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Abstract

Researchers have identified and defined B- approach normed space if some
conditions are satisfied. In this work, we show that every approach normed space is
a normed space.However, the converse is not necessarily true by giving an example.
In addition, we define B — normed Banach space, and some examples are given. We
also solve some problems. We discuss a finite f-dimensional app-normed space is -
complete and consequent Banach app- space. We explain that every approach normed
space is a metric space, but the converse is not true by giving an example. We define
-complete and give some examples and propositions. If we have two normed vector
spaces, then we get two properties that are equivalent. We also explain that B-normed
app- spaces are norm bounded with a condition. We show that functions of -normed
Banach spaces are B- contraction, with some results and properties. The sequentially
[B-contraction is also explained and the relation between metric - app- space and
Hausdorff space is studied.

Keywords: B- approach normed space, - approach normed Banach space.
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1. Introduction

The idea of the normed space is a central topic in modern functional analysis. In recent
years, applications in various other areas of mathematics have been considered in order to find
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and compare their properties. Space theory approaches are important in quantum field theory;
There are many examples of the approach structure in functional analysis, measurement theory,
probability space, and approximation theory. As in the metric case. If an approach space is
available, it is created by a topological space, it is said to be topological, and if it is created by
a metric space, then it is said to be metric. The AP product carries only that part of the existing
numeric data, which can be held if compliance with the topological product of the basic metric
family of structures is required. It is well known that there is a difference between approach
and metric distances. In fact, in the approach space, all distances between two points are
specified, this distance which is defined in points does not have to bring the two together over
a significant set of all points distances as in the metric case, the area of approach is defined.
Lowen [1] defined approach spaces that are introduced in 1987. Lowen's studies [2] can be
used to create an overall perception of app- spaces. The approach space theory, a generalization
of metric and topological spaces, is based on point-to-group distances rather than point-to-
point distances. The most important motivation is to solve an infinite product problem for
metric spaces. Other reasons for the purpose of introducing approach spaces are the unification
of metric, modular, topological and convergence theories. Barn and Qasim [3, 4] characterized
by local distance app- spaces, "approach spaces”, and scale approach spaces and compared to
usual approach spaces. Colebuders, Sion,... etc [5] show some important results on
contraction's real value. Martinez-Moreno1, Rpld'an2, ...etc[6] defined the concept of fuzzy
approach space as a generalization of space for fuzzy metric spaces and show some
characteristics of the fuzzy approach. Gutierres, Hofmann [7] calculated the concept of
completeness for the approach spaces and some properties of the approach spaces were also
calculated. Van Opdenbosch [8] set up new isomorphic characterizations of approach spaces,
pre-approach spaces, convergence approach spaces, uniform gauge spaces, topological spaces
and convergence spaces, pretopological spaces, metric spaces, and spaces that are consistent.
Baekeland and Lowen [9] set Lindelof Scales and Separability in Approach Spaces. Lowen and
Verwulgen [10] defined Approach vector spaces. Lowen and Windels [11] defined an approach
as groups spaces, semi-group spaces, and uniformly convergent. Lowen [12] gave in this book
details of the theory approach to complete and gave new forms of digital numerically form
spaces that are necessary: approach distances at the local level and standardized measurement
spaces at the same level. Lowen and Sion [1, 13] provided definitions of some axioms in the
approach spaces and link mode axioms , the axiom, regular and completely regular and they
also calculated normed linear spaces from a normed real vector space (X, I). Lowen, Van
Olmen, ...etc [14] introduced functional ideas and topological theories. Lowen and C. Van
Olmen [15] gave explanation of some concepts and correlation in approach theory. Lowen [16]
studied on the development of the basic theory of approximation. Abbas and Hussein [17, 18]
discussed the space of the topological approach and he found completeness if the completeness
is not satisfactory. W. Li, Dexue Zhang [19] introduced the Smyth complete.

The purpose of this paper is twofold: the first one is to put approach group to check space in
the proper perspective when approach vector spaces, and the second is to use this topological
approach structure to create a canonical counterpart of the classical topological vector space.
Both metric spaces and preorders are generalized in extended pseudo-quasi metric spaces.

