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Abstract  

     In this paper, the oscillation of a Hematopoiesis model in both cases delay and non-

delay are discussed. The place 𝛽(𝑡) and 𝛿(𝑡) are continuous positive 𝜔-periodic 

functions. In the non-delay case, we will exhibit that a nonlinear differential equation 

of hematopoiesis model has a global attractor ℋ̅(𝑡) for all different positive solutions. 

Also, in the delay case, the sufficient conditions for the oscillation of all positive 

solutions of it about ℋ̅(𝑡)are presented and we establish sufficient conditions for the 

global attractive of ℋ̅(𝑡). To illustrate the obtained results some examples are given. 

 

Keywords: Delay differential equation, Oscillation, Hematopoiesis models, periodic 
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تكوين الدم   ماذجتذبذب الحلول لن  
 

 ايمان صبيح حديد1*, حسين علي محمد2
 العراق ,  بغداد, جامعة بغداد, العلوم,كلية الرياضيات 1

 2الرياضيات ,كليةعلوم بنات, جامعة بغداد,بغداد,العراق 
 

  الخلاصة 
.حيث  ان  باطؤي وعدم الت  طؤي با في هذا البحث تم مناقشة تذبذب نموذج تكون الدم في كلتا الحالتين الت      

التفاضلية غير    ةطؤي التبا في حالة عدم  .المعلمات هي دوال مستمرة دورية موجبة ، سوف نظهر أن المعادلة 
يتم تقديم الشروط    طؤي التبا في حالة  اما    لجميع الحلول الموجبةالمختلفة    جاذبالخطية لنموذج تكون الدم لها  
  .لنقطة الاتزان    م نقطة الاتزان وتهيئة شروط كافية للتجاذب العا  لها حول   الموجبة الكافية لتذبذب جميع الحلول  

 .كما تم إعطاء بعض الأمثلة لتوضيح النتائج التي تم الحصول عليها
 

1. Introduction 

     In current years, there has been a lot of attention to lookup activity regarding the oscillatory 

behaviour of solutions of differential equations with piecewise continuous arguments, partial 

differential equations and dynamic equations [1]. Through these considerations, oscillations of 
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solutions of delay differential equations have taken a challenged much in the latest research. 

The wide attention in this article is motivated due to its important applications in some 

mathematical models that are used in ecology, biology,  biomedical, and diffusion of some 

contagion diseases in human beings. For greater acquaintance with this study, the reader can 

see [1,2], because of its employment in our daily lives, the qualitative properties for oscillation 

of the hematopoiesis model have been appreciably investigated in the literature. In particular, a 

nonlinear model of Hematopoiesis stems from cell dynamics. It consists of two delay 

differential equations describing the evolution of a proliferating and a nonproliferation cell 

population. It is described blood cell production, which is first introduced and explored by 

Mackey and Glass 1977 [3]: They suggested two delay differential equations with constant 

coefficients to describe the model, one of these equations is 

ℋ′(t) =
β

1 + ℋn(t − τ)
− δℋ(t),     t ≥ 0                                            (1) 

for  τ, β, δ ∈ R+, n ∈ N. 

In the previous equation, it is considered that the cells are gone from the blood circulation at 

average δ, the flow f(ℋ(t −  τ ))  =
 β

ℋn(t−τ )+1
 of the cells into the blood circulation from the 

stem cell closet depends on ℋ(t − τ ) at time t − τ , ℋ(t) indicates the density of ripe cells in 

blood circulation, and τ is the time delay between the manufacturing  of unripe cells in the 

bone marrow and their ripeness for release in circulating bloodstreams.  

Consider the initial condition together with (1), we have 

{
ℋ(t) = ℚ(t)    when  −  τ ≤  t ≤  0

ℚ ∈  C([−τ , 0], R+). and ℚ(0)  >  0.
                                               (2) 

      

    The initial value problems (1) and (2) have a unique positive solution for all t ≥ 0. This 

follows as an alternative without difficulty via the approach of steps.  There are some research 

on the hematopoiesis model, for instance. Wang et. al.  [1] discussed the oscillations of 

numerical solutions for the nonlinear delay differential equations in a hematopoiesis model by 

using two θ-methods, they obtained several conditions, under which the numerical solutions 

oscillatory. Moreover, it is proved that every non-oscillatory numerical solution tends to an 

equilibrium point of eq.(1). Wei Li and Xianyi Li [4] derived a semi-discrete system for a 

nonlinear model of blood cell production.  H. A. Mohamad and E. J. Jassim [5] established new 

conditions to insure that every solution of Lasota-Wazewska model with a variable probability 

of death of red blood cell  oscillates.  In [6,7], the authors have proven that each positive solution 

of eq. (1) oscillates around the unique critical point ℋ̅ if 

n(ℋ̅)n−1

((ℋ̅)n + 1)2
βτeδτ >

1

𝑒
.                                                     (3) 

