotent if \(x \in \Gamma \) such that \(x^2 = xa = x \).

Theorem 1.7 [11]: Let \(R \) be a semiprime \(\Gamma \)-ring with extended centroid \(C_r \) and \(S \) be a set. Suppose that additive maps \(f, g: S \to R \), satisfy (\(\ast \)). Then there exist idempotents \(\varepsilon_1, \varepsilon_2, \varepsilon_3 \in C_r \) such that for \(\varepsilon_1 \alpha_1 \varepsilon_j = 0 \) for \(i \neq j \), \(\varepsilon_1 + \varepsilon_2 + \varepsilon_3 = 1 \), \(\varepsilon_1 a \phi(s) = 0 \), \(\varepsilon_2 a g(s) = 0 \), and \(\varepsilon_3 a f(s) = \lambda \beta \varepsilon_3 a b \) for all \(s \in S, \alpha, \beta, \gamma \in \Gamma \) and for some invertible \(\lambda \in C_r \), where \(C_r \) is the extended centroid of \(R \).

Corollary 1.8 [11]: Let \(R \) be a semiprime \(\Gamma \)-ring and \(a, b \in R \) satisfy \(aa \beta = \beta a a x \) for all \(x \in R \) and \(\alpha, \beta \in \Gamma \). Then there exist idempotents \(\varepsilon_1, \varepsilon_2, \varepsilon_3 \in C_r \) such that for \(\varepsilon_1 \alpha_1 \varepsilon_j = 0 \) for \(i \neq j \), \(\varepsilon_1 + \varepsilon_2 + \varepsilon_3 = 1 \), \(\varepsilon_1 a a = 0 \), \(\varepsilon_2 a b = 0 \), and \(\varepsilon_3 a a = \lambda \beta \varepsilon_3 a b \) for some invertible \(\lambda \in C_r \), where \(C_r \) is the extended centroid of \(R \).

2. The Main Results

Lemma 2.1: Let \(R \) be a \(\Gamma \)-ring, and \(B : R \times R \to R \) be a biderivation, then \(B(x, y) \beta \gamma [u, v] = [x, y]_{\alpha} \beta \gamma B(u, v) \) for all \(x, y, z, u, v \in R \) and \(\alpha, \beta, \gamma \in \Gamma \).

Proof: We compute \(B(xa, yb) \) in two different ways.

\[B(xa, yb) = B(x, yb)v = B(xa, yb)au + xaB(u, yb) \] for all \(x, y, u, v \in R \) and \(\alpha, \beta \in \Gamma \). (2.1)

It follows from (2.1) that

\[B(xa, yb) = B(x, yb)v = B(xa, yb)au + xaB(u, yb) \] for all \(x, y, u, v \in R \) and \(\alpha, \beta \in \Gamma \).

Analogously, we obtain

\[B(xa, yb) = B(xa, yb)v + yB(xa, u)v = B(x, yb)au + xaB(u, yb) + yB(x, u) \] for all \(x, y, u, v \in R \) and \(\alpha, \beta \in \Gamma \).

(2.2)

Comparing \(B(xa, yb) \) in both computations, we arrive at

\[B(x, yb)[u, v] = [x, y]_{\alpha} \beta B(u, v) \] for all \(x, y, u, v \in R \) and \(\alpha, \beta, \gamma \in \Gamma \). (2.2)

Replacing \(u \) by \(zyB(u, v) \) and using the relations

\[[zv, u]_{\alpha} = [z, v]_{\alpha} yu + zy[u, v]_{\alpha} \] and \(B(zu, v) = B(z, v)yv + zyB(u, v) \).

By (2.2), we get

\[B(x, yb)[zv, u]_{\alpha} = B(x, yb)[z, v]_{\alpha} yu + yB(x, [u, v]_{\alpha}) = [x, y]_{\alpha} \beta B(z, v)yu + [x, y]_{\alpha} \beta zyB(u, v) \]

We obtain the assertion of the Lemma.

