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Abstract 

 This paper investigates some exact and local search methods to solve the 

traveling salesman problem. The Branch and Bound technique (BABT) is proposed, 

as an exact method, with two models. In addition, the classical Genetic Algorithm 

(GA) and Simulated Annealing (SA) are discussed and applied as local search 

methods. To improve the performance of GA we propose two kinds of 

improvements for GA; the first is called improved GA (IGA) and the second is 

Hybrid GA (HGA).  

     The IGA gives best results than GA and SA, while the HGA is the best local 

search method for all within a reasonable time for 5 ≤ n ≤ 2000, where n is the 

number of visited cities. An effective method of reducing the size of the TSP matrix 

was proposed with the existence of successive rules. The problem of the total cost of 

Iraqi cities was also discussed and solved by some methods in addition to local 

search methods to obtain the optimal solution. 

 

Keywords: Travelling Salesman Problem, Greedy Method, Improved Minimum 
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 طرق الحل التام والبحث المحلية لحل مسالة البائع المتجهل مع تطبيق عملي
 

 ، فائز حسن علي *سجاد مجيد جاسم
 الخياضيات، كميو العمهم، الجامعة السدتشرخية، بغجاد، العخاق.قدم 

 خلاصة
في ىحا البحث، سشقهم بتشفيح بعض طخق الحل التام والبحث السحمية لحل مذكمة البائع الستجهل. وقج تم  

 (، كظخيقة حل تام مع نسهذجين. بالإضافة إلى ذلك، تم مشاقذة وتشفيحBABTاقتخاح تقشية التفخع والتقيج )
، GA( كظخق بحث محمية. ولتحدين أداء SAمحاكاة التمجين )  ( وخهارزميةGAالخهارزمية الجيشية التقميجية )

  (Improved GA) ؛ الشهع الأول سسي الخهارزمية الجيشية السحدشةGAتم اقتخاح نهعين من التحدين لـ 
 .(Hybrid GA)والشهع الثاني سسي الخهارزمية الجيشية السيجشة 

ىي ألافزل في طخق  HGA، في حين أن  SAو  GAمن  نتائج أفزل IGAالخهارزمية  لقج اعظت     
ىه عجد السجن  n، حيث n ≤ 2000 ≥ 5البحث السحمية السشاقذة في ىحا البحث وفي فتخة زمشية مقبهلة لـ 

شخوط  وجهد لةفي حا البائع الستجهل التي تست زيارتيا. ولقج تم اقتخاح طخيقة فعالة لتقميل حجم مرفهفة
اسبقية لمسدالة. وكتظبيق لسهضهع البحث، فقج تم حل مدالة تقميل الكمفة الإجسالية لديارة جسيع السجن العخاقية 
باستخجام بعض طخق الحل التام بالإضافة إلى طخق البحث السحمية السظخوحة في ىحا البحث وقج تم الحرهل 

 .عمى الحل الأمثل ليحه السدالة
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1. Introduction 

     The traveling salesman problem (TSP) is a classic combinatorial optimization problem (COP). The 

TSP searches for the shortest path among a set of cities with known distances between pairs of cities to 

find the route solution. The route solution can be articulated as a complete graph with a set of vertices, 

which is a set of edges weighted by the distance between two vertices (cities), to find the shortest route 

by visiting each city exactly once and returning to the original city [1]. 

     Numerous approaches have been proposed and have obtained good solutions. However, they vary 

in terms of complexity and efficiency and in being able to solve the TSP at various levels of 

complexity and size (small, medium, and large). Earlier studies use linear programming, dynamic 

programming, and branch and bound, but their ability is limited to small problems. Later, artificial 

intelligent approaches were proved to have the ability to solve more complex problems; one of these 

approaches, the self-organized neural network, was later expanded as a metaheuristic. A metaheuristic 

can optimize a complex problem by searching through many candidate solutions with few or no 

assumptions about the problem being solved and without any guarantee of finding the optimal 

solution. Some metaheuristics use either a single solution-based approach (e.g. simulated annealing 

(SA)) or a population-based approach (e.g. genetic algorithm (GA)) [1]. 

     Dorigo and Gambardella (1996) [2] they described an artificial ant colony capable of solving the 

TSP. Ants of the artificial colony are able to generate successively shorter feasible tours by using 

information accumulated in the form of a pheromone trail deposited on the edges of the TSP graph.  

Computer simulations demonstrate that the artificial ant colony is capable of generating good solutions 

to both symmetric and asymmetric instances of the TSP.  The method is an example, like simulated 

annealing, neural networks, and evolutionary computation, of the successful use of a natural metaphor 

to design an optimization algorithm. 

     Basu and Ghosh (2008) [3] they review the Tabu Search literature on the TSP, point out trends in 

it, and bring out some interesting research gaps in their literature. 

     Hussain et al. (2017) [4] proposed a new crossover operator of genetic algorithm (GA) for TSP to 

minimize the total distance; this approach has been linked with path representation, which is the most 

natural way to represent a legal tour. Computational results are also reported with some traditional 

path representation methods like partially mapped and order crossovers along with new cycle 

crossover operator for some benchmark TSP instances and found improvements. 

     The main outlines of this paper are as follows: Section 2 discusses the background and formulation 

of TSP. Some heuristic methods to solve TSP are discussed in section 3. Branch and Bound Technique 

(BABT) which is introduced and used in section 4. Some local search methods to solve TSP are 

discussed in section 5. In section 6 we suggest some improvements for GA. In section 7 we proposed 

the hybrid GA. Reduce matrix using successive rules suggested in section 8. The optimal solution for 

Iraqi's cities problem discusses in section 9. Lastly, some conclusions are introduced in section 10. 

2. TSP Background and Formulation 

     Since the 1950s, heuristic algorithms have been developed for finding an approximate solution for 

the TSP and other complex optimization problems in a reasonable time. Among the most widely used 

heuristic algorithms are evolutionary algorithms, swarm intelligence, and many others. These 

algorithms eventually have a strong impact on modern computer science research because they help 

researchers solve problems in a variety of domains for which solutions in their full generality cannot 

be found in a reasonable time, even with the world’s fastest computers, being global search heuristics, 

and being easy to implement [5]. 

