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Abstract 

      Researchers have identified and defined β- approach normed space if some 

conditions are  satisfied. In this work, we show that every approach normed space is 

a normed space.However, the converse is not necessarily true by giving an example. 

In addition, we define β – normed Banach space, and some examples are given. We 

also solve some problems. We discuss a finite β-dimensional app-normed space is β-

complete and consequent Banach app- space. We explain that every approach normed 

space is a metric space, but the converse is not true by giving an example. We define 

β-complete and give some examples and propositions. If we have two normed vector 

spaces, then we get two properties that are equivalent. We also explain that β-normed 

app- spaces are norm bounded with a condition. We show that functions of β-normed 

Banach spaces are β- contraction, with some results and properties. The sequentially 

β-contraction is also explained and  the relation between metric β- app- space and 

Hausdorff space is studied.  

 

Keywords: β- approach normed space, β- approach normed Banach space.  

 

 β  النتائج الجديدة لنهج الفضاء المعياري عبر هيكل نهج 
 

 بشرى يوسف حسين و شيماء سعيد عبد 
 ، القادسيه، العراق جامعة القادسية ، كلية التربية  ، قسم الرياضيات   

 
 الخلاصه 

معيارية مقاربة  نهج الفضاء المعياري إذا كان يلبي الشروط ، نظهر أن كل مساحة  -حدد الباحثون وعرفوا     
المعياري   Banach فضاء  - β هي مساحة معيارية ولكن العكس ليس ضروريًا ونعطي مثالًا. لذلك قمنا بتعريف 

مساحة أن  إلى  توصلنا  لقد  المشاكل.  بحل بعض  وقمنا  الأمثلة  أن بعض  مساحة   Banach ، ونوضح  هي 
كاملة   Banach لمحدودة وهي مساحة تطبيق معيارية كاملة ، وناقشنا مساحة التطبيق المحددة ذات الأبعاد ا

وما يترتب عليها. أوضحنا أن كل نهج مساحة معيارية هو مساحة متريّة ، والعكس ليس صحيحًا ، وأعطينا  
كاملة وأعطينا المثال والاقتراح. إذا كان لدينا فضاءان متجهان معياريان ، فسنحصل على   β مثالًا. لقد حددنا

مساحات التطبيقات مثل المعيار مقيد بشرط. أظهر أن وظائف   -معياريًا -β أوضحناخاصيتين متكافئتين. لقد 
 β انكماش ، مع بعض النتائج والخصائص. شرح الانكماش المتسلسل -β المعيارية هي Banach مساحات

    Hausdorff مساحة التطبيق وفضاء  -β ونوضح أن العلاقة بين متري 
1. Introduction   

     The idea of the normed space is a central topic in modern functional analysis. In  recent 

years, applications in various other areas of mathematics have been considered in order to find 
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and compare their properties. Space theory approaches are important in quantum field theory; 

There are many examples of the approach structure in functional analysis, measurement theory, 

probability space, and approximation theory. As in the metric case. If an approach space is 

available, it is created by a topological space, it is said to be topological, and if it is created by 

a metric space, then it is said to be metric. The AP product carries only that part of the existing 

numeric data, which can be held if compliance with the topological product of the basic metric 

family of structures is required. It is well known that there is a difference between approach 

and metric distances. In fact, in the approach space, all distances between two points are 

specified, this distance which is defined in points does not have to bring the two together over 

a significant set of all points distances  as in the metric case, the area of approach is defined. 

Lowen [1] defined approach spaces that are introduced in 1987. Lowen's studies [2]  can be 

used to create an overall perception of app- spaces. The approach space theory, a generalization 

of metric and topological spaces, is based on  point-to-group distances rather than point-to-

point distances. The most important motivation is to solve an infinite product problem for 

metric spaces. Other reasons for the purpose of introducing approach spaces are the unification 

of metric, modular, topological and convergence theories. Barn and Qasim [3, 4] characterized 

by local distance app- spaces, "approach spaces", and scale approach spaces and compared to 

usual approach spaces. Colebuders, Sion,… etc [5] show  some important  results on 

contraction's real value. Martinez-Moreno1, Rpld'an2, …etc[6]  defined  the concept of fuzzy 

approach space as a generalization of space for fuzzy metric spaces and show some 

characteristics of the fuzzy approach. Gutierres, Hofmann [7] calculated the concept of 

completeness for the approach spaces and some properties of the approach spaces were also 

calculated. Van Opdenbosch [8] set up new isomorphic characterizations of approach spaces, 

pre-approach spaces, convergence approach spaces, uniform gauge spaces, topological spaces 

and convergence spaces, pretopological spaces, metric spaces, and spaces that are consistent. 

Baekeland and Lowen [9] set Lindelof Scales and Separability in Approach Spaces. Lowen and 

Verwulgen [10]  defined Approach vector spaces. Lowen and Windels [11] defined an approach 

as groups spaces, semi-group spaces, and uniformly convergent. Lowen [12] gave in this book 

details of the  theory approach to complete and gave new forms of digital  numerically form 

spaces that are necessary: approach distances at the local level and standardized measurement 

spaces at the same level. Lowen and Sion [1, 13] provided definitions of some  axioms in the 

approach spaces and link mode axioms , the axiom, regular and completely regular and they 

also calculated  normed linear spaces from a normed real vector space (𝑋,‖ ‖). Lowen, Van 

Olmen, …etc [14] introduced functional ideas and topological theories. Lowen and C. Van 

Olmen [15] gave explanation of some concepts and correlation in approach theory. Lowen [16] 

studied on the development of the basic theory of approximation. Abbas and Hussein [17, 18] 

discussed the space of the topological approach and he found completeness if the completeness 

is not satisfactory. W. Li, Dexue Zhang [19] introduced the Smyth complete. 
         
     The purpose of this paper is twofold: the first one is to put approach group to check space in 

the proper perspective when approach vector spaces, and the second is to use this topological 

approach structure to create a canonical counterpart of the classical topological vector space. 

Both metric spaces and preorders are generalized in extended pseudo-quasi metric spaces. 
 

     This paper is divided into two sections: In Section 1, we structure the  β-Approach normed 

space and  introduce the research and preliminaries with basic definitions. We also introduce a 

new definition which is called β –normed space and explain the relationship between normed 

space and - approach  normed space. In addition, we prove that every approach normed space 

is -normed space but the converse is not true. Moreover, we explain every approach normed 

space is metric space and show the converse is not true.  Further, we define β – normed Banach 

space. We obtain that Banach space is complete normed space and discuss finite β-dimensional 
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app-normed space is β-complete and consequent Banach app- space, We define β-complete and  

some examples and propositions are given. In section two, we give  new results of β-

Contractions on β-Approach normed spaces. We also show that functions of β-normed Banach 

spaces are a contraction in  β –approach space with new results.  We explain that  sequentially 

β-contraction. Finally,  we show that the relation between metric β- app- space and Hausdorff 

space. 

 

2.Structure of β-Approach normed space 

Definition (2.1) 

     A uniform approach space which means uniform distance is a subspace of a product of 

metric approach spaces in approach. 

 

Definition (2.2) 

Let 𝑋 be app-vector space. A triple (𝑋 ,‖.  ‖ , 𝛽∥.∥ )  is said to beβ- approach normed space if  
the following conditions are satisfied:  

1) ‖𝑥 ‖ = 0  if and only if  𝑥 =  0  , for all 𝑥 ∈  𝑋 

2) ‖𝜆. 𝑥 ‖ = |𝜆 | .  ‖ 𝑥  ‖     , for all  𝜆 ∈ Ғ , 𝑥 ∈  𝑋  

3) ‖ 𝑥 + 𝑦  ‖     ≤  ‖ 𝑥  ‖  + ‖ 𝑦  ‖    , for all    𝑥 , 𝑦 ∈  𝑋  

4) ‖𝑥 ‖  ≥ 0      ,                      for all 𝑥 ∈  𝑋 

       5) 𝛽∥.∥ (𝑀, 𝑁) = 𝑖𝑛𝑓
𝑀∈2𝑋

𝑁∈2𝑋

 𝑠𝑢𝑝
𝑥 ∈𝑀

 𝑖𝑛𝑓
𝑎∈𝑁

|𝑥 − 𝑎|   

Remark (2.3)  

1) Every normed approach space is normed space.  