Theorem 2.2: Let \(R \) be a semiprime \(\Gamma \)-ring with an extended centroid \(C_r \), and let \(B : R \times R \to R \) be a biderivation. Then there exist an idempotent \(\varepsilon \in C_r \) and an element \(\mu \in C_r \) such that \((1 - \varepsilon)\alpha R \subseteq C_r \) and \(\varepsilon \beta B(x, y) = \mu \gamma \varepsilon \beta [x, y]_{\alpha} \) for all \(x, y \in R \) and \(\alpha, \beta, \gamma \in \Gamma \).
Proof: By Lemma (2.1) \(B(x, y)\beta zy[u, v]_\alpha = [x, y]_\alpha \beta zyB(u, v) \) for all \(x, y, z, u, v \in R \) and \(\alpha, \beta, y \in \Gamma \).

Let \(x, y \in R \) and \(e = (1 - \varepsilon) \), then
\[
\text{easy} \beta e = e\alpha(x\beta e y) = e\alpha x\beta e y.
\]
We get
\[
(1 - \varepsilon)\alpha y \beta (1 - \varepsilon)ax = (1 - \varepsilon)ax \beta (1 - \varepsilon)ay \text{ for all } x, y \in R \text{ and } \alpha, \beta, y \in \Gamma.
\]
Then, \((1 - \varepsilon)\alpha aR \subseteq C_R \).

Now, let \(S = R \times R \) and define \(A : S \to R \) by \(A(x, y) = [x, y]_\alpha \). Note that the mappings \(A, B : S \to R \) by \(A(x, y) = [x, y]_\alpha \). Note that the mappings \(A, B : S \to R \). By Theorem (1.7), there exist mutually orthogonal idempotents \(\varepsilon_1, \varepsilon_2, \varepsilon_3 \in C_R \) with sum 1 such that \(\text{for some } \lambda \in C_R \), we have, \(\varepsilon_1 \beta (x, y) = 0, \varepsilon_2 \beta [x, y]_\alpha = 0 \) and \(\varepsilon_3 \beta (x, y) = \lambda \varepsilon_3 \beta [x, y]_\alpha \) for all \(x, y \in R \) and \(\alpha, \beta, \gamma \in \Gamma \). We set \(\varepsilon = \varepsilon_3 + \varepsilon_1, \mu = \lambda \varepsilon \), and note that \(\varepsilon \) and \(\mu \) have desirable properties.

Corollary 2.3: Let \(R \) be a semiprime \(\Gamma \)-ring with extended centroid \(C_R \), and let \(f : R \to R \) be a commuting additive mapping. Then there exists \(\lambda \in C_R \) such that \(f(x) = \lambda ax + \xi(x) \) for all \(x \in R \) and \(\alpha \in \Gamma \) where an additive mapping \(\xi : R \to C_R \).

Proof: Linearizing \([f(x), x]_\alpha = 0 \) for all \(x \in R \) and \(\alpha \in \Gamma \), we obtain
\[
[f(x), y]_\alpha = [x, f(y)]_\alpha.
\]
Hence, we see that the mapping \((x, y) \to [f(x), y]_\alpha \) is a biderivation. By Theorem (2.2) there exists an idempotent \(\varepsilon \in C_R \) and an element \(\mu \in C_R \) such that \((1 - \varepsilon)\alpha aR \subseteq C_R \), and \(\varepsilon a\alpha f(x, y) = \mu \varepsilon a\alpha [x, y]_\alpha \) holds for all \(x, y \in R \) and \(\alpha, \gamma \in \Gamma \). We have
\[
\varepsilon a\alpha f(x)\gamma - \varepsilon a\alpha f(x) = \mu \varepsilon a\alpha x - \mu \varepsilon a\alpha x
\]
\[
\varepsilon a\alpha f(x)\gamma - \mu \varepsilon a\alpha x = \varepsilon a\alpha f(x) - \mu \varepsilon a\alpha x
\]
\[
(\varepsilon a\alpha f(x) - \mu \varepsilon a\alpha x - \mu \varepsilon a\alpha x) = 0
\]
Thus, \(\varepsilon a\alpha f(x) - \mu \varepsilon a\alpha x \in C_R \). Now, let \(\lambda = \mu \varepsilon \) and define a mapping \(\xi \) by
\[
\xi(x) = (\varepsilon a\alpha f(x) - \lambda ax) + (1 - \varepsilon)\alpha f(x).
\]
Note that \(\xi \) maps in \(C_R \) and that \(\xi(x) + \lambda ax = \varepsilon a\alpha f(x) + 1a\alpha f(x) - \varepsilon a\alpha f(x), \) then
\[
f(x) = \lambda ax + \xi(x) \text{ holds for every } x \in R \text{ and } \alpha \in \Gamma.
\]

Proposition 2.4: Let \(R \) be a 2-torsion free semiprime \(\Gamma \)-ring with extended centroid \(C_R \), and \(S \) be a subring of \(R \), if \(f : R \to R \) a centralizing additive mapping of \(S \), then \(f \) commuting of \(S \).