     The mathematical formulation of TSP is as follows: 

     The cost (distance or time) between two cities i and j is marked with dij, then the total cost C is: 
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xij=0 or 1, where n is the number of cities.[6] 

3. Some Heuristic Methods to Solve TSP [7] 

     This section discusses two heuristic methods; Greedy method and Improved Minimum distance 

method. 

     The Greedy method (GRM) starts by sorting the edges by length, and always adding the shortest 

remaining available edge to the tour. The shortest edge is available if it is not yet added to the tour and 

if adding it would not create a 3-degree vertex or a cycle with edges less than n. This heuristics can be 

applied to run in O(n
2
log(n)) time. 

    The Minimizing Distance Method (MDM) is an efficient method for finding a good solution, but it 

has a weak point. This weak point has been manipulated by improved minimum distance method 

(IMDM) which is suggested in [7]. The IMDM has good achievement with high efficiency for solving 

TSP. 

4. Branch and Bound Technique for Solving TSP 

4.1 General Review of BABT  

     BAB technique (BABT) is most widely used in TSP by constructing a state space tree to find the 

optimal solution among all feasible solutions by taking the value of the objective function. Branch and 

bound was initially studies by Dantzig and a more description was provided by him in the applications 

of TSP. The BABT gives all feasible solutions by solving the problem, by trying the practical solution 

ad starting the value in the upper bound for finding the optimal solutions [8]. The general algorithm of 

the BABT is as follows: 

Branch and Bound Technique (BABT) Algorithm [9] 

Step 1: Choose a starting point. 

Step 2: Choose one of the routes for that point. 

Step 3: After choosing that route between the current point and unvisited point to add the distance. 

After doing that choose a new destination without choosing the same point.  

Step 4: Keep doing this until we have gone through each point. 

Step 5: Add up each distance of each subgroup. 

Step 6: You will see the difference in routes and pick the smallest route. 

4.2 Using BABT for Solving TSP with Two Models 

     This section discusses and the applying of BABT to solve TSP. It is very well known that BABT is 

one of the most important methods of the exact solution for COP. This method can act with different 

upper and lower bound to get very good results within a good time. The choosing process of upper 

bound (UB) and lower bound (LB) are figured as (UB-LB) this symbol of UB and LB we called it a 

model for BABT with notation BABT: UB-LB, we apply IMDM or GRM methods for finding UB. 

     The LB consists of two main parts such that LB equal sequenced nodes plus the unsequenced 

nodes, the sequence nodes: is the basic rout until the current node, while the unsequenced nodes: it’s 

the subsequence obtained from all the cities after eliminating the sequence nodes which are obtained 

from applying IMDM method.  

     Now we will discuss two techniques for BAB, the first technique is the classical BABT with 

notation BABT1, The BABT1 algorithm is as follows:  

BABT1 Algorithm 

Step1: Input n, D=[dij], i, j=1,...,n. 

Step2: Calculate UB=Cost (N) using IMDM where N= {1,2,…,n}; k=0. 

Step3: For each node in the search tree compute the LB= cost of sequencing nodes + cost of 

unsequenced nodes; where the cost of the unsequenced nodes is obtained by GRM, BABM or IMDM, 

k=k+1. 

Step 4: Branch each node with LB ≤ UB for level k. 

Step 5: If k  n then go to step 3. 

Step 6: If the last level (k=n-2) of BAB algorithm, the optimal solution is obtained. 

Step 7: Stop. 

     The second technique is similar for BABT1 but with modification. This modification includes 

finding a LB by branch form the least cost node and continue until getting the root node and calculate 

the LB, then we update the initial UB by the new LB, and then apply the same steps of BABT1. The 

BABT2 algorithm is as follows:  
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BABT2 Algorithm 

Step 1: Input n, D=[dij], i, j=1,...,n. 

Step 2: Calculate UB=Cost (N) using GRM where N= {1,2,…,n}, UB1=UB, k=0. 

Step 3: Compute the New_LB= cost of sequencing nodes + cost of unsequenced nodes; where cost of 

unsequenced nodes is obtained by IMDM, if New_LB ≤ UB1 branch from this node and set 

UB1=New_LB, repeat until reaching the root node set UB=UB1, if all New_LB  UB1 then 

UB=UB1. 

Step 4: For each node in the search, tree compute the LB is obtained by IMDM, k=k+1. 

Step 5: Branch each node with LB ≤ UB for level k. 

Step 6: If k  n then goto step 4. 

Step 7: If the last level (k=n-2) of BAB algorithm, the optimal solution is obtained. 

Step 8: Stop. 

     In the practical examples we will choose different n such that 5≤n≤2000 with integer cost 

(distance) such that dij[1,30] for 5≤n≤30, dij[1,100] for 30<n≤90, dij[1,150] for 90<n≤500 and 

dij[1,1000] for 500<n≤2000. The most used important notations are: 

 C: The cost of travel.  

 CT: Complete time in seconds. 

 BT: Is the time for the best solution that obtained by the Local Search Methods (LSM) in seconds. 

 R: R[0,1].   

 E: Difference between a set of methods with the first column in the table. 

 Iter: Iteration range=[minimum Iteration, maximum Iteration]. 

 Av-all: Average for all examples. 

 In comparison results showed in all the following tables the results are taken for an average of (3) 

examples. 

     Table-1 shows the comparison results between the complete enumeration method (CEM) from one 

side and with BABT1: IMDM-IMDM, BABT2: GRM-IMDM and IMDM from the other side for 

n=5,…,12, where the standard method is CEM. 

