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Abstract  

     In this review paper, several research studies were surveyed to assist future 

researchers to identify available techniques in the field of infectious disease modeling 

across complex networks. Infectious disease modelling is becoming increasingly 

important because of the microbes and viruses that threaten people’s lives and 

societies in all respects. It has long been a focus of research in many domains, 

including mathematical biology, physics, computer science, engineering, economics, 

and the social sciences, to properly represent and analyze spreading processes. This 

survey first presents a brief overview of previous literature and some graphs and 

equations to clarify the modeling in complex networks, the detection of societies and 

their medical information, the identification of nodes, the method of communication 

with individuals and their spread, the analysis of their transmission through complex 

networks, and the detection of mathematical methods over the past century. Secondly, 

the types of epidemiological models and  complex networks and the extent of their 

impact on humans are presented.  

 

Keywords: complex network, community detection, Epidemiological, metadata, 
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1. Introduction 

     Observations of real networks inspire the study of dynamic networks. In fact, complex 

networks enable us to understand different real systems from biological networks. To ensure 

our survival, for example, we require a network of neurons linked by synapses with the ability 

to understand this information; relationships govern our bodies' thousands of cells [1]. 

Networking infrastructures Routers and computers work together to form networks, such as the 

Internet cables and optical fibers. Culture is made up of human friendship and other mutual 

partnerships. For example, collaborations with friends or colleagues keep us together. These 

systems are referred to as complex systems because their individual components’ aggregate 

actions cannot be predicted. However, having a mathematical understanding of these structures 

allows one to predict if they can be monitored and communicated with [2]. The greatest 

technological challenges of our day play a significant role in our daily lives when it comes to 

the distinctions between dynamic systems that are found in nature and those found in 

civilization. Hence, the processes of these systems are relatively similar because they are 

governed by the same principles. Nowadays, the most prominent models for representing 

epidemics and their impact on health and society, including the model of common epidemics 

exposed to Susceptible Infection and Recovering (SIR), is the Corona virus (COVID-19). Also, 

in the segmentation of medical pictures, deep neural networks (DNN) are successfully used to 

meet the demand for a dependable and precise organ segmentation system, which has grown 

with the COVID-19 epidemic [3]. 

 

     The study of complex networks has been impacted by experimental research on real 

networks. They are one of the most essential scientific issues because of the impact they have 

on our daily lives. Complex networks, in particular, help us understand a wide range of real-

world processes, including technical networks, biological networks, cultures, illnesses, rumors, 

and more [4]. In general, there are basic models of complex networks that are shown in Table 

1 that have been used in the study and application of epidemics in communities [5]. Companies 

consist of people with social linkages such as friendship, familiarity, or technological 

cooperation, while epidemics are diseases that propagate through contacts and combinations of 

humans or animals, such as measles disease and AIDS [6]. These systems are referred to as 

complex systems because the overall behavior of their elements cannot be predicted. However, 

the statistical description of these systems can be understood, anticipated, and theoretically 

managed due to the various networks and the methods of synchronization between nodes. Also, 

understanding how viruses move in transportation networks allowed for the prediction of the 

2009 H1N1 pandemic and the new coronavirus year 2019/2020 [7]. 

 

Table 1: The basic models in complex networks [5] 

 Type models of complex network 

1.  Scale-free networks 

2.  The Random Graph 

3.  Small-world networks 

4.  Spatial networks 

5.  Generalized Random Graphs 

6.  Networks with Community Structure 

7.  Geographical Models (GN) 

 

2. Related Work  
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     The scientists have many subjects for complex networks, epidemiological and community 

detection. According to [8], a series of algorithms are clarified for discovering network groups. 

Furthermore, the consistency of community detection in networks under degree-corrected 

stochastic block models was suggested.  The first feature proposed iteratively removing edges 

from the network in order to split it into groups using inter-layer steps. The second feature 

recommended recalculating the inter-metrics objectively with each edge removed. The aim of 

these calculations is to find the shortest path between all pairs of vertices and to count the 

number of nodes along each vertex. 

  

     This process yields a constant multiplied by the number of edges inside clusters, which is 

less than the number predicted in a parabolic grid of randomly positioned edges. A new 

community-detection algorithm was created to perform better than earlier general-purpose 

algorithms in terms of consistency of results and execution speed. Also, it can evaluate any 

larger network with millions of vertices and edges. The effective and exact segmentation 

findings improve the prediction and diagnosis of diseases [8].Then, in [9], a GN algorithm is 

suggested for removing the group structure from a network with a large speed benefit in 

comparison to previous algorithms that are complete.  