2) A normed space is not necessary  a normed approach. The following example shows 

that:  

Let 𝐶 [−1 , 1] be a set of all continuous functional on [−1, 1] a vector space 

 𝐶 [−1 , 1] is normed space under the normed. 

  ‖£‖ =  sup
𝑥∈⌈−1,1⌉

{|£ (𝒙)|}   

When £ (𝑥) = 𝑥 − 1                    ,   for all 𝑥 ∈ 𝑋.  

But, it is not a normed app-vector space because:  

Since condition: for 𝑀 =  {−1, 0, 1}  

 

𝑑𝛽∥.∥  (𝑥, 𝑦) =  𝑖𝑛𝑓
𝑀∈2𝑋

𝑁∈2𝑋

 𝑠𝑢𝑝
𝑥 ∈𝑀

𝑖𝑛𝑓
𝑎∈𝑁

 

  ‖£(𝑥) − £(𝑎)‖ = 1. 

Definition (2.4)  

A Banach approach space is β −complete  normed approach space .  

Proposition (2.5)  

Every finite β-dimensional app-normed space is β-complete and consequent Banach app- space.  

Proof: 

 Assume dim(𝑋) = n > 0 , {𝜑₁ , 𝜑₂, … , 𝜑ₙ} is app-basis of 𝑋,  𝑋 is finite β-dimensional app-

normed space 

Let { 𝐴𝑚}𝑚=1
𝑛  𝑏𝑒 𝑎  𝛽 − 𝐶𝑎𝑢𝑐ℎ𝑦 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑖𝑛 𝑋 ,  

𝑙𝑖𝑚
𝑛→∞

 𝑖𝑛𝑓
𝑥ₘ∈𝑀

 𝛽({𝑥𝑚 }, 𝑀 )  = 0 .  𝑓𝑜𝑟 𝑥ₘ =  Σ𝑖=1
𝑛  ⍺ᵢₘ 𝜑ᵢ , 𝑦ᵢ =  Σ𝑖=1

𝑛 ⍺ᵢᵢ𝜑ᵢ 
  

0 = 𝑙𝑖𝑚
𝑛→∞

 𝑖𝑛𝑓
Σ

𝑖=1⍺ᵢᵢ𝜑𝑖∈𝑀
𝑛

 𝛽(Σ𝑖=1
𝑛  ⍺ᵢₘ𝜑ᵢ, 𝑀)  
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= 𝑙𝑖𝑚
𝑛→∞

 𝑖𝑛𝑓
Σ

𝑖=1⍺ᵢᵢ𝜑𝑖∈𝑀
𝑛

 𝑖𝑛𝑓
𝑦∈𝑀

  𝑑(Σ𝑖=1
𝑛  𝑎ᵢₘ𝜑ᵢ, 𝑀 )  

= 𝑙𝑖𝑚
𝑛→∞

 𝑖𝑛𝑓
Σ𝑖=1

𝑛
 ⍺ᵢᵢ𝜑𝑖∈𝑀

 
 𝑖𝑛𝑓

𝑦∈𝑀
  𝑑𝛽‖.‖(Σ𝑖=1

𝑛  ⍺ᵢₘ𝜑ᵢ, 𝑦 )  

= 𝑙𝑖𝑚
𝑛→∞

 𝑖𝑛𝑓
Σ𝑖=1

𝑛
⍺ᵢᵢ𝜑𝑖∈𝑀

 
 𝑖𝑛𝑓

𝑦∈𝑀
  𝑑𝛿‖.‖(Σ𝑖=1

𝑛  ⍺ᵢₘ𝜑ᵢ , Σ𝑖=1
𝑛  ⍺ᵢᵢ𝜑ᵢ  )  

= 𝑙𝑖𝑚
𝑛→∞

 𝑖𝑛𝑓
Σ𝑖=1

𝑛
⍺ᵢᵢ𝜑𝑖∈𝑀

 
 𝑖𝑛𝑓

𝑦∈𝑀
 ‖Σ𝑖=1

𝑛  ⍺ᵢₘ𝜑ᵢ , Σ𝑖=1
𝑛  ⍺ᵢᵢ𝜑ᵢ‖  ; that is  

Σ𝑖=1
𝑛 ‖⍺ᵢₘ − ⍺ᵢᵢ‖ = 0 .  

Then {⍺ᵢₘ} is a Cauchy sequence in a real field ℝ or complex field 𝕔 , since real field ℝ or 

complex field 𝕔 is complete. Therefore, for all 𝐼 there exists ⍺ᵢ ∈ 𝐹 such that  

 lim
𝑛→∞

⍺𝑖𝑚 =  ⍺ᵢ , 𝑝𝑢𝑡 𝑥 = Σ𝑖=1
𝑛 ⍺ᵢ 𝜑𝑖 .  

There  exists 𝑥 ∈ 𝑀 for all 𝑀 ∈ 2𝑋 , 
𝑙𝑖𝑚
𝑛→∞

 𝑖𝑛𝑓
Σ𝑖=1

𝑛
⍺ᵢᵢ𝜑𝑖∈𝑀

 

 

 𝛿(Σ𝑖=1
𝑛  𝑎ᵢₘ𝜑ᵢ, 𝑀) = 0   

Thus 𝑋 is 𝛽 − complete .  

This can be deduced from the fact that both ℝ and 𝕔 are complete and from the fact that every 

finite – dimensional is isomorphism to ℝ𝑛 𝑜𝑟 𝕔𝑛 for some 𝑛.  
 

Definition (2.6)  

An app- space is called β-complete if every β- Cauchy is β-convergent in (𝑋, β). 

  

Remark (2.7) 

     Every approach normed space is metric space. The following example shows that the  

converse is not true. 

Let 𝑋 be a set of all complex sequence𝑠 {𝑥𝑖} . And let β: 2𝑋 × 2𝑋→ [ 0 , ∞] be defined by :  

β (𝑀, 𝑁) = {
 𝑖𝑛𝑓
𝑥𝑖∈𝑀

 𝑖𝑛𝑓
𝑦𝑖∈𝑁

 ∑
1

2𝑖 

𝑛
𝑖=1 (

|𝑥𝑖−𝑦𝑖 |

1+|𝑥𝑖−𝑦𝑖 |
)                              if M ≠  ∅   𝑎𝑛𝑑  𝑁 ≠  ∅ 

                                         
∞                                  𝑖𝑓   𝑀 =  ∅   𝑜𝑟     𝑁 =  ∅                           

  

 

𝑑𝛽 (𝑥,𝑦) = β (𝑀, 𝑁) = 𝑖𝑛𝑓
𝑥𝑖∈𝑀

 𝑖𝑛𝑓
𝑦𝑖∈𝑁

 ∑
1

2𝑖 

𝑛
𝑖=1 (

|𝑥𝑖−𝑦𝑖 |

1+|𝑥𝑖−𝑦𝑖 |
)      for all 𝑥 ∈ 𝑀 and 𝑦 ∈ 𝑁  

 and ⊂ 2𝑋 , 𝑖=1,….,𝑛.  

 (𝑋 , 𝑑𝛽 ) is a metric β – app-space but it is not normed β – app-space . 

Because if there is norm app-space such that  𝑑𝛽 (𝜆 𝑥,𝜆 𝑦) =|𝜆 |  𝑑𝛽 (𝑥, 𝑦) that is  

𝑑𝛽 (𝑀,𝑁)= 𝑖𝑛𝑓
𝑥𝑖∈𝑀

 𝑖𝑛𝑓
𝑦𝑖∈𝑁

 ∑
1

2𝑖 

𝑛
𝑖=1 (

|𝑥𝑖−𝑦𝑖 |

1+|𝑥𝑖−𝑦𝑖 |
)   , ‖𝜆 𝑥 −  𝜆 𝑦  ‖  =|𝜆 |  ‖ 𝑥 −   𝑦  ‖ .  

But, ‖𝜆 𝑥 −  𝜆 𝑦  ‖  ≠  |𝜆 |  ‖ 𝑥 −   𝑦  ‖ . 

