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Abstract

In this paper, the effects of prey’s fear on the dynamics of the prey, predator, and
scavenger system incorporating a prey refuge with the linear type of functional
response are studied theoretically as well as numerically approach. The local and
global stabilities of all possible equilibrium points are investigated. The persistence
conditions of the model are established. The local bifurcation analysis around the
equilibrium points, as well as the Hopf bifurcation near the positive equilibrium point,
are discussed and analyzed. Finally, numerical simulations are carried out, and the
obtained trajectories are drowned using the application of Matlab version (6) to
explain our found analytical results.
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1. Introduction

Mathematical biology is the most important subject for researchers due to the variety of
complex biological processes in both ecology and mathematics. Many Researchers have studied
and extended Lotka-Volterra models to understand the interaction of different types of species
[1]. These models also presented rich qualitative dynamical behavior. In particular, the food
chains and food webs models consisting of three or more species always have a chance to obtain
chaos.
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Scavengers play an important role in the ecosystem by consuming dead animals and plant
material. They can be both carnivorous and herbivorous, where a scavenger feeds on dead
animals and plant material present in its habitat. In view of this, Previte and Hoffman [2]
introduced a third scavenger species to the classical predator-prey system in a biologically
reasonable way. They characterized the third scavenger species which is also a predator of the
prey and scavenges the carcasses of the predator. They assumed that a scavenger has no
negative effects on the population that it scavenges. Huda and Naji [3] studied stability analysis
for a prey-predator-scavenger system with the Michaelis-Menten type of harvesting function.
Recently, Marwah and Al-Husseiny [4] studied stability analysis of a diseased prey-predator-
scavenger system incorporating migration and competition.

Several field data and experiments on terrestrial vertebrates exhibited that the fear of
predators would cause a substantial variability of prey demography. Based on the experimental
evidence [5], fear of predator population enhances the survival probability of the prey
population, and it can greatly reduce the reproduction of the prey population.

Fear of predators produces anti-predator defenses that inhibit prey population reproduction,
as demonstrated in [6]. They presented a prey-predator model that incorporates the fear element
into prey reproduction and discovered that fear stabilizes the system by removing periodic
solutions; nevertheless, low levels of fear can cause the Hopf bifurcation. Many researchers
have presented models in this area in the subsequent years, see for example [7-8].

There are many factors that affect the dynamic system, and among the most important of
these is fear, the predator induces fear in the prey population and this fear can change the prey’s
behavior [9]. Thus, the prey changes its feeding area to a safer place and sacrifices the highest
intake rate areas, increases its vigilance, regulates its strategies for reproductive, etc. Although
the previous held opinion is that predators can influence the density of the prey populations by
hunting them directly only, recent studies have shown that the indirect effect has a significant
impact on the dynamic system [10].

On the other hand, the term "refuge" alludes to predators' inability to access prey in their
areas as a form of protection from the threat of predation [11]. because prey hides in refuges to
avoid predators, not all prey are caught by predators. As a result, one of the key areas in
biomathematics is been the study of a prey-predator system with prey refuge, and many scholars
have made important discoveries in this area,[12-14]. The behavior of the dynamic system of
the prey refuges has a very complex influence in the reality. The inclusion of refugia in the
ecological system has been shown to have a stabilizing effect on prey-predator interactions.
Many researchers have worked on the prey-predator system, which includes prey refuge [15-
19].

In the present study, a combination of the prey’s fear and refuge in the prey-predator-
scavenger system is studied. The organization of the work is as follows: In section 2, the basic
assumptions are proposed and then the model system is accordingly formulated. The existence
of feasible equilibria and their local and global stability conditions are shown in sections 3,4
and 5 respectively. the local bifurcation analysis of all equilibrium points, as well as the Hopf
bifurcation near the positive equilibrium point, are discussed and analyzed in sections 6 and 7.
Finally, numerical simulations are carried out, and the obtained trajectories are drawn using the
application of Matlab version (6) to explain our found analytical results in the last section.
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2. Mathematical Model Formulation:

In this section, the prey-predator-scavenger real-world system is mathematically formulated
using a functional response of the Lotka-Volterra for describing the model. The model has three
non-linear autonomous ordinary differential equations describing how the population densities
of the three species would vary with time.