     So, the researchers in [6] gave a few sufficient conditions for the global attractivity of the 

equilibrium point ℋ̅̅̅̅ and presented the lower and greater bounds of the oscillatory solutions. 

Also, Saker in [8] extended the outcomes of [6,7] to the following general equation:  

ℋ′(t) =
βℋm(t − mω)

1 + ℋn(t − mω)
− δℋ(t),                                (4) 

     He also introduced some sufficient conditions for oscillation and global attractivity. In 

actual world phenomena, the variants of the environment play a vital role in many biological, 

ecological, and dynamical models [1,8]. In a special case, the outcomes of periodically varying 

surroundings are necessary for an evolutionary ideas as the selective forces on systems in a 

fickleness environment vary from those in a steady environment. Consequently, the proposed 

of periodicity of the parameters in the model comprises the periodicity of the environment 

(e.g., mating habits, migrant consequences of weather, food provision, etc.). In fact, it has been 

advised with the aid of the potential of Nicholson [9] that any periodic exchange of climate 
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resort to impose its duration upon oscillations of the internal origin or to motive such 

oscillations to have a harmonic relation to periodic climatic variations. In this case, some 

researchers, such as Saker in [10], Yao in [11], and Wang in [12] discussed the  dynamics 

behaviour and modified (1) to the following non-autonomous delay differential equations with 

time-varying coefficients. 

In this work, we consider the following equation: 

ℋ′(t) =
β(t)

1 + ℋn(t − mω)
− δ(t)ℋ(t),                      (5) 

where  𝑛 ∈ Z+, 

𝛽(𝑡) 𝑎𝑛𝑑 𝛿(𝑡) are continuous positive ω − periodic functions                        (6) 

We will investigate eq. (5) simultaneously with this condition 

{
ℋ(t)  =  ℚ(t)   when −  τ ≤  t ≤  0

ℚ ∈  C([−τ , 0], [0, ∞)) and ℚ(0)  >  0
                  (7) 

     Also, by using the approach of steps method, it is obvious to see that the initial value 

problems (5) and (7) have a unique positive solution ℋ(t) that exists for each t ≥ 0. 

Now, we consider the non-delay case: 

ℋ′(t) =
β(t)

ℋn(t) + 1
− δ(t)ℋ(t),                          (8) 

     

      where β(t) and δ(t) are continuous positive ω-periodic functions. In [10], for the non-delay 

case, the authors showed that eq. (8) has a periodic positive unique solution ℋ̅(t), which is a 

global attractor to each other positive solutions. While in the delay case, they studied the 

oscillation property of each positive solution of (8) about  ℋ̅(t), they also obtained sufficient 

conditions for the global attractivity of  ℋ(t). In our work, we use a different change of variable 

and present a new equation to establish new conditions to insure the oscillation of all solutions 

of eq. (8) about  ℋ̅(t). In the subsequent section, some essential principles for oscillations and 

global attractivity of hematopoiesis models are given, it has been proven first that each positive 

solution for the non-delay case approach to ℋ(𝑡) as t→∞. While in the case of the delay, some 

adequate conditions mounted for the oscillation of each positive solution of eq. (5) about its 

special positive periodic solution ℋ̅(t). In addition, sufficient conditions for the global 

attractivity of ℋ̅(t) are obtained. Our results for oscillation consequences are based totally on 

the oscillation outcomes of [7] that are introduced by EL−Sheikh.et.al. in addition to the global 

attractivity .and. oscillation results of Gopalsamy and et al. in [6]. 

 

1.1    Basic concepts: 

     In this section, some basic concepts of the global attractivity and oscillation of all solutions 

of the hematopoiesis model are introduced.  