Since ‖∑
1

2𝑖 

𝑛
𝑖=1 (

|𝜆𝑥𝑖−𝜆𝑦𝑖 |

𝜆+|𝜆𝑥𝑖−𝜆𝑦𝑖 |
)    ‖ ≠ |𝜆 |  ‖ ∑

1

2𝑖 

𝑛
𝑖=1 (

|𝑥𝑖−𝑦𝑖 |

1+|𝑥𝑖−𝑦𝑖 |
)  ‖ 

 

Proposition (2.8) 

      If (𝑋, 𝛽𝑑) is approach metric space and {𝐴𝑛}𝑛=1
∞  be a disjoint  sequence in 𝑋, then it is 

Cauchy sequence in (𝑋, 𝑑) if and only if is  β- Cauchy sequence in (𝑋, 𝛽𝑑) 

 

Proof:  
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        Let {Ѧ𝑛}𝑛=1
∞  be a Cauchy sequence in (𝑋, 𝛽𝑑) , then we have that   𝑖𝑛𝑓

𝑥∈𝑀
𝑥𝑖∈Ѧ𝑖

 𝛽({Ѧ𝑛  }, 𝑀) 
 = 0 

   𝑖𝑛𝑓
𝑥∈𝑀
𝑥𝑖∈Ѧ𝑖

 𝛽({ Ѧ𝑛}, {Ѧ𝑚}) 
 =    𝑖𝑛𝑓

𝑥∈𝑀
𝑥𝑖∈Ѧ𝑖

  𝑖𝑛𝑓
Ѧ𝑚⊂𝑀
Ѧ𝑛⊂𝑀

 𝛽({ Ѧ𝑛}, {Ѧ𝑚}) 
 =0  

That is 𝑑 ({ Ѧ𝑛}, {Ѧ𝑚}) 
 =0  

Then {Ѧ𝑛}𝑛=1
∞  is left Cauchy sequence. 

Also   𝑖𝑛𝑓
Ѧ𝑚⊂𝑀
Ѧ𝑛⊂𝑀

 𝛽({ Ѧ𝑚}, {Ѧ𝑛}) 
 =    𝑖𝑛𝑓

𝑥∈𝑀
𝑥𝑖∈Ѧ𝑖

   𝑖𝑛𝑓
Ѧ𝑚⊂𝑀
Ѧ𝑛⊂𝑀

 𝛽({ Ѧ𝑚}, {Ѧ𝑛}) 
 =0  

That is 𝑑 ({ Ѧ𝑚}, {Ѧ𝑛}) 
 =0. Then {Ѧ𝑛}𝑛=1

∞  is right Cauchy  sequence. 

Thus {Ѧ𝑛}𝑛=1
∞  is Cauchy  sequence in (𝑋, 𝑑). 

Conversely, if  {Ѧ𝑛}𝑛=1
∞  is a Cauchy  sequence in (𝑋, 𝑑). 

Then it is left and right Cauchy sequence, for all ɛ<0, there exists k∈ Z+ such that 

𝑑 ({ Ѧ𝑚}, {Ѧ𝑛}) 
 < ɛ , for all m, n ≤ N , m ≥ n  and for all  ɛ < 0  there exists 𝑘 ∈  𝑍+ such 

that 𝑑 ({ Ѧ𝑛}, {Ѧ𝑚}) 
 < ɛ , for all m, n ≤ N , n ≥  m  

   𝑖𝑛𝑓
𝐴𝑛⊂𝑀
𝑥𝑖∈Ѧ𝑖

 𝛽({ Ѧ𝑛}, 𝑀) 
 =    𝑖𝑛𝑓

𝑥∈𝑀
𝑥𝑖∈Ѧ𝑖

    𝑖𝑛𝑓
Ѧ𝑚⊂𝑀
Ѧ𝑛⊂𝑀

 𝛽({ Ѧ𝑚}, {Ѧ𝑛}) 
 =0  

Hence,  {Ѧ𝑛}𝑛=1
∞  is β- Cauchy  sequence in approach space. 

 

Theorem (2.9) 

An app- space(𝑋, β) is β-complete space if and only if (𝑋, 𝑑𝛽) is complete. 
 

Proof: 

Let { 𝑥𝑛}𝑛=1
∞   be a Cauchy sequence in (𝑋, ) , then it is β- Cauchy sequence in (𝑋, β) 

By proposition (2.8 )since (𝑋, β) is complete, there exists 𝑥 ∈ 𝑀 for all 𝑀 ∈  Ґ(𝑀) such 

that    𝛽( {𝐴𝑛 }, 𝑀) 
  = 0  , Ґ(𝑀)  the set of all cluster point in app-space. 

𝑠𝑢𝑝
𝑀 𝜖 Ґ(𝑋) 

 
 
 𝑖𝑛𝑓
𝑥∈𝑀
𝑥𝑖∈𝐴𝑖

 𝑑𝛽({ 𝐴𝑛}, {𝑥}) 
 =0  then 𝑑𝛽(𝑥n , 𝑥) =0 

That is (𝑥 , 𝑑𝛽 ) is complete. 

Conversely, Let { 𝑥𝑛}𝑛=1
∞   be β- Cauchy sequence in  (𝑋 , 𝑑𝛽 ). 

The sequence { 𝑥𝑛}𝑛=1
∞  is left and right sequence in  (𝑋 , 𝑑𝛽 ). 

(𝑋, 𝑑) is complete that is lim
𝑛→∞

 𝑑𝛽  ({ 𝑥𝑛 }, 𝑥) 
 =0  

that is lim
𝑛→∞

 inf
𝑥∈𝑀
𝑥𝑖∈𝐴𝑖

 𝛽({ 𝐴𝑛 }, 𝑀) 
  =0  and lim

𝑛→∞
 𝑠𝑢𝑝
𝑥∈𝑀
𝑥𝑖∈𝐴𝑖

 𝛽( 𝐴𝑛 , 𝑀) 
 =0 

𝛽( {𝐴𝑛 }, 𝑀) 
 = 𝑠𝑢𝑝

𝑀 ∈ Ґ(𝑋) 
 
 
 𝑖𝑛𝑓

𝑥∈𝑀
𝑥𝑖∈𝐴𝑖

 𝑑𝛽({ 𝐴𝑛}, {𝑥}) 
 = 0  

that is there exists 𝑥 ∈ 𝑋 and for all 𝑀 ∈  Ґ(𝑀)  , 𝛽( {𝑋𝑛 }, 𝑀) 
 =0  

Hence { 𝑥𝑛}𝑛=1
∞  is convergent in 𝛽- approach space(𝑋, β). 

 

Example (2.10) 

Let Ḝ = ℝ . Define βḜ :2ℝ×2ℝ →  [ 0, ∞] 

βḜ (𝑀, 𝑁) = {

0             𝑀 ∩ 𝑁 ≠ ∅ , 𝑀, 𝑁 unbounded 
∞                𝑀 ∩ 𝑁 =  ∅ , 𝑀, 𝑁 bounded
𝑖𝑛𝑓  𝑖𝑛𝑓

𝑦∈𝑁
|𝑥 − 𝑎|       𝑀 < ∞ ,     𝑁 < ∞

  

This function is a distance on [ 0, ∞] we will prove that (Ḝ , 𝛽) is 𝛽 − complete app-space. 

Proof:  

For all 𝑛 ∈  ℤ + 
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βḜ (𝑀, 𝑁) = {

0             𝑀 ∩ 𝑁 ≠ ∅ , 𝑀, 𝑁 unbounded 
∞                𝑀 ∩ 𝑁 =  ∅ , 𝑀, 𝑁 bounded
𝑖𝑛𝑓

𝑥𝑛∈𝑀
 𝑖𝑛𝑓

𝑎∈𝑁
|𝑥𝑛 − 𝑎|       𝑀 < ∞ ,     𝑁 < ∞

  

Let { 𝐴𝑛}𝑛=1
∞    be a  β- Cauchy sequence. { 𝐴𝑛}𝑛=1

∞   → 𝑀 and we denoted the set of all cluster 

points in approach space Ґ(𝑋),  𝑀 ∈  Ґ(𝑋). 