 

Table 1-Comparison results between CEM with BABT1, BABT2 and IMDM for n=5,…,12. 

n 
CEM BABT1 BABT2 IMDM 

C CT C E CT C E CT C E CT 

5 51 R 51 0 R 51 0 R 51.7 0.7 R 

6 46.3 R 46.3 0 R 48 1.7 R 50.3 4 R 

7 53 R 53 0 R 53 0 R 53 0 R 

8 56.7 R 56.7 0 R 56.7 0 R 56.7 0 R 

9 43.3 R 43.3 0 R 43.3 0 R 43.3 0 R 

10 52.7 3.8 52.7 0 R 52.7 0 R 52.7 0 R 

11 61.7 37.1 61.7 0 R 61.7 0 R 63.7 2 R 

12 42.3 409.1 42.3 0 R 42.3 0 1.2 42.3 0 R 

Av-all 50.9 56.7 50.9 0 R 51.1 0.2 R 51.7 0.8 R 

      

     From the results of Table-1 we notice that BABT1 is the best method from other methods so it is 

can be compared with other methods for n > 12. 

     Table-2 shows the comparison results between the BABT1: IMDM-IMDM from one side and with 

BABT2: GRM-IMDM and IMDM from the other side for n=13,…,20,25, where the standard method 

is BABT1. 
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Table 2-Comparison results between BABT1 with BABT2 and IMDM for n=13,…,20,25. 

n 
BABT1 BABT2 IMDM 

C CT C E CT C E CT 

13 60.3 30.7 62 1.7 1.5 71 10.7 R 

14 55 45.97 57 2 1.6 62 7 R 

15 46.7 4.7 46.7 0 2.3 50.7 4 R 

16 45 11.3 45 0 2.3 50.3 5.3 R 

17 53.7 1.6 53.7 0 4.3 53.7 0 R 

18 49.3 25.5 50 0.7 4.8 53 3.7 R 

19 48.7 2.03 48.7 0 6.1 48.7 0 R 

20 58.7 6.8 58.7 0 5.9 60 1.3 R 

25 71.3 721 74.3 3 16.8 79.3 8 R 

Av-all 54.3 94.4 55.1 0.8 5.1 58.7 4.4 R 

     Notice that from Table-2 that the BABT1 can be run for n ≤ 25 in reasonable time.  

     Table-3 shows the comparison results between the BABT2: GRM-IMDM from one side and with 

IMDM from the other side for n=30,…,80, where the standard method is BABT2. 

Table 3-Comparison results between BABT2 with IMDM for n=30,…,80. 

n 
BABT2 IMDM 

C CT C E CT 

30 56 25 58 2 R 

40 172.3 651.5 182 9.7 R 

50 180.3 431.4 201.3 21 R 

60 199.7 888.1 227 27.3 R 

70 218.7 390.9 233.3 14.6 R 

80 207.7 838.97 236.7 29 1.4 

Av-all 172.5 537.7 189.7 17.3 R 

5. Local Search Methods for Solving TSP 

     Metaheuristic (local search) algorithms are formally defined as algorithms inspired by nature and 

biological behaviors. They produce high quality solutions by applying a robust iterative generation 

process for exploring and exploiting the search space efficiently and effectively. Recently, 

metaheuristic algorithms seem to be hot and promising research areas. They can be applied to find 

near-optimal solutions in a reasonable time for different COP. Metaheuristic algorithms such as 

genetic algorithms (GA), particle swarm optimization (PSO), tabu search (TS), simulated annealing 

(SA), and ant colony optimizations (ACO) are widely used for solving the TSP [10]. 

5.1 Simulated Annealing 

     Simulated Annealing (SA) is a trajectory-based optimization technique. It is basically an iterative 

improvement strategy with a criterion that accepts higher cost configurations sometimes. The first 

attempt to apply SA for solving the COP was in the 80s of the last century. An overview of SA, its 

theoretical development, and application domains is shown in. SA was inspired by the physical 

annealing process of solids in which a solid is first heated and then cooled down slowly to reach a 

lower state of energy. Metropolis acceptance criterion, which models how thermodynamic systems 

moves from one state to another state, is used to determine whether the current solution is accepted or 

rejected [10]. 

     The original Metropolis acceptance criterion was that the initial state of a thermodynamic system 

was chosen at energy (Cost or C) and temperature (Temperature or t). Holding constant t, the initial 

configuration of the system is perturbed to produce new configuration and the change in energy ΔC is 

calculated. The new configuration is accepted unconditionally if ΔC is negative whereas it is accepted 

if ΔC is positive with a probability given by the Boltzmann factor shown in (1) to avoid trapping in the 

local optima: 

                                                             …(1) 
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     This process is then repeated until reaching a good sampling statistics for the current temperature, 

and then the temperature is decreased and the process is repeated until a frozen state (free energy state) 

is reached at t= 0 [10]. Algorithm of SA as follows: 

Simulated Annealing Algorithm [10] 

Step 1: Input: Temperature, FinalTemperature, cooling rate, ch;  

Step 2: ch' = ch; Cost = Evaluate (ch'); 

Step 3: while (Temperature > FinalTemperature) do 

   ch1 = Mutate (ch'); 

   NewCost = Evaluate (ch1); 

    Cost = NewCost −Cost; 

   if ( Cost ≤ 0) OR (                    > Rand) then 

    Cost = NewCost; 

    ch' = ch1; 

   end 

   Temperature = cooling rate × Temperature 

 end 

Step 4: Output: the best ch'. 

 

     Where cooling rate is 0.95, Temperature is 10000, and final Temperature is 0, Rand as a uniform 

random and number of generation is 5000 iteration 

5.2 Genetic Algorithm 
     Genetic algorithms (classical genetic algorithm) (GA) are derivative free stochastic approach based 

on biological evolutionary processes proposed by Holland. In nature, the most suitable individuals are 

likely to survive and mate; therefore, the next generation should be healthier and fitter than the 

previous one. A lot of work and applications have been done about GAs in a frequently cited book by 

Golberg. GAs work with a population of chromosomes that are represented by some underlying 

parameters set codes [4], where P is numbers of chromosomes and Pc is the probability of crossover. 

Genetic Algorithm [4] 

Step 1: Create an initial population of P chromosomes and evaluate the fitness for each one. 

Step 2: Choose Pc*P parents from the current population via chosen selection. 

Step 3: Select two parents to create offspring using crossover operator. 

Step 4: Apply mutation operators for minor changes in the results. 

Step 5: Repeat Steps 4 and 5 until all parents chosen are selected and mated, and the remain  

(1-Pc)*P chromosomes are initialized randomly. 