Proof: A linearization of \([f(x), x]_\alpha \in Z \), we obtain
\[
[\varepsilon a\alpha x + x\alpha u]_\alpha = [f(x), 2zax + u]_\alpha + [f(x), u]_\alpha = 2z\alpha [f(x), x]_\alpha + [f(x), u]_\alpha = 2z^2 + [f(x), u]_\alpha.
\]
We have
\[
[f(x), u]_\alpha = -2z^2 \text{ for all } x \in U \text{ and } \alpha \in \Gamma.
\]
According to (2.4), we have
\[
0 = [f(x), u]_\alpha = [f(x), u]_\alpha = [f(x), u]_\alpha + [f(x), x\alpha u]_\alpha = [f(x), u]_\alpha + x\alpha [f(x), x]_\alpha + [f(x), x]_\alpha + x\alpha [f(x), u]_\alpha.
\]
Applying (2.5)
\[
-2z^2 ax + uaz + uaz - 2zax^2 = 0
\]
we then get \(-4z^2 ax + 2zax = 0 \). So, \(uaz = 2z^2 ax \). Multiplying (2.5) by \(z \) and using the last relation we obtain \(-2z^3 = [f(x), 2z^2 ax]_\alpha = 2z^3 \). As result \(\varepsilon^3 = 0 \). Since the center of a
semiprime Γ-ring contains no nonzero nilpotents, we conclude that $z = [f(x), x]_\alpha = 0$. Then f commuting.

Corollary 2.5: Let R be a 2-torsion free semiprime Γ-ring with extended centroid C_Γ, and let $f: R \to R$ be a centralizing additive mapping. Then there exists $\lambda \in C_\Gamma$ such that $f(x) = \lambda ax + \xi(x)$ for all $x \in R$ and $\alpha \in \Gamma$ where an additive mapping $\xi: R \to C_\Gamma$.

Proof: Combining Proposition (2.4) and Corollary (2.3), we get $f(x) = \lambda ax + \xi(x)$ for all $x \in R$ and $\alpha \in \Gamma$.

Corollary 2.6: Let R be a semiprime Γ-ring with extended centroid C_Γ, and let $f: R \to R$ be a centralizing additive mapping. If either R has a 2-torsion free or f is commuting on R. Then there exists $\lambda \in C_\Gamma$ such that $f(x) = \lambda ax + \xi(x)$ for all $x \in R$ and $\alpha \in \Gamma$ where an additive mapping $\xi: R \to C_\Gamma$.

We begin with technical lemma.

Lemma 2.7: Let A be the ideal of Γ-ring R generated by all commutators in R. Suppose that $(\lambda_0 y \mu_0 - 1)_\alpha A = 0$ for some $\lambda_0, \mu_0 \in C_\Gamma$ and $\alpha, y \in \Gamma$. Then there exists an invertible element $\lambda \in C_\Gamma$ such that $(\lambda - \lambda_0)_{\alpha A} \subseteq C_\Gamma$ and $(\lambda^{-1} - \mu_0)_{\alpha A} \subseteq C_\Gamma$. Moreover, if $\lambda_0 = \mu_0$, then $\lambda = \lambda^{-1}$.