 

     There is also an equivalence between the maximization of modularity and maximum 

liability. All populations have statistically similar properties. Models of stochastic networks 

produce modular networks, random graphs, and non-scale networking modularity. They clarify 

that the  complex networks need to be made more modular. The mechanism that could boost 

modularity would be sufficiently wide and based on the assumption that random graphs have 

low modularity. The modularity approach is often considered to expand the validated technique 

to maximize modularity that is  widely applied in undirected networks to test group structuring. 

Three classes of the suggested approaches can be defined for population identification. The last 

class of such methods is classified as hypothesis-driven methods based on a probabilistic model 

for a community network. Figure 1 shows data from political blogs. The area of each node is 

proportional to its degree's logarithm, and the colors represent community labels [10]. 

 

Social distance and disconnections may reduce the scale of the outbreak. The initial step of the 

SIR can be approximated using conjugation techniques as the population size becomes large, 

as shown in Figure 2. 
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Figure 1: (a- block model b- The degree-corrected stochastic block model c- The degree-

corrected stochastic block model d- Newman-Girvan Modularity e-true labels). 

 

 
Figure 2: (Rényi Graph with (a) c = 0.9, (b) c = 5 using n = 100 vertices). 

 

     In [11], the study of graph models for complex networks is based on kernel functions over 

metric spaces. These are mixtures of microscopic models that take network semantics into 

account and macroscopic random graph models for complex networks. Kernel random graphs 

are a brand-new class of complex network models that give standard random graphs meaning 

for their nodes and links. A kernel random graph model creates a graph of n nodes for any given 

number of network nodes n. Also, the conceptual, analytical, and implementation clarity of 

random graph models is preserved by kernel-based models. Network nodes and links are given 

explicit semantics by kernel-based models. These semantics are capable of capturing 

fundamental elements of machine learning and information retrieval primitives such as 

hierarchy and clustering, which are more frequently seen in actual complex networks than in 

pure random graphs. 
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Figure 3: (The highest edge connecting edge connecting between communities). 

 

     In [12], the study of complex systems is advanced due to the study of networks in 

contemporary science. In system graphs, vertices are grouped into groups with many borders 

joining the heads of one group and relatively few edges linking the vertices of different groups. 

System graphs play a similar role in the human body's issues or the organs.  

 

     Community detection is very important for locating modules and the boundaries of those 

modules, which enables vertices to be categorized based on their structural position within the 

modules. Because it is much simpler to assemble the smallest subparts first and then use them 

as building blocks to create larger structures until the entire system is assembled, the generation 

and evolution of an organized  system in interrelated stable subsystems occurs much more 

quickly than in an unstructured system. 

  

     This makes it far more challenging for mistakes to happen throughout the process. 

Identifying the modules and their hierarchical organization is the goal of community detection 

in graphs, which relies solely on the data encoded in the graph topology. For example, in Figure 

3, edges are chosen based on the results of an edge centrality measure, while assessing the 

significance of edges is based on a feature or activity occurring on the graph. Firstly, all an 

edge's centralities are calculated, and then the highest centrality is removed in cases of ties with 

other edges. 

 

     In [13], the study illustrates a network as a device that can communicate with other systems 

and can be represented as a graph that is made up of elements such as nodes or vertices, as well 

as a collection of linking connections (edges) that reflect their relationships with one another 

using a variety of statistical and computing methods. A network can be represented by an 

adjacent matrix A from a mathematical point of view. The adjacency matrix of a graph with N 

vertices is N×N. The elements Aij of this matrix can be used to describe the boundaries. The 

ready-to-use Zakary Karate Club dataset, which provides genuine values for a variety of 

applications such as group recognition, was used as a well-known and enduring example from 

a social network. For example, in Figure 4, there is a greater chance that an edge will form 

between two people in a network made up of pairs of people if they have more than one friend 

in common [13]. In 1971 to 1972, the connections of 34 founders who met outside of the club, 

where this social network was investigated, were documented. 
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Figure 4: (a network reflection of a group's social experiences within the same karate club). 

 

     In [14], a high-dimensional SBM model has been developed for spectra aggregation, where 

the disclosures of the underlying group design of dynamic and cross-disciplinary networks have 

become a key subject in many applications. By studying the close effects of spectral clustering, 

the prophetic vectors were found to converge under the more general latent space model.  A 

consistent spectrum was added, as spectral clustering is a fast and common algorithm for 

network clusters that allows presenting and grouping flexible options into SBM with optimized 

full data capabilities. The results of collective extraction spectroscopy are interpreted using 

random-block models. The use of specified clustering on a matrix near the network has been 

proven to successfully restore hidden groups.  

