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                      Abstract  

     In this paper, as generalization of second modules we introduce type of modules
 

namely (essentially second modules). A comprehensive study of this class of 

modules is given, also many results concerned with this type and other related 

modules presented. 
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 الخلاصه

شاممه  في هحا البحث ,كتعطيم لطفههم الطقاسات الثانية قجمظا مفههم )الطقاسات الثانية الهاسعة( دراسة      
عجة  نتائج متعمقه بهحا الصظف ومقاسات مختبطه به  قج  ,حهل هحا الصظف من الطقاسات قج  استحجثت

 قجمت.
Introduction 

     In this research all rings are associative with identity and all modules are unitary right modules. For 

a right  -module   we write   .Agayev  in [1] defined and studied r-semisimple modules, where an 

 -module     is said to be  r-semisimple if for any right ideal   of  ,    is a Direct summand  of   

(briefly        The class of . r-semisimple modules contains the class  of  semisimple modules , 

also contains  the class of second modules, where an  -module   is named  second if     and for 

each    , either      or     [2]. Equivalently   is second if for each ideal   of  , either 

     or     [2]. Annine in [3], [4] introduced  the class of  coprime modules.  An  -module 

  is coprime if     (       (
 

 
  for each proper submodule   of   (    , where 

    (             . Wijayanti in [5] called an  -module   is coprime if      (   

    (
 

 
  for each fully invariant submodule   of   , where a submodule   of   is called fully 

invariant if for each endomorphism   (     (  ),  (       [6]. However, coprime module (in 

sense of Annine), coprime modules (in sense of Wijayanti) and second modules are coinciding. 

                   ISSN: 0067-2904 
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     In this paper, we give another generalization of second modules. An  -module   is an essentially 

second (shortly ess. second) if for each ideal   of  , either      or        . where a submodule 

  of   is essential (briefly       ) if whenever     (      , then   (  [7]. 

Equivalently        if and only if for each    ,    ;                     [7]. 

It is clear that every second and uniform modules are ess. second but the converses are not true, see  

Remarks 2.2(2),(3). 

     In section two, we give the basic properties of ess. second modules such as in the class of 

multiplication modules, ess. second modules and uniform modules are equivalent (see, Corollary 2.4) . 

Every pure submodule (hence every direct summand) of ess. second modules is an ess. second module 

(Proposition 2.12), but the direct sum of ess. second modules may be not ess. second (see  Remark 

2.8). Also,  if   is an  ess. second and   is a closed submodule, then 
 

 
 is an ess. second module (see 

Proposition 2.9). 

    In section three we present many relationships between ess. second modules and other related 

concept such as prime modules, r-semisimple modules (see Proposition 3.1,  Theorem 3.2  and 

Proposition 3.3). 

2. Essentially second modules  

    if M is an  -module, a submodule   of   is second submodule if for each ideal   of  , either 

   (   or     [2]. A module    is second if it is a second submodule of  . A ring   is a second 

if   is a second  -module. 

We define: 

Definition 2.1: An  -module   is called essentially second (briefly  ess. second) if for each ideal   of 

 , ether    (   or        . A ring   is ess. second if   is ess. second  -module. 

Remarks 2.2:  
1- Obviously each  second module is ess. second, but not  conversely  , as one can see by: The 

  module   is clearly an ess. second . and it is not second  , for if       then   (      ̅    
 ̅   and   (        
2- Every  uniform  module  is ess. second, but not conversely as: The  -module M=     is ess. 

second since for each ideal   (   of            , so    (                 . If 

  (  , then    (  . Thus   is an ess. second, but is it clear that   is not  uniform. 

3- If   is an ess. second ring, then   is uniform. 

Let I be a non –zero ideal of  .    (   or        . But     , hence       . 

4- Let                                 , then   is ess. second if and only if    is ess. 

second. 

5- Let   be an ideal of   and   be an  -module such that    (  . Where    is ess. second 

module  - if and only if   is 
 

 
-ess. second module. 

Proof: Let 0     
 

 
. Then        . Since   is an ess. second  -module, either      or 

       . If     , then     and  (      .If        , then  (            . 

Thus   is an ess. second 
 

 
-module. The proof of converse is similarly. 

6- r-semisimple module and ess. second module are independent concepts. For examples The  -

module    is r-semisimple but it is not ess. second. While The  -module    is an ess. second module, 

but it is not r-semisimple. Also, it is not second. 