Proof: Since $Ann(A)$ be a closed ideal then there exists an idempotent $\varepsilon \in C_\Gamma$ such that $Ann(A) = \varepsilon A = \varepsilon A \cap R$. Define $\lambda, \mu \in C_\Gamma$ by $\lambda = \lambda_0 \alpha (1 - \varepsilon) + \varepsilon$ and $\mu = \mu_0 \alpha (1 - \varepsilon) + \varepsilon$. Whence $(\lambda \mu - 1) = (\lambda_0 \gamma \mu_0 - 1)\alpha (1 - \varepsilon)$ which yields $(\lambda \gamma \mu - 1)\alpha (A \oplus Ann(A)) = 0$, for some $\lambda_0, \mu_0 \in C_\Gamma$ and $\alpha, y \in \Gamma$, $(\lambda_0 \gamma \mu_0 - 1)\alpha A = 0$ and $(1 - \varepsilon)\alpha Ann(A) = 0$. Since $A \oplus Ann(A)$ is an essential ideal of Γ-ring R it follows that $\lambda \mu - 1 = 0$, that is, $\mu = \lambda^{-1}$. Clearly, $\lambda_0 = \mu_0$ implies $\lambda = \mu = \lambda^{-1}$. We claim that $\varepsilon \gamma A \subseteq C_\Gamma$. Indeed, there exists an essential ideal E such that $\varepsilon A \subseteq E \subseteq R$. So, $\varepsilon A \subseteq \varepsilon \gamma A \cap R = Ann(A)$, that is, $A \gamma \varepsilon A E = 0$ which gives $\varepsilon A = 0$; thus, $[\varepsilon \gamma A, R]_\alpha = [\varepsilon A, R]_\alpha = 0$ which shows that $\varepsilon \gamma A \subseteq C_\Gamma$. Therefore, as $\lambda - \lambda_0 = (1 - \lambda_0)\varepsilon$, we see that $(\lambda - \lambda_0)_{\alpha A} \subseteq C_\Gamma$. Similarly, we have $(\lambda^{-1} - \mu_0)_{\alpha A} \subseteq C_\Gamma$.

Theorem 2.8: Let R be a semiprime Γ-ring with extended centroid C_Γ. Suppose that an additive mapping $f: R \to R$ is Γ-SCP. Then $f(x) = \lambda ax + \xi(x)$ where $\lambda \in C_\Gamma$, $\lambda^2 = 1$ and an additive mapping $\xi: R \to C_\Gamma$.

Proof: Our first goal is to prove that f is commuting. For $x, y \in R$ and $\alpha, \beta \in \Gamma$, we have

$$[f(yx), [y, x]] = [f(y^2), [f(y), f(x)]].$$

By (SCP) map

$$[f(y), [y, x]] = [f(y), [y^2, x]].$$

Thus,

$$[f(y^2), [y, x]] = [f(y), [y^2, x]],$$

for all $x, y \in R$ and $\alpha, \beta \in \Gamma$. (2.6)

Replacing x by $y \beta x$ in both sides (2.6), we get

$$[f(y^2), [y, y \beta x]] = [f(y^2), y \beta [y, x]],$$

And

$$[f(y), [y, y \beta x]] = [f(y), y \beta [y^2, x]].$$

Comparing both results and by using (2.6), we arrive at

$$[f(y^2), y \beta [y, x]] = [f(y), y \beta [y^2, x]].$$

Replacing x by $y \alpha z$, $z \in R$ in (2.7),

$$[f(y^2), y \beta [y, xaz]] = [f(y), y \beta [y^2, xaz]],$$

for all $x, y, z \in R$ and $\alpha, \beta \in \Gamma$. (2.7)
We obtain
\[[f(y^2), y]_β \alpha xα [y, z]_α = [f(y), y]_β \alpha xα [y^2, z]_α \]
for all \(x, y, z \in R \) and \(α, β \in Γ \) (2.8)

Replacing \(y \) by \(f(r) \), \(r \in R \) in (2.6), thus we obtain
\[[f(f(r)^2), f(r)]_β \alpha xα [f(r), z]_α = [f(f(r)), f(r)]_β \alpha xα [f(r^2), z]_α \]
According to \((Γ\text{-SCP})\) map, we get
\[[f(r)^2, r]_β \alpha xα [f(r), z]_α = [f(r), r]_β \alpha xα [f(r^2), z]_α \]
Now fix \(r \in R \) and we show that \([f(r), r]_α = 0\). As a special case of (2.9), we have
\[[f(r)^2, r]_β \alpha xα [f(r), r]_α = [f(r), r]_β \alpha xα [f(r^2), r]_α \]
for all \(x, r \in R \) and \(α, β \in Γ \) (2.10)