 

     Networks have been proposed to be dominated in a number of areas, including economics, 

genetics, neuroscience, and informatics. The borders are semantically asymmetrical since the 

source node transfers those qualities to the destination but not the other way around because 

graphs are frequently arranged to have guidance on the edges. This is because nodes are very 

similar in the same society, while nodes in present communities have poor similarity. Then, in 

[15], the homogenous network theory of Cannistraci-Hebb is presented as a recent development 

in network scientific research. It has a variety of real uses, such as the suggestion of social 

network friendships. 

  

     The modeling of the agent-functional class clusters in complex networks is shown by block 

model pictures and diagram nodes that depict the key communications patterns and the network 

functions. Then the grid's match is measured to every picture diagram that allows objective 

hypothesis testing. The optimum compatibility characteristics allow us to directly find the most 

appropriate picture scheme from the network and to have a standard for avoiding overcasting. 

Different types of connections can be handled simultaneously in two-mode and single-mode 

results, guided and indirect networks, and weighted networks. Then, in [16], eight state-of-the-

art and five regular algorithms are analyzed and checked for overlap and population 

segmentation recognition. 

     They also applied two finely tailored group recognition algorithms, working to improve the 

quality of the population by splitting and merging certain community networks. These 

algorithms are precisely tuned based on modularity maximization. The results were used in 

social and biological network generative models. The classical modular maximization formula 

was used to provide convex programming relaxation using the double average median 
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technique. It has been shown that the approximate clustering results for approximate clusters 

and ideal clubs are minimally sensitive to non-asymptotic theoretical guarantees.  

 

     In [17], a strong new technology known as action-based modeling is introduced. A brief 

overview of the solutions to the disease prevalence problem was provided, including the use of 

filtration in dynamics, the use of epidemiology in a diverse population, and the multi-layered 

network of outbreaks by complex hierarchical modelling. The first section suggested that the 

deployment of bond filters in a single network should be studied and compared. The second 

section discusses when a site-infiltration, site bond, or geo-filtering analysis is conducted, and 

links are included in small-world networks. 

 

     In [18], the models that can help in understanding pandemics that spread quickly, like 

COVID-19, must be proposed where a variety of pandemics, including SARS, H1N1, and the 

current new coronavirus (COVID-19), have affected humanity. Scientists have created 

vaccinations; however, once the epidemic enters a territory, the distribution of the local 

population is crucial. They suggest two variations of our mobility-based SIR model: fully mixed 

and complex networks, which pay particular attention to interactions that occur in real-world 

settings. 

  

     The best model is the first of its type, taking into account data on network connectivity of 

individuals as well as statistics on population distribution and connectivity of various 

geographic regions throughout the world. Extensive simulations utilize synthetic data that has 

been undertaken in addition to presenting the mathematical evidence of proposed models to 

show how generalizable they are. They show the expanded capabilities of the suggested model 

applied to forecasting COVID-19 cases at the county level in Estonia and at the regional level 

in France's Rhône-Alpes region. In [19], waning immunity is clarified as having a crucial role 

in basic epidemic models on networks; however, it is underestimated in actual epidemic 

outbreaks. 

  

     When using the Susceptible-Infected-Recovered-Susceptible (SIRS) epidemic model on 

networks, they found that the mean-field technique was more accurate at describing the 

dynamics of the epidemic. On large networks with various degrees of heterogeneity, two types 

of mean-field theories are based on Recurrent Dynamical Message-Passing (RDMP) and Pair 

Quenched Mean-Field theory (PQMF) are contrasted. On power-law networks with degree 

distribution, RDMP outperforms PQMF theory for waning immunity times that are more than 

or equivalent to the recovery time. According to the real epidemic's localization patterns, 

improved theoretical frameworks are required to comprehend the SIRS dynamics, which lie 

between the two mean-field theories. 

 

3. Epidemiological model on networks 

3.1. Types of epidemic models 

I. Stochastic 

    "Stochastic" means to be a random variable or to have it. A stochastic model is a tool that 

allows a random change of a single or more inputs across time to estimate probability 

distributions of probable results. Stochastic models depend on the risk fluctuations in exposure, 

disease, and other dynamics of disease [20]. 

 

II. Deterministic 

     Deterministic or compartmental mathematical models are frequently employed when 

dealing with big groups such as TB. In a deterministic model, distinct subgroups that reflect a 
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specific epidemic stage are allocated to people in the population. The transition rates from class 

to class are theoretically stated as derivatives; therefore, the model is developed by means of 

differential equations. In developing such models, the population number in a cell must be 

considered to be distinguishable from time and that the epidemic is deterministic. In other 

words, only the history used to create the model can compute changes in the population of a 

compartment [20]. 

