

ISSN: 0067-2904

On the Grobner Basis of the Toric Ideal for $3 \times n$ - Contingency Tables

Hussein S. Mohammed Hussein*, Abdulrahman H. Majeed
Department of mathematics, College of science, University of Baghdad, Baghdad, Iraq

Abstract

In this paper, The Grobner basis $G r$ of the Toric Ideal I_{A} for $3 \times n$ - contingency tables related with the Markov basis B introduced by Hussein S. MH, Abdulrahman H. M in 2018 is found. Also, the Grobner basis Gr is a reduced and universal Grobner basis are shown.

Keywords: Computational algebraic statistics, Toric ideal, Configuration matrix, Grobner basis, Reduced Grobner basis, Universal Grobner basis.

1. Introduction

Let I be a finite set and $|I|=n$, a cell is the element of I and it denoted by $\boldsymbol{i} \in I . \boldsymbol{i}=i_{1} \ldots i_{m}, \boldsymbol{i}$ is often multi-index. A non-negative integer $x_{i} \in \mathbb{N}=\{1,2, \ldots\}$ denoted a frequency of the cell \boldsymbol{i}. A contingency table is a set of frequencies and stated as $\boldsymbol{x}=\left\{x_{\boldsymbol{i}}\right\}_{\boldsymbol{i} \in I}$, with an suitable arrangement of the cell, considered a contingency table $\boldsymbol{x}=\left\{x_{i}\right\}_{i \in I} \in \mathbb{N}^{n}$ as a n-dimansional column vector of nonnegative integers. The contingency table can be treated as a function from I to \mathbb{N} defined as $\boldsymbol{i} \mapsto x_{\boldsymbol{i}}$. A v-dimantional column vector $\boldsymbol{t}=\left(t_{1}, \ldots, t_{v}\right)^{\prime} \in \mathbb{Z}^{v}$ as $t_{j}=a_{j}^{\prime} \boldsymbol{x}, j=1, \ldots, v$. Here ${ }^{\prime}$ denotes a transpose of the matrix or vector. Also define $v \times p$ matrix A, with its j-row being $a^{\prime}{ }_{j}$ given by $A=\left[\begin{array}{c}a^{\prime} \\ \vdots \\ a^{\prime} \\ v\end{array}\right]$, and if $\boldsymbol{t}=A \boldsymbol{x}$ is a v-dimensional column vector, we define the set $T=\{\boldsymbol{t}: \boldsymbol{t}=A \boldsymbol{x}, \boldsymbol{x} \in$ $\left.\mathbb{N}^{n}\right\}=A \mathbb{N}^{n} \subset \mathbb{Z}^{v}$, where denoted \mathbb{N} is a set of natural numbers. The set of \boldsymbol{x} 's for $\boldsymbol{t}, A^{-1}[\boldsymbol{t}]=\{\boldsymbol{x} \in$ $\left.\mathbb{N}^{n}: A \boldsymbol{x}=\boldsymbol{t}\right\}\left(\boldsymbol{t}\right.$-fibers), is treat for result similar tests. A set of \boldsymbol{t}-fibers deigns a taking apart of \mathbb{N}^{n}. An important noting is that \boldsymbol{t}-fiber depend on given out of its kernel $\operatorname{ker}(A)$. In fact, defined $\boldsymbol{x}_{1} \sim \boldsymbol{x}_{2} \leftrightarrow$ $\boldsymbol{x}_{1}-\boldsymbol{x}_{2} \in \operatorname{ker}(A)$. With oneself kernel for different A's, the set of \boldsymbol{t}-fibers are the same [1].
(P.Diaconis) and (B.Sturmfels's) publication in 1998 found a new path in the rapid-advancing field of computational algebraic statistics [2] and [3].

In 2000, (M. Dyer), and (C. Greenhill), found a Polynomial-time compute and sampling of contingency tables[4].

[^0]In 2003, (A.Dobra) showed that the only moves have to be inclusive in a Markov basis that connects all contingency tables with fixed marginals [5].