This paper is divided into two sections: In Section 1, we structure the p-Approach normed
space and introduce the research and preliminaries with basic definitions. We also introduce a
new definition which is called p —hormed space and explain the relationship between normed
space and - approach normed space. In addition, we prove that every approach normed space
is -normed space but the converse is not true. Moreover, we explain every approach normed
space is metric space and show the converse is not true. Further, we define B —normed Banach
space. We obtain that Banach space is complete normed space and discuss finite B-dimensional
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app-normed space is f-complete and consequent Banach app- space, We define f-complete and
some examples and propositions are given. In section two, we give new results of f-
Contractions on -Approach normed spaces. We also show that functions of -normed Banach
spaces are a contraction in [ —approach space with new results. We explain that sequentially
B-contraction. Finally, we show that the relation between metric - app- space and Hausdorff
space.

2.Structure of p-Approach normed space
Definition (2.1)

A uniform approach space which means uniform distance is a subspace of a product of
metric approach spaces in approach.

Definition (2.2)
Let X be app-vector space. A triple (X ,||. || , Bui) is said to beB- approach normed space if
the following conditions are satisfied:

1) |lx||=0 ifandonlyif x = 0 ,forallx € X

2) IAx|=1A]. llx || ,forall 1 €eF,x€e X
D x+y Il <llxll +lly |l ,forall x,ye X
4 x|l =0 forallx € X

5) By (M,N) = inf sup inf |x —al
Me2X xEM a€eN
Ne2X

Remark (2.3)
1) Every normed approach space is normed space.
2) A normed space is not necessary a normed approach. The following example shows
that:
Let C [—1, 1] be a set of all continuous functional on [—1, 1] a vector space
C [—1,1] is normed space under the normed.

IEll = sup {I£ (x)[}
x€[-1,1]
When £ (x) =x—1 , forall x € X.

But, it is not a normed app-vector space because:
Since condition: for M = {-1,0,1}

dg,, (x,¥) = inf supinf |[[E(x) —£(@)|l =1

Me2X x €M aeN

Ne2X
Definition (2.4)
A Banach approach space is § —complete normed approach space .
Proposition (2.5)
Every finite B-dimensional app-normed space is f-complete and consequent Banach app- space.
Proof:
Assume dim(X) =n > 0,{@1, @2, ..., pn} IS app-basis of X, X is finite B-dimensional app-
normed space
Let{ A, }-1 be a B — Cauchy sequence in X,

lim inf B{xm b M) =0. forxy,m = Z]2; Cim @i, Vi = ZieqAii@i

n—-o x.eM

0=1Ilim inf PBEL; dtim@i M)
nee 1il=10(“(piEM
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=lim inf inf dZL; ampy M)

n—o yn VEM
— . . . n

= rllll(r)lo . mf ”elj\]; dBII.II(Zi=1 (Xim(pi,y)

Zi=1 apieM Y

— Ji : : n n

= lim . inf l‘g& dsi Bz, Cim®i, Zi=q %ii@; )

1=1g;pieM

=lim inf inf |22 aim@i, Zleg ciesl| ; thatis
n—o gn . EM
1=1q;pieM
Yicqllotim — ol = 0.
Then {a;n} is @ Cauchy sequence in a real field R or complex field ¢ , since real field R or
complex field c is complete. Therefore, for all I there exists o; € F such that
Tlll_r)lgo Qim = O, put x = X105 @; .
There exists x € M forall M € 2%,
lim inf O6CL; aimpisM) =0
noee ln=1a“rpieM
Thus X is B — complete .
This can be deduced from the fact that both R and c are complete and from the fact that every
finite — dimensional is isomorphism to R™ or c¢™ for some n.

Definition (2.6)
An app- space is called B-complete if every - Cauchy is B-convergent in (X, B).