 

3.1.1. Regular Lattices  

     Grid models are the most basic kinds of networks. They are used in cellular automata and 

agent-based models in science [21] . Each position in a normal network may indicate, for 

example, a person positioned in a typical network of points. They just have contact with their 

immediate. Since all locations have the same number of contacts, regular clamps are 

homogeneous. It has been widely applied to the study of complex processes in general, such as 

the diffusion reaction and disease dynamics [22]. However, in comparison to real systems, its 

generalized topology is impractical. The ease of thoroughly solving analytical problems, such 

as the Ising model, is a benefit of this form of the  network [23]. 

 

3.1.2. Random Regular Network 

     Another simple grid prototype was examined by the Erdos-Rényi (ER) model, which was 

one of two closely related models for generating random graphs. In its initial form, the graph is 

created starting from a set of N nodes, and all edges between them have the same probability. 

This resulted in a homogeneous graph in which the heads have a number of neighbors not much 

different from the mean (k) score, with a conductivity distribution like Poisson, as shown in 

Figure 5 [5]. 

 

 
 

Figure  5: (Random Regular Network for nodes=10,period=0.5). 

 

3.1.3. Small-World Networks 

     The world's smallest model is being developed as a more tangible social networking model. 

At first, N vertices are organized into a one-dimensional network with regular boundaries, and 

each vertex has m relations in WS networks with its nearest neighbors. When peaks are visited 

in a clockwise fashion, the edges of the clock ways are rejoined with the p probability. Rewiring 

establishes connected networks while maintaining consistent edge counts (k = m). Even with a 

modest p, the occurrence of shortcuts between remote nodes substantially lowers the average 

distance. This program generates a network with small-world characteristics using an energy 

law model; however, it cannot produce a heterogeneous distribution of degrees [24]. As shown 

in Figure 6, a Watts-Strogatz network of size N = 20 in which the network gets increasingly 

random as the p-value rises. In the first instance, p = 0, while in the second case p = 1, and in 

the third case p = 0.1 [5]. 
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Figure 6: (Small-World Networks). 

 

3.1.4. Bar ´abasi-Albert 

     A preferential correlation model was adequate, which has been suggested to simulate the 

temporal development of many actual networks. New headers are introduced to the procedure 

at every stage of this model. Every new pinnacle has a likelihood which is proportionate to its 

current level with existing network nodes [25]. The creation and choosing of networking 

features enables the modelling of real-world networks such as the Internet and the World Wide 

Web [13]. The form shows the presence of graphs with the distribution of a force law degree, 

[P (k) ∼k−y], where γ = 3 and micro-world properties. While considering adding new nodes, 

this network is considered to be static when dealing with a dynamic process since it evolved 

first, and then the dynamics ran across the substrate, as shown in Figure 7 [5]. A smaller network 

image (left side) and a larger (N = 106) network connection distribution (right side). We can 

see that there are hubs with a high degree of distribution in power-law. The sloping line is an 

eye guide with pitch P (k) ∼k−3. 

 

 
Figure 7: (a-Bar´abasi-Albert b- slope P(k)). 

 

3.1.5. Uncorrelated Random Networks 

     Actual networks describe the presence of grade correlations in their conditions, in addition 

to their power-law distributions. P (k^/│k) for uncorrelated networks can be estimated as the 

probability that any edge points to a vertex with degree〖 k〗^∕, leading to 

punc(k∕|k) = k∕p
(k∕)

(k)
⁄  , thus, the average nearest neighbor degree becomes in equation 

(1) as 

knn
unc(k) =

(k2)

(k)2                                             … … … … (1) 

That is independent on the degree of k. 
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From the behavior of dynamic systems, whose theoretic solution is only possible if  no 

correlation can be assessed, unlinked random graphs from a numerical point of view are 

important despite correlations in most real networks [25]. 

 

3.1.6. Networks with Euclidean Distance 

     The related Euclidean distance between nodes is not taken into account in the majority of 

scale-free networks. Real-world structures, on the other hand, exist on top of a geographical 

vacuum. A food chain ecological network is integrated into 3-dimensional space and city streets 

that may be mapped as a square grid. 

 

     A feature of Euclidean distance Physical contact is an important element in forming social 

bonds. In interactive media networks, formation takes place using a network model that 

accounts for geographical proximity [26]. 

 

     They see a square grid substratum and start with one node at an arbitrary origin in space. 

