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Abstract

In this paper, as generalization of second modules we introduce type of modules
namely (essentially second modules). A comprehensive study of this class of
modules is given, also many results concerned with this type and other related
modules presented.
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REIVES:
Introduction
In this research all rings are associative with identity and all modules are unitary right modules. For
a right R-module M we write My.Agayev in [1] defined and studied r-semisimple modules, "where an
R-module My, is said to be r-semisimple if for any right ideal I of R, MI is a Direct summand of M
(briefly MI <® M) "The class of . r-semisimple modules contains the class of semisimple modules ,
also contains the class of second modules, where an R-module M is named second if M # 0 and for
each r € R, either Mr = 0 or Mr = M[2]. Equivalently M is second if for each ideal I of R, either
MI = 0 or MI = M[2]. Annine in [3], [4] introduced the class of coprime modules. ” An R-module

M is coprime if anng(M) =annR(%) for each proper submodule N of M (N < M), where
anng(M) = {r € R: Mr = 0}". Wijayanti in [5] called an R-module M is coprime if anng(M) =
annR(%) for each fully invariant submodule N of M, "where a submodule N of M is called fully

invariant if for each endomorphism f (f € End(M)), f(N) € N) " [6]. However, coprime module (in
sense of Annine), coprime modules (in sense of Wijayanti) and second modules are coinciding.
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In this paper, we give another generalization of second modules. An R-module M is an essentially
second (shortly ess. second) if for each ideal I of R, either MI = 0 or MI <,,; M. where a submodule
N of M is essential (briefly N <., M) if whenever NNW = (0),W < M, then W = (0)[7].
Equivalently N <4 M if and only if for eachm € M, 3r € R; 0 # mr € N[7].

It is clear that every second and uniform modules are ess. second but the converses are not true, see
Remarks 2.2(2),(3).

In section two, we give the basic properties of ess. second modules such as in the class of
multiplication modules, ess. second modules and uniform modules are equivalent (see, Corollary 2.4) .
Every pure submodule (hence every direct summand) of ess. second modules is an ess. second module
(Proposition 2.12), but the direct sum of ess. second modules may be not ess. second (see Remark

2.8). Also, if M isan ess. second and N is a closed submodule, then % is an ess. second module (see

Proposition 2.9).

In section three we present many relationships between ess. second modules and other related
concept such as prime modules, r-semisimple modules (see Proposition 3.1, Theorem 3.2 and
Proposition 3.3).

2. Essentially second modules

if M is an R-module, "a submodule N of M is second submodule if for each ideal I of R, either
NI = (0) or NI = N[2]. A module My is second if it is a second submodule of . A ring R is a second
if R is a second R-module”.

We define:

Definition 2.1: An R-module M is called essentially second (briefly ess. second) if for each ideal I of
R, ether MI = (0) or MI <,sc M. Aring R is ess. second if R is ess. second R-module.

Remarks 2.2:

1- Obviously each second module is ess. second, but not conversely , as one can see by: The
Z —module Z,is clearly an ess. second . and it is not second , for if I = 2Z, then Z,(27) =< 2 >#<
0 >and Z,(22) # Z,.

2- Every uniform module is ess. second, but not conversely as: The Z-module M= Z@Z is ess.
second since for each ideal I # (0) of Z,] =nZ,n€ Z,, so Ml = (Z@Z)nZ = nZ@nZ <, M. If
I = (0), then MI = (0). Thus M is an ess. second, but is it clear that M is not uniform.

3- If R is an ess. second ring, then R is uniform.

Let I be a non —zero ideal of R. RI = (0) or RI <,ss R. But RI =1, hence I <, R.

4- Let M,M'be R — modules such that M ~ M', then M is ess. second if and only if M'is ess.
second.

5- Let A be an ideal of R and M be an R-module such that MA = (0). Where M is ess. second

module R- if and only if M is %—ess. second module.

Proof: Let 0+r+ A € %. Then r € R,r # 0. Since M is an ess. second R-module, either Mr = 0 or
Mr < ,os M. If Mr =0, then r € A and m(r + A) = 0.If Mr <,43 M, then M(r + A) = Mr <, M.
Thus M is an ess. second %—module. The proof of converse is similarly.