 

Then lim
𝑛→∞

 inf
𝑥∈𝑀
𝑥𝑖∈𝐴𝑖

 𝛽({ 𝐴𝑛 }, 𝑀) 
  =0   

There exist many cases:  

If 𝑀 ⊂ ℝ is unbounded , therefore βḜ({ 𝐴𝑛 }, 𝑀) 
 =0  

Then 𝑙𝑖𝑚
𝑛→∞

 𝑖𝑛𝑓
𝑥∈𝑀
𝑥𝑖∈𝐴𝑖

 𝛽( 𝐴𝑛, 𝑀) 
 =0 and 𝑙𝑖𝑚

𝑛→∞
 𝑠𝑢𝑝
𝑥∈𝑀
𝑥𝑖∈𝐴𝑖

 𝛽( 𝐴𝑛 , 𝑀) 
 =0  

If 𝐴𝑛 < ∞  

Then lim
𝑛→∞

 𝑖𝑛𝑓
𝑥∈𝑀
𝑥𝑖∈𝐴𝑖

 𝛽( 𝐴𝑛, 𝑀) 
 = 𝑖𝑛𝑓

𝑥∈𝑀
𝑥𝑖∈𝐴𝑖

𝑖𝑛𝑓
𝐴𝑚∈𝑀
𝐴𝑛∈𝑀

 𝛽({ 𝐴𝑚}, {𝐴𝑛}) 
 = 𝑖𝑛𝑓

𝑥∈𝑀
𝑥𝑖∈𝐴𝑖

 𝑖𝑛𝑓
𝐴𝑚∈𝑀
𝐴𝑛∈𝑀

| 𝑥𝑛 − 𝑥𝑚⎹ =0 

There exists  k ∈ Z+ such that | 𝑥𝑛 − 𝑥𝑚⎹ =0 for all 𝑚,𝑛 ≥  𝑘. 

That is { 𝐴𝑛}𝑛=1
∞    is  a  β- Cauchy sequence in (Ḝ ,𝑑). 

Since ℝ is complete , then { 𝐴𝑛}𝑛=1
∞   convergent sequence in ℝ . 

There exists   ∈ 𝑀 , for all 𝑀 ∈ 2𝑋, | 𝑥𝑛 − 𝑥 ⎹ =0. 

Then 𝑙𝑖𝑚
𝑛→∞

𝑖𝑛𝑓
𝑥𝑛∈𝑀 ,𝑀∈ Ґ(ℝ)

 𝑖𝑛𝑓
𝑎∈𝑁

|𝑥𝑛 − 𝑎|  =0  

And 𝑙𝑖𝑚
𝑛→∞

𝑠𝑢𝑝
𝑥𝑛∈𝑀 ,𝑀∈ Ґ(ℝ)

 𝑖𝑛𝑓
𝑎∈𝑁

|𝑥𝑛 − 𝑎|  =0 

Thus βḜ  is convergent on 𝛽- app- space. 
 

3. New Results of  β-Contractions on  β-Approach normed spaces 

Proposition (3.1)  

 If 𝑆1 and 𝑆2 are normed app-vector space , and  

£ ∶  𝑆1  →  𝑆2 is a surjective linear function, Then the following statements are equivalent: 

1) £: (𝑆1 , ‖. ‖ ₗ, 𝛽1  ) →  (𝑆2 , ‖. ‖₂, 𝛽2) is  𝛽 − contraction .  
2)  (𝑆2 , 𝛽2) is  𝛽2 − complete space whenever (𝑆1 , 𝛽1) is 𝛽1 − complete .  
 

Proof:  

1) If  £: 𝑆1  →  𝑆2 is  𝛽 − contraction . Then for every 𝑥 ∈  𝑆1 and each subset   
𝑀 ⊂  𝑆1  

𝛽2 (£ (𝐴), 𝑓 (𝑀))  ≤  𝛽1 (𝐴, 𝑀)  

𝑖𝑓 (𝑆1 , ‖. ‖ ₗ) is Banach app-space.  

To prove (𝑆2 , 𝛽2) is  𝛽2 − complete space.  

Let {𝑦𝑛} 𝑏𝑒 𝑎 𝛽2 – Cauchy sequence in 𝑆2 then there exists {𝑥𝑛} such that  

£({𝑥𝑛}) = { 𝑦𝑛}  

𝑙𝑖𝑚
𝑛→∞

 𝑖𝑛𝑓
𝑥𝑚∈𝑀

 

  𝛽2  ({𝑦𝑛 }, 𝑀) = 0 𝑡ℎ𝑒𝑛 𝑙𝑖𝑚
𝑛→∞

 𝑖𝑛𝑓
𝑥𝑚∈𝑁

 

 , 𝛽2   (£ ({𝑥𝑛}), £(𝑁)) = 0 ,   

where £ (𝑁) = 𝑀 . 

Since £  is 𝛽 −  contraction .  

0 =  𝑙𝑖𝑚
𝑛→∞

 𝑖𝑛𝑓
𝑥𝑚∈𝑁

 

   𝛽2   (£ ({𝑥𝑛}), £(𝑁)) > 𝑙𝑖𝑚
𝑛→∞

   𝑖𝑛𝑓
𝑥𝑚∈𝑀

 

 𝛽1   ({𝑥𝑛}, 𝑀) 

Hence,   𝑙𝑖𝑚
𝑛→∞

   𝑖𝑛𝑓
𝑥𝑚∈𝑀

 

 𝛽1   ({𝑥𝑛}, 𝑀) = 0  

That is {𝑥𝑛} is  𝛽 − Cauchy sequence in 𝑆1,  
𝑆2 is  β− complete app- space. 
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There exists ∈ 𝑁 , for all 𝑁 ⊆  𝑆1 .  

Such that 𝑙𝑖𝑚
𝑛→∞

   𝑖𝑛𝑓
𝑥 ∈𝑀

 

 𝛽1   ({𝑥𝑛}, 𝑁) =0  

𝛽2   (£ ({𝑥𝑛}), £ (𝑁)) ≤ 𝛽1   ({𝑥𝑛}, 𝑁) 

𝑙𝑖𝑚
𝑛→∞

 𝑠𝑢𝑝
𝑥∈𝑀 

 𝛽1   ({ 𝑥𝑛}, 𝑀) 
 =0   and  𝑙𝑖𝑚

𝑛→∞
   𝑖𝑛𝑓

𝑥 ∈𝑀
 

 𝛽1   ({𝑥𝑛}, 𝑀) =0  

𝑙𝑖𝑚 
𝑛→∞

𝑠𝑢𝑝
𝑥∈𝑀 

 𝛽2   (£ ({𝑥𝑛}), £ (𝑀)) ≤ 𝑙𝑖𝑚
𝑛→∞

 𝑠𝑢𝑝
𝑥∈𝑀 

 𝛽1   ({ 𝑥𝑛}, 𝑀) 
 =0  

𝑙𝑖𝑚
𝑛→∞

   𝑖𝑛𝑓 
𝑥 ∈𝑀

 

𝛽2   (£ ({𝑥𝑛}), £ (𝑀)) ≥ 𝑙𝑖𝑚
𝑛→∞

   𝑖𝑛𝑓
𝑥 ∈𝑀

 

 𝛽1   ({𝑥𝑛}, 𝑀) =0 

𝑙𝑖𝑚 
𝑛→∞

𝑠𝑢𝑝
𝑥∈𝑀 

 𝛽2   (£ ({𝑥𝑛}), £ (𝑁)) ≤ 0 

𝑙𝑖𝑚
𝑛→∞

   𝑖𝑛𝑓 
𝑥 ∈𝑆2 

𝛽2   (£ ({𝑥𝑛}), £ (𝑀)) =0  

𝑙𝑖𝑚 
𝑛→∞

𝑠𝑢𝑝
𝑥∈𝑆2 

 𝛽2   (£ ({𝑥𝑛}), £(𝑀)) = 0  

Then (𝑆2 , 𝛽2  ) is 𝛽2  − complete space. 
Conversely, suppose £ is not 𝛽 − contraction 

𝛽2   (£({𝑥𝑛}), £ (𝑁)) ≥ 𝛽1   ({𝑥𝑛}, 𝑁) 

Let {𝑥𝑛} be a   𝛽 − convergent sequence in  𝑆1 

That is {𝑥𝑛} is  𝛽 − Cauchy sequence in 𝑆1,  
{£ ({𝑥𝑛})} be 𝛽 − Cauchy sequence in 𝑆2  

The condition hold then there is {£ ({𝑥𝑛})} in 𝑆2  

There exists y = £ (𝑥) ∈  £ (𝑁) = 𝑀 ∈ 2𝑆2 

Such that 𝛽2   (£ ({𝑥𝑛}), £ (𝑁)) = 0  

That is 𝛽1   ({𝑥𝑛}, 𝑁) < 0 . Thus, we get a contradition, then the proof is finished. 