The network's second node is entered and connected to the first. At a distance of r, its position 

is chosen at random from the first node. This r-distance has a random distribution. 

 

3.1.7. Metapopulation Model 

     Meta populations are characterized as a set of nodes corresponding to the intra-population 

level in each node. A metapopulation network consists of a number of networks that are not 

individuals but connected populations [27]. The internal structure might be a heterogeneous 

group of people. If we look at the transmission of rumors, we may split the individuals into 

three groups (spreaders, stiflers, and ignorant): (1) the spreaders of the news; (2) the stiflers 

who know the truth but are not participating in its share; and (3) the ignorant. As a basic example 

of a metapopulation network that  is depicted into groups of people who may get ill, susceptible 

or healed if an outbreak is spreading, as it is shown in Figure 8 [22] [5]. 

 

 
Figure 8: (a metapopulation network). 

 

     The dynamic spread happens in each population throughout the metapopulation, but because 

of the movements of people, the interaction between populations occurs [28]. For example, 

since movement is a significant factor in the dissemination of human diseases, this model is 

widely used. For example, a pandemic of Sars-Cov-2 and vector-borne farm diseases [29]. 

 

 

 

3.1.8. Multilayer Networks 
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     In most real-world systems, a collection of components is linked in a number of ways. 

Multilayer systems with different architectures as networking tiers tend to be a major approach 

for describing these systems. Each layer has the same nodes as in the other levels, or the 

dynamic mechanism may be widened vertically in various ways or horizontally [30]. A vector 

is used to transfer several infectious illnesses between individuals. Insects are the most popular 

disease vectors, such as malaria, dengue, and the zika virus [31]. As shown in Figure 9, an 

example of a multilayer network created with the Python package payment [5]. 

 

 
Figure 9: (an example of a multilayer network). 

 

     Consequently, we may shape this process with two layers, one of which represents human 

life and motion and the other represents insects. An insect bites an infected person; 

subsequently, this bite infects a healthy person; the transmission of disease takes place 

exclusively inside these layers. Social encounters are another example. We may envision a 

multi-layer network that serves Facebook, Twitter, and Instagram social media sites. Each node 

symbolizes an individual who can log into all social media sites, such as Instagram, but not 

Facebook or Twitter. Furthermore, connections with a person on a website may differ from 

their friendships in other networks. 

 

3.1.9. Multiplex Networks 

     Multiplex networks are just specific instances of multi-layered networks in which every 

node has the same number of nodes in each of the levels. Multiplex networks provide the best 

framework to explore the dynamic interactions of different dynamic processes in the same 

node-set. For any dynamic mechanism under consideration, multiplicity allows the integrating 

of distinct network layers in such a way. The interference issue between the spread of two 

distinct diseases can, therefore, be resolved in a single-layer network. An epidemic model for 

two SIR illnesses is built on a single-layer network; for example, Figure 10 shows a schematic 

depiction of a nine-layer multiplex network: the red (solid) and the blue (dashed) layer. The 

dotted line indicating an identity relationship denotes the knots and their replication [32]. 
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Figure 10: (an example of a nine-layer multiplex network). 

 

     The first pathogen's threshold behavior is preserved; however, the second pathogen is unable 

to spread, and certain agents who have recovered from the first illness are now immune to the 

second. As a result, even in scale-free networks, the illness breakout threshold is nonzero. The 

concept of separate transmission channels for different illnesses is a natural extension of 

competing epidemics to multiplex networks [33]. This takes into account a two-layer multiplex 

network and an SIR model in which the disease spreads sequentially. 

 

     The initial spreading takes place on one of the network levels, leaving the model with a 

number of repaired nodes. Before the second spread in the second layer, these nodes were 

already configured to be retrieved in the other layer. The assortative degree of correlation is 

increased by the degree of connection between nodes in both levels. The network is resistant to 

the second spread in terms of increasing the effective epidemic threshold to decrease the 

coexistence of both epidemics. The effects of delay between two spreading systems, as well as 

complete and partial immunity, may be investigated in a generalized scenario with two SIR 

epidemics propagating simultaneously [34]. The SIS model has also been used to study 

interacting epidemics [35]. 

 

3.1.10. Temporal Networks 

     It is possible to enhance network architecture by understanding the behavior of complex 

networks. The edges are not always involved. Edges in e-mail networks, for example, display 

a series of instant communications [32]. Agents should not form associations in the system 

while attending closed gatherings of people, such as schools or conferences [33].The 

fundamental temporal evolution of a network, similar to network topology, may affect system 

dynamics such as disease contagion or information distribution [36]. Indeed, in contrast to what 

has been observed in static networks, this mixing of time scales may lead to new phenomena in 

temporal network dynamics. Furthermore, the temporal evolution of time-network 

communications, which is characterized by long periods of inactivity followed by intense 

activity, may trigger a slow dynamic in propagation processes such as epidemics, diffusion, or 

synchronization. 