 

Definition 1. [2] A regular solution ℋ(𝑡) of (1) is said to be oscillatory [t0,∞) if it contains 

arbitrarily large zeros for 𝑡 ≥ 𝑡1 ≥ 𝑡0, that is, there exists a sequence {𝑡𝑛} such that 

lim
𝑛→∞

 𝑡𝑛 = ∞   such that ℋ(𝑡𝑛) = 0, otherwise ℋ(𝑡) is said to be nonoscillatory on [t1,∞), that 

is ℋ(𝑡) ≠ 0, for each 𝑡 ≥ 𝑡1, or it simply means either that ℋ(𝑡) eventually positive or 

eventually negative . 

 

Definition 2. [10] Suppose ℋ(𝑡) and ℋ̅(𝑡) are positive solutions of nonlinear delay differential 

equations on [𝑡0, ∞). The solution ℋ(𝑡) is stated to be asymptotically attractive to  ℋ̅(𝑡) as 

long as lim
𝑡→∞

( ℋ(𝑡) − ℋ̅(𝑡)) = 0. Further, if ℋ̅(𝑡) is asymptotically attractive to each positive 

solutions of a nonlinear delay differential equations, it is known as globally .attractive. 
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Definition 3. [10]A function ℋ(𝑡) is said to oscillate about ℋ̅(𝑡), if (ℋ(𝑡) −ℋ̅(𝑡)) has 

infinitely large zeros. Otherwise, H(t) is known as non-oscillatory. Whenℋ̅(𝑡) = 0, we call 

ℋ(𝑡) simply oscillates or oscillates around zero. 

 

2. Main results  

     In this work, the oscillation property of each positive solution of eq.(5) has been studied. We 

will start with the non-delay case of eq. (5) where ℋ(0) > 0,  firstly, we show that all positive 

periodic solutions converge to ℋ̅(𝑡) as 𝑡 → ∞. In the delay case, it also can be thought about 

ℋ̅(𝑡) is a positive periodic solution of eq.(5). Subsequently, in this case, the sufficient 

conditions for each positive solution of eq.(5) to oscillate around ℋ̅(𝑡) are obtained. Finally, 

the sufficient condition for ℋ̅(𝑡) to be a global attractor of each other positive solution of eq. 

(5) is derived. This approach to ℋ̅(𝑡) attends to the deprivation of any dynamical disorder in a 

hematopoiesis model. Now, consider the nonlinear delay differential equations. 

ℋ′(𝑡) =
𝛽(𝑡)

1 + ℋ𝑛(𝑡)
− 𝛿(𝑡)ℋ(𝑡),                                            (8) 

     where β(t) and δ(t) are continuous  positive 𝜔-periodic functions. In the non-delay case, it 

has been demonstrated in [10] that eq. (8) has a positive unique periodic solution ℋ̅(𝑡), which 

is a global attractor to each other positive solutions. Also, in the case of delay, they studied the 

oscillation property of each positive solution of eq. (8) about ℋ̅(𝑡), and they also acquired 

sufficient conditions for the global attractivity of ℋ(𝑡). In our results, we use a different change 

of variable and present a new equation to establish a new condition to insure the oscillation of 

all solutions of eq. (8) about ℋ̅(𝑡). Put  

 ℋ(𝑡) =  ℋ̅̅̅̅(𝑡) + 𝑥(t)                                                        (9) 

So, 𝑥(t)  oscillates if and only if ℋ(𝑡) oscillates about ℋ̅(𝑡) 

then eq. (8) leads to 

𝑥′(𝑡) =
𝛽(𝑡)

((ℋ̅(𝑡) + 𝑥(𝑡))
𝑛

+ 1)
− 𝛿(𝑡)𝑥(𝑡) −

𝛽(𝑡)

1 + (ℋ̅(𝑡))
𝑛                 (10) 

     The following theorem demonstrates that in (8) each positive unique periodic solution ℋ̅(𝑡) 

is in actuality a global attractor to each other positive solution. 

 

Theorem 1.  Suppose that eq. (6) satisfies. Then every solution ℋ(𝑡) of eq. (8) oscillates about 

a global attractor ℋ̅(𝑡).   
Proof. Assume that eq. (8) has non-oscillatory solution  ℋ(𝑡) about ℋ̅(𝑡) for t sufficiently 

large so either ℋ(𝑡) > ℋ̅(𝑡) or ℋ(𝑡) < ℋ̅(𝑡), let ℋ(𝑡) > ℋ̅(𝑡) (the proof when ℋ(𝑡)  <
ℋ̅(𝑡) is similar, hence,  it is  omitted).  