 

Proposition (3.2) 

       A normed β-app-space (  , 𝛽‖  ‖ , ‖. ‖  ) is β-complete if and only if a metric approach space 

(𝑆, 𝑑‖  ‖) is β- complete. 

 

Proof: 

Let 𝑆 be normed β-app-space . and β is generated by the ‖. ‖. 

Let {𝐴𝑛}𝑛=1
∞  Cauchy sequence in (𝑆, 𝑑‖  ‖) 

Then we have  𝑑‖  ‖  ({ 𝐴𝑚}, {𝐴𝑛}) 
 =0   for all m,n ∈ Z+  

This implies that 𝛽‖  ‖ ({𝐴𝑛  }, 𝑀) 
 = 𝑖𝑛𝑓

𝑀∈2𝑋

𝑁∈2𝑋

sup
 𝐴𝑛∈𝑆

 inf
𝐴𝑚∈𝑀

  𝑑‖  ‖  ({ 𝐴𝑛}, {𝐴𝑚}) 
 =0 

That is inf
𝐴𝑚∈𝑀

  𝛽‖  ‖ ({𝐴𝑛  }, 𝑀) 
  =0   

Then {𝐴𝑛}𝑛=1
∞  is β- Cauchy sequence in (  , 𝛽‖  ‖ , ‖. ‖  ) by proposition (2.8)  

Since S is β- complete, this implies that there exists 𝐴 ∈  𝑀 for all 𝑀 ∈ 2𝑋 , 𝛽‖  ‖({ 𝐴𝑛}, 𝑀) 
 =

0  for all n ∈ Z+  

𝑑‖  ‖  ({ 𝑥𝑛}, {𝑥}) 
 = inf

𝑥∈ 𝑀
 𝛽({ 𝑥𝑛}, {𝑥}) 

  =0 that is { 𝑥𝑛} converges to  . 

Conversely, suppose that (𝑆, 𝑑‖  ‖) is β- complete,  and Let {𝐴𝑛}𝑛=1
∞   is  

 β- Cauchy sequence in ( 𝑆 , 𝛽‖  ‖ , ‖. ‖  )  

then 0 =  𝑖𝑛𝑓
𝐴𝑛∈𝑆

 

 𝛽({ 𝐴𝑛}, 𝑀) 
 = 𝑖𝑛𝑓

𝑀∈2𝑋

𝑁∈2𝑋

 𝑠𝑢𝑝
𝐴𝑛∈𝑆

 
 
 𝑖𝑛𝑓
𝐴𝑚∈𝑀

 ‖ 𝐴𝑛 −   𝐴𝑚  ‖    

                                             = 𝑖𝑛𝑓
𝑀∈2𝑋

𝑁∈2𝑋

 𝑠𝑢𝑝
𝐴𝑛∈𝑆

 
 
 𝑖𝑛𝑓
𝐴𝑚∈𝑀

 𝑑‖  ‖  ({ 𝐴𝑛}, {𝐴𝑚}) 
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𝑑‖  ‖  ({ 𝐴𝑛}, {𝐴𝑚}) 
 = 𝑖𝑛𝑓

𝑀∈2𝑋

𝑁∈2𝑋

  𝑖𝑛𝑓
𝑥∈𝑀
𝑥𝑖∈𝐴𝑖

 𝛽({ 𝐴𝑛}, {𝐴𝑚}) 
  

                               = 𝑖𝑛𝑓
𝑀∈2𝑋

𝑁∈2𝑋

    𝑖𝑛𝑓
𝑥∈𝑀
𝑥𝑖∈𝐴𝑖

  𝑖𝑛𝑓
𝐴𝑚∈𝑀
𝐴𝑛∈𝑀

 𝛽({ 𝐴𝑛}, {𝐴𝑚}) 
 =0  

𝑑‖  ‖  ({ 𝐴𝑛}, {𝐴𝑚}) 
  → 0 as 𝑛 → ∞  

That is {𝐴𝑛}𝑛=1
∞  is β- Cauchy sequence in (𝑆, 𝑑‖  ‖) 

(𝑆, 𝑑‖  ‖) is β- complete, therefore { 𝐴𝑛} is converge sequence, 

There exists 𝑥 ∈ 𝑋 such that lim
𝑛→∞

  { 𝑥𝑛} 
 = {𝑥}  

𝑑‖  ‖  ({ 𝑥𝑛}, {𝑥}) 
 = 𝑖𝑛𝑓

𝑀∈2𝑋

𝑁∈2𝑋

  𝑖𝑛𝑓
𝐴𝑚∈𝑀
𝑥𝑖∈𝐴𝑖

 𝛽‖  ‖({ 𝑥𝑛}, {𝑥}) 
 =0  

There exists 𝑥 ∈ 𝑀 for all 𝑀 ∈  2𝑋  

Such that  𝛽‖  ‖({ 𝑥𝑛}, 𝑀) 
 = 𝑖𝑛𝑓

𝑀∈2𝑋

𝑁∈2𝑋

 𝑠𝑢𝑝
𝑥𝑛∈𝑋

 
 
 𝑖𝑛𝑓
𝑥∈𝑀

 𝑑‖  ‖  ({ 𝑥𝑛}, {𝑥}) 
 =0 .  

Hence, (  , 𝛽‖  ‖ , ‖. ‖  ) is β-complete.  
 

Corollary (3.3)  

A normed β-app-space is Banach approach space if and only if  (𝑋, 𝑑𝛽) is Banach space.  

Proof:  

As a result of Proposition (3.1) and Proposition (3.2) and by Remark (2.3).  
 

Proposition (3.4) 

 Let (𝑋 , ‖. ‖, 𝛽∥.∥) be a normed app-vector space then the following are equivalent: 

(1) (𝑋 , ‖. ‖, 𝛽∥.∥) is a Banach app- space.  

(2) (𝑋 , 𝛽) is complete .  
 

Proof: 

 that is clear by the above corollary. 
 

Proposition (3.5) 

 Let (𝑋 , ‖. ‖, 𝛽∥.∥) be a normed β- app- space . then we have:  

(1) The function £: (𝑥 , 𝑦) → 𝑥 + 𝑦 is 𝛽 − contraction  

(2) The function £ ∶ (⍺ , 𝑦) → ⍺𝑥 is 𝛽 − contraction  

 

Proof:  

(1) Let {(𝑥𝑛 , 𝑦𝑛)} be a convergent sequence in 𝑋 ,  

There exist 𝑥 , 𝑦, ∈ 𝑋 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑀, 𝑁 ∈  Γ (𝑥)(respectively), 
 Γ (𝑥) is the set of all cluster points in app-space. 

Such that𝛽 ({𝑥𝑛 } , 𝑀) = 0 , 𝛽 ({𝑦𝑛} , 𝑁) = 0.  
Since 𝛽∥.∥ ({𝑥𝑛} , 𝑀) = 𝑖𝑛𝑓

𝑀∈2𝑋

𝑁∈2𝑋

 𝑠𝑢𝑝
𝑥∈𝑋

  inf
𝑀⊂𝑋

 ‖𝑥𝑛 − 𝑥‖ 

                                 = 𝑖𝑛𝑓
𝑀∈2𝑋

𝑁∈2𝑋

 𝑠𝑢𝑝
𝑥∈𝑋

  inf
𝑀⊂𝑋

 𝑑𝛽(𝑥𝑛,𝑥) = 0 

         𝛽∥.∥ ({𝑦𝑛} , 𝑀) = 𝑖𝑛𝑓
𝑀∈2𝑋

𝑁∈2𝑋

 𝑠𝑢𝑝
𝑦∈𝑋

  inf
𝑀⊂𝑋

 ‖𝑦𝑛 − 𝑦‖ 

                                 = 𝑖𝑛𝑓
𝑀∈2𝑋

𝑁∈2𝑋

 𝑠𝑢𝑝
𝑦∈𝑋

  inf
𝑀⊂𝑋

  𝑑𝛽(𝑦𝑛,𝑦) = 0 

𝛽∥.∥ (£({𝑥𝑛} , {𝑦𝑛}), £(𝑀, 𝑁)) = 𝛽∥.∥
,  ({𝑥𝑛 +  𝑦𝑛 }, 𝑀 + 𝑁)  
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                                               =  𝑖𝑛𝑓
𝑀∈2𝑋

𝑁∈2𝑋

𝑠𝑢𝑝
𝑥,𝑦∈𝑋

  inf
𝑀,𝑁⊂𝑋

‖𝑥𝑛 + 𝑦𝑛 − (𝑥 + 𝑦)‖  

                                          ≤  𝑖𝑛𝑓
𝑀∈2𝑋

𝑁∈2𝑋

𝑠𝑢𝑝
𝑥,𝑦∈𝑋

  inf
𝑀,𝑁⊂𝑋

‖𝑥𝑛 − 𝑥‖ +  𝑠𝑢𝑝
𝑥,𝑦∈𝑋

  inf
𝑀,𝑁⊂𝑋

‖𝑦𝑛 − 𝑦‖ 

   

                                              ≤  𝑖𝑛𝑓
𝑀∈2𝑋

𝑁∈2𝑋

𝑠𝑢𝑝
𝑥,𝑦∈𝑋

  inf
𝑀,𝑁⊂𝑋

 𝑑𝛽({𝑥𝑛  +  𝑦𝑛 }, { 𝑥 + 𝑦}) 

                                               = 0.  