Applying Corollary (1.8), we see that there are mutually orthogonal idempotents \(ε_1, ε_2, ε_3 \in C_R \) such that
\[ε_1 + ε_2 + ε_3 = 1, ε_1 β[f(r), r]_α = 0, ε_2 β[f(r^2), r]_α = 0, ε_3 β[f(r)^2, r]_α = ν α ε_3 β[f(r), r]_α, \]
for some invertible \(ν \in C_R \). By (2.9) we thus obtain
\[[f(r), r]_β \alpha xα [f(r^2), z]_α = (ε_1 + ε_2 + ε_3) β[f(r), r]_β \alpha xα [f(r^2), z]_α \\
= (ε_2 + ε_3) β[f(r^2), r]_β \alpha xα [f(r), z]_α \\
= (ε_3) β[f(r)^2, r]_β \alpha xα [f(r), z]_α \\
= ν α ε_3 β[f(r), r]_β \alpha xα [f(r), z]_α \]
Setting \(μ = ν α ε_3 \), we thus have
\[[f(r), r]_α \beta xα [f(r^2) - μ f(r), z]_α = 0 \text{ for all } x, z \in R \text{ and } α, β \in Γ. \]
That is, \([f(r)^2 - μ f(r), R]_α \subseteq I\), where \(I = \{ q \in Q : [f(r), r]_α Rq = 0 \} \). Of course, \(I \) is a right ideal of \(Q \).

Now, for any \(z \in R \), we have
\[μ β [r, z]_α - f(r) β [r, z]_α - [r, z]_α β f(r) = μ β [f(r), f(z)]_α - f(r) β [f(r), f(z)]_α - [f(r), f(z)]_α β f(r) \]
\[= [μ β f(r), f(z)]_α - [f(r)^2, f(z)]_α = [μ β f(r) - f(r)^2, f(z)]_α \]
which shows that
\[μ β [r, z]_α - f(r) β [r, z]_α - [r, z]_α β f(r) \in I \text{ for all } r, z \in R \text{ and } α, β \in Γ. \] (2.11)
Replacing \(z \) by \(z α r \) in (2.11), we get
\[μ β [r, z]_α α r - f(r) β [r, z]_α α r - [r, z]_α α r β f(r) \in I. \]
On the other hand, since \(I \) is a right ideal, we have
\[(μ β [r, z]_α - f(r) β [r, z]_α - [r, z]_α β f(r)) α r \in I. \]
Comparing the last two relations we get \([r, z]_α β [f(r), r]_α \in I \text{ for all } r, z \in R \text{ and } α, β \in Γ. \]
That is,
\[[f(r), r]_α R β [r, z]_α β [f(r), r]_α = 0 \text{ for all } r, z \in R \text{ and } α, β \in Γ. \] (2.12)
Replacing \(z \) by \(f(r) β z \) and using \([r, f(r) β z]_α = [r, f(r)]_α β z + f(r) β [r, z]_α \)
it follows at once that
\[[f(r), r]_α R β [f(r), r]_α = 0. \]
Since \(R \) is semiprime \(Γ \)-ring it follows that \([f(r), r]_α = 0 \text{ for all } r \in R \text{ and } α \in Γ. \) Thus we proved that \(f \) is commuting.
According to Corollary (2.3), we have \(f(x) = \lambda_0 ax + \xi_0(x), \ x \in R \) and \(\xi_0 \) is an additive map of \(R \) into \(C_\Gamma \). Therefore, the relation
\[
[f(x), f(y)]_\alpha = [x, y]_\alpha \
\]
can be rewritten as
\[
(\lambda^2 - 1)a[x, y]_\alpha = 0, \
\]
which shows that \((\lambda^2 - 1)a A = 0. \)

By the Lemma (2.7) there is \(\lambda \in C_\Gamma \) such that \(\lambda^2 = 1 \) and \((\lambda - \lambda_0) a R \subseteq C_\Gamma. \) For any \(x \in R \) and \(\alpha \in \Gamma, \) we thus have
\[
f(\alpha) = \lambda_0 ax + \xi_0(x) = \lambda ax + (\lambda_0 - \lambda) ax + \xi_0(x) = \lambda ax + \xi(x) \
\]
where \(\xi(x) = (\lambda_0 - \lambda) ax + \xi_0(x) \in C_\Gamma. \) This proves the theorem.

Assuming that \(f \) is onto then even a stronger result can be easily obtained.