6- r-semisimple module and ess. second module are independent concepts. For examples The Z-

module Z is r-semisimple but it is not ess. second. While The Z-module Z, is an ess. second module,

but it is not r-semisimple. Also, it is not second.

7- Let M be a torsion free R-module and R is ess. second. Then for each m € M, mR is an ess. second.
The pursue is a characterization of ess. second modules.

Theorem 2.3: For an R-module My, the following statements are equivalent:

1- M is ess. second;
2- If0#N<M,N = M[N:M],then N <53 M;
3- For each r € R, either Mr = 0 or Mr <,,s M.

Proof: (2) = (1) Let I be an ideal of R. Assume MI # 0. Set N = MI. It is clear that MI = M[MI: M];
thatis N = M[N:M]andsoby (2) N = MI <.,c M.

(1)=(3) It is obvious.

(3)=(2) Let 0 # N = M[N, M]. Then there exists r € [N: M] such that Mr # (0), so that Mr <, M
by condition (3). But Mr < M[N: M] = N. This implies N <, M.
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it is known that: an R-module M is called a multiplication module provided for each submodule N of
M there exists an ideal | of R such that N=MI . [8]
Corollary 2.4: For a multiplication module M over aring R. The pursue are equivalent:
1- M is ess. second;
2- M is uniform;
3- For each r € R either Mr = 0 or Mr <,;; M.

Note that the condition M is multiplication can’t be dropped from Corollary 2.4, since the Z-
module QQ is ess. second and it is not uniform.
Corollary 2.5: Let R be a commutative ring Then R is ess. second if and only if R is uniform.
Corollary 2.6: For a faithful multiplication module over a ring R. The pursue are equivalent:
1- M isan ess. Second ;
2- M is uniform;
3- Risuniform ;
4- R is ess.second .
Proposition 2.7: Let M be an ess. second module and let N <® M.Then N is ess. second.
Proof: Let M; <® M. Then M = M, @M, for some M, < M.For any ideal Iof R, either M;I = 0 or
Myl # 0. If My # 0 then MI = M;I®M,I # 0. Hence MI <., M and this implies M1 <,,; M;,by
[7, Prop. 1.1,P.16] Thus M is an ess. second module.
Remark 2.8: The direct sum of ess. second modules is not necessary ess. second, for example:
Each of the Z-module Z5 and Z, is an ess. second module but Z;®Z, ~ Z;, is not an ess. second
module since Z;,(3Z) =< 3 >% s Z1, and Z;,(32) #< 0 >.
Proposition 2.9: For any ess. second module M, @;¢; M;(M; = M, for each i € I) is an ess. second.
Proof: It is easy.

A submodule N of an R-module M is closed if N has no proper essential extension, [7].

Proposition 2.10: Let N be a closed submodule of an ess. second module M. Then % is an ess. second

module.

Proof: Let I be an ideal of R. Since M is an ess. second module, either MI = (0) or MI <,4s M. If

MI = (0), then %I = MI;N = (Om). If MI <33 M, then MI + N <., M, and since N is closed in M,
N

then <ess % by [7, Proposition 1.4(a<>b)]. It follows that%l <ess % Thus% IS an ess. second.

Remark 2.11: The condition (N is closed in M) is a necessary condition in Proposition 2.10, for
example. The Z-module Z is an ess. second (since it is second). But é—z =~ 7Z,, is not ess. second and

12Z is not closed in Z.

Corollary 2.12: Let f: M +— M' be an epimorophism such that Ker(f) is closed and M is an ess.
second. Then M’ is an ess. second.

By applying Proposition 2.10 we can give a different proof of Proposition 2.7 as follows

Proof: Since N <® M, then N@W = M for some W < M. But W <® M, implies W is closed

submodule of M [7,Exc.3,P.19 ] Hence% is an ess. second by Proposition 2.10 and this implies N is

MI+N

. M
an ess. second since N = W

A submodule Nof an R-module M is called pure if MI n N = NI for each ideal I of R ,[9]
Proposition 2.13: Every pure submodule of ess. second module is an ess. second.