In 2018, (H. Mohammed Hussein), and (A. Majeed), found a Markov basis and toric ideals for $\left(25 n^{3}-66 n^{2}+44 n\right) \times 3 \times n$ - contingency tables with it have a fixed dimensional marginal [6].
In this paper, we find the Grobner basis $G r$ of the Toric Ideal I_{A} for $3 \times n$ - contingency tables related with the Markov basis \mathbf{B}, also, we show that the Grobner basis $G r$ is a reduced and universal Grobner basis.

2. Some Basic Concepts

In this section, we review some basic definitions and notations of the monomial, the support of f, Grobner basis, toric ideals, and configuration matrix that we need in our work.
Definition (2.1) [7]: A monomial in the variables $x_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}$ is the product of the form $\prod_{i=1}^{k} x_{i}^{a_{i}}=$ $x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{k}^{a_{k}}$, where each a_{i} is a nonnegative integer.
Definition (2.2) [7]: The degree of the monomial $\prod_{i=1}^{k} x_{i}^{a_{i}}=x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{k}^{a_{k}}$ is $\sum_{i=1}^{k} a_{i}$, in particular $1=x_{1}^{0} x_{2}^{0} \ldots x_{k}^{0}$ is a monomial of degree 0 .
Definition (2.3) [7]: The monomial $f=\prod_{i=1}^{k} x_{i}^{a_{i}}$ divides $g=\prod_{i=1}^{k} x_{i}^{b_{i}}$ if $a_{i} \leq b_{i}$ for all $1 \leq i \leq$ k, we write $f \mid g$ if f divides g.
Definition (2.4) [7]: Let μ_{n} denote the set of monomials in the variables $x_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}$, let M be a nonempty subset of μ_{n}. A monomial $f \in M$ is called a minimal element of M if $g \in M$ and $g \mid f$, then $f=g$.
Definition (2.5) [7]: Given a nonzero polynomial $f=f_{1}+f_{2}+\cdots+f_{t}$ of $K[x]$, where the notation K stands for one of \mathbb{Q}, \mathbb{R} and \mathbb{C} and $f_{1}, f_{2}, \ldots, f_{t}$ are monomials with $f_{1}>f_{2}>\cdots>f_{t}$, then the support of f is the set of monomials appearing in f. It is written as $\operatorname{supp}(f)$. Thus $\operatorname{supp}(f)=$ $\left\{f_{1}, f_{2}, \ldots, f_{t}\right\}$ and $\operatorname{in}_{<}(f)=f_{1}$.
Definition (2.6) [7]: The Grobner basis of an ideal $I \neq\langle 0\rangle$ of $K[x]$ is a set $\left\{f_{1}, f_{2}, \ldots, f_{t}\right\} \subseteq I$ of nonzero polynomials such that $\left\{i n_{<}\left(f_{1}\right), i n_{<}\left(f_{2}\right), \ldots, i n_{<}\left(f_{t}\right)\right\}$ is a system of monomial generators of the initial ideal $\operatorname{in}_{<}(I)$, where $i n_{<}(I)=\left\langle i n_{<}(f): 0 \neq f \in I\right\rangle$.
Definition (2.7) [7]: A Grobner basis $\left\{f_{1}, f_{2}, \ldots, f_{t}\right\}$ of an ideal $I \neq\langle 0\rangle$ of $K[x]$ is called reduced Grobner basis if the following conditions are satisfied:

1. The coefficient of $i n_{<}\left(f_{i}\right)$ in f_{i} is 1 for all $1 \leq i \leq t$.
2. If $i \neq j$, then none of the monomials belonging to $\operatorname{supp}\left(f_{i}\right)$ is divided by $i n_{<}\left(f_{j}\right)$.