Then £ is sequentially contraction. Therefore,  £ 𝑖𝑠 − 𝛽contraction .  

(2) Let {(⍺𝑛 , 𝑥𝑛)} be a convergent sequence in 𝐹 × 𝑋 ,  

Then let 𝑥 ∈ 𝑋 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑀 ∈  Γ (𝑋) 

Such that 𝛽 ({𝑥𝑛}, 𝑀 ) = 0,  
𝛽∥.∥

, £({𝑥𝑛 }), 𝑓(𝑀)) = 𝛽∥.∥
,  (⍺{𝑥𝑛 }, ⍺𝑀)  

                                = 𝑖𝑛𝑓
𝑀∈2𝑋

𝑁∈2𝑋

𝑠𝑢𝑝
𝑥∈𝑋

  inf
𝑀⊂𝑋

 ‖⍺𝑛 𝑥𝑛 − ⍺𝑥‖  

                                 = 𝑖𝑛𝑓
𝑀∈2𝑋

𝑁∈2𝑋

𝑠𝑢𝑝
𝑥∈𝑋

  inf
𝑀⊂𝑋

 ‖⍺𝑛 𝑥𝑛 −  ⍺𝑥𝑛 + ⍺𝑥𝑛 − ⍺𝑥‖  

                                             = 0.  

Thus £ ({⍺, 𝑥}) = {⍺𝑥} is sequentialy β-contraction  
 

Remark (3.6) 

 Let 𝑀 =  (𝑋 , 𝑑𝛽)  be a metric β- app- space , then 𝑀 is a Hausdorff space .  
 

Proof:  

      𝐿𝑒𝑡 𝑥, 𝑦 ∈ 𝑋 ∶ 𝑥 ≠ 𝑦.  
From the distinct points in metric β-app- space, there exist disjoint open Balls ∈ − balls 

𝐷∈ (𝑥)and 𝐷∈ (𝑦) which are disjoint open sets containing 𝑥 and 𝑦, respectively.  

Hence, the result is obtained by the definition of Hausdorff space.  
 

Theorem (3.7) 

Every uniform β-approach normed space (  , 𝛽‖  ‖ , ‖. ‖  ) is a Hausdorff space. 
 

Proof: 

Suppose that 𝑋∗ be a topological dual of 𝑋 . That is  

𝑋∗ = { £ : ( 𝑋, 𝑇𝑑‖  ‖
 ) → ( 𝑅 , 𝑇𝑆 

) | £ is linear and continuous functionals }  

Let 𝑇𝑋
∗

  
 
is the set of all non-negative closed unit ball in 𝑋∗, 

So 𝑇𝑋
∗

  
 = {£ ∈ 𝑋∗ ∶ £(𝑥)  ≤ 1}  

and the norm on dual is defined by  
‖£ ‖ ∗ = inf

𝑥⊂𝑇𝑋
∗
‖£(𝑥) ‖  

It is clear that (𝑋∗ , ‖£ ‖ ∗) is Banach space. 

The duall of (𝑋∗ , ‖£ ‖ ∗) is called biduall of 𝑋 which is denoted by 𝑋∗∗ 

Let 𝜑 be non- empty subset of 𝑋∗ the functional ‖𝑥 ‖ 𝜑: 𝑋 → ℝ as followes: 

‖𝑥 ‖ = sup
£∈𝜑

 |£(𝑥) | is a semi norm on 𝑋 

We have  𝑀𝑋∗ ={ ‖𝑥 ‖ 𝜑:  𝜑 ⊂ 𝑇𝑋
∗ } and 𝑁𝑋∗={d ‖𝑥 ‖ 𝜑: 𝜑 ⊂ 𝑇𝑋 

∗ } 

Then a basis for the weak topology 𝛶(X , 𝑋∗) on X is given by : 

{{ b∈ X: for all £ ∈  𝜑: | £( 𝑥 − 𝑏) |  < 𝜀  : ∅ ≠ 𝜑 ⊂ 𝑋∗,𝜀 > 0} for 𝑥 ∈  X} 
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Define  𝛽𝑋∗ : 2𝑋× 2𝑋 → [0, ∞] by  

𝛽𝑋∗ ( 𝑀,𝑁) = sup
𝜑 ⊂𝑇𝑋

∗  
 inf
𝑎∈𝑁

‖𝑥 − 𝑎 ‖ 𝜑 

It is clear that  𝛽𝑋∗ satisfies the conditions of approach distance, which is said to be weak 

distance or weak approach distance. Since 𝛽𝑋∗  is the uniform β- approach space . generated by 

𝑁𝑋∗ , 

An app-basis for the 𝑇𝑋
∗

  
 is 𝑀𝑋∗ ={ ‖𝑥 ‖ 𝜑:  𝜑 ⊂ 𝑇𝑋

∗ } equal to  a basis for a weak topology  

𝛶(X , 𝑋∗) is given as: {{ b∈ X: for all £ ∈  𝜑: | £( 𝑥 − 𝑏) |  < 𝜀 ∶  ∅ ≠  𝜑 ⊂ 𝑋∗, 𝜀 > 0} for 𝑥 ∈
 X} that is equally a basis for the weak topology Υ(X , 𝑋∗) is  Hausdorff, 

then the normed app-space is the Hausdorff space 
 

Theorem (3.8)  

Let (  , 𝛽‖  ‖ , ‖. ‖  ) is be a normed app-space, and { 𝑥𝑛}  a β-convergent sequence in  𝑋 , then a 

sequence { 𝑥𝑛}   in  𝑋 is norm bounded. 

 

Proof: 

Suppose that 𝑀 =  sup
£∈𝜑 

  lim sup
𝑛 

 | £(𝑎 −  𝑥𝑛) |  < ∞  for some 𝑎 ∈ 𝑋  

Then we have that for all £ ∈ 𝜑  there exists  𝑛£ such that  for all 𝑛 > 𝑛£ ∶ | £( 𝑎) − £(𝑥𝑛) | ≤
𝑧 + 1 

we have that for all £ ∈ 𝑋∗ and every |£(𝑥𝑛) | ≤ (‖£‖ + 1). (| 
£

‖£‖+1
 (𝑥) | + 𝑧 + 1 ) 

which shows  that (£(𝑥𝑛) 𝑛 is a bounded sequence of the Banach –Stenin Haus theorem (see 

e.g.Brezis (2011) [20, 21, 22] . 

Now this yields that {𝑥𝑛}    is norm bounded. 
 

Proposition (3.9) 

Let (  , 𝛽‖  ‖ , ‖. ‖  ) be a normed app-space. Then the function £: 𝑋 × Y → 𝑋 × Y  is defined 

by: £(𝑥, 𝑦) = (𝑥, 𝑦)   is 𝛽 − contraction. 
 