Proof: Let N be a pure submodule of M, let I be an ideal of R. Since M is an ess. second either
MI = (0), or MI <,5s M. If MI = (0),then NI = (0)(since N < M), if MI <., M, then MIn
N <,ss MNN=NandsoNI <., N. Thus N is an ess. second.

Since every direct summand of a module is pure, we can also get Proposition 2.7 directly, by
Proposition 2.13.

Proposition 2.14: Let M be an R-module. M is an ess.second as a left E-module if and only if for
each 0 # f € Hom(M,N),N < M implies N <,;; M. Where E = End(M).

Proof: = Let 0 # f € Hom(M,N). Then i o f € E, where i is the inclusion mapping from N to M.
Since M is an ess. second E-module, either (io f)(M)=(0) or (ie f)(M) <, M. But (io
f)(M) = (0) implies f =0 which is a contradiction, hence (iof)(M) <., M; that is
f(M) <,ss M.But f(M) < N,sothat N <45 M.
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< To prove M is an ess. second E-module. That is to prove for each f € E, either f(M) = (0) or
f(M) <.ss M. suppose that f(M) # 0 thatis f = 0. Put N = f(M), hence f € Hom(M, N) and by
hypothesis N <,4s M. Thus f(M) <,s M.
3. Essential Second Modules and other related concept
In this section many connections between ess. second modules and other related concepts are
presented.
First we have
Proposition 3.1: An R-module M is an ess. second and r-semisimple iff M is second.
Proof: =Let I be an ideal of R. If MI = (0), then nothing to prove. If MI # (0), then MI <,,, M,
since M is ess. second. But M is an r-semisimple, so that MI <® M. It follows that MI = M. Thus M
is second.
< Itis obvious.
An R-module M is prime if ann(M) = ann(N) for each (0) # N < M [10]. A proper submodule

N of an R-module is prime if whenever x € M,r € R,xr € N impliesx € N or r € [N: M] [10]. M is
a prime. if and only if (0) is a prime submodule of M".
Theorem 3.2: Let M be a prime. over a commutative ring. R and let N < M such that N is an ess.
second submodule. Then N is a prime submodule.
Proof: Let x € M,r € R with xr € N. Suppose x € N, so we must prove r € [N: M]. Since N is an
ess. second, either Nr = (0) or Nr <,4 N. If Nr =(0), then r € ann(N) = ann(M) and this
implies r € [N: M]. If Nr <, N, then there exists a € R such that 0 # xra € Nr. Thus xra = nr
for some n € N. Since R is commutative, xra = xar, hence xar = nr which implies (xa — n)r = 0;
that is r € ann(xa — n). But ann(xa — n) = ann(M) (since M is prime.). Therefore r € ann(M) <
[N: M]. Thus N is a prime submodule.
Proposition 3.3: Let M be a prime R-module, N = xR for some x € M. If N is an ess. second R-
module, then M is an ess. second.
Proof: Let r € R. Suppose Mr # (0)(r € ann(M)). Hence r & ann(N) (since M is a prime.). So
Nr # (0), but N is an ess. second module implies Nr <., N = xR. Now x € N, hence there exists
r' € Rsuchthat 0 # xr’ € Nr. It follows that xr’ = xar for some a € R. Thus x(r' — ar) = 0; that
is v’ —ar € ann(X) = ann(M). Hence for each m € M, mr’ = mar and 0 # mr'(because if
mr' = 0 then r € ann(m) = ann(M) and so Mr = 0 which is a contradiction). Therefore, Ym € M
, there exists ' € R such that 0 # mr' = mar € Mr. Thus Mr <,,c M and M is an ess. second
module.
Proposition 3.4: Let N <., M , ann(M) = ann(N). If N is an ess. second submodule of M. Then M
is an ess. second module.
Proof: Let r € R. Since N is an ess.second submodule, then either Nr = (0) or Nr <., N. If
Nr = (0), then Mr = (0)(since ann(M) = ann(N) by hypothesis). If Nr <,s; N, then Nr <,;c M
since N <,;s M. But Mr 2 Nr, hence Mr <., M. Thus M is ess. second.
Remark 3.5: The condition ann(M) = ann(N) is necessary condition, for example. Let M be the Z-
module M = Z,®Z,. Let N = Z,B<2 > <, M,ann(M) = 4Z # ann(N) = 2Z . But N = Z,®Z,
so that N is an ess. second. But M is not an ess. second module since M(2Z) = (0)® <2>#0
and M (22) o5 M.