Remark (2.7)

Every approach normed space is metric space. The following example shows that the
converse is not true.
Let X be a set of all complex sequences {x;} . And let B: 2% x 2¥— [ 0, o] be defined by :

R _
B(M,N)= ;2{4 ;Lrgl Zi:lg(lﬂxi—yi I) ifM# @ and N = ¢
@ if M=@ or N=¢

dg (x,y)=B (M, N)=inf inf ¥I i(M) forallx e Mandy € N

xieM yiEN =1 2 1+|xi_yi |
and c 2%, i=1,....n.
(X, dg ) is ametric B — app-space but it is not normed B — app-space .
Because if there is norm app-space such that dg (4 x,4y) =|1| dg (x, y) thatis
dp (MN)= inf inf ¥y (222L) L Ax— Ay Il =I2] lx— y Il

X;{EM y;EN 1+lx-yi

But,ll/lx—MIllﬁllxlll lx— y 1. _—
. n 1 Xi—Ay; n 1 Xi—Yi
since ||t (Tmaryg) 1% 1211 Sz (50)
Proposition (2.8)
If (X, By) is approach metric space and {4, },-; be a disjoint sequence in X, then it is
Cauchy sequence in (X, d) if and only if is - Cauchy sequence in (X, ;)

Proof:
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Let {A,}n=, be a Cauchy sequence in (X, B4) , then we have that inf f({A, }, M) =0
XEM
xiGAi

inf B({An}{An}) = inf inf B({An}{An})=0

XEM XeEM AnpcM

Xieh; XieA;  ApcM
Thatisd ({ A}, {A,}) =0
Then {A, },—, is left Cauchy sequence.
Also inf B({An}{A}) = inf inf B({An}{A;})=0

AmcM XeEM  AjpcM
AnCM Xied;  ApcM

Thatis d ({ A}, {A,}) =0. Then {A,};-; is right Cauchy sequence.
Thus {A, };=1 is Cauchy sequence in (X, d).
Conversely, if {A,},=; isa Cauchy sequence in (X, d).
Then it is left and right Cauchy sequence, for all €0, there exists ke Z* such that
d (A}, {A)) <e,forallmyn<N,m=>n and for all € <0 there existsk € Z* such
thatd ({ An}, {A,}) <e,forallm,n<N,n>m

inf B{{A 3 M) = inf  inf B({An},{An})=0

ApcM XeM AmcM

Xien; Yie; ApcM

Hence, {A,},=, is B- Cauchy sequence in approach space.

Theorem (2.9)
An app- space(X, B) is f-complete space if and only if (X, dg) is complete.

Proof:
Let { x,}n=, bea Cauchy sequence in (X, ), then it is B- Cauchy sequence in (X, B)
By proposition (2.8 )since (X, B) is complete, there exists x € M for all M € T'(M) such
that B({4,}, M) =0 ,T(M) the setof all cluster point in app-space.
sup 17;16 dg({ An}, {x}) =0 then dg(xn, x) =0
X

M eI (X) Feh
L€A;

Thatis (x, dg ) is complete.
Conversely, Let { x,};-; be B- Cauchy sequencein (X, dg ).
The sequence { x, },, is left and right sequence in (X, dg ).
(X, d) is complete that is lim dg ({ x, },x) =0
n—->oo
thatis lim inf B({A4,} M) =0 and lim sup B(A,,M)=0
n—-oo XEM n—->©0 xeM
Yiea; Xica;
B({An L, M) = sup inf dg({An}{x})=0
MEeT(X) ;{ET
LlEA;
that is there exists x € X and forall M € T'(M) , B({X, }, M) =0
Hence { x, },- IS convergent in 5- approach space(X, B).

Example (2.10)
Let E = R. Define Bg :2Rx2R - [0, 0]

0 MnNnN #@,M,N unbounded
By (M, N) = {*® MNN = @,M,N bounded
' inf inflx—al M<wo, N<o©

YEN

This function is a distance on [ 0, o] we will prove that (E, 8) is 5 — complete app-space.
Proof:
Forallne Z*
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0 MnN # @,M,N unbounded

By (M, N) =4 ® MNN = @,M,N bounded
inf inflx,—al M<owo, N<ow
Xn€M a€EN

Let{ A, }n—,; bea B- Cauchy sequence. { A,,}n=1 — M and we denoted the set of all cluster
points in approach space I(X), M € I'(X).

Then r{ljgo ,}Q,& B{ A, },M) =0
xiEAi
There exist many cases:
If M c R is unbounded , therefore Be({ A, }, M) =0
Then lim mf B(A,, M)=0and lim sup B(A,,M)=0

n—-o©0 xeM n—-o© xeM

XicA; XieA;
IfA, <©
Then lim mf B(A,M)=inf inf B{ A}, {A.}D)=inf inf |x, —x, |=0
n—c xeM XEM AmEM XEM AmEM
Xiea; XieA; ApEM YieA; AneM

There exists k € Z* such that | x,, — x,,, |=0 forall m,n > k.
Thatis { 4,}%., is a B- Cauchy sequence in (E d).