7- Let   be a torsion free  -module and   is ess. second. Then for each        is an ess. second. 

     The pursue is a characterization of ess. second modules. 

Theorem 2.3: For an  -module   , the following  statements are equivalent: 

1-   is ess. second; 

2- If               , then       ; 

3- For each    , either      or        . 

Proof: (2)  (1) Let   be an ideal of R. Assume     . Set     . It is clear that           ; 
that is          and so by (2)          . 

(1)(3) It is obvious. 

(3)(2) Let           . Then there exists         such that    (  , so that         

by condition (3). But            . This implies       . 
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it is known that: an R-module M is called a multiplication module provided for each submodule N of 

M there exists an ideal I of R such that N=MI .      
Corollary 2.4: For a multiplication  module  M over a ring R. The pursue are equivalent: 

1-   is ess. second; 

2-   is uniform; 

3- For each     either      or        . 

     Note that the condition   is multiplication can’t be dropped from Corollary 2.4, since the Z-

module     is ess. second and it is  not uniform. 

Corollary 2.5: Let   be a commutative ring  Then   is ess. second if and only if   is uniform. 

Corollary 2.6: For a faithful multiplication module  over a ring R. The pursue are equivalent: 

1-   is an ess. Second ; 

2-   is uniform ; 

3-   is uniform  ; 

4-   is ess.second . 

Proposition 2.7: Let M be an ess. second module and let     .Then N is ess. second. 

Proof: Let      . Then         for some     .For any ideal  of  , either       or  

     . If       then             . Hence         and this implies           ,by 

[7, Prop.  1.1,P.16] Thus     is an ess. second module. 

Remark 2.8: The direct sum of ess. second modules is not necessary ess. second, for example:  

Each of the  -module    and    is an ess. second module but            is not an ess. second 

module since    (      ̅          and    (      ̅  . 

Proposition 2.9: For any ess. second module  ,        (      for each    ) is an ess. second. 

Proof: It is easy. 

     A submodule   of an  -module   is closed if   has no proper essential extension, [7]. 

Proposition 2.10: Let   be a closed submodule of an ess. second module  . Then 
 

 
 is an ess. second 

module. 

Proof: Let   be an ideal of  . Since   is an ess. second module, either    (   or        . If 

   (  , then 
 

 
  

    

 
 (  

 

 . If        , then          , and since   is closed in  , 

then   
    

 
    

 

 
 by [7, Proposition 1.4(ab)]. It follows that 

 

 
     

 

 
. Thus 

 

 
 is an ess. second. 

Remark 2.11: The condition  (  is closed in  ) is a necessary condition  in Proposition 2.10, for 

example. The  -module   is an ess. second (since it is second). But 
 

   
      is not ess. second and 

    is not closed in  . 

Corollary 2.12: Let        be an epimorophism such that     (   is closed and   is an ess. 

second. Then    is an ess. second. 

By applying  Proposition 2.10  we can give a different proof of Proposition 2.7 as follows  

Proof: Since     , then       for some    . But     , implies   is closed 

submodule of     [7,Exc.3,P.19  ] Hence 
 

 
 is an ess. second by Proposition 2.10 and this implies   is 

an ess. second since   
 

 
. 

A submodule  of an  -module   is called pure  if         for each ideal   of   ,[9] 

Proposition 2.13: Every pure submodule of ess. second module is an ess. second. 

Proof: Let   be a pure submodule of  , let   be an ideal of  . Since   is an ess. second either 

   (  , or         . If    (  ,then    (  (since     , if        , then     
           and so        . Thus   is an ess. second. 

Since every direct summand  of a module is pure, we can also get Proposition 2.7 directly, by 

Proposition 2.13. 

Proposition 2.14: Let   be an  -module.   is an ess.second as a left  -module if and only if for 

each         (         implies       . Where      (  . 

Proof:  Let        (    . Then      , where   is the inclusion mapping from   to  . 

Since   is an ess. second  -module, either  (    (   (   or (    (        . But (  
  (   (   implies     which is a contradiction, hence (    (       ; that is   

 (       . But   (    , so that        . 
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 To prove   is an ess. second  -module. That is to prove for each    , either  (   (   or   

 (       . suppose that    (     that is    . Put    (  , hence      (     and by 

hypothesis       . Thus  (       . 

3. Essential Second Modules and other related concept 

     In this section many connections between ess. second modules and other related concepts are 

presented.   