Definition (2.8) [8]: A finite Grobner basis $\left\{f_{1}, f_{2}, \ldots, f_{t}\right\}$ of an ideal I_{A} is called a universal Grobner basis and it is denoted by u_{A}.
Definition (2.9) [7]: Let $a=\left[\begin{array}{llll}a_{1} & a_{2} & \ldots & a_{m}\end{array}\right]^{/}$and $b=\left[\begin{array}{llll}b_{1} & b_{2} & \ldots & b_{m}\end{array}\right]^{/}$, then the inner product of the vectors a and b is defined as $a . b=\sum_{i=1}^{m} a_{i} b_{i}$.
Definition (2.10) [7]: Let $A=\left(a_{i j}\right)_{1 \leq i \leq m}$ be a $m \times n$ matrix and $a_{j}=\left[\begin{array}{llll}a_{1 j} & a_{2 j} & \cdots & a_{m j}\end{array}\right]^{\prime}$, $1 \leq j \leq n$ is the column vectors of A, a matrix A is called a configuration matrix if there exists $c \in \mathbb{R}^{m}$ such that $a_{j} . c=1,1 \leq j \leq n$.
Remark (2.11) [6]: Let n be a natural number, $n \geq 2$, and let $\boldsymbol{x}_{j} \in A^{-1}[t], j=1, \ldots, k$ be the representative elements of the set of $3 \times n$-contingency tables and $\mathbf{B}=\left\{\mathbf{z}_{1}, \mathbf{z}_{2}, \ldots, \mathbf{z}_{k}\right\}$ such that each $\boldsymbol{z}_{m}, m=1,2, \ldots k$, is a matrix of dimension $3 \times n$ either has two non-zero columns and the other columns are zero denoted by $\mathbf{2} z_{m}$, or it has three non-zero columns and the other columns are zero denoted by $\mathbf{3} z_{m}$, like
$\left[\begin{array}{ccc}1 & 0 & -1 \\ -1 & 0 & 1 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{ccc}2 & -2 & 0 \\ 0 & 0 & 0 \\ -2 & 2 & 0\end{array}\right],\left[\begin{array}{ccc}2 & -1 & -1 \\ -1 & 0 & 1 \\ -1 & 1 & 0\end{array}\right]$.
Also, we write the elements of \mathbf{B} as one dimensional column vector as follows:
$\mathbf{z}_{\boldsymbol{m}}=\left(z_{1}, \ldots, z_{3 n}\right)^{\prime}, m=1, \ldots, k$ and $z_{s}=0,1,-1,2$ or $-2, s=1,2, \ldots, 3 n$ such that If $s=1,2, \ldots, n$, then
$z_{s}= \begin{cases}1 & \text { if } z_{s+n}+z_{s+2 n}=-1 \text { and } \sum_{\substack{i=1 \\ i \neq s}}^{n} z_{i}=-1 \\ 2 & \text { if } z_{s+n}+z_{s+2 n}=-2 \text { and } \sum_{\substack{i=1 \\ i \neq s}}^{n} z_{i}=-2 \\ 0 & \text { if } z_{s+n}+z_{s+2 n}=0 \quad \text { and } \sum_{\substack{i=1 \\ i \neq s}}^{n} z_{i}=0 \\ -1 & \text { if } z_{s+n}+z_{s+2 n}=1 \text { and } \sum_{\substack{i=1 \\ i \neq s}}^{n}=1 \\ -2 & \text { if } z_{s+n}+z_{s+2 n}=2 \text { and } \sum_{\substack{i=1 \\ i \neq s}}^{n} z_{i}=2\end{cases}$
If $s=n+1, n+2, \ldots, 2 n$, then
$z_{s}=\left\{\begin{array}{lc}1 & \text { if } z_{s-n}+z_{s+n}=-1 \text { and } \sum_{\substack{i=n+1 \\ i \neq s}}^{2 n} z_{i}=-1 \\ 2 & \text { if } z_{s-n}+z_{s+n}=-2 \text { and } \sum_{\substack{i=n+1 \\ i \neq s}}^{2 n} z_{i}=-2 \\ 0 & \text { if } z_{s-n}+z_{s+n}=0 \text { and } \sum_{\substack{i=n+1 \\ i \neq s}}^{2 n} z_{i}=0 \\ -1 & \text { if } z_{s-n}+z_{s+n}=1 \text { and } \sum_{\substack{i \neq n+1 \\ i \neq s}}^{2 n} z_{i}=1 \\ -2 & \text { if } z_{s-n}+z_{s+n}=2 \text { and } \sum_{\substack{i=n+1 \\ i \neq s}}^{2 n} z_{i}=2\end{array}\right.$
If $s=2 n+1,2 n+2, \ldots, 3 n$, then
$z_{s}= \begin{cases}1 & \text { if } z_{s-n}+z_{s-2 n}=-1 \text { and } \sum_{i=2 n+1}^{3 n} z_{i}=-1 \\ 2 & \text { if } z_{s-n}+z_{s-2 n}=-2 \text { and } \sum_{\substack{i=2 n+1 \\ i \neq s}}^{3 n} z_{i}=-2 \\ 0 & \text { if } z_{s-n}+z_{s-2 n}=0 \text { and } \sum_{\substack{i=2 n+1 \\ i \neq s}}^{3 n} z_{i}=0 \\ -1 & \text { if } z_{s-n}+z_{s-2 n}=1 \text { and } \sum_{\substack{i=2 n+1 \\ i \neq s}}^{3 n} z_{i}=1 \\ -2 & \text { if } z_{s-n}+z_{s-2 n}=2 \text { and } \sum_{\substack{3=2 n+1 \\ i \neq s}}^{3 n} z_{i}=2\end{cases}$