Step 6: Replace old population with new one, with elitism for best chromosome. 

Step 7: Evaluate the fitness of each chromosome in the new population. 

Step 8: Terminate if the number of generations meets some upper bound; otherwise go to Step2. 

6. Improving Genetic Algorithm 

     In this section, we will attempt to improve the GA. We suggest to choose F number of 

chromosomes of the population of GA, where F= (P/4), these F chromosomes are improved using 

three techniques, these technologies can be considered as a combination of the crossover and mutation 

operators.  

6.1 GA Operators 

     These techniques are implemented on the origin chromosome as follows: 

1- Simple Inversion Crossover [11]: Simple inversion selects two points along the length of the 

chromosome, which is in at these points, and the sub string between these points is reversed.   

2- Swap mutation [12]: In pairwise swap mutation, the residues at the randomly chosen two positions 

swapped. 

3-Displacement mutation [12]: Displacement mutation pulls the first selected gene out of the set of 

string and reinserts it into a different place then sliding the substring down to form a new set of string. 

     When applying the three techniques on one chromosome we obtained three new chromosomes and 

the 4
th
 is the origin chromosome. This procedure is called mixing crossover mutation algorithm 

(MCMA), which act as follows: 
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MCM Algorithm 

(ch1, ch2, ch3, ch4)=MCM (ch)  

 ch1=Simple inversion crossover (ch); 

 ch2=Swap (ch); 

 ch3=Displacement (ch);  

 ch4=ch; 

end; 

The proposed improved Genetic algorithm steps are as follows: 

6.2 Improved Genetic Algorithm (IGA) 

Step 1: Create an initial population of P chromosomes and evaluate the fitness for each one. 

Step 2: Choose F= (P/4) best chromosomes from the current population. 

Step 3: Call MCMA (chromosome). 

Step 4: Repeat Steps 3 until all the F chromosomes are finished. 

Step 5: Replace old population with new one. 

Step 6: Evaluate the fitness of each chromosome in the new population. 

Step 7: Terminate if the number of generations meets some upper bound; otherwise go to Step2. 

6.3 Results of Applying IGA 

     Before describing the results of applying IGA we have to demonstrate the most GA and IGA 

parameters. These parameters are as follows: the population size (pop_size)=30, Probability of 

crossover (Pc)=0.8, Probability of mutation (Pm)=0.005 and number of generation (NG)=2000 for 

n=5,…,9, NG=4000 for n=10,…,14, and NG=5000 for n15. 

Remark (1): For the initial population of GA, SA, and other improved algorithms, the GRM is 

suggested to be used to obtain one of the population chromosomes. 

     Table-4 shows the comparison results between GA and IGA, where the standard method is GA for 

different n. 

Table 4-Comparison results between GA and IGA for different n. 

n 
GA IGA 

C Iter BT CT C E Iter BT CT 

10 54 [0,3453] 0.7 2.4 53.7 -0.3 [0,29] 0.02 1.7 

50 318.7 [0,1503] 0.3 3.3 273 -45.7 [236,1363] 0.4 2.4 

100 677 [0,2968] 0.8 3.9 586.3 -90.7 [880,4401] 1.2 2.6 

500 1262.7 [0,0] 0.02 9.6 1175.3 -87.4 [1420,4539] 3.5 5.5 

1000 7589.3 [0,0] 0.04 19 7238.7 -350.6 [2183,4604] 7.5 10.2 

1500 8162 [0,0] 0.1 29.3 7942.3 -219.7 [2337,4172] 9.8 16.6 

2000 9424.7 [0,0] 0.1 40 9067.7 -357 [254,1174] 4.1 23.6 

 

     The [0,0] it mean no improvement in the initial solution. 

     Table-5 shows the comparison results between the BABT1: IMDM-IMDM (or CEM since they are 

identical) from one side and with IGA and SA from the other side for n=5,…,20,25, where the 

standard method is BABT1. 
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Table 5-Comparison results between BABT1 with IGA and SA for n=5,…,20,25. 

n 
BABT1 IGA SA 

C CT C E Iter BT CT C E Iter BT CT 

5 51 R 51 0 [0,0] 0.01 R 51 0 [10,19] 0.01 R 

6 46.3 R 46.3 0 [0,2] 0.01 R 48.3 2 [6,59] 0.01 R 

7 53 R 53 0 [0,5] 0.01 R 58 5 [0,43] 0.01 R 

8 56.7 R 56.7 0 [9,13] 0.01 R 62.3 5.6 [0,73] 0.01 R 

9 43.3 R 44.3 1 [4,20] 0.02 R 51.3 8 [23,83] 0.01 R 

10 52.7 R 53.7 1 [0,29] 0.02 1.7 61.7 9 [0,0] 0.01 R 

11 61.7 R 65 3.3 [21,56] 0.03 1.6 75.3 13.6 [0,16] 0.01 R 

12 42.3 R 52.3 10 [10,246] 0.1 1.7 56 13.7 [0,41] 0.01 R 

13 60.3 30.7 67 6.7 [25.45] 0.03 1.8 78.3 18 [3,90] 0.01 R 

14 55 45.97 60.7 5.7 [18,41] 0.02 1.7 71 16 [53,107] 0.01 R 

15 46.7 4.7 59 12.3 [0,124] 0.03 2.2 60.3 13.6 [0,12] 0.01 R 

16 45 11.3 53.7 8.7 [11,71] 0.03 2.1 63.3 18.3 [0,16] 0.01 R 

17 53.7 1.6 58.7 5 [39,70] 0.03 2.1 68.3 14.6 [0,0] 0.01 R 

18 49.3 25.5 63 13.7 [0,80] 0.03 2.1 67.3 18 [0,0] 0.01 R 

19 48.7 2.03 56.7 8 [0,232] 0.04 2.1 60.7 12 [0,54] 0.01 R 

20 58.7 6.8 68 9.3 [0,85] 0.02 2.3 68.7 10 [0,0] 0.01 R 

25 71.3 721 94.3 23 [176,541] 0.2 2.2 107.3 36 [0,1597] 0.02 R 

Figure-1 shows the comparison results of Table-5. 