Since R is complete , then { A, };=; convergent sequence in R .
There exists € M, forall M € 2%, | x,, —x |=0.

Then lim  inf inf |x, —al =
n=% x,eM ,MeT(R) aeN
And lim sup inf |x, —al =

n=%0 x,eM ,MeT(R) a€eN
Thus Bg is convergent on - app- space.

3. New Results of p-Contractions on p-Approach normed spaces

Proposition (3.1)

If S; and S, are normed app-vector space , and

£: S, - S,isasurjective linear function, Then the following statements are equivalent:
1) £:(Sy, - l1uBr ) = (S, ll-1l2,B2) is B — contraction .
2) (S,,B,)is B, — complete space whenever (S; , 8;) is f; — complete .

Proof:
1) If £:S; - S,is B — contraction . Then for every x € S; and each subset
Mc §;
if (S¢,ll-1I') is Banach app-space.
To prove (S, ,B,) is B, — complete space.
Let {y,,} be a B, — Cauchy sequence in S, then there exists {x,,} such that
E({xn}) = { ¥}
lim inf B, {y, },M) =0 then lim inf ,p, (f ({xn}),ﬁ(N)) =0,
n-o x. €M n—o x. €N

where £ (N) = M
Since £ is f — contraction .

0= Lim mf Bz (£ ((xn)), E(N)) > lim mf Br ({xn}, M)

Hence, lim inf f; ({xn},M) =0
n-o xn,eM

That is {x,} is  — Cauchy sequence in S;,
S, is Bp— complete app- space.
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Thereexistse N ,forall N c §; .
Such that lim inf B; ({x,},N) =0
n-o xeM

Bz (£ ({xa]), £ (N)) < By ({xn}, N)
lim sup fy ({xx}, M)=0 and lim inf B, ({xn}, M) =0

lim sup B, (£ ({xa}),£ (M)) < lim sup By ({xn},M)=0
lz% Ba (£ ({xn}), £ (M) 27;210::15 Br ({x}, M) =0
lim sup B, (£ D.EMN) <0

lim inf f; (€ ({xa}), £ (M) =0

Lim sup f; (£ ({xa}), £0M)) = 0

Then (S, , B, ) is B, — complete space.

Conversely, suppose £ is not § — contraction

Bo (E{xaD.£(N)) = By ({xa},N)

Let {x,,} bea S — convergent sequence in S;

That is {x,} is § — Cauchy sequence in S;,

{€£ ({x,})} be B — Cauchy sequence in S,

The condition hold then there is {£ ({x,})}in S,

There existsy =£ (x) € £(N)=M € 2%

Such that B, (£ ({x,}),£(N)) =0

Thatis B; ({x,}, N) < 0. Thus, we get a contradition, then the proof is finished.

Proposition (3.2)
A normed B-app-space ( , By . Il. 1l ) is B-complete if and only if a metric approach space
(S, dy ) is B- complete.

Proof:

Let S be normed B-app-space . and [ is generated by the ||. ||.

Let {4,};-1 Cauchy sequencein (S, dj )

Then we have dj | ({ An}, {4,}) =0 forallmnez*

This implies that ﬁ” I ({An }, M) =inf sup inf d” I ({ An}, {Am}) =0
1\1\/’135{( Ap€S AmEM

That is AinEfM ﬁ” I ({An }, M) =0
Then {A,,}7-1 is B- Cauchy sequence in (, By i, II. |l ) by proposition (2.8)
Since S is - complete, this implies that there exists A € M forall M € 2%, B, ({4}, M) =
0 forallneZz"
dy {xnd{xh)= iglg B x,}, {x}) =0 thatis { x,} converges to .
X
Conversely, suppose that (S, d; ) is B- complete, and Let {4, };_; is

p- Cauchy sequence in (S, By ., .1l )

then 0 = inf B({ A}, M)=inf sup inf ||A,— An |l
An€S Me2X Ap€S ApmEM

Ne2X ‘

inf sup inf dyy ({An}{Am})

Me2X Ap€S ApmeM

Ne2X
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iy (A (An) = inf  inf B(CA, (An)