Theorem (2.12) [6]:

The number of elements in \mathbf{B} is equal to $25 n^{3}-66 n^{2}+41 n$.

Remark (2.13) [6]:

Given a contingency table \boldsymbol{x}, the entry of the matrix A in the column indexed by $\boldsymbol{x}=$ $\left(x_{1}, x_{2}, \ldots, x_{3 n}\right)$ and row $\left(\sum_{i=1}^{\mathrm{n}} x_{\mathrm{i}}, \sum_{i=\mathrm{n}+1}^{2 \mathrm{n}} x_{\mathrm{i}}, \sum_{i=2 \mathrm{n}+1}^{3 \mathrm{n}} x_{\mathrm{i}}, x_{1}+x_{\mathrm{n}+1}+x_{2 \mathrm{n}+1}, x_{2}+x_{\mathrm{n}+2}+\right.$ $x_{2 \mathrm{n}+2}, \ldots, x_{\mathrm{n}}+x_{2 \mathrm{n}}+x_{3 n}$) will be equal to one if x_{i} a pears in the ($\sum_{i=1}^{\mathrm{n}} x_{\mathrm{i}}$) and it will zero otherwise. Then

$$
\mathrm{A}=\left[\begin{array}{ccccccccccccccc}
1 & 1 & \cdots & 1 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 & 1 & 1 & \cdots & 1 & 1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 1 & \cdots & 1 & 1 \\
1 & 0 & \cdots & 0 & 0 & 1 & 0 & \cdots & 0 & 0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 & 0 & 1 & \cdots & 0 & 0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 1 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 & \cdots & 0 & 1
\end{array}\right]_{(n+3) \times 3 n}
$$

Theorem (2.14) [6]:

$\mathbf{B}=\left\{\mathbf{z}_{1}, \ldots, \mathbf{z}_{\left(25 n^{3}-66 n^{2}+41 n\right)}\right\}$ is a set of moves.
Corollary (2.15) [6]:
The set \mathbf{B} of moves in theorem (2.14) is a Markov basis.

