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Abstract

In this paper, The Grobner basis Gr of the Toric ldeal I, for 3 x n- contingency
tables related with the Markov basis B introduced by Hussein S. MH,
Abdulrahman H. M in 2018 is found. Also, the Grobner basis Gr is a reduced and
universal Grobner basis are shown.
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1. Introduction

Let I beafinite setand |I| = n, a cell is the element of I anditdenotedby i €l. i =i; ... i), 1
is often multi-index. A non-negative integer x; € N = {1,2,...} denoted a frequency of the cell i. A
contingency table is a set of frequencies and stated as x = {x;};¢;, With an suitable arrangement of the
cell, considered a contingency table x = {x;};c; € N" as a n-dimansional column vector of non-
negative integers. The contingency table can be treated as a function from I to N defined as i — x;.
A v-dimantional column vector t = (ty,...,t,)" € Z¥ as tj = a'jx,j=1,..,v. Here ' denotes a
transpose of the matrix or vector. Also define v X p matrix A, with its j-row being a'; given by
a'y

A= , and if t = Ax is a v-dimensional column vector, we define the setT = {t:t = Ax,x €

a',
N™} = AN™ c Z, where denoted N is a set of natural numbers. The set of x's for t, A"1[t] = {x €
N™: Ax = t}(t-fibers), is treat for result similar tests. A set of t-fibers deigns a taking apart of N™. An
important noting is that t-fiber depend on given out of its kernel ker(A). In fact, defined x;~x, <
x; — X, € ker(A). With oneself kernel for different A's, the set of t-fibers are the same [1].
(P.Diaconis) and (B.Sturmfels's) publication in 1998 found a new path in the rapid-advancing field of
computational algebraic statistics [2] and [3].

In 2000, (M. Dyer), and (C. Greenhill), found a Polynomial-time compute and sampling of
contingency tables[4].
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In 2003, (A.Dobra) showed that the only moves have to be inclusive in a Markov basis that
connects all contingency tables with fixed marginals [5].

In 2018, (H. Mohammed Hussein), and (A. Majeed), found a Markov basis and toric ideals for
(25n3 — 66n? + 44n) x 3 X n- contingency tables with it have a fixed dimensional marginal [6].

In this paper, we find the Grobner basis Gr of the Toric Ideal I, for 3 X n- contingency tables
related with the Markov basis B, also, we show that the Grobner basis Gr is a reduced and universal
Grobner basis.

2. Some Basic Concepts

In this section, we review some basic definitions and notations of the monomial, the support of f,
Grobner basis, toric ideals, and configuration matrix that we need in our work.
Definition (2.1) [7]: A monomial in the variables x4, x5, ..., Xy is the product of the form ]'[{-"'=1xf" =
x;1x,? ... x, ¥, where each a; is a nonnegative integer.
Definition (2.2) [7]: The degree of the monomial [T, x;" = x"'xy? ... x.* is T, a;, in particular

1 = x?x2...x7 is a monomial of degree 0.
Definition (2.3) [7]: The monomial f = [Tk, x divides g = [1i,x] ifa; < b; forall 1 <i <

k, we write f | g if f divides g.

Definition (2.4) [7]: Let u, denote the set of monomials in the variables x;,x,, ..., Xy, let M be a
nonempty subset of . A monomial f € M is called a minimal elementof Mif g € Mand g | f,
then f = g.

Definition (2.5) [7]: Given a nonzero polynomial f = f; + f, + --- + f; of K[x], where the notation
K stands for one of QR and C and f3, f3, ..., fy are monomials with f; > f, > --- > f;, then the
support of f is the set of monomials appearing in f. It is written as supp(f). Thus supp(f) =
{fv f2 - fidand inc () = fi.

Definition (2.6) [7]: The Grobner basis of an ideal I # (0) of K[x] is a set {fi, fo, ..., fe} S I of
nonzero polynomials such that {in.(f;), in<(f2), ..., in<(f;)} is a system of monomial generators
of the initial ideal in.(I), where in.(I) = (in.(f):0 # f €1I).

Definition (2.7) [7]: A Grobner basis {fy, f, ..., fz} of an ideal I # (0) of K[x] is called reduced
Grobner basis if the following conditions are satisfied:

1. The coefficient of in_(f;) in fiislforalll < i < t.

2. If i # j, then none of the monomials belonging to supp(f;) is divided by in.(f;).

Definition (2.8) [8]: A finite Grobner basis {f;, f>, ..., f¢} of an ideal I, is called a universal Grobner
basis and it is denoted by u,.

Definition (2.9) [7]: Let a= [a; @2 - ay]/ and b= [b; by, .. by]/, then the inner

product of the vectors a and b is definedasa.b = Y a;b;.