 
Figure 1-Comparison results between BABT1 with IGA and SA. 

 

     Table-6 shows the comparison results between the BABT2: GRM-IMDM from one side and with     

IGA and SA from the other side for n=30,…,80, where the standard method is BABT2. 
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Table 6-Comparison results between BABT2 with IGA and SA for n=30,…,80. 

n 
BABT2 IGA SA 

C CT C E Iter BT CT C E Iter BT CT 

30 56 25 86 30 [200,420] 0.2 2.3 90.7 34.7 [341,1864] 0.03 R 

40 172.3 651.5 289 116.7 [535,1166] 0.4 2.3 295.7 123.4 [375,682] 0.02 R 

50 180.3 431.4 273 92.7 [236,1363] 0.4 2.4 309 128.7 [0,507] 0.01 R 

60 199.7 888.1 345 145.3 [2147,2392] 1.1 2.4 395.3 195.6 [992,3167] 0.1 R 

70 218.7 390.9 366.7 148 [2200,4107] 1.7 2.5 407 188.3 [0,4818] 0.1 R 

80 207.7 838.97 374.3 166.6 [2801,4983] 2.2 2.6 442.3 234.6 [2699,4163] 0.1 R 

Figure-2 show the comparison results of Table-6. 

 
Figure 2-Comparison results between BABT2 with IGA and SA. 

 

     Table-7 shows the comparison results between the IMDM from one side and with IGA and SA 

from the other side for n=90,100,…,500, where the standard method is IMDM. 

 

Table 7-Comparison results between IMDM with IGA and SA for n=90,100,…,500. 

n 
IMDM IGA SA 

C CT C E Iter BT CT C E Iter BT CT 

90 247 1.9 401.3 154.3 [4334,3572] 2.1 2.6 456.3 209.3 [209,3412] 0.1 R 

100 308.3 2.9 586.3 278 [880,4401] 1.2 2.6 601 292.7 [2883,3873] 0.1 R 

200 387 18.4 795 408 [4444,4958] 3.1 3.3 845.7 458.7 [628,4238] 0.1 R 

300 436.7 62.5 981.7 545 [3621,4256] 3.2 4.1 1055.3 618.6 [48,2515] 0.04 R 

400 522.7 316.8 1091 568.3 [2387,4942] 3.7 4.9 1180 657.3 [1641,4141] 0.1 R 

500 568.3 761.4 1175.3 607 [1420,4539] 3.5 5.5 1216.7 648.4 [3077,4301] 0.2 R 

     Figure-3show the comparison results of Table-7. 
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Figure 3-Comparison results between IMDM with IGA and SA. 

 

7. Hybrid Genetic Algorithm 

     From classical GA and IGA, we see the good performance of IGA, but the IGA is still far from the 

results of some method like BABT or IMDM, especially for large n so that makes us suggest a hybrid 

between the IGA and SA to increase the performance of IGA. In this section we suggest to employ the 

SA in some important position of the IGA, so we suggest using the SA to improve chromosome which 

is the output of MCMA procedure. The suggested algorithm is called Hybrid GA (HGA) and the main 

steps as follows: 

Hybrid Genetic Algorithm (HGA) 

Step 1: Create an initial population of P chromosomes and evaluate the fitness for each one. 

Step 2: Choose F=(P/4) best chromosomes from the current population. 

Step 3: Call MCMA(chromosome). 

Step 4: Repeat Steps 3 until all the F chromosomes are finished. 

Step 5: For each chromosome of the population Call SA (chromosome). 

Step 6: Replace old population with a new one. 

Step 7: Evaluate the fitness of each chromosome in the new population. 

Step 8: Terminate if the number of generations meets some upper bound; otherwise, go to Step2. 

     Table-8 shows the comparison results between the HGA from one side and with IGA and SA from 

the other side for different n, where the standard method is IGA. 

Table 8-Comparison results between IGA and SA with HGA for different n. 

n 

IGA SA HGA 

C Iter BT CT C Iter BT 
C
T 

C E Iter BT CT 

10 53.7 [0,29] 
0.01

5 
1.7 61.7 [0,0] 

0.0
1 

R 53.3 -0.4 [10,44] 0.3 32.3 

50 273 [236,1363] 
0.40

9 
2.4 309 [0,575] 

0.0

1 
R 263.7 -9.3 

[1508,2245

] 
16.7 45 

100 586.3 [880,4401] 1.2 2.6 601 
[2883,3873

] 
0.1 R 518.3 -68 

[2379,3503

] 
30.3 49.9 

500 
1175.

3 

[1420,4539

] 
3.5 5.5 

1216.

7 

[3077,4301

] 
0.2 R 

1105.

3 
-70 

[3152,4565

] 
75 99.8 

100

0 

7238.

7 

[2183,4604

] 
7.5 

10.

2 
7446 [997,1577] 0.1 R 

6865.

3 

-

373.4 

[4387,4499

] 

152.

4 

172.

5 

150
0 

7942.
3 

[2337,4172
] 

9.8 
16.
6 

8087.
3 

[0,4174] 0.2 R 
7720.

3 
-222 

[1411,4717
] 

190.
5 

263.
4 

200

0 

9067.

7 
[254,1174] 4.1 

23.

6 
9277 [0,4294] 0.3 R 8606 

-

461.7 

[1723,3224

] 

172.

9 

368.

8 

    Figure-4 shows the comparison results of Table-8. 
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Figure 4-Comparison results between IGA with SA and HGA. 

 

8. Reduce Matrix using Successive Rules 

     The successive rule (SR) plays a very important role in solving the combinatorial optimization 

problem (COP), especially TSP, these rules may be mandatory. The SR’s will be helpful to reduce the 

numbers of cities that mean reduce the size of the problem, and this implies to reduce the required 

computation time to solve the problem. If the size of the TSP matrix is (n×n) and the number of SR’s 

is m, then the size of the matrix after the reduction is (n-m)×(n-m). In order to use the SR, we suggest 

the following Matrix reduction algorithm: 

Matrix Reduction Algorithm (MRA) 

Step 1: Input n, D=[dij], i, j=1,...,n. 

Step 2: Read m numbers of SR’s (m<n), k=0. 