Theorem 2.9: Let \(R \) be a semiprime \(\Gamma \)-ring with extended centroid \(C_\Gamma \). Suppose that an additive maps \(f, g: R \rightarrow R \) are \(\Gamma \)-GSCP. If \(f \) is onto, then there exists an invertible element \(\lambda \in C_\Gamma \) and an additive maps \(\xi, \eta: R \rightarrow C_\Gamma. \) Such that \(g(x) = \lambda_0 ax + \xi(x), f(x) = \lambda^{-1} ax + \eta(x) \) for all \(x \in R \) and \(\alpha \in \Gamma. \)

Proof: Define a biadditive map \(B: R \times R \rightarrow R \) by \(B(x, y) = [x, g(y)]_\alpha. \) Clearly, \(B \) is a derivation in the first argument. Pick \(x_0 \in R; \) as \(f \) is onto, we have \(x_0 = f(x_1) \) for some \(x_1 \in R. \) Thus \(B(x_0, y) = [f(x_1), g(y)]_\alpha = [x_1, y]_\alpha. \) This shows that \(B \) is a biderivation. By Theorem (2.2) there are \(\epsilon, \mu \in C_\Gamma, \) \(\epsilon \) an idempotent, such that \((1 - \epsilon) a R \subseteq C_\Gamma, \) \(\epsilon a[x, g(y)]_\alpha = \epsilon a[y, x]_\alpha, \) \(f \) is onto, we have \(x_0 = f(x_1) \) for some \(x_1 \in R. \)

\[
B(x_0, y) = [f(x_1), g(y)]_\alpha = [x_1, y]_\alpha. \
\]

Thus \(B(x_0, y) = [f(x_1), g(y)]_\alpha = [x_1, y]_\alpha, \) this shows that \(B \) is a derivation in the second argument, so \(B \) is a biderivation on \(R. \)
By Theorem (2.2), there are \(\varepsilon, \mu \in C_R\), \(\varepsilon\) an idempotent , such that
\[
(1 - \varepsilon)\alpha R \subseteq C_R \text{ and } \varepsilon [x, g(y^n)] = \varepsilon g(y^n) [x, y] \alpha \text{ for all } x, y \in R \text{ and } \alpha, \beta, \gamma \in \Gamma .
\]
Thus \([R, \varepsilon ag(y^n) - \varepsilon \beta \mu yy] = 0\) and so \((\varepsilon ag(y^n) - \varepsilon \beta \mu yy) \in R \text{ for all } y \in R \text{ and } \alpha, \beta, \gamma \in \Gamma .\)

When
\[
g(y^n) - \varepsilon \beta \mu yy = (\varepsilon ag(y^n) - \varepsilon \beta \mu yy) + (1 - \varepsilon) g(y^n) \in C_R
\]
for all \(y \in R \text{ and } \alpha, \beta, \gamma \in \Gamma .\)

(2.14)

So we have
\[
g(y^n) = \lambda_0 \alpha y + \xi_0(y) \text{ where } \lambda_0 = \varepsilon \beta \mu \text{ and } \xi_0(y) = g(y^n) - \varepsilon \beta \mu yy \in C_R
\]
for all \(y \in R \text{ and } \alpha, \beta, \gamma \in \Gamma .\)

(2.15)

By condition (i), we have
\[
[x, f(x)]_\alpha = [f(x), g(f(x^n))]_\alpha \text{ for all } x, y \in R \text{ and } \alpha \in \Gamma .
\]

(2.16)

From (2.15) and (2.16), we get
\[
[x, f(x)]_\alpha = [f(x), \lambda_0 \alpha f(x) + \xi_0(f(x))]_\alpha = 0 \text{ for all } x \in R \text{ and } \alpha \in \Gamma .
\]

That is \(f\) is commuting on \(R\). So, by Corollary (2.6), \(f\) is of the form
\[
f(x) = \mu_0 \alpha x + \eta_0(x), \text{ where } \mu_0 \text{ and } \eta_0(x) \in C_R \text{ for all } x \in R\text{ and } \alpha \in \Gamma .
\]

Substituting (2.15) and (2.16) in condition (i), we get
\[
(\lambda_0 \alpha \mu_0 - 1) \beta [x, y]_\alpha = 0 \text{ for all } x, y \in R \text{ and } \alpha, \beta, \gamma \in \Gamma .
\]

(2.17)