Then, 𝑥(𝑡)  >  0 for sufficiently large 𝑡, rewrite eq.(10) to the following equation 

𝑥′(𝑡) +
𝛽(𝑡)((ℋ̅(𝑡) + 𝑥(𝑡))

𝑛
− (ℋ̅(𝑡))

𝑛
)

(1 + (ℋ̅(𝑡) + 𝑥(𝑡))
𝑛

)(1 + (ℋ̅(𝑡))
𝑛

)
+ 𝛿(𝑡)𝑥(𝑡) = 0.                     

Hence, we get from the last equation 

𝑥′(𝑡) +
𝛽(𝑡)((ℋ̅(𝑡) + 𝑥(𝑡))

𝑛
− (ℋ̅(𝑡))

𝑛
)

(1 + (ℋ̅(𝑡) + 𝑥(𝑡))
𝑛

)(1 + (ℋ̅(𝑡))
𝑛

)
< 0.                                (11) 

Thus, 𝑥(𝑡) is decreasing, and therefore  
lim
𝑡→∞

𝑥(𝑡) = 𝛼 ∈  [0, ∞). 

Now, to show that 𝛼 = 0. If 𝛼 > 0, then there exists 𝜀 > 0 and 𝛿𝜀 > 0 such that for  𝑡 ≥
 𝛿𝜀,0 <  𝛼 −  𝜀 <  𝑥(𝑡) <  𝛼 +  𝜀. 
Since 𝛽(𝑡) and 𝛿(𝑡)  are continuous positive 𝜔-periodic functions, then  
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𝛽1 ≤ 𝛽(𝑡) ≤ 𝛽2 and  𝛿1 ≤ 𝛿(𝑡) ≤ 𝛿2 . 

We define the function  

𝑓(ℋ(𝑡)) =
𝛽2−δ1ℋ−δ1ℋ𝑛+1(𝑡)

1+ℋ𝑛(𝑡)
  , 

where 𝛽2 and  δ1 are positive constants. Clearly 𝑓(0) > 0 and lim
𝑡→∞

𝑓(ℋ(𝑡)) = −∞ 

Thus, there exists ℋ0 > 0 such that 𝑓(ℋ0) = 0. We claim that if  ℋ0 ∈ [ℋ1, ℋ2], ℋ1 > 0, 

then ℋ(𝑡) ∈ [ℋ1, ℋ2]for all t. Otherwise, let 𝑡∗ = {𝑡 > 0: ℋ(𝑡) > ℋ2}. Then there exists  𝑡1 ≥
𝑡∗ such that  ℋ(𝑡1) > ℋ2, we get  

ℋ′(𝑡) =
𝛽(𝑡)

1+ℋ𝑛(𝑡)
− 𝛿(𝑡)ℋ(𝑡) <

𝛽2

1+ℋ2
𝑛 − 𝛿1ℋ2 <

𝛽2

1+ℋ0
𝑛 − 𝛿1ℋ0 = 0,                           which is 

a contradiction. Similarly, we can show that ℋ(𝑡) ≥ ℋ1 for all 𝑡 ≥ 0. Hence, ℋ0 ∈ [ℋ1, ℋ2] 
.In particular, ℋ𝜔 ∈ [ℋ1, ℋ2]. 
Therefore, from (11), we obtain 

𝑥′(𝑡) +
𝛽1((ℋ1 + 𝛼 −  𝜀)𝑛 − (ℋ2)𝑛)

(1 + (ℋ2 + (𝛼 +  𝜀))𝑛)(1 + (ℋ2)𝑛)
< 0         , 𝑡 >  𝛿𝜀               (12)  

Integrating inequality eq. (12) from𝛿𝜀  to 𝑡, as  𝑡 →  ∞ promptly gives a contradiction. As a 

consequence, 𝛼 =  0 and thus 𝑥(𝑡) tends to zero as 𝑡 →  ∞  Then, we get  
lim
𝑡→∞

( ℋ(𝑡) − ℋ̅(𝑡)) = 0 .This completes the result. 

Now, the oscillation result for the delay case is given in the following theorem. 

Theorem 2. Suppose that eq. (6) holds, and each solution of the following delay differential 

equations. 