Step 3: We have the SR cicj, k=k+1. 

Step 4: Reduce matrix D by Remove (cancel) two row’s and two columns ci and cj to obtained the 

reduced matrix   . 

Step 5: Let row   
 =row{cj}/{     

}, column   
 ={col{ci}/{     

}}+     
, add row   

  and column   
  in 

the last of the matrix   . 

Step 6: If k<m goto step 3. 

Step 7: Print the reduced matrix    with dim (n-m×n-m). 

Step 8: Stop.  

The follows example shows matrix reduction. 

Example 1-Let’s have the following TSP: 

 
A B C D E F G 

A − 6 9 1 7 9 8 

B 10 − 2 9 2 7 8 

C 2 10 − 10 8 4 2 

D 10 2 10 − 1 10 5 

E 7 10 8 8 − 1 5 

F 1 10 10 8 1 − 7 

G 3 5 7 4 1 4 − 

     The optimal route (obtained from some exact method) for the above TSP table is: 

ADBCGEFA, with C=10.  

     Now suppose we have the following SR: (BC) for the same example, we treat the two cities B 

and C as a single city say H, so we obtain the following reduced table: 
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A D E F G H=CiBC 

A − 1 7 9 8 6+2=8 

D 10 − 1 10 5 2+2=4 

E 7 8 − 1 5 10+2=12 

F 1 8 1 − 7 10+2=12 

G 3 4 1 4 − 5+2=7 

H=CCi 2 10 8 4 2 − 

     Where Ci =A, D, E, F and G according to i.  

     The optimal route for the above TSP table is: ADHGEFA, with C=10. 

     Now suppose we have the following SR’s: (BC and EF) for the same example, we treat the 

two cities E and F as a single city say I, so we obtain the following reduced table: 

 
A D G H I 

A − 1 8 8 8 

D 10 − 5 4 2 

G 3 4 − 7 2 

H 2 10 2 − 9 

I 1 8 7 12 − 

     The optimal route for the above TSP table is: ADHGIA, with C=10. 

Remark (2): The symmetric and asymmetric matrices when applying MRA are transformed into an 

asymmetric matrix. 

9. Optimal Solution for Iraqi's Cities Problem using Some Methods and LCM                              

     In this section we exploit the TSP to evaluate the minimum total cost (distance or time) for Iraqi 

cities. So some methods are investigated to solve this problem; these methods are; Branch and Bound 

Technique (BABT), HGA, IGA, GA and SA. 

9.1 Iraqi's Cities Problem (ICP) Definition  

     The Iraq’s cities problem is asymmetric TSP. Iraq consists of 18 governorates, the traveling cost 

between each two governorates centers is known. We wish to find the minimum total cost of these 

cities starting from the capital city; Baghdad, then returns to it without repeat the path between any 

two cities. The symbol of each city is as in the following table: 

City Baghdad Baqubah Diwaniyah Hillah Ramadi Karbala Najaf Kut Tikrit 

Symbol Bg Bq Dw Hl Rm Kb Nj Ku Tk 

City Kirkuk Samawah Sulaymaniyah Nasiriyah Erbil Amarah Mosul Duhok Basrah 

Symbol Kr Sm Sl Ns Er Am Ms Dh Bs 

     In this subsection, we will use the TSP as an application to compute the minimum total cost for 

n=18 Iraqi's cites. First, we demonstrate the distance in km in a Table-9 for the 18-cites which 

represents the governorates centers [13]. 

 

Table 9-The distance (Km) between the Iraqi’s cities 

 Bg Bq Kb Hl Rm Dw Nj Ku Tk Kr Sm Sl Ns Er Am Ms Dh Bs 

Bg − 69 107 115 120 162 172 182 242 267 272 335 345 364 373 404 477 548 

Bq 69 − 180 187 181 234 244 226 172 213 345 272 417 310 467 362 435 618 

Kb 107 180 − 47 148 132 77 211 293 373 234 442 315 470 369 505 578 502 

Hl 115 187 47 − 194 86 58 165 306 387 171 455 269 484 323 519 592 457 

Rm 120 181 148 194 − 279 223 301 185 288 371 400 443 384 491 398 471 631 

Dw 162 234 132 86 279 − 83 130 346 463 100 531 192 560 246 595 668 379 
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Nj 172 244 77 58 223 83 − 225 370 447 164 515 257 543 311 578 651 450 

Ku 182 226 211 165 301 130 225 − 368 433 242 432 182 530 192 580 653 373 

Tk 242 172 293 306 185 346 370 368 − 121 457 234 529 218 554 231 304 717 

Kr 267 213 373 387 288 463 447 433 121 − 540 112 612 98 616 174 246 799 

Sm 272 345 234 171 371 100 164 242 457 540 − 640 107 668 255 703 776 295 

Sl 335 272 442 455 400 531 515 432 234 112 640 − 613 180 624 284 336 799 

Ns 345 417 315 269 443 192 257 182 529 612 107 613 − 713 146 753 826 200 

Er 364 310 470 484 384 560 543 530 218 98 668 180 713 − 722 85 164 900 

Am 373 467 369 323 491 246 311 192 554 616 255 624 146 722 − 760 833 179 

Ms 404 362 505 519 398 595 578 580 231 174 703 284 753 85 760 − 75 946 

Dh 477 435 578 592 471 668 651 653 304 246 776 336 826 164 833 75 − 1016 

Bs 548 618 502 457 631 379 450 373 717 799 295 799 200 900 179 946 1016 − 

     In the same time, we have to estimate another cost which is represented by time factor by using 

distance cost mentioned in the Table-9 In order to estimate the time cost we have to use the following 

transformation: 

      

                      T = M / V                                                        …(2) 

     Where T is the time, M is the distance and V is the velocity factors respectively. 