Definition (2.10) [7]: Let A= (a;;)1sism be @ m xn matrix and a; = [a1; %2/ = amj]/,
1<jsn

1 <j < nis the column vectors of A, a matrix A is called a configuration matrix if there exists
c € R™suchthata;.c=1,1 <j < n.

Remark (2.11) [6]: Let n be a natural number, n > 2, and let x; € A7t], j=1,..,k be the
representative elements of the set of 3 x n —contingency tables and B = {z,,z,, ..., 2z} such that
each z,, ,m = 1,2, ...k, is a matrix of dimension 3 x n either has two non-zero columns and the other
columns are zero denoted by 2z, or it has three non-zero columns and the other columns are zero
denoted by 3z,,,like

1 0 -1 2 =20 2 -1 -1
-1 0 1 ] ) [ 0 0 0 ,[—1 0 1 ] .
0 0 O -2 2 0o 1-1 1 0

Also, we write the elements of B as one dimensional column vector as follows:
Z, = (24,.,23p) ,m=1,..,kandz;, =0,1,—1,2 or — 2,s = 1,2, ..., 3n such that
Ifs =1,2,..,n, then
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(1 if Zym + Zg4om = —1 andZ?zlzi =-1
2 if Zsyn + Zs12n = —2 and Zfl:i z; = —2
i#s
Zg =< 0 if Zsyn + 2Zs12n = 0 and Z%ﬁi z;=0 )
-1 if Zoyn + Zoyon = 1 and Xiz 7, =1
i#£s
\—2 if Zeyn + Zg4on = 2 and 2?2 z;=2

Ifs=n+1,n+2,..,2n,then

(1 if zgn+2s1n =—1and lellrwlzi =-1
i+

2 if zgn+2s1n =—2and leilnilzi = -2

i#s

z,=10 if Zg_p + 2Zs4n = 0 and le%lﬁ;rl z;=0 @)

-1 if Zoon + Zoon = 1 and i, q12; = 1

j#
—2 if Zs—n + Zsyn = 2 and Elz;llnj-lzi =2

i#s

Ifs=2n+12n+2,...,3n, then

(1 if Zs—n + Zs—2n = —1land 2132271+1Zi =-1

i#s
2 if Zs—n + Zs—2n = —2and 2132271+1Zi =-2

i#s

Zg =< 0 if Zson +2Zs-2n = 0 and 213%2;1:14 =0 (3)
-1 if Zoon + Zs—gn = 1 and 350412, = 1
i#S

—2 if Zson + Z5_on = 2 and 2?22n+1zi =2

i#s

Theorem (2.12) [6]:

The number of elements in B is equal to 25n3 — 66n? + 41n.
Remark (2.13) [6]:

Given a contingency table x, the entry of the matrix A in the column indexed by x =
(X1,%2, . ,X3z) and  row (B x, X X0, Dilng X, X1 + Xt F Xongr, Xp + Xngp +
Xontz » - Xn + Xa2n + X3,) Will be equal to one if x; a pears in the (3 jL;x;) and it will zero
otherwise. Then

1 1 - 1 1 0 0 0000 0 07

0 0 0 0 1 1 110 0 0 0

0 0 0 0 0 0 001 1 11
A=|1 0 0 0 10 0010 0 0

0 1 0 0 0 1 000 1 0 0

0 0« 0 1.0 0 = 010 0 - 0 1z

Theorem (2.14) [6]:
B = {2y, ..., Z 3503 _66n2+41m) } IS @ SEL OF MOVeS.

Corollary (2.15) [6]:
The set B of moves in theorem (2.14) is a Markov basis.
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Corollary (2.16) [6]: Let B is a Markov basis for A Then toric ideal I, for (25n3 — 66n? + 41n) x
3Xn - contingency tables is
In =< Piy1 Piir = Pt Pir, Pist? PiarPivs — Pt “PisrPivs Pict? PiarPrsr = Pigy “PjuiPrss,

Pi+l2 Pj+r2Pk+s - Pj+l 2Pi+rPi+st+r: Pi+l2 Pj+r2Pk+sz - Pi+r2 P]'+52Pk+lz' Pi+l2 Pj+1’2Pk+s2 -
Pi+sPi+er+st+lPk+rPk+lvPi+12 PiyrPris = PiarPiasPiyiPr b Lj, k=12, ,nand s, r =
0,n,2n ,suchthat i # j # kandl #s #r > c C[Py, P, ..., P3,].
3. The Main Results

Theorem (3.1): The matrix A in Remark (2.13) is a configuration matrix.