The model equation are given as follows:

ax _ _ X _ py2 _ _
dT ~ 1+k (Y+2) bX* — eymXY — e;mXZ
% = —6,Y + aymXY (1)

az

o —0,Z +a,mXZ +azYZ + a,mXYZ

where X(0) > 0,Y(0) = 0,and Z(0) = 0, with X(T),Y(T), and Z(T) represent the
densities at time T for the prey, predator, and scavenger, respectively. It is assumed that prey
grows logistically in the absence of predation from predators and scavengers. The predator and
scavenger consumed the prey according to the Lotka-Volterra type of functional response. The
scavenger feeds on corpses of predators and those from prey killed by predators too. Finally,
the predators, as well as the scavengers, exponentially decay in the absence of the prey.

Accordingly, The parameters can be described as follows: r > 0 is the net growth rate of
prey; k > 0 is a fear level parameter; b > 0 is intra-specific competition rate of prey; The
parameters e; > 0 and e, > 0 are the attack rates of prey by predators, and scavengers,
respectively; However, The parameters a; > 0 and a, > 0, represent the growth rates of
predators and scavengers due to their feeding on the prey; The parameters a; > 0, and a, > 0
represent the scavenger’s benefit rates from naturally died predator’s corpses and the corpses
of the killed prey by a predator, respectively; The parameter m € (0,1) represents the non-
refuged prey rate that is available for predation due to the existence of 1 — m refuges in the
environments; Finally the parameters §; > 0,and §, > 0 are the natural death rates of
predators and scavengers, respectively.

_b _a _& - _ kr =& S
x—TX,y—rY,Z—TZ,t—Tr,a)l—el,wz—ez,w3—T
— & — % — & - — 34T
w4_b' 'wS_r » We b » W7 ey ) Ws be; '
The following dimensionless system is obtained:
ﬂ—x[;—x—m —mz]—xf(x Z)
dt 7 1+, (y+wy2) Y = X1\, 2),
dy
E=Y[—w3+w4mX]=yfz(x,y,Z), 2

% = z[—wg + wgMmx + W,y + wgmxy| = zf5(x,y,z),
where x(0) = 0,y(0) = 0,and z(0) = 0.
Therefore, system (2) has the following domain:

A={(x,y,z)€ER3 x>0,y 20,z =0}. ©))

Theorem 1. All solutions (x(t),y(t),z(t)) of the system (2) with an initial condition
belonging to A are uniformly bounded provided that

ws > i (w7 + wg). (4)
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Proof. From the first equation, we have % < x[1 — x], then it’s easy to verify that for t - oo

we get x < 1. Let us consider {; = x + wl then the time derivative along the solutions of the
4

system (2) is given by

ddy w3

— <Xx——).
dt Wy
Therefore, it is obtained that
ag
d—tl S =G+ 2,
where u; = min. {1, w3}. Hence, it is observed that for t — o
2
G=-=p
1

Letus consider ¢, = x + wl + % then the time derivative along the solutions of the system (2)
4 6

is given

ad, w3 mz 1

a =Xy~ -lws — - (w7 + wg)]-
Therefore, the following is obtained

ag

d_tz S 2 - l’l'ZZZa

where u, = min. {1, W3, W5 — “i (wy + wg)}. Thus, for — oo , it is observed that
1

2
{2 < P P2-
Hence, all solutions of system (2) initiating from an initial point belongs to A are uniformly
bounded.

From the above, it is clear that all the right-hand side functions of the system (2), which
describe the dynamics of a food web model consisting of prey, predator, and scavenger that
includes the fear and refuge, are continuous and have continuous partial derivatives. Therefore,
these functions are Lipschitz functions, and hence the system (2) has a unique solution that
moves within the given region A.

3. Existence and Stability of Equilibria

In this section, the existence and local asymptotic stability (LAS) of various equilibrium
points (EPs) are considered.
It is observed that the system (2) has always the vanishing equilibrium point (VEP), which is
denoted by S, = (0,0,0), and the axial equilibrium point (AEP), which is denoted by S; =
(1,0,0).