First we have  

Proposition 3.1: An  -module   is an ess. second and r-semisimple iff   is second. 

Proof: Let   be an ideal of  . If    (  , then nothing to prove. If    (  , then        , 

since   is ess. second. But   is an r-semisimple, so that      . It follows that     . Thus   

is second. 

 It is obvious. 

     An  -module   is prime if    (      (   for each (       [10]. A proper submodule 

  of an  -module is prime if whenever              implies     or         [10].   is 

a prime. if and only if (   is a prime submodule of  . 
Theorem 3.2: Let   be a prime. over a commutative ring.   and let     such that   is an ess. 

second submodule. Then   is a prime submodule. 

Proof: Let         with     . Suppose    , so we must prove        . Since   is an 

ess. second, either    (   or        . If    (  , then      (      (   and this 

implies        . If        , then there exists     such that         . Thus        

for some    . Since   is commutative,        , hence         which implies (        ; 

that is      (     . But    (         (   (since   is prime.). Therefore       (   
     . Thus   is a prime submodule. 

Proposition 3.3: Let   be a prime  -module,      for some    . If   is an ess. second  -

module, then   is an ess. second. 

Proof: Let    . Suppose    (  (      (   . Hence      (   (since   is a prime.). So 

   (  , but   is an ess. second module implies            . Now    , hence there exists 

     such that           . It follows that         for some    . Thus  (        ; that 

is          (      (  . Hence for each    ,         and      (because if 

      then      (      (   and  so      which is a contradiction). Therefore,     

, there exists      such that             . Thus          and   is an ess. second 

module. 

Proposition 3.4: Let         ,    (      (  . If   is an ess. second submodule of  . Then   

is an ess. second module. 

Proof: Let    . Since   is an ess.second submodule, then either    (   or        . If 

   (  , then    (  (since    (      (   by hypothesis). If        , then         

since       . But      , hence        . Thus   is  ess. second. 

Remark 3.5: The condition    (      (   is necessary condition, for example. Let   be the  -

module        . Let      < ̅            (         (      . But          

so that   is an ess. second. But   is not an ess. second module since  (    ( ̅    ̅     

and  (        . 

   An  -module M is called coquasi-Dedekind if    (     (   for each    [11]. Equivalently 

  is coquasi-Dedekind if for each        (     is an epimorophrism. 

We present the following  

Definition 3.6: An  -module   is to be essentially coquasi-Dedekind if for each 

     (           .  

   Note that Sahra in [11] gave the following: an  -module   is called essentially coquasi-Dedekind if 

for each (0)      (      (       . However our definition is different of that was given in 

[11]. 
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Examples 3.7: 

1- Every simple module (and the  -modules     are ess. coquasi-Dedekind in sense of Definition 

3.6, but it is not ess. coquasi-Dedekind in sense of [11]. 

2- Consider     as   -modules, is  an ess. couasi-Dedekind in sense of [11]. But it is not ess. coquasi-

Dedekind in sense of Definition 3.6, since there exists             define by  (      for each 

      and                  

Remark 3.8: Every ess. coquasi-Dedekind module is ess. second.  

Proof: Let    . If    (  . Define       by  (      for each        . Then 

      . But   (        since   is ess. coquasi-Dedekind. Thus        .  

     Note that the reverse is not achievable in public as: let       as  -module.   is ess. second 

module , but it is not ess. coquasi- Dedekind since      (   such that  (     (    , for each 

(       and so   (     (       . 

  An  -module   is scalar module if for each      (  ,        (      ,     [12]. 

Proposition 3.9: Let   be a scalar module. Then   is an ess. coquasi-Dedekind iff   is an ess. 

second module. 

Proof: It is easy, so is omitted. 

  The following result follows directly. 

Proposition 3.10: Let   be an  -module. Then   is an ess. coquasi-Dedekind iff   is an ess.secend 

left  -module, where      (  . 

   By combining Proposition 3.10 and Proposition 2.13, we have the following: 

Corollary 3.11: For  an  -module M . The pursue are synonymous: 

1-   is an ess. coquasi-Dedekind  -module ; 

2-    (      (where    ) implies       ; 

3-   is an ess. second left  -module. 

     As we mention in the introduction the second module is called coprime by some authors, see[2,13]. 