Ne2X xiEAi
=inf inf inf B({An},{An})=0
Me2X XEM Apm€EM

Ne2X  XieA;  AneM
di {(An},{Am}) —0asn — oo
That is {A,,};,= is B- Cauchy sequence in (S, d; |)
(S, dy ) is B- complete, therefore { A, } is converge sequence,
There exists x € X such that Tlll_r){)lo { x,}={x}

dyy xndxH=inf inf By ({xn}{x})=0
Me2X Anllil\'/l

There exists x € M forall M € 2%
Such that ,Bll I ({ xn}, M) = inf sup inf d” I ({ xn}, {x}) =0.

Me2X xp,€X x€EM
Ne2¥X

Hence, (, By . l. 1l ) is B-complete.

Corollary (3.3)
A normed B-app-space is Banach approach space if and only if (X, dg) is Banach space.

Proof:
As a result of Proposition (3.1) and Proposition (3.2) and by Remark (2.3).

Proposition (3.4)

Let (X, |[. I, By,) be a normed app-vector space then the following are equivalent:
(1) (X, II-1I, By, is a Banach app- space.
(2) (X,B) is complete .

Proof:
that is clear by the above corollary.

Proposition (3.5)

Let (X, Il I, By,;) be a normed B- app- space . then we have:
(1) The function £: (x,y) = x + y is § — contraction
(2) The function £ : (a,y) — ax is f — contraction

Proof:
(1) Let {(x, ,v,)} be a convergent sequence in X ,
There exist x,y,€ X for all M,N € T (x)(respectively),
I' (x) is the set of all cluster points in app-space.
Such thatg ({x,},M) =0,8 ({y,},N) = 0.
Since By ({x,}, M) = inf sup inf ||x, —x||
Me2X xex McX
Ne2X
= inf sup inf dg(x,x)=0
Me{X xE)I(9 Mcx ﬁ( ™ )
Nez¥ :
By Qyn}, M) = inf sup inf |ly, — vl
Me2X yex McX
Ne2X
= inf sup inf d =0
MEZfX ye)e Mcx B(yn'y)
Ne2X

.BII.II (E({xn} ’ {Yn})fE(Mf N)) = .8|'|.|| ({xn t Vn }'M + N)
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= inf su inf |lx, +y, — (x+y)||
ME;X Sup it Jxn + 7 (x+y)
Ne2X
< inf su inf ||x, —x|| + su inf ||y, — vl
Mezx x,yg( M,Ncx " x‘yg( M,NCX In =Y
Ne2X
< inf sup i
me2X x,yex M,
Ne2X
=0.
Then £ is sequentially contraction. Therefore, £ is — fcontraction .
(2) Let{(a,,x,)}beaconvergent sequence in F X X ,
Thenletx € X, forallM € T (X)
Such that 8 ({x,},M) =0,
.Bf|.||£({xn D, f(M)) = ,3[|,|| (a{xy }, aM)
= inf sup inf ||la, x, — ax||
Me2X xex McX
Ne2X
= inf sup inf ||la, x, — ax, + ax, — ax||
Me2X xex McX
Ne2X
=0.
Thus £ ({a, x}) = {ax} is sequentialy B-contraction

Remark (3.6)
LetM = (X , dﬁ) be a metric B- app- space , then M is a Hausdorff space .

ngdﬁ({xn + yn}’{x +y})

Proof:
Letx,y €X:x #y.
From the distinct points in metric B-app- space, there exist disjoint open Balls € — balls
D¢ (x)and D¢ (y) which are disjoint open sets containing x and y, respectively.
Hence, the result is obtained by the definition of Hausdorff space.

Theorem (3.7)
Every uniform B-approach normed space ( , 8 . |l Il ) is a Hausdorff space.