The scavenger-free equilibrium point (SFEP) that is denoted by S, = {(%,, ¥, 0} exists
uniquely under the condition.
w3 < My, (5)
where

2

W1w3+Mm2wy Mmwa—w
(wiwz+m2ws)” 4—w3
5 T4(JJ1( )

~ w - wiwz+m?w \/ m2awy w4
F=-2 andy = — @Qiestmies) | | ©)
mawy 2Mmewqwy 2mwq

The predator-free equilibrium point (PFEP) that is denoted by S; = ¢x, 0,2} exists uniquely
under the condition:

ws < Mwg, (7
where:
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(w1w2w5+m2w6)2

t4wqw
_ ws _ (wrwrws+m?wg) \/ m2we? 102(
X=——andz = — +

Mmwg 2M2w1woWe 2Mwq wy

mw6—w5)
we

(8)

The positive equilibrium point (PEP) that is denoted by S, = ¢x*, y*, z*} exists uniquely
under the conditions:

x*+myH(1+wy’) <1
@1 @6 } )
w3~ ws
where
Xt = 23 Lyt = WaWs—W3We o 7 = 2 4 VY22 +4v1Y3 , (10)
mwy Waw7+wW3Wg 271 271

with y; = mw,w, , Y2 =m+mwy" (1+ w,) +ww,x* , and y;=1—-(x"+
my")(1+ wyy").
Now, to study local behavior near the existence EPs, the Jacobian matrix /M at a point (x, y, z)
can be written by:

] =pil,, . (11)

— — —wi1X _ — —Wq1W2X
where iy = —x + fi, P12 = (oo T M P T T prenn P

P21 = WyMY, Paz = f2, P23 =0
P31 = WeMZ + WgMYZ, P3; = W7Z + WgMXZ, P33 = f3.

— mx,

The JM of the system (2) around the VEP that given by S, = (0, 0,0) has the following
eigenvalues
AOI =1 > 0, 102 = —w3, and 103 = _(1)5’.

The VEP is always an unstable (saddle) point due to the existence of positive eigenvalue.
The JM of the system (2) around the AEP, which is represented by S; = (1,0,0), becomes:

-1 —w;—m —ww,—m
JSD=[0 -—w3+wm 0 : (12)
0 0 —ws + wgm

Therefore, the eigenvalues of J(S,) are given by:

111 = _1, 112 = _(1)3 + (1)4_m, a.nd 113 = _(1)5 + (1)6m. (13)
Hence, the AEP is a LAS if the following condition is satisfied:

m < min {Z—i,Z—i} (14)
The JM of the system (2) around the SFEP, which is defined by S, = (X, ¥, 0), becomes:
~ w1X ~ w1wy X ~
- ((1+w137)2 + mx) - ((1+w137)2 + mx)
0 0 —ws + wgMX + W,y + wgmxy

Therefore, the eigenvalues of J(S,) are the roots of the following equation:

(A2 = TriA + D)) (—ws + wgmX + w,§ + wgmXy — 1) = 0. (16)
Direct computation gives that the roots are given by:
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Apr = 2+ -yTry” — 4D,

Ay = 2= —\[Try” — 4D, : 17)
Aoz = —wg + wgmMX + W,V + wgmXy

wqwamxy
(1+ w15)?
provided that the following condition is met.

where Try = =¥ <0, and D = + w,m?%y > 0. Hence, the SFEP is LAS

weMX + w7y + wgmXy < ws. (18)

Now, The /M of the system (2) around PFEP, which is given by S; = (X, 0, Z), is determined
as:

_ w1X — wW1WyX —
- - (1+ wiw,2)? —mx = 1+ wiw,2)? - mx
JS) =1 o —ws3 + w,mx 0 (19)
wemzZ w7Z + wgmXxz 0

Therefore, the eigenvalues of J(S3) can be determined from the following equation:

(12 - Trzl + Dz)(_w3 + (D4mf - A) = 0 (20)
Therefore, the eigenvalues are obtained as:

31 = 22+ —\Tr,” —4D,)
Aag = 22— 2T, 2 — 41)2}’ (21)

T2 2
132 = —w3 + (1)4,m.f

W1WrWeMXZ
(1+ 0)10)22_)2

provided that the following condition holds.

where Tr, = —x < 0,and D, = + wgm?xz > 0. Therefore, the PFEP is LAS

w,mx < ws. (22)

Finally, the JM of the system (2) around PEP that is given by S, = (x*,y*,z*) can be
determined:

J(S54) = [Tij]3x3, (23)

where
o a* — _ wix* N _ _ WiWx* "
1= 7%, T2 ([1+w1(y*+wzz*)]2 +mx )’ "3 ([1+w1(y*+wzz*)]2 +mx )’
Ty = WyMY™, 1y = 0,13 = 0,131 = wgmz™ + wgmy*z”,
T3p = W7Z" + wgmx*z*, 133 = 0.
The characteristic equation that is associated with J(S,) can be determined
B+ A2+ 4,1+ 45 =0, (24)
where
Ay = =111, Ay = — (112121 + Ti3731), and Az = —(7r13721732).

with

A=A1Ay — A3 = 11111271 + 1i3(T1731 + 121732).
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Recall that, according to the “Routh-Hurwitz principle” Eq.(24) has three eigenvalues with
negative real parts provided that A; > 0,4; > 0and A = 4,4, — A; > 0.

Consequently, it is easy to verifty that S, is a LAS provided that the following condition:
wymy* (w; + wgmx™) < x*(wWgm+wgmy™). (25)

4. Persistence:

The persistence of the system (2) is investigated in the following part. It is well known that
the system will continue to exist if and only if none of their species become extinct. This means
that the system (2) survives if the system's trajectory, which starts at a positive point does not
have an omega limit set on the domain's border axis.

System (2) has two subsystems belonging to xy —plane and xz —plane respectively. These
subsystems can be respectively written as follows.

% = y[ —ws + wymx | = L,(x,y). 29)
and
I EE———
% = z[-ws + wemx] = L,(x,2). n

Now, in order to investigate the existence of periodic dynamics in the Int. R2 of xy — plane,
define the Dulac function as G, (x,y) = $ that satisfies G,(x,y) > 0 and C?* function. Hence,

it is obtained that

1 1
GiLy = ;[ley —X— my], and G, £, = ;[_0)3 + wymx .
Thus, it is obtained that;

0(G1Ly)

2
Alx,y) =——+ Guta) _ _1

dy y

Since, A(x,y) does not identically zero and does not change the sign in the Int. R%of the
xy — plane. So by the Dulac-Bendixon criterion, the system (26) has no periodic solution lying
entirely in the interior of xy — plane.

Similarly, it is easy to verify that the system (27) has no periodic solution lying entirely in
the interior of xz — plane using the Dulac function G, = x—lz

Theorem 2. System (2) is uniformly persistent (UP) in the interior of A provided that the
following conditions are satisfied.

Wam > ws. (28)
WM > Ws. (29)
WeMX + w7y + wgmXy > ws. (30)
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Wamx > 3. (31)

Proof. Consider the function = = x"y"2z"s where h; = 1,2,3 are positive constants and
m(x,y,z) is a C! nonnegative function in the interior A. Hence,

I(x,y,z) = 1;((;;]22)) = hifi + hyfz + hsfs,

where the functions f;,i = 1,2,3 are given in Eq. (2). Accordingly, the following is obtained.
1
I(x,y,z) =h -
(x,3,2) 1+ w0 (7 + wy2)
+h,[—w; + wymx]
+hs[—ws + wgmx + w,;y + wgmxy].

X —my—mz

Therefore, according to the average Lyapunov function technique that proposed by Gard
[20], the proof provides that 3(x,y,z) at all the boundary attracting sets is positive.
Thus, the system (2) has only points attracting sets belong to the boundary planes, which are
represented by the EPs. Then

9(So) = hy — wzh; — wsh;

9(S,) = hy[—ws + wym] + hz[—ws + wem].
9(S,) = hz[—ws + wgmX + W, + wgmXy|.
9(S3) = hy[—w3 + wymi].

Consequently, 9(S,) > 0 for a sufficiently large positive value of h; with respect to
positive values of h,, and h;. However, the provided conditions (28)-(31) guarantee that
9(S;) > 0, forall i = 1,2,3. Therefore, system (2) is UP due to the average Lyapunov method.

5. Global Dynamics
In this section, the global stability of equilibrium points (GSEPSs) is analytically presented
with the help of the Lyapunov function (LF) as the following theories will show.