 

3.2. Concepts and Statistical Characterization of Networks 

3.2.1. Mean-Field Approaches Using Nodes 

     The midfield concept was the first theoretical technique for analyzing epidemiological 

dynamics in complex networks [37]. This technique divides the population in terms of not only 

the state of the individuals but also the degree of the node. The basic concept is that all nodes 

with the same statistical features have the same statistic. Therefore, nodes of the same degree 
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may be grouped together. Using this method, the structure of the network topology can be easily 

taken into account [38]. 

 

      Where any node in grade k, p (I | k) symbol represents the same probability (chance) as any 

node in grade I. The relative densities are the focus of mid-field models based on nodes; for 

example, of K- class people in particular classes (sk) or infectious compartment (pk) that shown 

in equation (2). 

 

SK =
SK

NK
, PK =

IK

NK
                                                          … … … … (2) 

The SIS model means the probability of a person having a degree of k in the S, sensor, or 

infectious compartment. The SIS model describes the relative density of infected nodes in 

which the infection rate is commensurate with the infection level and the probability that an 

infectious node would have a random edge [39]. The SIS dynamic equation for k was derived 

as shown in equation (3). 
dpk(t)

dt
= −pk(t) +λk[1 − pk(t)] ∑ ((l|k)pl(t))lp                            … … … … (3) 

      

     Where any node in grade k, λ is the effective rate of infection for the solution in equation 

(4). In a study of the pandemic limit, which is 

 

λc =
1

∧m
                                                             … … … … (4) 

     where ∧m is the largest eigenvalue of the connectivity matrix C [40], whose elements are        

CKl = KP(l|k). In the case of uncorrelated networks, they give the specific form of the epidemic 

threshold, where p (lk) =l p (l)/k and k are the average degree of the network. Thus, in 

uncorrelated networks Ckl = klp(l)/〈k〉, and the broad expression of uncorrelated networks' 

epidemic threshold in equation (5) 

λc =
〈k〉

〈k2〉
                                                        … … … … (5) 

     It must be noted that multiple versions of an epidemic threshold exist for certain decisions 

of degree p(k). For example, the problem is solved using integral approximations for the 

distribution of form by a power law; therefore, they show that the SIS model does not have a 

non-null pandemic threshold in the networks without scale [41]. 

 

     The analysis above is the general case of the epidemic model on networks, especially for the 

epidemic spreading on heterogeneous networks. Since 〈k2〉 = 〈k〉 holds for a homogeneous 

network, the generation expression of epidemic threshold recovers the result λc = 1
〈k〉⁄  in the 

network is homogeneous. Also, a strict global study was carried out of the SIS model to 

demonstrate the aforesaid result [42]. 

 

     The SIR transmission model may be used with this intermediate field technique [43], so the 

predicted final size may be derived during the whole transmission operation, in addition to a 

variety of others, including different degrees of distributions, which are generalized with this 

modeling technique, and complex network immunization [44]. 

  

     More globally, analysis was performed using the generated function approach to analyze the 

propagation of epidemic risks in asymmetry networks, the dynamics of mid-field equations on 

guided networks, and the threshold of epidemic breakout. The epidemic model for SIS infection 

was created on the basis of semi-directed networks, which aims to represent the coexistence of 
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direct and undirected connections. In Table 2, we clarify the basic models of epidemiological 

modeling and their concepts [45]. 

  

     The propagation of sexually transmitted diseases on two-party graphs depicts heterosexual 

and gay networks of contacts [46]. In [47], the researcher developed a methodology to take into 

account the impact of vectors, such as mosquitoes, and calculate a reproductive number that 

may be used to evaluate the vector’s  impact on the spread of the epidemic. In Figure 11, the 

population is split into distinct classes that vary with time. Susceptible (S) refers to disease 

susceptibility, and infections (I) refer to infections that can spread the illness to those who are 

healthy. While Recovered (R) refers to an immune system that has recovered. 

 
Figure 11: (the basic SIR model). 

 

     The examined population has a constant size N, which is big enough to allow continuous 

variables to be considered for each class. 

• If the model involves vital dynamics, births and naturally-occurring deaths are considered to 

be equivalent. 