𝑤′(𝑡) + [
𝑛(ℋ̅(𝑡))𝑛−1𝛽(𝑡)

(1 + (ℋ̅(𝑡))𝑛)2
] (1 − 𝜀)𝑒(1−𝜀 ∫ 𝛿(𝑠)𝑑𝑠

𝑡
𝑡−𝜔𝑚 )𝑤(𝑡 − 𝜔𝑚) = 0 , (13) 

It oscillates, where 𝑤(𝑡) = 𝑒((1−𝜀) ∫ 𝛿(𝑠)𝑑𝑠
𝑡

0 )𝑥(𝑡) and  ε ∈ (0,1).Then, each solution of (5) 

oscillates about ℋ̅(𝑡). 
Proof. For the purpose of contradiction, suppose that eq. (5) has a solution that does not 

oscillate around ℋ̅(𝑡). without losing generality, we consider that ℋ(𝑡)  >  ℋ̅(𝑡), so 

that 𝑥(𝑡)  >  0. (The proof is similar in case ℋ(𝑡) <  ℋ̅(𝑡)which insures that x(t) < 0). From 

transformation eq. (9), it is obvious that ℋ(𝑡) oscillates around ℋ̅(𝑡)if and only if 𝑥(𝑡) 

oscillates around zero. Then, for 𝑡 sufficiently large, the transformation eq. (9) transforms eq. 

(5) to the following equation  

𝑥′(𝑡) +
𝛽(𝑡)((ℋ̅(𝑡) + 𝑥(𝑡 − 𝑚𝜔))

𝑛
− (ℋ̅(𝑡))

𝑛
)

(1 + (ℋ̅(𝑡) + 𝑥(𝑡 − 𝑚𝜔))
𝑛

)(1 + (ℋ̅(𝑡))
𝑛

)
+ 𝛿(𝑡)𝑥(𝑡) = 0,                  (14) 

From (14),  we have  

          𝑥′(𝑡) +
𝛽(𝑡)𝑛(ℋ̅(𝑡))𝑛−1

((1 + (ℋ̅(𝑡))
𝑛

)2
𝑓1(𝑢, 𝑣) + 𝛿(𝑡)𝑓2(𝑣) = 0,                                          (15) 

Where  

𝑓1(𝑢, 𝑣) =
((1 + (ℋ̅(𝑡))

𝑛
)[(ℋ̅(𝑡) + 𝑢)𝑛 − (ℋ̅(𝑡)) 𝑛]

𝑛(ℋ̅(𝑡))𝑛−1(1 + (ℋ̅(𝑡) + 𝑢)𝑛)
 , 𝑓 2(𝑣) = 𝑣.  

Note that, 

𝑢𝑓1(𝑢, 𝑣)  >  0, 𝑣𝑓1(𝑢, 𝑣) >  0 , 𝑣𝑓2( 𝑣) >  0 𝑓𝑜𝑟 𝑢, 𝑣 ≠  0 then  

lim
𝑢,𝑣→0

𝑓1(𝑢, 𝑣)

𝑢
= 𝑙, 𝑒𝑥𝑖𝑠𝑡.                                          (16)   

lim
v→0

𝑓2(𝑣)

𝑣
= 1.                                                       (17)    

From (16) and (17), it consequence that for any  small arbitrary choice of 𝜀 >  0 there exists 

𝛿 >  0 such that for each 0 <  𝑢, 𝑣 <  𝛿, 𝑓1(𝑢, 𝑣)  ≥  (1 −  𝜀)𝑢 and 𝑓2(𝑣)  ≥  (1 −  𝜀)𝑣. 
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Since 𝑥(𝑡), 𝑥(𝑡 −  𝑚𝜔)  →  0 𝑎𝑠 𝑡 →  ∞, for 𝑡 large enough . we consider utilizing these 

estimates in eq. (15), to ensure that 𝑥(𝑡) is a solution of the delay differential inequality 

𝑥′(𝑡) +
𝑛(ℋ̅(𝑡))𝑛−1𝛽(𝑡)

((1 + (ℋ̅(𝑡))
𝑛

)2
(1 − 𝜀)𝑥(𝜏(𝑡)) + 𝛿(𝑡)(1 − 𝜀)𝑥(𝑡) ≤ 0,   (18) 

Now, the transformation 

𝑤(𝑡) = 𝑒((1−𝜀) ∫ 𝛿(𝑠)𝑑𝑠
𝑡

0 )𝑥(𝑡) 

implies that 𝑤(𝑡) is a positive solution of the delay differential inequality 

𝑤′(𝑡) + [
𝑛(ℋ̅(t))𝑛−1β(t)