Proof: 

       Let {(𝑥𝑛, 𝑦𝑛)} be a convergent sequence in 𝑋. There exist 𝑥, 𝑦 ∈ 𝑋  for all 𝑀, 𝑁 ∈ Ґ(𝑋)   
Such that β ({𝑥𝑛}, 𝑀) = 0 , β ({𝑦𝑛} , 𝑀) = 0  

Since 𝛽‖  ‖({𝑥𝑛}, 𝑀) = 𝑖𝑛𝑓
𝑀∈2𝑋

𝑁∈2𝑋

𝑠𝑢𝑝
𝑥∈𝑋 

 
 
 𝑖𝑛𝑓
𝑀,𝑁⊆𝑋  

  ‖ 𝑥𝑛 − 𝑥 ‖ 

                                  =    𝑖𝑛𝑓
𝑀∈2𝑋

𝑁∈2𝑋

   𝑠𝑢𝑝
𝑥∈𝑋

 
 
   𝑖𝑛𝑓

𝑀,𝑁⊆𝑋  

 𝑑𝛽  ({𝑥𝑛}, {𝑥})=0  

𝛽‖  ‖({𝑦𝑛}, 𝑀) = 𝑖𝑛𝑓
𝑀∈2𝑋

𝑁∈2𝑋

𝑠𝑢𝑝
𝑦∈𝑋

 
 
 𝑖𝑛𝑓
𝑀,𝑁⊆𝑋  

  ‖ 𝑦𝑛 − 𝑦 ‖ 

                                  =    𝑖𝑛𝑓
𝑀∈2𝑋

𝑁∈2𝑋

   𝑠𝑢𝑝
𝑦∈𝑋

 
 
   𝑖𝑛𝑓

𝑀,𝑁⊆𝑋  

 𝑑𝛽  ({𝑦𝑛}, {𝑦})=0  

𝛽 (£({𝑥𝑛}), £({𝑦𝑛}) , ( 𝑀, 𝑁)) = 𝑖𝑛𝑓
𝑀∈2𝑋

𝑁∈2𝑋

   𝑠𝑢𝑝
𝑥,𝑦∈𝑋

 
 
   𝑖𝑛𝑓

𝑀,𝑁⊆𝑋  

  𝑑𝛽  ({𝑥𝑛}, {𝑥}) + 𝑑𝛽  ({𝑦𝑛}, {𝑦}) 

≤ 𝑖𝑛𝑓
𝑀∈2𝑋

𝑁∈2𝑋

   𝑠𝑢𝑝
𝑥,𝑦∈𝑋

 
 
   𝑖𝑛𝑓

𝑀,𝑁⊆𝑋  

     𝑑𝛽  ({𝑥𝑛}, {𝑥}) + 𝑖𝑛𝑓
𝑀∈2𝑋

𝑁∈2𝑋

   𝑠𝑢𝑝
𝑦∈𝑋

 
 
   𝑖𝑛𝑓

𝑀,𝑁⊆𝑋  

 𝑑𝛽  ({𝑦𝑛}, {𝑦}) = 0  

 

   = 𝑖𝑛𝑓
𝑀∈2𝑋

𝑁∈2𝑋

   𝑠𝑢𝑝
𝑥,𝑦∈𝑋

 
 
   𝑖𝑛𝑓

𝑀,𝑁⊆𝑋  

  ‖ 𝑥𝑛 + 𝑦𝑛 − (𝑥 + 𝑦) ‖ = 0 

    =     𝛽 ( 𝑀, 𝑁)   
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Proposition (3.10) 

      If  β-app- complete normed space is β-contraction, then the function of metric approach 

space is β- contraction. 

Proof: 

Let 𝑆 be a non-empty set.  𝑀, 𝑁 ⊂ 𝑆 , 𝑀, 𝑁 ∈ 2𝑋 

There exists a Cauchy sequence  

{𝐴𝑛}𝑛=1
∞  Cauchy sequence in (𝑆, 𝑑‖  ‖) 

Then we have  𝑑‖  ‖  ({ 𝐴𝑚}, {𝐴𝑛}) 
 =0   for all m,n ∈ Z+  

This implies that 𝛽‖  ‖ ({𝐴𝑛  }, 𝑀) 
 = 𝑖𝑛𝑓

𝑀∈2𝑋
 

 sup
 𝐴𝑛∈𝑆

 inf
𝐴𝑚∈𝑀

  𝑑‖  ‖  ({ 𝐴𝑛}, {𝐴𝑚}) 
 =0 

That is 𝑖𝑛𝑓
𝑀∈2𝑋

 

 inf
𝐴𝑚∈𝑀

   𝛽‖  ‖ ({𝐴𝑛  }, 𝑀) 
  =0   

Then {𝐴𝑛}𝑛=1
∞  is β- Cauchy sequence in ( 𝑆 , 𝛽‖  ‖ , ‖. ‖  ) ,since S is a β- complete, this implies 

that there exists  𝐴 ∈  𝑀 for all 𝑀 ∈ 2𝑋 , 𝛽‖  ‖({ 𝐴𝑛}, 𝑀) 
 = 0  for all n ∈ Z+  , by Proposition 

(2.8) 

𝑑‖  ‖  ({ 𝑥𝑛}, {𝑥}) 
 = 𝑖𝑛𝑓

𝑀∈2𝑋
 

 inf
𝑥∈ 𝑀

 𝛽({ 𝑥𝑛}, {𝑥}) 
  =0 that is { 𝑥𝑛} converges to  . 

Suppose that (𝑆, 𝑑‖  ‖) is β- complete,  and Let {𝐴𝑛}𝑛=1
∞   is  β- Cauchy sequence 

 in ( 𝑆 , 𝛽‖  ‖ , ‖. ‖  )  

, 𝛽(£{ 𝐴𝑛}, £(𝑀)) 
  =  𝑖𝑛𝑓

𝑀∈2𝑋
 

 𝑖𝑛𝑓
𝐴𝑛∈𝑆

 

 𝛽({ 𝐴𝑛}, 𝑀) 
 =  𝑖𝑛𝑓

𝑀∈2𝑋
 

𝑠𝑢𝑝
𝐴𝑛∈𝑆

 
 
 𝑖𝑛𝑓
𝐴𝑚∈𝑀

 ‖ 𝐴𝑛 −   𝐴𝑚  ‖   

                                             = 𝑖𝑛𝑓
𝑀∈2𝑋

 

  𝑠𝑢𝑝
𝐴𝑛∈𝑆

 
 
 𝑖𝑛𝑓
𝐴𝑚∈𝑀

 𝑑‖  ‖  ({ 𝐴𝑛}, {𝐴𝑚}) 
 = 0 

Since £ is β-contraction, 𝛽(£{ 𝐴𝑛}, £(𝑀)) 
 ≤ 𝛽({ 𝐴𝑛}, 𝑀) 

  

𝑑‖  ‖  ({ 𝐴𝑛}, {𝐴𝑚}) 
 =  𝑖𝑛𝑓

𝑀∈2𝑋
 

 𝑖𝑛𝑓
𝑥∈𝑀
𝑥𝑖∈𝐴𝑖

 𝛽({ 𝐴𝑛}, {𝐴𝑚}) 
  

                               =  𝑖𝑛𝑓
𝑀∈2𝑋

 

  𝑖𝑛𝑓
𝑥∈𝑀
𝑥𝑖∈𝐴𝑖

  𝑖𝑛𝑓
𝐴𝑚∈𝑀
𝐴𝑛∈𝑀

 𝛽({ 𝐴𝑛}, {𝐴𝑚}) 
 =0  

𝑑‖  ‖  ({ 𝐴𝑛}, {𝐴𝑚}) 
  → 0 as 𝑛 → ∞  

That is {𝐴𝑛}𝑛=1
∞  is β- Cauchy sequence in (𝑆, 𝑑‖  ‖) 

(𝑆, 𝑑‖  ‖) is β- complete. Therefore, { 𝐴𝑛} is convergent sequence, 

There exists 𝑥 ∈ 𝑋 such that lim
𝑛→∞

  { 𝑥𝑛} 
 = {𝑥}  

𝑑‖  ‖  ({ 𝑥𝑛}, {𝑥}) 
 = 𝑖𝑛𝑓

𝑀∈2𝑋
 

  𝑖𝑛𝑓
𝐴𝑚∈𝑀
𝑥𝑖∈𝐴𝑖

 𝛽‖  ‖({ 𝑥𝑛}, {𝑥}) 
 =0  

There exists 𝑥 ∈ 𝑀 for all 𝑀 ∈  2𝑋  

Such that  𝛽‖  ‖({ 𝑥𝑛}, 𝑀) 
 = 𝑖𝑛𝑓

𝑀∈2𝑋
 

 𝑠𝑢𝑝
𝑥𝑛∈𝑋

 
 
 𝑖𝑛𝑓
𝑥∈𝑀

 𝑑‖  ‖  ({ 𝑥𝑛}, {𝑥}) 
 =0 .  