It follows that \((\lambda_0 \alpha \mu_0 - 1) \alpha A = 0\) where \(A\) be the ideal of \(R\) generated by all commutators in \(R\). By Lemma (2.7), there is an invertible element \(\lambda \in C_R\) such that \((\lambda - \lambda_0) \alpha R \subseteq C_R\) and \((\lambda^{-1} - \mu_0) \alpha R \subseteq C_R\), when
\[
f(x) = \mu_0 \alpha x + \eta_0(x) = \lambda^{-1} \alpha x + (\mu_0 - \lambda^{-1}) \alpha x + \eta_0(x) = \lambda^{-1} \alpha x + \eta_1(x)
\]
\[
g(x^n) = \lambda_0 \alpha y + \xi_0(x) = \lambda \alpha x + (\lambda_0 - \lambda) \alpha x + \xi_0(x) = \lambda \alpha x + \xi(x).
\]

Where \(\eta_1(x) = (\mu_0 - \lambda^{-1}) \alpha x + \eta_0(x) \in \Gamma R, \xi(x) = (\lambda_0 - \lambda) \alpha x + \xi_0(x) \in C_R .
\]

Suppose that \(f\) and \(g\) be \(\Gamma\)-N-AGSCP on \(R\).

Define a biadditive map \(B: R \times R \rightarrow R\) by
\[
B(x, y) = [g(y^n), x]_\alpha \text{ for all } x, y \in R \text{ and } \alpha \in \Gamma .
\]

By similar argument then used to prove the theorem when condition (i) is satisfied, we can get \(g(x^n) = \lambda_0 \alpha y + \xi_0(x)\) where \(\lambda_0 \in C_R\), and \(\xi_0(y) \in C_R\) for all \(y \in R\), and \(f(x) = \mu_0 \alpha x + \eta_0(x)\)

Where \(\mu_0 \in C, \eta_0(x) \in C_R\) for all \(x \in R\). Thus from condition (ii), we get
\[
(\lambda_0 \alpha \mu_0 - 1) \beta [x, y]_\alpha = 0 \text{ for all } y \in R \text{ and } \alpha, \beta, \gamma \in \Gamma .
\]

By Lemma (2.7), there is an invertible element \(\lambda \in C_R\) such that \((\lambda - \lambda_0) \alpha R \subseteq C_R\) and \((\lambda^{-1} + \mu_0) \alpha R \subseteq C_R\), when
\[
f(x) = \mu_0 \alpha x + \eta_0(x) = -\lambda^{-1} \alpha x + (\mu_0 + \lambda^{-1}) \alpha x + \eta_0(x) = -\lambda^{-1} \alpha x + \eta_2(x)
\]
\[
g(x^n) = \lambda_0 \alpha x + \xi_0(x) = \lambda \alpha x + (\lambda_0 - \lambda) \alpha x + \xi_0(x) = \lambda \alpha x + \xi(x).
\]

Where \(\eta_2(x) = (\mu_0 + \lambda^{-1}) \alpha x + \eta_0(x) \in C_R\) and \(\xi(x) = (\lambda_0 - \lambda) \alpha x + \xi_0(x) \in C_R .
\]

3. Applications

Lemma 3.1: Let \(R\) be a semiprime \(\Gamma\)-ring and \(a, b \in R\) such that \(aaxb = bax\beta a\) for all \(x \in R\) and \(\alpha, \beta \in \Gamma .\) If \(a \neq 0\), then \(\alpha = \lambda ab\) for some \(\lambda\) in the extended centroid \(C_R\) of \(R\).

Proof: Thus, elements \(a\) and \(b\) satisfy the requirements of Corollary (1.8). Therefore, there exist mutually orthogonal idempotents \(\varepsilon_1, \varepsilon_2, \varepsilon_3 \in C_R\) such that for every \(x \in R\) we have
\[
\varepsilon_1 ag(x) = 0, \varepsilon_2 af(x) = 0 \text{ and } \varepsilon_3 ag(x) = \lambda \beta \varepsilon_3 af(x) \text{ where an invertible element } \lambda \in C_R .
\]

Let \(\varepsilon_1 = 0, \varepsilon_2 = 0, \varepsilon_3 = 1, \text{ note that } \varepsilon_1, \varepsilon_2, \varepsilon_3 \in C_R\) satisfies the assertion of the Corollary.