• There is a uniform mixture in the community, and the sort of direct or indirect contact suitable 

for transmission depends on the particular illness. 

 

Table 2: The basic models of epidemiological modeling [47] 
 The basic model 

Type Concept 

1.  SIS model The model is termed the SIS model if the recovery doesn’t offer 

immunity. Certain germs, such as meningitis and plague, are suitable. 

2.  SIR model The model is named the SIR. It is a suitable model because when the 

individual recovers, it will accept permanent immunity like measles, 

smallpox, and mumps. 

3.  SIRS model If people go back temporarily such that they become sensitive again 

eventually, then it is suitable for the SIRS model. 

4.  The SEIS model The SEIS model takes the exposed or latent time of the illness into 

account and offers an extra compartment, E (t). 

5.  The SEIR model In this approach, the four divisions: sensitive, exposed, infected and 

recovered, are included. 

6.  The MSIR model A person is born with a passive immunity from the mother to numerous 

illnesses. 

7.  The MSEIR model The MSEIR model is used in the event of a disease with passive 

immunity components and latency. 

8.  The MSEIRS model A MSEIRS model is similar to the MSEIR, except R-class immunity 

would be transitory, thus people would regain their sensitivity at the 

conclusion of the temporary immunity. 
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     The proposed model was expanded to include both homogenous and heterogeneous 

connections simultaneously through a global homogenous mixture and via a contact network 

[48] to extend this technique to efficient models of network diseases. The SIS epidemic model 

has solved the limitations by extending this technique to efficient models of network diseases 

[49]. An infectious person with one transmittable link can pass on to numerous susceptibles 

before they recover. An efficient degree model tackles the Pastor-Satorras and the Vespignani 

SIS problems, overestimating the threshold of epidemic transmission. In addition, a node 

epidemic model was created on dynamic networks in relation to the static network epidemic 

model, which may examine the influence of demography on the transmission of diseases [50]. 

 

 

3.2.2. Edge-Based Mean-Field Approaches 

     Field edge-based epidemiological models are presented in order to understand how 

communication networks impact disease propagation and the edge’s effect on disease 

propagation. The advantages and disadvantages of various models of edge-based infectious 

diseases, as well as their differences from edge-based models of node-based epidemics, are 

discussed. The marital epidemic model is an alternate method aimed at describing the impact 

of the edges, which is based on the method of a marital approach and aims to assess the 

proportion of the infection rate of vulnerable persons to the number of partnerships between 

susceptible persons and damaged persons [51]. 

  

     In the population, the predicted number of susceptible and infected susceptible relationships 

may be described in the same way as SS, SI, and the other types of partnership. The rate of 

infection was then shown to be based on the number of susceptible partnerships, which SI can 

reflect in the presentation of the medium-scale model. There is an inflow between SI and SS as 

infected people recover (Susceptible and Infected Susceptible SIS model) and people who are 

vulnerable to another relationship. Eddy and SEIRS pair model discovered action for studying 

children's epidemics [52]. The SIR model is presented in pairs using homogenous networks. 

This might allow a broader framework and neighboring architecture to characterize the behavior 

of spatial models as normal differential equations [53]. The following are the equations for the 

SIR model that are shown in equations (6).  

 

The flow of this model is the following: S→I→R 

S: number of sensitive persons S′: S change rate of S  

I: number of people affected I′: I change rate I 

R: number of people retrieved R′: R change rate R′ 

 
dS

dt
= −β. I.

S

N
 

dI

dt
= β. I.

S

N
− r. I 

𝑑𝑅

𝑑𝑡
= 𝑟. 𝐼                                                     … … … … (6) 

 

     The basic disease model known by the name Kermack–McKendrick proved the following: 

1. There is a simple replication number R0, because if R0 is less than one, the disease dies out, 

whereas if R0 is greater than one, an outbreak occurs. 

2. As t increases, the number of infective approaches is zero, and the number of susceptible 

exceeds a positive limit. 
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3. There is a relationship between the number of reproductions and the epidemic's final size, 

which is equal if no disease deaths occur. 

Indeed, these properties remain true for disease models with more complex compartmental 

structures [54]. 

 

     As shown in Figure 12, where 𝑅0 represents the number of instances of a disease that an 

infected individual will go on to produce, and the more contagious leads to the higher the R0  

number as in equation (7). It is sometimes handled as a time-varying variable and utilized as a 

metric to make lockdowns go more smoothly. 𝑅0 is the first parameter in the SIR model. 