 Table-10 describes the time cost in minutes depending on the distance cost mentioned in the 

Table-9 using constant velocity, V= 70 km/hour by car. (taking in consideration the Iraqi streets 

circumferences, where the specified constant velocity (V) is the minimum velocity) 

Table 10-The Time (minute) between the Iraqi’s cities 

 Bg Bq Kb Hl Rm Dw Nj Ku Tk Kr Sm Sl Ns Er Am Ms Dh Bs 

Bg − 59 92 99 103 139 147 156 207 229 233 287 296 312 320 346 409 470 

Bq 59 − 154 160 155 201 209 194 147 183 296 233 357 266 400 310 373 530 

Kb 92 154 − 40 127 113 66 181 251 320 201 379 270 403 316 433 495 430 

Hl 99 160 40 − 166 74 50 141 262 332 147 390 231 415 277 445 507 392 

Rm 103 155 127 166 − 239 191 258 159 247 318 343 380 329 421 341 404 541 

Dw 139 201 113 74 239 − 71 111 297 397 86 455 165 480 211 510 573 325 

Nj 147 209 66 50 191 71 − 193 317 383 141 441 220 465 267 495 558 386 

Ku 156 194 181 141 258 111 193 − 315 371 207 370 156 454 165 497 560 320 

Tk 207 147 251 262 159 297 317 315 − 104 392 201 453 187 475 198 261 615 

Kr 229 183 320 332 247 397 383 371 104 − 463 96 525 84 528 149 211 685 

Sm 233 296 201 147 318 86 141 207 392 463 − 549 92 573 219 603 665 253 
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Sl 287 233 379 390 343 455 441 370 201 96 549 − 525 154 535 243 288 685 

Ns 296 357 270 231 380 165 220 156 453 525 92 525 − 611 125 645 708 171 

Er 312 266 403 415 329 480 465 454 187 84 573 154 611 − 619 73 141 771 

Am 320 400 316 277 421 211 267 165 475 528 219 535 125 619 − 651 714 153 

Ms 346 310 433 445 341 510 495 497 198 149 603 243 645 73 651 − 64 811 

Dh 409 373 495 507 404 573 558 560 261 211 665 288 708 141 714 64 − 871 

Bs 470 530 430 392 541 325 386 320 615 685 253 685 171 771 153 811 871 − 

     Now we suggest to apply more than one method like BABT1 (IMDM-IMDM), BABT2: (GRM-

IMDM), IGA, HGA, GA and SA for distance cost in the Table-9 and time cost in the Table-10 for 

n=18. Before we describe the results we suggest using SR to be certain that what we obtain is an 

optimal path. These SR’s are as follows: 

1. Since the subpath MDE=MsDhEr is the only and the minimum cost of available path this 

mean that we have n=16 (Table-11)). 

Table 11-The distance between 16-Iraqi’s cities after applying SR (MDE) for Table-10 

 Bg Bq Kb Hl Rm Dw Nj Ku Tk Kr Sm Sl Ns Am Bs MDE 

Bg − 69 107 115 120 162 172 182 242 267 272 335 345 373 548 643 

Bq 69 − 180 187 181 234 244 226 172 213 345 272 417 467 618 601 

Kb 107 180 − 47 148 132 77 211 293 373 234 442 315 369 502 744 

Hl 115 187 47 − 194 86 58 165 306 387 171 455 269 323 457 758 

Rm 120 181 148 194 − 279 223 301 185 288 371 400 443 491 631 637 

Dw 162 234 132 86 279 − 83 130 346 463 100 531 192 246 379 834 

Nj 172 244 77 58 223 83 − 225 370 447 164 515 257 311 450 817 

Ku 182 226 211 165 301 130 225 − 368 433 242 432 182 192 373 819 

Tk 242 172 293 306 185 346 370 368 − 121 457 234 529 554 717 470 

Kr 267 213 373 387 288 463 447 433 121 − 540 112 612 616 799 413 

Sm 272 345 234 171 371 100 164 242 457 540 − 640 107 255 295 942 

Sl 335 272 442 455 400 531 515 432 234 112 640 − 613 624 799 523 

Ns 345 417 315 269 443 192 257 182 529 612 107 613 − 146 200 992 

Am 373 467 369 323 491 246 311 192 554 616 255 624 146 − 179 999 

Bs 548 618 502 457 631 379 450 373 717 799 295 799 200 179 − 1185 

MDE 364 310 470 484 384 560 543 530 218 98 668 180 713 722 900 − 

     With the same idea can get a time matrix with SR (MDE). 

2. Let’s add another certain subpath to the previous one, ABN=AmBsNs, this mean we have 

n=14 (Table-12)). 
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Table 12-The distance between 14-Iraqi’s cities after applying SR (MDE and ABN) for Table-10 

 Bg Bq Kb Hl Rm Dw Nj Ku Tk Kr Sm Sl MDE ABN 

Bg − 69 107 115 120 162 172 182 242 267 272 335 643 752 

Bq 69 − 180 187 181 234 244 226 172 213 345 272 601 846 

Kb 107 180 − 47 148 132 77 211 293 373 234 442 744 748 

Hl 115 187 47 − 194 86 58 165 306 387 171 455 758 702 

Rm 120 181 148 194 − 279 223 301 185 288 371 400 637 870 

Dw 162 234 132 86 279 − 83 130 346 463 100 531 834 625 

Nj 172 244 77 58 223 83 − 225 370 447 164 515 817 690 

Ku 182 226 211 165 301 130 225 − 368 433 242 432 819 571 

Tk 242 172 293 306 185 346 370 368 − 121 457 234 470 933 

Kr 267 213 373 387 288 463 447 433 121 − 540 112 413 995 

Sm 272 345 234 171 371 100 164 242 457 540 − 640 942 634 

Sl 335 272 442 455 400 531 515 432 234 112 640 − 523 1003 

MDE 364 310 470 484 384 560 543 530 218 98 668 180 − 1101 

ABN 345 417 315 269 443 192 257 182 529 612 107 613 992 − 

     With the same idea can get a time matrix with SR (MDE and ABN). 

     Notice that the symmetric matrix in Table-10 converted to asymmetric matrices in Tables-(11, 12)  

9.2 Comparison Results of BABT and LSM to Solve ICP 

     Table-13 shows the results of applying BABT1 and BABT2 methods for n=18 (WOSR) and for 

n=16 and 14 (WSR). 