Corollary (2.16) [6]: Let B is a Markov basis for A Then toric ideal I_{A} for $\left(25 n^{3}-66 n^{2}+41 n\right) \times$ $3 \times n$ - contingency tables is $I_{\mathrm{A}}=<P_{i+l} P_{j+r}-P_{j+l} P_{i+r}, P_{i+l}{ }^{2} P_{j+r} P_{j+s}-P_{j+l}{ }^{2} P_{i+r} P_{i+s}, P_{i+l}{ }^{2} P_{j+r} P_{k+r}-P_{i+r}{ }^{2} P_{j+l} P_{k+l}$, $P_{i+l}{ }^{2} P_{j+r}{ }^{2} P_{k+s}-P_{j+l}{ }^{2} P_{i+r} P_{i+s} P_{k+r}, P_{i+l}{ }^{2} P_{j+r}{ }^{2} P_{k+s}{ }^{2}-P_{i+r}{ }^{2} P_{j+s}{ }^{2} P_{k+l}{ }^{2}, P_{i+l}{ }^{2} P_{j+r}{ }^{2} P_{k+s}{ }^{2}-$ $P_{i+s} P_{i+r} P_{j+s} P_{j+l} P_{k+r} P_{k+l}, P_{i+l}^{2} P_{j+r} P_{k+s}-P_{i+r} P_{i+s} P_{j+l} P_{k+l}: \quad i, j, k=1,2, \ldots, n$ and $l, s, r=$ $0, \mathrm{n}, 2 n$, such that $i \neq j \neq k$ and $l \neq \mathrm{s} \neq r>\subset \mathbb{C}\left[P_{1}, P_{2}, \ldots, P_{3 n}\right]$.

3. The Main Results

Theorem (3.1): The matrix A in Remark (2.13) is a configuration matrix.

Proof:

To prove A is a configuration matrix,
Since $A=\left[\begin{array}{ccccccccccccccc}1 & 1 & \cdots & 1 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 & 1 & 1 & \cdots & 1 & 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 0 & \cdots & 0 & 0 & 1 & 0 & \cdots & 0 & 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 & 0 & 1 & \cdots & 0 & 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 1 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 & \cdots & 0 & 1\end{array}\right]_{(n+3) \times 3 n}$
Therefore, $a_{j}=\left[\begin{array}{c}a_{1 j} \\ a_{2 j} \\ \vdots \\ a_{(n+3) j}\end{array}\right], 1 \leq j \leq 3 n$. From Definition (2.10).
Let $c=\left[\begin{array}{c}1 \\ 1 \\ 1 \\ 0 \\ 0 \\ \vdots \\ 0\end{array}\right]_{(n+3)}$, then $a_{j} \cdot c=\sum_{i=1}^{n+3} a_{i} c_{i}=a_{1}+a_{2}+a_{3}$ from Definition (2.9).
Case1: if $1 \leq j \leq n$, then $a_{1}=1$ and $a_{2}=a_{3}=0 \Rightarrow a_{j} . c=1$.
Case2: if $n+1 \leq j \leq 2 n$, then $a_{2}=1$ and $a_{1}=a_{3}=0 \Rightarrow a_{j} . c=1$.
Case3: if $2 n+1 \leq j \leq 3 n$, then $a_{3}=1$ and $a_{1}=a_{2}=0 \Rightarrow a_{j} . c=1$.
So, $a_{j} \cdot c=1,1 \leq j \leq 3 n$,
Therefore, A is a configuration matrix from Definition (2.10).
Theorem (3.2): The Grobner basis of an ideal I_{A} is $G r=\left\{P_{i+l} P_{j+r}-P_{j+l} P_{i+r}: i, j=\right.$ $1,2, \ldots, n$ and $l, r=0, \mathrm{n}, 2 n$, such that $i \neq j$ and $l<r\}$.

Proof:

To prove $G r$ is a Grobner basis of an ideal I_{A}.
It is clear that $G r \subseteq I_{A}$,
From Definition (2.6) we get the system of monomial $\left\{\right.$ in $\left._{<}(f): 0 \neq f \in G r\right\}=\left\{P_{i+l} P_{j+r}: i, j=\right.$ $1,2, \ldots, n$ and $l, r=0, \mathrm{n}, 2 n$, such that $i \neq j$ and $l<r\}$. And
$\operatorname{in}_{<}\left(I_{A}\right)=\left\langle\operatorname{in}_{<}(f): 0 \neq f \in I_{A}\right\rangle=<P_{i+l} P_{j+r}, P_{i+l}^{2} P_{j+r} P_{j+s}, P_{i+l}^{2} P_{j+r} P_{k+r}$,
$P_{i+l}{ }^{2} P_{j+r}{ }^{2} P_{k+s}, P_{i+l}{ }^{2} P_{j+r}{ }^{2} P_{k+s}{ }^{2}, P_{i+l}{ }^{2} P_{j+r}{ }^{2} P_{k+s}{ }^{2}, P_{i+l}{ }^{2} P_{j+r} P_{k+s}: i, j, k=1,2, \ldots, n$ and $l, s, r=$
$0, \mathrm{n}, 2 n \quad, \quad$ such that $\quad i \neq j \neq k \quad$ and $l \neq \mathrm{s} \neq r\rangle=\left\langle P_{i+l} P_{j+r}: i, j=1,2, \ldots, n\right.$ and $l, r=$ $0, \mathrm{n}, 2 n$, such that $i \neq j$ and $l \neq r\rangle$.
So, in $_{<}\left(I_{A}\right)=\left\langle\operatorname{in}_{<}(f): 0 \neq f \in G r\right\rangle$, implies that the system of monomial $\left\{\operatorname{in}_{<}(f): 0 \neq f \in G r\right\}$ generators of the initial ideal $\mathrm{in}_{<}(I)$.
Then $G r$ is a Grobner basis of an ideal I_{A}.
Corollary (3.3): The Grobner basis $G r$ in Theorem (3.2) is a reduced Grobner basis.
Proof:
Since $G r=\left\{P_{i+l} P_{j+r}-P_{j+l} P_{i+r}: i, j=1,2, \ldots, n\right.$ and $l, r=0, \mathrm{n}, 2 n \quad$, such that $i \neq j$ and $l<r\}$,

Suppose $f_{1}, f_{2} \in G r$, such that $i_{<}\left(f_{2}\right) \mid f$ where $f \in \operatorname{supp}\left(f_{1}\right)$
Therefore, from Definition of $G r$ and Definition (2.5) we get
$i_{<}\left(f_{2}\right)=P_{i+l} P_{j+r}, l<r$
Then $\operatorname{supp}\left(f_{1}\right)=\left\{P_{i+l} P_{j+r}, P_{j+l} P_{i+r}\right\}, l<r$.
From Definition of $G r$ and Definition (2.3) we get $f_{1}=f_{2}=P_{i+l} P_{j+r}-P_{j+l} P_{i+r}$.
Implies that $G r$ is a reduced Grobner basis from Definition (2.7).
Corollary (3.4): The Grobner basis $G r$ in Theorem (3.2) is a universal Grobner basis.

Proof:

It is clear that $G r$ is a universal Grobner basis because it is finite by using Theorem (3.2) and Definition (2.8).
Example (3.5): For $n=2$, there are 18 moves in a Markov basis B according to Theorem (2.14) for 3×2-contingency table, then
$\left.\mathbf{B}=\left\{\begin{array}{l}{\left[\begin{array}{cc}1 & -1 \\ -1 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{cc}1 & -1 \\ 0 & 0 \\ -1 & 1\end{array}\right],\left[\begin{array}{cc}0 & 0 \\ 1 & -1 \\ -1 & 1\end{array}\right],\left[\begin{array}{cc}-1 & 1 \\ 1 & -1 \\ 0 & 0\end{array}\right],\left[\begin{array}{cc}-1 & 1 \\ 0 & 0 \\ 1 & -1\end{array}\right],\left[\begin{array}{cc}0 & 0 \\ -1 & 1 \\ 1 & -1\end{array}\right],} \\ -2\end{array} \frac{2}{0} 0 .\left[\begin{array}{cc}2 & -2 \\ 0 & 0 \\ -2 & 2\end{array}\right],\left[\begin{array}{cc}0 & 0 \\ 2 & -2 \\ -2 & 2\end{array}\right],\left[\begin{array}{cc}-2 & 2 \\ 2 & -2 \\ 0 & 0\end{array}\right],\left[\begin{array}{cc}-2 & 2 \\ 0 & 0 \\ 2 & -2\end{array}\right],\left[\begin{array}{cc}0 & 0 \\ -2 & 2 \\ 2 & -2\end{array}\right],\right\},\left[\begin{array}{cc}-1 & 1 \\ -1 & 1 \\ 2 & -2\end{array}\right],\left[\begin{array}{cc}-2 & 2 \\ 1 & -1 \\ 1 & -1\end{array}\right],\left[\begin{array}{cc}1 & -1 \\ -2 & 2 \\ 1 & -1\end{array}\right],\left[\begin{array}{cc}1 & -1 \\ 1 & -1 \\ -2 & 2\end{array}\right]\right\}$,
By Corollary (2.16) the toric ideal of 3×2 - contingency table
I_{A}
$=<P_{1} P_{4}-P_{2} P_{3}, P_{1} P_{6}-P_{2} P_{5}$,
$P_{3} P_{6}-P_{4} P_{5}, P_{1}^{2} P_{4} P_{6}-P_{2}^{2} P_{3} P_{5}, P_{1} P_{4}^{2} P_{5}-P_{2} P_{3}^{2} P_{6}, P_{1} P_{3} P_{6}^{2}-P_{2} P_{4} P_{5}^{2}>\subset$ $\mathbb{C}\left[P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}\right]$.
And from Theorem (3.2) the Grobner basis of an ideal I_{A} is $\operatorname{Gr}=\left\{P_{1} P_{4}-P_{2} P_{3}, P_{1} P_{6}-P_{2} P_{5}\right.$, $\left.P_{3} P_{6}-P_{4} P_{5}\right\}$, since
$P_{1}{ }^{2} P_{4} P_{6}-P_{2}{ }^{2} P_{3} P_{5}=P_{1} P_{6}\left(P_{1} P_{4}-P_{2} P_{3}\right)+P_{2} P_{3}\left(P_{1} P_{6}-P_{2} P_{5}\right)$.
So $P_{1}{ }^{2} P_{4} P_{6}-P_{2}^{2} P_{3} P_{5} \in<P_{1} P_{4}-P_{2} P_{3}, P_{1} P_{6}-P_{2} P_{5}>\subseteq\langle G r\rangle$.
Moreover, in the same type we have $P_{1} P_{4}{ }^{2} P_{5}-P_{2} P_{3}{ }^{2} P_{6}, P_{1} P_{3} P_{6}{ }^{2}-P_{2} P_{4} P_{5}{ }^{2} \in\langle G r\rangle$
Implies that $I_{\mathrm{A}}=\langle G r\rangle$.

References

1. Aoki, S. and Takemura, A. 2008. "The largest group of invariance for Markov bases and toric ideals", J. Symbolic Computation, 43(5): 342-358.
2. Diaconis, P. and Sturmfels, B. 1998. "Algebraic algorithms for sampling from conditional distributions", The Annals of Statistics, 26: 363-397.
3. Diaconis, P., Eisenbud, D. and Sturmfels, B. 1998 "Lattice walks and primary decomposition", Mathematical Essays in Honor of Gian-Carlo Rota, eds. B. Sagan and R. Stanley, Progress in Mathematics, Vol. 161, Birkhauser, Boston, pp.173-193.
4. Dyer, M. and Greenhill, C. 2000 "Polynomial-time counting and sampling of two-rowed contingency tables", Theoretical Computer Sciences, 246: 265-278.
5. Dobra, A. 2003 "Markov bases for decomposable graphical models", Bernoulli, 9(6): 1093-1108.
6. Mohammed Hussein, H. S. and Majeed, A. H. 2018 "Toric Ideals for ($\left.25 \mathrm{n}^{\wedge} 3-66 \mathrm{n}^{\wedge} 2+41 \mathrm{n}\right) \times 3 \times \mathrm{n}$ - Contingency Tables", Journal of Engineering and Applied Sciences, accept,.
7. Hibi, T. (Ed.) 2013 "Gröbner Bases-Statistics and Software Systems", Springer, Tokyo.
8. Christos, T. 2016. "Generalized robust toric ideals", Journal of Pure and Applied Algebra, 220(1): 263-277.

[^0]: *Email: husseinsalman88 @yahoo.com