An R-module M is called coquasi-Dedekind if Hom(M, N) = (0) for each N = M[11]. Equivalently
M is coquasi-Dedekind if for each 0 # f € End(M), f is an epimorophrism”.
We present the following
Definition 3.6: An R-module M is to be essentially coquasi-Dedekind if for each
f € End(M).Imf <,ss M.

Note that Sahra in [11] gave the following: an R-module M is called essentially coquasi-Dedekind if
for each (0)# f € End(M), Ker(f) <.ss M. However our definition is different of that was given in
[11].
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Examples 3.7:

1- Every simple module (and the Z-modules Z, Q)are ess. coquasi-Dedekind in sense of Definition
3.6, but it is not ess. coquasi-Dedekind in sense of [11].

2- Consider Z1, as Z-modules, is an ess. couasi-Dedekind in sense of [11]. But it is not ess. coquasi-
Dedekind in sense of Definition 3.6, since there exists f: Z,, +— Z;, define by f(x) = 6x for each
X €E€Zand Imf =< 6 > £,55 Z15

Remark 3.8: Every ess. coquasi-Dedekind module is ess. second.

Proof: Let r € R. If Mr # (0). Define f:M +— M by f(m) = mr for each m € M,0 # f. Then
Imf = Mr. But Im(f) <,ss M since M is ess. coquasi-Dedekind. Thus Mr <,,, M.

Note that the reverse is not achievable in public as: let M = Q@Q as Z-module. M is ess. second
module , but it is not ess. coquasi- Dedekind since 3f € End (M) such that f(x,y) = (x, 0), for each
(x,y) € Mand so Im(f) = Q®(0) %5 M.

An R-module M is scalar module if for each f € End(M),30 #r € R, f(m) = mr vV m € M [12].
Proposition 3.9: Let M be a scalar module. Then M is an ess. coquasi-Dedekind iff M is an ess.
second module.

Proof: It is easy, so is omitted.

The following result follows directly.

Proposition 3.10: Let M be an R-module. Then M is an ess. coquasi-Dedekind iff M is an ess.secend
left E-module, where E = End(M).

By combining Proposition 3.10 and Proposition 2.13, we have the following:

Corollary 3.11: For an R-module M . The pursue are synonymous:
1- M is an ess. coquasi-Dedekind R-module ;

2- Hom(M,N) # O0(where N < M) implies N <45 M;

3- M is an ess. second left E-module.

As we mention in the introduction the second module is called coprime by some authors, see[2,13].
Sahera in [11] introduced the concept ess. coprime as a generalization of coprime ( second module)
where an R-module is referred by an ess. coprime if for each r € R, either Mr =M or
anny (r) <.ss M, where anny (r) = {m € M: mr = 0}.

Notice that the concept ess. second is independent with ess.coprime[11]. Like:

1- LetM = Z,@Z as Z-module. It is easy to see that M is an ess. coprime and it is not ess. second.

2- For the Z-module M =Z@®Z. M is ess. second. But for any 0 # r € Z, ann(r) = {(a,b) €
M: (a,b)r = (0,0)} = (0) %£.5s M. Also, Mr += M for each r € Z, r+ +1. Thus M is not ess.
coprime.

It is known that for every second R-module  ann,(M) a prime ideal. of R. However this is not
true for ess. second module as we have:- the Z-module Zg is an ess. Second (since it is uniform) and
annz(Zg) = 8Z which is not a prime ideal. of Z.