Table 13-The results of applying BABT1 and BABT2 methods for different n WSR and WOSR 

Method 

n 

18 16 14 

Distance Time CT Distance Time CT Distance Time CT 

BABT1 2502 2145 8 2502 2145 2 2502 2145 1.6 

BABT2 2502 2145 3 2502 2145 2 2502 2145 1.6 

      

     Table-14 shows the results of the HGA, IGA, GA and SA methods for n=18 (without SR). 

Table 14-The results of the HGA, IGA, GA and SA methods for n=18 without SR. 

LSM 
n=18 

Distance Time Iter BT CT 

HGA 2502 2145 [14,15] 0.1 45 

IGA 2502 2145 [67,76] 0.1 2 

GA 2627 2262 [3878,3700] 2.3 4 

SA 2736 2345 [297,295] 0.01 0.1 

     For the above optimal costs we have the following unique symmetric path: 

“BgBqSlKrErDhMsTkRmKbHlNjDwSmNsBsAm 

KuBg”. 

     To verify our optimal result Dynamic Programming (DP) software obtained from [14] implemented 

to solve Iraqi cities problem and obtained the same results BABT1 and BABT2 in compotation time 

26007s. 

10. Conclusions 

1. The IMDM serves a good method to solve TSP so it is used as an UB and LB for BABT for    

different n. 
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2. The results of the practical examples of TSP, proof that the BABT1 is better than BABT2 in cost 

for n  25, while BABT2 is better in time for different n. 

3. IGA is better than GA and SA in terms of results for different n, and faster almost double than GA. 

4. For the time criterion, we notice that SA is the best. 

5. The HGA is better than the IGA in terms of results for different n. 

6. In general among all the proposed algorithms in this paper, for n25 we conclude that BABT1 is 

best algorithm (Figure-1), while for 25<n80 the BABT2 is the best (Figure (2)), for 80<n500 we see 

that IMDM is the best (Figure-3), lastly, for 500<n 2000 we obtained that HGA is the best (Figure-

4)). 

7. From Table-13, we can notice the time effect when applying the SR for the ICP, as the number of 

SR increased the time complexity of the problem will decrease. 

8. As future work, we recommended using other local search methods (Tabu Search, Particle Swarm 

Optimization, Bees Algorithm,…, etc.) to solve TSP. 

 

Reference 

1. Srour A., Othman Z. A. and Hamdan A. R. 2014. “A Water Flow-Like Algorithm for the 

Travelling Salesman Problem”, Hindawi Publishing Corporation, Advances in Computer 

Engineering, Volume 2014, Article ID 436312, http://dx.doi.org/10.1155/2014/436312. 

2. Dorigo M. and Franklin A. 1996. “Ant colonies for the traveling salesman problem”, Université 

Libre de Bruxelles Belgium. 

3. Basu S. and Ghosh D. 2008. “A Review of the Tabu Search Literature on Traveling Salesman 

Problems”, Indian Institute of Management Ahmedabad – 380015, India. 

4. Hussain A., Muhammad Y. S., Sajid M. N., Hussain I.,
 
Shoukry A. M. and Gani. S. 2017. “Genetic 

Algorithm for Traveling Salesman Problem with Modified Cycle Crossover Operator”, Hindawi 

Computational Intelligence and Neuroscience, Article ID 7430125, https://doi.org /10.1155/ 

2017/7430125. 

5. Tsai C., Tseng S., Chiang M., Yang C. and Hong T. 2014. “A High-Performance Genetic 

Algorithm: Using Traveling Salesman Problem as a Case”, Hindawi Publishing Corporation, The 

Scientific World Journal, Volume 2014, Article ID 178621, http://dx.doi.org /10.1155/ 

2014/178621. 

6. Akandwanaho S. M., Adewumi A. O. and Adebiyi A. A. 2014. “Solving Dynamic Traveling 

Salesman Problem Using Dynamic Gaussian Process Regression”,  Hindawi Publishing 

Corporation, Journal of Applied Mathematics, Volume 2014, Article ID 818529, http://dx.doi.org/ 

10.1155/2014/818529. 

7. Jassim S. M. and Ali F.H. 2018. “New Improved Heuristic Method for Solving Travelling 

Salesman Problem”, Iraqi Journal of Science, 59(4C): 2289-2300. 

8. Ranjana P. 2018. “Travelling salesman problem using reduced algorithmic Branch and bound 

approach”, International Journal of Pure and Applied Mathematics, 118(20): 419-424, url: 

http://www.ijpam.eu, Special Issue, 2018. 

9. Pineda P. 2017. “Implementation and solutions of the Traveling Salesman Problem (TSP) in R”, In 

Partial Fulfillment of Stat 4395-Senior Project Department of Mathematics and Statistics Spring. 

2017. 

10. Mohsen A. M. 2016. “Annealing Ant Colony Optimization with Mutation Operator for Solving 

TSP”, Hindawi Publishing Co2rporation, Computational Intelligence and Neuroscience, Volume 

2016, Article ID 8932896, http://dx.doi.org/10.1155/2016/8932896. 

11. Hameed W. M. 2005. “The Role of Crossover in Genetic Algorithms (GAs)”, M.Sc. thesis 

Submitted to the College of Science, AL-Mustansiriyah University.  

12. Hung C. H. 2016. “A Genetic Simplified Swarm Algorithm For Optimizing N- Cities Open Loop 

Travelling Salesman Problem”, M.Sc. Faculty Of Computer Science And Information Technology 

University Tun Hussein Onn Malaysia. 

13. https://www.google.com/maps, 2018. 

14. https://www.mathworks.com/matlabcentral/fileexchange/31454-dynamic-programming-solution-

to-the-tsp, 2011. 

 

http://dx.doi.org/10.1155/2014/436312
http://dx.doi.org/%2010.1155/2014/818529
http://dx.doi.org/%2010.1155/2014/818529
http://www.ijpam.eu/
http://dx.doi.org/10.1155/2016/8932896
https://www.google.com/maps
https://www.mathworks.com/matlabcentral/fileexchange/31454-dynamic-programming-solution-to-the-tsp
https://www.mathworks.com/matlabcentral/fileexchange/31454-dynamic-programming-solution-to-the-tsp