Theorem 3. If the AEP of the system (2) is LAS, then it is a GAS provided that the following
conditions are satisfied:
m+ w; < % (32)
4

WapP1
We

(w7 + wgm) + (M + wiw,) < Z—i ) (33)

Proof: Let us choose the following function:
vy = yi[x =1 =In ()] +y2y +y3z.

where y;,i = 1,2,3; are positive constants to be determined. Obviously, the above function
vi:A—> R, so that v;(S;) =0and S;(x,y,z) > 0for all {(x,y,z) EA:x>0,y=>0,z>
0, (x,y,z) # S;}. Hence, the function v;is positive definite function.

Now differentiating v, with respect to t, then using the bound of x, and y, the following
result is obtained after some simplification steps:
dv
— =N =1 = [ra05 — y1(m + 1)y
—[y3ws — y3wap1 (w7 + wgm) —y1 (M + w1 w;)]z

—[y: — y2w4]mxy — [y — V3w6]mxz-
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Choosing the positive constantsas y; = 1,y, = wi andy; = wi , it is obtained that:
4 6

dv w w wyp
d_tlg_(x_l)z_[w_j_m_wl]y_[w_i_ :)61((1)7+ wgm)_(m+w1w2)]z.

Therefore, the function % is negative definite due to conditions (32) and (33).This v,is
strictly Lyapunov function. This v, isastrong LF that is readily unbounded. Hence, S; is GAS.

Theorem 4. If the SFEP of the system (2) is LAS, then it has a basin of attraction satisfies the
following conditions:

® 2
(2) <4 (34)
my + LLLOrt00) 4 W10aT s (35)
-9 <[x-%)+ @ -N~ (36)

where A = 1 + w, ¥, and p; is given in Theorem (1).
Proof: Let us choose the following function:

~ ~ X 1 ~ ~ y 1
v, = [x—x—xln (E)] +w—4[y—y—yln (5)] +w—62'
Obviously, the above function v,: A - R, so that v,(S,) =0, and v,(x,y,z) > 0 for all
{(x,y,2) e Aix >0,y >0,z=>0,(x,y,2) # S,}. Hence, the function v, is a positive definite
function.
Now differentiating v, with respect to t, then using the bound of x and y, the following result
is obtained after some simplification steps:

dv, y  [@1 5 5 W1W;
=m0 = | - D0 -9 - [
wWs . wyp(w; + wg)  wiwyX
— | =—mx - - |z,

Weg Weg AA

where A = 1 + w4 (y + w,z). Then further simplification leads to the following.
dv w w wr + w WX
2S_[(x_’z)+(y—37)]2+(y—37)2—[—5—m9?— ap1 (w7 3)_ 1 W~

E We Weg AA

Clearly, the function % < 0 due to the conditions (34)-(36). Thus, v, represents a suitable

Lyapunov function. Hence S, is GAS in the interior of the subregion (basin of attraction) of A
that satisfies the given conditions.

Theorem 5. If the PFEP of the system (2) is LAS, then it has a basin of attraction that satisfies
the following conditions:

2
w1y
(T) <4 (37)
(z-2?<[(x=%) +(z-2)]° (38)
_ . w1X (wy+wgm) m wsZ
mx+T+p2T<w—4+w—6. (39)

where A = 1 + w,w,Z.
Proof. Let us choose the following function:
vy = [x—f—fln (;)] +L+i[z—z'—z'ln (g)]

Wy We
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Obviously, the above function v;: A - R, so that v;(S3) = 0, and vs(x,y,z) > 0 for all
{(x,y,z2) e Aix >0,y =>0,z> 0,(x,y,z) # S3}. Hence, the function v; is a positive definite
function.

Now differentiating v, with respect to t, then using the bound of x, and z, the following
result is obtained after some simplification steps:

dv3 _ —\2 w1Wy _ . 1 a)gmz
B0~ (A 6 -G -2 - [ 2y
m m. w7z w1X (w7 + wgm)
W, Wg mx AA P2 m
Then further simplification leads to the following
dvs _ 12 >y W57 w1 X (w7 + wgm)
< G-D+E-DP+ -2 —[—+—6—mx— =y,

where p, is given in Theorem (1).
Clearly, the function % < 0 due to the conditions (37)-(39). Thus, v represents a suitable

Lyapunov function. Hence, S5 is GAS in the interior of the subregion (basin of attraction) of A
that satisfies the given conditions.