𝑅0 =
𝛽

𝛾
                                                     … … … … (7) 

 

     𝑅0 calculates the number of individuals infected due to  the  interaction with a single sick 

person before he/she dies or recovers. In the Table 3, that clarify the basic reproductive number 

in the global world for the most popular diseases [55]. The dimensionless basic reproductive 

number R0 is a feature of a population with infectious illness. The total population of a person’s 

meetings, the disease’s transmissible, and the average infectious time are included in R0, which 

decides whether the epidemic infiltrates the populace, how many people are infected during the 

outbreak, how many infectious individuals are infected, and how many people would be 

vaccinated to preserve herd immunity in the SIR model [56]. 

 

 
Figure 12: (How the R0numbers of COVID-19 variants and other diseases compare). 

 

    The SIR model is adapted to describe the spread of infectious diseases to take into account 

non-infection births and deaths.  Temporary immunity may also be modelled with a 𝑅0 response 

that represents immunity loss. To simulate an endemic balance, the illness persists indefinitely 

in the population and is known as an epidemic [57]. For the diseases of more than the usual 

percentage of a certain population, the rate (v) rises in order to decrease epidemics below a 

particular threshold which future modelers might predict. This is predicated on the premise that 
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the action affects v alone. Other therapies may influence both (S) susceptible groups and (I) 

infectious communities, such as selected vaccinations [31]. 

 

Table 3: The basic reproductive number in the global world 
 Basic reproductive number 

Diseases Transmission 𝑹𝟎 

1.  Measles Inhaling 12-18 

2.  Pertussis Drops of inhalation 12-17 

3.  Diphtheria Saliva 6-7 

4.  Smallpox Social connection. 5- 

5.  Polio oral-faecal route 5-7 

6.  Rubella Drops of inhalation 5-7 

7.  Mumps Drops of inhalation 4-7 

8.  HIV/aids Sexual connection 2-5 

9.  Sars Drops of inhalation 2-5 

10.  Chick pox Aerosol 12-18 

11.  Ebola (2014 outbreak) Body fluids 1.78 (1.44–1.80) 

12.  Influenza common cold 

(1918 strain) 

Drops of inhalation 2-3 

13.  Sars-cov-2 Drops of inhalation 2-3 (71) 

14.  Covid-19 (delta variant) Aerosol and respiratory droplets 5-8 

15.  Covid-19 (alpha variant) Aerosol and respiratory droplets 4-5 

16.  Covid-19 (ancestral strain) Aerosol and respiratory droplets 2.87 (2.39-3.44) 

 

• SIS model 

     The SIS model may simply be calculated by assuming that individuals are immediately 

susceptible following recovery without immunity to disease. S →I→ S. 

Where S:  symbol to Susceptible, I  symbol to Infective, t time. 

 

     The following differential equations (8-10) may be derived by eliminating the equation 

representing the population recovered from the SIR model and by bringing the population 

eliminated to the vulnerable.  

 
dS(t)

dt
= −βS(t)I(t)                                                 … … … … (8) 

 
dI(t)

dt
= βS(t)I(t) − μI(t)                                       … … … … (9) 

 
dR(t)

dt
= μI(t)                                                  … … … … (10) 

 

 

4. Comparison of SIR, SIS, and SEIR models 

Table 4 displays a comparison of the three most popular models SIR, SIS and SEIR. 
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Table 4: A comparison of the most popular models 
criteria Comparing of most popular models 

SIR SIS SEIR 

Abbreviation It is a simple basic 

epidemiological study 

compartmental model 

It is a fundamental SIR 

derivative where 

immunity does not give 

a longer-term immunity 

after recovery. 

It is a variant of the standard 

SIR model that is subjected to 

an extra bay that contains those 

affected but not yet afflicted. 

Attributes Three as S, I and R Three as S, I and S Four as S, E, I and R 

Modelling of a 

standard 

Basic model A derivative of SIR 

model 

A derivative of SIR model 

Latency of model No, addition of a latency 

period 

No, addition of a 

latency period 

Yes, addition of a latency period 

Progress of model Progress from infection-

prone to recovery 

Progress against 

susceptibility to 

infections 

Progress from exposure to 

recovered infections 

Population target N= S+I+R is the total 

population 

N=S+I+S is the total 

population 

N=S+E+I+R is the total 

population 

 

5. Conclusion 

     An overview of the complex networks is presented in the current study. The overview here 

took this area to a larger audience with the aim of summarizing the complex network tools, 

models, forms, and domains involved in modeling epidemics and diseases in societies.  

Wide lists of citations have been compiled for those interested in learning more about this issue. 

Furthermore, these models should be reviewed and the extent to which knowledge can be 

expanded on epidemics that directly affect people's lives should be determined. 
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