Proof:
To prove A is a configuration matrix,
1 1 - 1 1 0 0 0 0 0 O 0 0
0o 0 - 0 0o 1 1 1 1 0 0 0 0
0 0 0 0 o0 O 0 0 1 1 1 1
SincedA=1|1 0 0 0 1 0 0 01 0 0 O
0 1 0 0 0 1 0 0 0 1 0 0
0 0 0010 0 0100 - 0 1nism
alj
a .
Therefore, a; = :2] , 1 <j < 3n. From Definition (2.10).
A(n+3)j
_1_
1
1 - -, .
Letc =10 ,then a;. c= "3a;c; = a; + a, + az from Definition (2.9).
0
-0(n+3)

Casel:if1 <j < n,thena; =landa, = a3=0 = qa;. c=1.
Case2:ifn+1 <j < 2n,thena, =1landa; = a3 =0 = aq;. c=1.
Cased:if2n+1 <j < 3n,thenaz; =1landa; = a, =0 = q;. c=1.
S0,a;. ¢c=1,1 <j < 3n,
Therefore, A is a configuration matrix from Definition (2.10).
Theorem (3.2): The Grobner basis of an ideal I, is Gr ={Pyy; Piyr — PjxPipr: L, j =
1,2,..,nand ,r = 0,n,2n ,suchthat i #j andl < r}.
Proof:
To prove Gr is a Grobner basis of an ideal 4.
Itis clear that Gr < Iy,
From Definition (2.6) we get the system of monomial {in.(f):0 # f € Gr} = {Piy Pjyr: i, j=
1,2,..,nand,r = 0,n,2n ,suchthat i #j andl < r}. And
inc(ly) = (inc(f):0 = f €ly) =<Piy Pjir, P’ PiyrPiys Piyi® PiyrPryrs
Pt Pj+r2Pk+s' Pt Pj+r2Pk+52:Pi+l2 Pj+r2Pk+52:Pi+l2 PiyrPryst Lj,k=12,..,nandls,r =
0,n,2n , such that i#j#k andl#s#r>= (P Pr: [, j=12,..,nandl,r =
0,n,2n ,suchthat i #j and ! # r).
So, in.(Iy) = (inc.(f):0 # f € Gr), implies that the system of monomial {in.(f):0 # f € Gr}
generators of the initial ideal in_(I).
Then Gr is a Grobner basis of an ideal 1.
Corollary (3.3): The Grobner basis Gr in Theorem (3.2) is a reduced Grobner basis.
Proof:
Since Gr ={Piy; Pjyr — Pjx;Pisr: 1, j=1,2,..,mand,r =0,n,2n , such that i+
andl < r},
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Suppose fi, f> € Gr,suchthatin.(f;) | f where f € supp(f1)
Therefore, from Definition of Gr and Definition (2.5) we get
inc(f2) = Py Piyr, l<r
Then supp(f1) = { Pis1 Pjsrs P Pisr 1 L < 1.
From Definition of Gr and Definition (2.3) we get f; = f2 = Piy; Pisr — Pipi Pigr.
Implies that Gr is a reduced Grobner basis from Definition (2.7).
Corollary (3.4): The Grobner basis Gr in Theorem (3.2) is a universal Grobner basis.
Proof:
It is clear that Gr is a universal Grobner basis because it is finite by using Theorem (3.2) and
Definition (2.8).
Example (3.5): For n = 2, there are 18 moves in a Markov basis B according to Theorem (2.14) for

3 X 2-contingency table, then
0 -1 1 -1 1 0 07\
—1,[1 —1,[0 0],[—1 1],
0 1 -1 1 -1

5 alle eIl 2l
il s el 2 S s )
ERIEE R e

By Corollary (2.16) the tonc ideal of 3 x 2- contlngency table

I

=< Py Py — P,P3,Py Pg — P;Ps,

Py Py — PyPs, P, PyPs — P,%P3Ps, P, P, Ps — P, P3%Ps, Py P3P — PPy Ps* > C
C[Py, Py, P3, Py, Ps, Pe] -

And from Theorem (3.2) the Grobner basis of an ideal I, is Gr = {P; P, — P,P;,P; Pg — P,Ps,
P; P — P,Ps}, since

Py? PyPs — P,°P3Ps = PiPs(Py Py — P,P3) + P,P3(Py Ps — P,Ps).

S0 P2 PP, — P,?P;Ps € < P, P, — P,P3,P; Py — P,Ps >¢C (Gr).

Moreover, in the same type we have P, P,?Ps — P, P3?P,, Py P3Pg* — P,P, Ps? € (Gr)
Implies that I, = (Gr).

-~
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