Lemma 3.2: Let \(R\) be a semiprime \(\Gamma\)-ring. If functions \(f: R \rightarrow R\) and \(g: R \rightarrow R\) are such that \((x)\alpha y \beta g(z) = g(x)\alpha y \beta f(z)\) for all \(x, y, z \in R\) and \(\alpha, \beta \in \Gamma\), if \(f \neq 0\), then there exists \(\lambda\) in the extended centroid \(C_R\) of \(R\) such that \(g(x) = \lambda \alpha f(x)\) for all \(x \in R\) and \(\alpha \in \Gamma\).
Proof: By Theorem (1.7), there exist mutually orthogonal idempotents $e_1, e_2, e_3 \in C_R$ such that for every $x \in R$ we have $e_1axg(x) = 0, e_2af(x) = 0$ and $e_3ag(x) = \lambda \beta e_3af(x)$ where λ is an invertible element in C_R. Let $e_1 = 0, e_2 = 0, e_3 = 1$, note that $e_1, e_2, e_3 \in C_R$ satisfies assertion of the theorem.

Theorem 3.3: Let R be a semiprime Γ-ring. If f is a semiderivation of R (with associated function) then either f is a derivation or $f(x) = \lambda \alpha (1 - g)(x)$ for all $x \in R$ and $\alpha \in \Gamma, \lambda \in C_R$ where C_R the extended centroid of R and g is an endomorphism.

Proof: We may assume that $f \neq 0$. In this state, g is a Γ-ring endomorphism. Note that \[f(\alpha \gamma y) = f(x)\alpha g(y) + xaf(y) = f(x)\alpha y + g(x)af(y). \]

can be written in the form
\[(1 - g)(x)af(y) = f(x)\alpha (1 - g)(y) \text{ for all } x, y \in R \text{ and } \alpha \in \Gamma. \]

In particular, \[(1 - g)(x)af(y\beta) = f(x)\alpha (1 - g)(y\beta) \text{ for all } x, y, z \in R, \text{ and } \alpha, \beta \in \Gamma. \]

But on the other hand, \[(1 - g)(x)af(y\beta z) = (1 - g)(x)af(y)g(z) + (1 - g)(x)af(y), \]

and \[f(x)(1 - g)(y\beta z) = f(x)\alpha (1 - g)(y)g(z) + f(x)\alpha y\beta (1 - g)(z). \]

Comparing the last two relations and applying \[(1 - g)(x)af(y) = f(x)\alpha (1 - g)(y) \]

We get \[(1 - g)(x)af(y) = f(x)\alpha (1 - g)(z) \text{ for all } x, y, z \in R \text{ and } \alpha, \beta \in \Gamma. \]

If $g = 1$ then f is a derivation; therefore, we may assume that $1 - g \neq 0$ and so the assertion of the theorem follows immediately from the lemma (3.2), i.e., \[(x) = \lambda af(x) \text{ for all } x \in R \text{ and } \alpha \in \Gamma. \]

Replacing $g(x)$ by $f(x)$ and $f(x)$ by $(1 - g)(x)$ We get \[f(x) = \lambda \alpha (1 - g)(x) \text{ for all } x \in R \text{ and } \alpha \in \Gamma. \]

Corollary 3.4: Let R be a semiprime Γ-ring, and let $f: R \to R$ be additive mapping. If g a Γ-ring endomorphism of R, then there exists $\lambda \in C_R$ where C_R the extended centroid of R and an additive mapping $\xi: R \to C_R$ such that \[f(x) = \lambda \alpha x + \xi(x) \text{ for all } x \in R \text{ and } \alpha \in \Gamma. \]

Proof: Application (*), the identity \[f(x)\alpha \delta g(x) = g(x)\alpha \delta f(x) \text{ for all } x \in R \text{ and } \alpha, \beta \in \Gamma. \]

By Theorem (3.3), every semi-derivation f of a prime Γ-ring R is either a derivation, or it is of the form \[f(x) = \lambda \alpha (1 - g)(x), \text{ where } \lambda \in C_R \text{ and } g \text{ a } \Gamma\text{-ring endomorphism of } R. \]

We get \[f(x) = \lambda \alpha (1 - g)(x) = \lambda \alpha x + \lambda \alpha g(x) = \lambda \alpha x + \xi(x) \]

where $\xi(x) = \lambda \alpha g(x)$. Then \[f(x) = \lambda \alpha x + \xi(x) \text{ for all } x \in R \text{ and } \alpha \in \Gamma. \]

References