Theorem 6. If the PEP of the system (2) is LAS, then it has a basin of attraction that satisfies
the following conditions:

2
w
(%) <1 (40)
(M)2 <1 7
e : (41)
(w7+wgm) 2
((w6+w8y*)) <1l (42)
=92+ (z—2z)? < M; + M, + Mj. (43)

here A* =14+ w,(y"+ wyz*), M; = %[(x —x)+ @y —-yH?, M, = %[(x —x)+ (z -
22, and M3 = 2 [(y — y*) = (z — z°)]?

Proof. Let us choose the following function
VA

vy = ky [x —x*—x"In (%)] + k, [y —y*—vy*In (}%)] + k3 [Z —z"—=2z"In (;)] .

where (k; > 0,i = 1,2,3) are positive constants to be identified. Obviously, the above
function v,: A = R, so that v,(S,) = 0, and v,(x,y,z) > 0 for all {(x,y,z) € A:x >0,y >
0,z>0,(xy,z) # S,}. Hence, the function v, is a positive definite function.

dv, _ i i

rr =k, (x—x )[—(x—x )—(AA*+m)(y y )_(AA* +m)(z—z )]
+k3(z — 27) [wem(x — x*) + w;(y — ") + wgm(xy — x"y")](z — z7)

+k,wam(x —x*)(y —y*).
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Further simplification leads to

dv kiw
d—: = —ky(x —x*)% — [;A*l + kym — k2w4m] (x—x)@ -y
kiwiw
— 1AIL:1[* z + klm - k3m(a)6 + (Ugy*)] (x - x*)(z - Z*)

t+k3[w; + wgmx]|(y —y*)(z — z%).

Therefore, by choosing k; = 1,k, = Wi and ks = !
4

Wet+wgy

It is obtained that after some

algebraic computation. *
D<o — 20 = [ - 1) -y - 222 (- )z - 2
el (y —y) (2~ 2)
By using the conditions (40)-(42), it is easy to verify that
<y -y + -z — [ —x) + -y
— [ —x) + -2 =5 [y —y) = (z— 2]

Clearly, the function % < 0 due to the conditions (40)-(43). Thus, v, represents a suitable

Lyapunov function. Hence, S, is GAS in the interior of the subregion (basin of attraction) of A
that satisfies the given conditions.

6. Bifurcation Analysis:

In this section, Sotomayor's theorem for local bifurcation [21]is used. The possibility of a
qualitative change in the dynamical behavior of the system (2) as a result of changing a specific
parameter is investigated. The existence of non-hyperbolic EP of the dynamical system (2) is a
required but it is not sufficient condition for a bifurcation to occur. Therefore, a specific
parameter that makes the equilibrium EP non-hyperbolic is a candidate bifurcation parameter.
Now the system (2) can be written in a vector form as follows.

% = F(X),where X = (x,y,2)T,and F = (xf1, vfo, zf3).

Also, the second directional derivative of F with espect to X can be determined as:

D?F(U,0) = [di1]sx1 “44)
where
o2 _wix 1.2 __ wiwdxr ]2
dyy = —2uj + 2 [[1+w1(J/+sz)]3] uz +2 [[1+w1(y+wzz)]3] s
w1 w1y

2|t e = 2 B
[_ﬁﬁi_]
[1+w; (y+w,2)]3 Uztls.

d21 = 2mw4u1u2.
ds;, = 2wgmzu u, + 2[wem + wgmylugus + 2[w, + wgmx]u,us.
with, U = (uy,uy,u3)T is any non-zero real vector.

Theorem 7. The system (2) undergoes a transcritical bifurcation (TB) near AEP when the
parameter ws satisfies that ws = wz = wgm, it provided that the following conditions holds.

m< =2, (45)

Proof: It is easy to verify that the (JM) of the system (2) at (S;, ws) can be written as:
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-1 —-wy—m —ww,—m
]1 =](Sll (l);) = 0 _0)3 + (1)4,m O
0 0 0

So, according to condition (45), the matrix J; has the eigenvalues 1}, = =1 <0, 4], =
—w3 +w,m<0,and i3 = 0.
Hence the AEP becomes nonhyperbolic point.

Let #; = (hyy, hyip, hy3)T be the eigenvector of J, associated with Aj; = 0. Therefore,
direct computation gives that #; = (n;hy3,0, hy3)7, where h,; represents any non-zero real
number and n;=—(w;w, + m) < 0.