Hence,  𝑑‖  ‖ is β-contraction.  
 

Proposition (3.11) 

If a Banach normed space is contraction then the complete  𝛽(𝑠,𝑠`) is β-contraction.  

Proof: 

It is clear, so the details are omitted.  

Proposition (3.12) 

      If  𝑆 is a Banach space  for all 𝑀, 𝑁 ∈ 2𝑋 , 𝐽  is the set of all closed subspace 𝐹 of 𝐷  with  
𝑑𝑖𝑚 (𝐷 𝐹) is finite⁄   for any  𝑀, 𝑁 ⊆ 𝑆,  we have  

𝛽(𝑆,𝑆`) (𝑀, 𝑁) =  𝑖𝑛𝑓
𝑀∈2𝑋

𝑁∈2𝑋

𝑠𝑢𝑝
𝐹∈𝐽

 
 
 𝑖𝑛𝑓
𝑎∈𝑁
𝑥∈𝑀 

 𝑖𝑛𝑓
𝑧∈𝐹 

   ‖ 𝑥 − 𝑎 − 𝑧 ‖  
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                      = 𝑠𝑢𝑝
𝐹∈𝐽

 𝛽‖  ‖ (𝑀, 𝑁 + 𝐹)    

Proof: 

Let  𝑀, 𝑁 ⊆ 𝑆  for any finite subset  𝐻 ⊆ D𝑆` put  

𝐹𝐻 = { 𝑦 ∈ 𝑆 , for all £ ∈ 𝐻 : £(𝑦) = 0 } , The canonical quotient map is given by:  

𝜋𝐹: 𝐷 →  𝐷 𝐹⁄  : 𝜋𝐹(𝑥) = 𝑥 + 𝐹  

Remember that the quotient norm is equal to 
‖𝜋𝐹(𝑥)‖ = inf

𝑦∈𝐹
‖𝑥 − 𝑦‖  the map  

𝜋𝐹
𝑇 : (𝐷 𝐹⁄ )` → 𝐷` : 𝜑 → 𝜑  ⃘𝜋𝐹 

The map is clearly defined as an isometry with an image. 

𝐹⏊ = 𝐼𝑚 𝜋𝐹
𝑇 = { £ ∈ 𝐷` ∶ £ | F = 0} 

Then, because the codimension of the dimension  𝐹𝐻 cannot be a large compared to the 

cardinality of 𝐻.  𝐹𝐻 is closed as a result of the fact that𝐹𝐻 ∈ 𝐽 . Hence,  𝐻 ⊆ 𝐹𝐻  ∩  D𝑆` Using 

the Hahn-Banach theorem, we get the following 

𝛽(𝑆,𝑆`) (𝑀, 𝑁) =   𝑖𝑛𝑓
𝑀∈2𝑋

𝑁∈2𝑋

 𝑠𝑢𝑝
𝐻 ∈2𝐷𝑆`

 
 
𝑖𝑛𝑓
𝑎∈𝑁
𝑥∈𝑀 

𝑠𝑢𝑝
£∈𝐻  

  | £( 𝑥 − 𝑎) |  

                      ≤  𝑖𝑛𝑓
𝑀∈2𝑋

𝑁∈2𝑋

 𝑠𝑢𝑝
𝐻 ∈2𝐷𝑆`

 
 
𝑖𝑛𝑓
𝑎∈𝑁
𝑥∈𝑀 

𝑠𝑢𝑝
£∈𝐹𝐻 ∩  D𝑆`  

  | £( 𝑥 − 𝑎) |                       

                      = 𝑖𝑛𝑓
𝑀∈2𝑋

𝑁∈2𝑋

 𝑠𝑢𝑝
𝐻 ∈2𝐷𝑆`

 
 
𝑖𝑛𝑓
𝑎∈𝑁
𝑥∈𝑀 

𝑠𝑢𝑝
𝜑∈𝐷

(𝑆
𝐹𝐻

⁄ )
 

 

  | 𝜑  ⃘𝜋𝐹( 𝑥 − 𝑎) |  

                     = 𝑖𝑛𝑓
𝑀∈2𝑋

𝑁∈2𝑋

 𝑠𝑢𝑝
𝐻 ∈2𝐷𝑆`

 
 
𝑖𝑛𝑓
𝑎∈𝑁
𝑥∈𝑀 

  ‖ ∏ 𝐹𝐻 ( 𝑥 − 𝑎) ‖  

                     = 𝑖𝑛𝑓
𝑀∈2𝑋

𝑁∈2𝑋

 𝑠𝑢𝑝
𝐻 ∈2𝐷𝑆`

 
 
𝑖𝑛𝑓
𝑎∈𝑁
𝑥∈𝑀 

𝑖𝑛𝑓  
𝑧∈𝐹𝐻 

‖𝑥 + 𝑎 + 𝑧  ‖  

                     ≤ 𝑖𝑛𝑓
𝑀∈2𝑋

𝑁∈2𝑋

𝑠𝑢𝑝
𝐹∈𝐽

 
 
 𝑖𝑛𝑓
𝑎∈𝑁
𝑥∈𝑀 

 𝑖𝑛𝑓
𝑧∈𝐹 

   ‖ 𝑥 − 𝑎 − 𝑧 ‖  

Conversely, let  𝐹 ∈ 𝐽 arbitrariness. Then   𝐹⏊ is a finite-dimensional subspace of S` and for 

any 𝜀 ∈ [0,1] by meaning  of compactness 𝐷𝐹⏊  . There is a topology that is generated by the 

dual norm in terms of the topology given by the dual norm ( see Valentine 1965) a finite subset 

𝐻𝜀 = { £ 1 , £ 2  ,….., £ 𝑛} of  

𝐷𝐹⏊  such that ( 1 –  𝜀) 𝐷𝐹⏊  ⊆  conv (𝐻𝜀) . 

Conv stands for the convex hull. Consequently, we obtain  

       𝑖𝑛𝑓
𝑀∈2𝑋

𝑁∈2𝑋

  𝑖𝑛𝑓
𝑎∈𝑁
𝑥∈𝑀 

 𝑖𝑛𝑓
𝑧∈𝐹 

   ‖ 𝑥 − 𝑎 − 𝑧 ‖ = inf  
𝑀∈2𝑋

𝑁∈2𝑋

𝑖𝑛𝑓
𝑎∈𝑁
𝑥∈𝑀 

 𝑠𝑢𝑝
£∈𝐷

𝐹⏊

 | £( 𝑥) − £(𝑎) |  

                                                         ≤ (1 − 𝜀) −1 𝑖𝑛𝑓
𝑀∈2𝑋

𝑁∈2𝑋

 𝑖𝑛𝑓
𝑎∈𝑁
𝑥∈𝑀 

 𝑠𝑢𝑝
£∈𝑐𝑜𝑛𝑣 𝐻𝜀

  | £( 𝑥) − £(𝑎) | 

                                                           = (1 − 𝜀) −1 𝑖𝑛𝑓
𝑀∈2𝑋

𝑁∈2𝑋

 𝑖𝑛𝑓
𝑎∈𝑁
𝑥∈𝑀 

 𝑠𝑢𝑝
£∈ 𝐻𝜀

  | £( 𝑥) − £(𝑎) | 

As a result of the arbitrary nature of 𝐹 ∈ 𝐽 and 𝜀 ∈ [0,1]. 
 

     The importance of inclusion on J is that it is a partial order, which makes J a directed set. 

We use the abbreviation 𝐿 ≤  𝐾 if and only if  𝐾 ⊆ 𝐿. 

4. Conclusion  

     We have investigated many problems in the theory of approach spaces: a normed space 

called norm approach structure and generalization of metric spaces. For that, we need to define 

some concepts in approach spaces, namely, approach normed spaces, approach norm Banach 

spaces and an approach subspace. we have given some examples in the approach space, an 
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approach normed spaces, and an approach norm Banach spaces. We also show that each  

normed  approach space is a metric space, but the converse is not true, as shown by an example. 

We create some new contraction properties, and demonstrate that contraction is a necessary and 

sufficient condition to obtain a linear sequentially convergent. 
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