Proof:

Suppose that X* be a topological dual of X . That is

X*={£:(X,Tq, )= (R, Ts) | £is linear and continuous functionals }
Let Ty is the set of all non-negative closed unit ball in X*,

SoTy ={£e€eX":£(x) <1}

and the norm on dual is defined by

IEN. = inflIECO) |

Itis clear that (X*, ||£ || ,) is Banach space.
The duall of (X*, ||£ | ,) is called biduall of X which is denoted by X**
Let ¢ be non- empty subset of X* the functional ||x || ,: X — R as followes:

lx || = sup [£(x) | is a semi norm on X
£€@
We have My- ={||x || o: ¢ < Tx }and Ny-={d ¢ <Tx}

Then a basis for the weak topology Y (X, X*) on X is given by :
{{beX:forall£€ @:|E(x—b)| <e:@+#¢ cX*'e>0}forx € X}
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Define By- : 2%x 2% — [0, 0] by
Bx (M,N) = sup* mf”x —ally

It is clear that ﬁx* satisfies the conditions of approach distance, which is said to be weak
distance or weak approach distance. Since By+ is the uniform B- approach space . generated by
Ny,

An app-basis for the Ty is My~ ={ [|x || ,: @ < Ty } equal to a basis for a weak topology
Y(X,X")isgivenas: {{beX:forallE€ ¢@:|E(x—Db)| <e: @ #* ¢ c X', e>0}forx €
X} that is equally a basis for the weak topology Y(X, X™) is Hausdorff,

then the normed app-space is the Hausdorff space

Theorem (3.8)
Let(, By . Il.1l )isbe anormed app-space, and { x,} a p-convergent sequence in X , thena
sequence { x,} in X is norm bounded.

Proof:

Suppose that M = sup lim sup | £(a — x,) | < oo forsomea € X
f£e@

Then we have that for all £ € ¢ there exists ng such that foralln > ng : | £(a) —£(x,) | <
z+1

we have that for all £ € X* and every |£(x,) | < (JIE]| + D). (] ”£”+1 X)) |+z+1)

which shows that (E(x,) », is a bounded sequence of the Banach —Stenin Haus theorem (see
e.g.Brezis (2011) [20, 21, 22] .
Now this yields that {x,,} is norm bounded.

Proposition (3.9)
Let ( , By .Il-Il ) beanormed app-space. Then the function £: X XY — X XY is defined
by: £(x,y) = (x,y) is 8 — contraction.

Proof:

Let {(x,, v,)} be a convergent sequence in X. There exist x,y € X forall M, N € T(X)
Such that B ({x,,}, M) =0, B ({yn}, M) =0
Since B | ({xn}, M) = mf sup i;Vu:X | xp —x ||

Me2X xeX
Nesz _
= inf sup inf dg ({x,},{x})=0
Me2X xex MNEX
Nez_X
Bin(m}, M) = inf sup  inf lyn =yl
Me2X yex M,NCEX
Ne2X _ _
= inf sup inf dg ({y},{¥y}=0
Me2X yex MNEX
Ne2X

B (EGn) QD) (M) = inf  sup  inf dg ({xa), )+ dg (D). D)

Me2X x,yeX

Ne2X
< inf sup inf dp (e} (P + inf sup inf dg ({ya} () =0
me2X x,yex MNE Me2X yex MNEX
Ne2X Ne2X

= inf sup mf lxp +yn—(x+y)[I=0
Me2X x,yeEX MNC
Ne2X

= ﬁ(M,N)
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Proposition (3.10)
If B-app- complete normed space is B-contraction, then the function of metric approach
space is 3- contraction.
Proof:
Let S be a non-empty set. M,N c S, M,N € 2%
There exists a Cauchy sequence
{An}n=1 Cauchy sequence in (S, dj )
Then we have dj | ({ A}, {4,}) =0 forallmnez*
This Implles that ﬁ” I ({A } M) = mf sup 1nf d” I ({ An} {Am}) =0

Me2X Ap€
That is mf ll’lf ﬁ” I ({A } M) =0
Me2X
Then {4}~ is B- Cauchy sequence in (S, By . Il || ) ,since Sis a - complete, this implies
that there exists A € M forall M € 2%, B, |({4,},M) =0 foralln € Z* , by Proposition
(2.8)
dy {xpd{xh)= AZL{ mf B{ x,},{x}) =0thatis { x,} converges to .