(1 + (ℋ(𝑡))𝑛)2
] (1 − 𝜀)𝑒(1−𝜀 ∫ 𝛿(𝑠)𝑑𝑠

𝑡
𝑡−𝜔𝑚

)𝑤(𝑡 − 𝜔𝑚) ≤ 0 ,         (19)  

But, then by Corollary 3.2.2 in [13,p67], there exists an eventually positive solution of the delay 

differential equations eq. (13). This contradicts with the given hypotheses that each solution of 

eq. (13) is oscillatory. Consequently, we obtain each positive solution of eq. (5) oscillates 

around ℋ̅(𝑡).  
 

Remark 3.  Several known criteria can be employed for the oscillation of the delay differential 

equations eq. (13). For instance, the outcomes that are found in [13,14] when applied to eq. (13) 

,we can get to the following results. 

Corollary 4. Suppose that β(t)𝑎𝑛𝑑 δ(t) are a periodic positive functions. Then, 

lim inf
𝑡→∞

∫ [
𝑛(ℋ̅(s))𝑛−1β(s)

(1 + (ℋ̅(𝑠))𝑛)2
] 𝑒(1−𝜀) ∫ 𝛿(𝜇)𝑑𝜇

𝑠
𝑠−𝜔𝑚 )

𝑡

𝜏(𝑡)

𝑑𝑠 >
1

(1 − ε)e
 , ε ∈ (0,1)       (20) 

 is a sufficient condition of each solution of (13) to be oscillatory.  

Another result of the Hematopoiesis model eq. (5) can be obtained from Theorem 2 and 

Corollary 4 together as follows. 

Corollary 5. Suppose that (6) holds. Then, eq. (20) ensures that each solution of eq. (5) 

oscillates about ℋ̅(𝑡). 

Proof.  From Theorem 3, it can be concluded that eq. (20) implies a solution of eq. (13) 

oscillates, hence from Theorem 2, it oscillates about ℋ̅(𝑡). 

 

4. Numerical example:  

     In this section, we give an example to illustrate our outcomes, reflect on the consideration 

on the nonlinear delay differential equations 

                                        ℋ′(𝑡) =
2

1 + ℋ2(𝑡 − 𝜏)
− ℋ(𝑡),                                            (21) 

clearly, the parameters are 𝛽(𝑡) = 2 , 𝛿(𝑡) = 1 𝑎𝑛𝑑 𝑛 = 2, in eq. (5) and the positive critical 

point isℋ̅ = 1.In the following, we take  distinct values of 𝜏 and talk about the oscillatory 

behavior of eq. (21). Consider 𝜏 = 1.4 >
1

𝑒
 in eq. (21).From Figure 1, we can note that the 

solutions of eq. (21) oscillate around  ℋ̅ = 1 .Now, apply the condition eq. (20) we find  

  lim inf
𝑡→∞

∫ [
𝑛(ℋ̅(s))𝑛−1β(s)

(1+(ℋ̅(𝑠))𝑛)2 ] 𝑒(1−𝜀) ∫ 𝛿(𝜇)𝑑𝜇
𝑠

𝑠−𝜔𝑚 )𝑡

𝜏(𝑡)
𝑑𝑠 = ∞ >

1

(1−ε)e
 , that is the agreement with 

the results of  Theorem 2 and Corollary 4 . 
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Figure 1: The oscillate  solution of (21) at𝜏 = 1.4 

 

     Moreover, consider 𝜏 = 0.3 <
1

𝑒
 in eq. (21) From Figure 2, we can note that the solutions of 

eq. (21) are non-oscillatory about ℋ̅ = 1, that is the agreement with results of Theorem 2 and 

Corollary 4. 

 

 
Figure 2: The non ocsillate solution of (21) at𝜏 = 0.3 

 

5. Conclusions 

     The hematopoiesis model has been investigated for the non-delay model and delay model, 

where 𝛽(𝑡) and 𝛿(𝑡) are continuous 𝜔-periodic positive functions. In the case of the non-

delay, we note that eq. (1) has a global attractor  ℋ̅(𝑡) for each other positive solutions. 

Whereas in case of the delay, some sufficient conditions are obtained for each positive solution 

of eq. (1) to oscillate about ℋ̅(𝑡) and some sufficient conditions are given for global 

attractivity of ℋ̅(𝑡). 
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