Sahera  in [11]  introduced the concept ess. coprime as a generalization of coprime ( second module) 

where an  -module is referred by  an ess. coprime if for each    , either      or 

    (       , where      (             . 
Notice that the concept ess. second is independent with ess.coprime[11]. Like: 

1- Let        as  -module. It is easy to see that   is an ess. coprime and  it is not ess. second. 

2- For the  -module       .   is ess. second.  But for any      ,    (    (     
  (      (      (       . Also,      for each     ,     . Thus   is not ess. 

coprime. 

    It is known that for every  second  -module         (   a prime ideal. of  . However this is not 

true for ess. second module  as we have:- the  -module     is an ess. Second (since it is uniform )  and  

    (       which is not a prime ideal. of  . 

   In [13] we define the concept essential prime (briefly ess . prime ) as follows : an  -module M is 

said to be   an ess. prime whenever      (       (   for all        .   

We state and prove the pursue : 

Proposition 3.12: Let   be an ess. second    –module and ess. prime.. Then     (   is a prime 

ideal. of  . 

Proof: Let       and          (   (       . Assume      (  , that is    (  . Since 

  is ess. second, then        . on the other hand   is ess. prime, so     (       (   . But  

      (   ( since     (    hence       (  . Thus     (   is a prime ideal. 

   Note that ess. the second module does not imply ess. prime., as the  -module      is ess. second, 

however  it is not ess. prime since     (          ( ̅    , and ( ̅       . Also, ess. 

prime. does not imply ess. second,  as: The  -module        is an  ess. prime and it is  not an ess. 

second. 

Corollary 3.13: Let   be an  -module and every prime ideal. of   is maximal. Then the pursue are 

synonymous: 

1-   is second; 

2-   is prime.; 

3-   is an ess. prime. and ess. second; 

4-     (   is a prime ideal . of  . 
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Proof: (1) (2). [14, Lemma 1.1] 

(2)  (4) It is clear. 

(4)  (2)     (       (   for each      . But     (   is a prime ideal. by condition 

(4), so     (   is maximal and so     (       (  . Thus   is a prime module.. 

(3)  (2) By Proposition 3.12,     (   is a primeideal., hence     (   is maximal by hypothesis. 

But     (       (   for each       so that     (       (  . Thus   is prime.. 

(2) (3)  Since   is  prime., then   is an ess. prime. But   is prime implies   is second by (part (2) 

 (1)), hence   is ess. second. 

   It is known that if   is an Artinian ring  or a Boolean ring, then every prime ideal. is maximal. 

Hence we get. 

Corollary 3.14: Let   be an  -module where   is an Artinian ring or Boolean ring. Then the pursue 

is synonymous. 

1-   is second  ; 

2-   is   prime  ; 

3-    is ess. prime and ess. second; 

4-     (   is a prime ideal. Of   . 

Proposition 3.15: Let   be an  -module such that     (   is semisimple and     (   

    (
 

 
), for each    . Then   is prime and second module. 

Proof: To prove   is prime. Let       (  . Then      and so 
 

 
r=0, by hypothesis; that is 

    . Thus         (  . Thus    =0 which implies     (     (    since    (   

is semi prime. Hence,       (       (  . Therefore   is prime. But    (      (
 

 
  so that 

    (       (
 

 
) for each    . Hence   is second. 

An  -module    is homogenous semisimple if   is a direct sum of pair wise isomorphic simple 

submodules, [14]. In the last part of Lemma 1.1 in [14]. If   is a module over a commutative   such 

that every prime ideal . is maximal, then   is second iff   is a homogenous semisimple. 

Corollary 3.16: If   is an  -module, where   is a commutative ring. such that every prime ideal. is 

maximal (hence if   is Artinian ring  or Boolean  or Von Neumman regular). Then the pursue are 

synonymous: 

1-   is second ; 

2-   is prime.; 

3-   is an ess. prime and ess. second module; 

4-     (   is a maximal ideal; 

5-   is a homogenous semisimple. 

Proposition 3.17: Let   be multiplication module over a ring  . Then   is a second if and only if   

is a homogenous semisimple. 

Proof:  Since   is a multiplication module  then for each proper submodule N of  M, N=M [N:M 

].=M ann 
 

 
 . Because M is second, ann 

 

 
 =ann M , hence  N=M  ann  M=0  Then   is simple . Thus 

  is   homogenous semisimple. 

  It is given in [14]. 

Corollary3.18: Let   be a commutative ring . Then   is second if and only if   is homogenous 

semisimple  
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