In [13] we define the concept essential prime (briefly ess . prime ) as follows : an R-module M is
said to be an ess. prime whenever anngz (M) = anng(N) forall N <,,c M."

We state and prove the pursue :

Proposition 3.12: Let M be an ess. second R —module and ess. prime.. Then anng(M) is a prime
ideal. of R.

Proof: Leta,b € Rand a.b € anng(M) (Mab = 0). Assume a € ann(M), that is Ma # (0). Since
M is ess. second, then Ma <,.; M. on the other hand M is ess. prime, so anng (M) = anng(Ma). But
b € anngz (M) (since Mab = (0)) hence b € anng(M). Thus anng (M) is a prime ideal.

Note that ess. the second module does not imply ess. prime., as the Z-module M = Z, is ess. second,
however it is not ess. prime since annyz (M) = 4Z #+ annz(2) = 2Z, and (2) <,ss Z4. Also, ess.
prime. does not imply ess. second, as: The Z-module M = Z,@7Z is an ess. prime and it is not an ess.
second.

Corollary 3.13: Let M be an R-module and every prime ideal. of R is maximal. Then the pursue are
synonymous:

1- M is second;

2- M is prime.;

3- M is an ess. prime. and ess. second,;

4- anng(M) is a prime ideal . of R.
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Proof: (1) <(2). [14, Lemma 1.1]
(2) = (4) Itisclear.
(4) = (2) anng(M) < anng(N) for each 0 # N < M. But anniz (M) is a prime ideal. by condition
(4), so anng (M) is maximal and so anng (M) = anng(N). Thus M is a prime module..
(3) = (2) By Proposition 3.12, anngz (M) is a primeideal., hence anng (M) is maximal by hypothesis.
But anng (M) € anng(N) foreach 0 # N < M so that anng (M) = anng(N). Thus M is prime..
(2) =(3) Since M is prime., then M is an ess. prime. But M is prime implies M is second by (part (2)
< (1)), hence M is ess. second.

It is known that if R is an Artinian ring or a Boolean ring, then every prime ideal. is maximal.
Hence we get.
Corollary 3.14: Let M be an R-module where R is an Artinian ring or Boolean ring. Then the pursue
IS synonymous.
1- Missecond ;
2- M is prime ;
3- M is ess. prime and ess. second,;
4- anng (M) is a prime ideal. Of R.
Proposition 3.15: Let M be an R-module such that anng(M) is semisimple and anng(N) =

anng (%) foreach N = M. Then M is prime and second module.

Proof: To prove M is prime. Let r € anng(N). Then Nr = 0 and so %rzo, by hypothesis; that is
Mr € N. Thus Mr? € Nr = (0). Thus Mr2=0 which implies Mr = 0(r € ann(M)) since ann(M)
is semi prime. Hence, anng(M) = anngz(N). Therefore M is prime. But ann(N) = ann(%) so that

anng(M) = anng (%) for each N < M. Hence M is second.

An R-module M is homogenous semisimple if M is a direct sum of pair wise isomorphic simple
submodules, [14]. In the last part of Lemma 1.1 in [14]. If M is a module over a commutative R such
that every prime ideal . is maximal, then M is second iff M is a homogenous semisimple.

Corollary 3.16: If M is an R-module, where R is a commutative ring. such that every prime ideal. is
maximal (hence if R is Artinian ring or Boolean or Von Neumman regular). Then the pursue are
synonymous:

1- M is second ;

2- M is prime.;

3- M is an ess. prime and ess. second module;

4- ann(M) is a maximal ideal;

5- M is a homogenous semisimple.

Proposition 3.17: Let M be multiplication module over a ring R. Then M is a second if and only if M
is a homogenous semisimple.

Proof: = Since M is a multiplication module then for each proper submodule N of M, N=M [N:M

].=M ann % Because M is second, ann % =ann M, hence N=M ann M=0 Then M is simple . Thus

M is homogenous semisimple.

< Itisgivenin [14].

Corollary3.18: Let R be a commutative ring . Then R is second if and only if R is homogenous
semisimple
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