Suppose that (S, d; ) is B- complete, and Let {4,};-, is B- Cauchy sequence

in(S, By I-1)

BELALEM)) = inf mf A}, M) = inf sup inf ||An— Ap |
Me2X Me2X Ap€eS AmeEM

mf sup inf dj ({An},{4n}) =0

Me2X An€S Am€EM
Since £ is B-contraction, S(£{ A}, £(M)) < ({4}, M)
djy QAnd {AmD) = nf inf B({ An} {Am})

Me2X XE
xLEA

= inf inf inf B({Ad){An})=0
Me2X XxeM Anm€EM
XieA; Ap€EM

dj ({An}{An}) —0asn - oo
That is {A4,,};,= is B- Cauchy sequence in (S, d; )
(S, dy ) is p- complete. Therefore, { A, } is convergent sequence,
There exists x € X such that lim { x,,} = {x}
n—oo
dyy Lxnb {x}) = inf inefM B 1({ xn}, {x}) =0

Me2X
XieA;

There exists x € M forall M € 2%
Suchthat B ({ xp}, M) =inf sup inf d; ({x,},{x})=0.

Me2X xn€X xeM
Hence, d; | is B-contraction.

Proposition (3.11)
If a Banach normed space is contraction then the complete S ¢ is f-contraction.
Proof:
It is clear, so the details are omitted.
Proposition (3.12)
If S isaBanach space forall M,N € 2% | ] is the set of all closed subspace F of D with
dim (D/F) is finite forany M,N < S, we have
Bessy (M,N) = inf sup inf inf |x—a—z|

Me2X FeJ Qa€EN zeF
Ne2X XEM
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=Sup ,B” I (M,N +F)
FeJ

Proof:

Let M,N < S forany finite subset H < Dy put

Fy={ye€S, forall £ € H:£(y) =0}, The canonical quotient map is given by:
np.D > D/F :mp(x) =x+F

Remember that the quotient norm is equal to

e GOl = yelgllx — yll the map

k. (D/F) - D : ¢ - @ong
The map is clearly defined as an isometry with an image.
Ft=Imnl={£ €D :£|=0}
Then, because the codimension of the dimension Fy cannot be a large compared to the
cardinality of H. Fy is closed as a result of the fact thatFy; € J . Hence, H < Fy N Dg Using
the Hahn-Banach theorem, we get the following
Bissy (M,N) = inf sup infsup |[£(x—a)|

Me2X y epDs' aENELEH

Ne2X XEM

< inf sup inf sup |E(x—a)l]

MEZX HEZDS aENEEFHn DS

Ne2X

= inf sup inf sup |@onz(x—a)|
Me2X g e2bs aEN‘PED(S/F )
Ne2X H

= inf sup inf ITIFy(x—a)ll
Me2X g e2Ds a€N
Ne2X XEM

= inf sup infinf ||x+a+z ||
Me2X g e2Ds aENz€Fy
Ne2X *EM

< inf sup inf mf |x—a—z]|
Me2X FeJ Qa€EN zeF
Ne2X xEM

Conversely, let F € J arbitrariness. Then F- is a finite-dimensional subspace of S* and for
any ¢ € [0,1] by meaning of compactness D, . There is a topology that is generated by the
dual norm in terms of the topology given by the dual norm ( see Valentine 1965) a finite subset
H ={£,,£, ..., E£,}0f
D, suchthat (1- ¢) D1 € conv (H,).
Conv stands for the convex hull. Consequently, we obtain

inf infinf ||x—a—z| = 1nf inf sup |£(x)—£(a)|

Me2X Qa€eN Zz€EF €2X a€eEN £eD a
NeaX XEM Nezx XEM F

<(1-¢&)7Yinf inf sup |£(x)—£(a)]|
Me2X a€N feconv Hg
Ne2X XEM

=(1—¢) 7t inf inf sup |£(x) —£(a) |
Me2X aEN fe H,
Ne2X XEM

As a result of the arbitrary nature of F € J and € € [0,1].

The importance of inclusion on J is that it is a partial order, which makes J a directed set.
We use the abbreviation L < K ifandonlyif K € L.
4. Conclusion

We have investigated many problems in the theory of approach spaces: a normed space
called norm approach structure and generalization of metric spaces. For that, we need to define
some concepts in approach spaces, namely, approach normed spaces, approach norm Banach
spaces and an approach subspace. we have given some examples in the approach space, an
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approach normed spaces, and an approach norm Banach spaces. We also show that each
normed approach space is a metric space, but the converse is not true, as shown by an example.
We create some new contraction properties, and demonstrate that contraction is a necessary and
sufficient condition to obtain a linear sequentially convergent.
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