Let ¢@; = (@11, 912, @13)7 represents the eigenvector of JT associated with A3 = 0.
Therefore, direct computation leads to ¢, = (0,0, ¢,3)7, where ¢, represents any non-zero
real number.

According to that, the following is obtained ;TF = F,. = (0,0,—z)",hence we obtain that
5
F, (S, w%) = (0,0,0)7, which yields ¢T[F,_(S;, w%)] = 0.

Hence, the system (2) at S; with ws = w¢ has no saddle-node bifurcation (SNB).
Moreover, since

0O 0 O
DF, (X, ws) = <0 0 O > = (P{[DFws(SpwE)jﬁ] = —hy3¢43 # 0.
0 0 -1

Also by using Eq.(44) at (S;, wz) with F;, it obtains.
—2nfhi; — Qwyw, + 2m)nghi; + 20 wihi;
DZF(Sl,(Ug)(Hl,}Q) = 0
2wemnyhis

This gives
@1 D?F(S;, wg)(Hy, H;) = 2wgmny hiz @3 # 0.

Therefore, in sense of Sotomayor’s theorem the system (2) undergoes a TB at S; with
W5 = Ws.

Theorem 8. The system (2) undergoes a TB near SFEP when the parameter w, satisfies that
— * W5~ W7y —wgmXy
We = We =" =

Proof. It is easy to verify that the (JM) of the system (2) at (S,, wg) can be written

~ —wiX ~ —wiwy X

— —mXx —mX
. (1+wq9)? (1+w19)?
J2 =](52:w6) = mw,y ! 0 ! 0
0 0 0

Observe that, the eigenvalues of J, are 15,, 15, given by Eq.(17), and having negative
real parts, while A5; = 0. Thus the S, becomes non-hyperbolic.
Let H, = (hyy, hyy, hy3)T represents the eigenvector of J, associated with A,3" = 0. Then
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direct computation shows that 7€, = (0, nzhs3, hy3)T, where h,5 represents any non-zero real
(1)1(4)2+m(1+(1)137)2
— < 0.
wi1+m(1+w,5)?
Also, let @, = (@21, P22, P23)7 represents the eigenvector of JI associated with 155 = 0.

Therefore, direct computation gives ¢, = (0,0, ¢,3)T, where ¢, represents any non-zero real
number.

Because ;—; = F,, = (0,0,mxz),hence it is obtained that F,, (S,, wg) = (0,0,0)", which

yields @I [F,, (S, wg)] = 0.

numberand n, = —

Hence, the system (2) at S, with wg = wg has no SNB according to Sotomayor's theorem.

Moreover, since
O 0 O

DF, (X, wg) = ( 0 0 0 ) = DE,(Sy, 3)H;, = (0,0, m&hy3)".
mz 0 mx
Then @I [DF,,, (S, wg)H,| = m%hy3¢,3 # 0. Also by using Eq.(44) at (S,, wg) with 3y, it is

obtained that
( 2w3% )n%h%3 n ( 2w wix ) h%3 n ( 4w?wix )Ilzhgg

(1+w,3)3 (1+wq¥)3 (1+wq7)3

DZF(Sz,wZ)(Hz,}[z) = 0
2(w7 + wgmX)nyh3,
Therefore, it is observed that

@3 D?F(Sy, wg) (Hy, Hy) = 2(wy + wgmEIN,hs3¢,3 # 0.
Therefore, the system (2) at S, with wg = wg has TB.

Theorem (9). The system (2) undergoes a TB near PFEP when the parameter w5 satisfies that
w3 = W3 = wWyMmx.

Proof. It is easy to verify that the (/M) of the system (2) at (S5, w3) can be written

w1X wW1WrX

E e
X (1+ w1, 2)? (1+ wiw,2)2
J3 =](S3,w3) = 0 0 0
weMz w7Z + wgmXZz 0

Observe that, the eigenvalues of J; are A5;, 435 given by Eq. (21), and having negative
real parts, while A5, = 0. Thus the S; becomes a non-hyperbolic point.

Define Hj = (hsy, hsp, ha3)T that represents the eigenvector of /5 associated with 15, =
0. Then direct computation shows that H3 = (nzhsy, hzz, Nahs2)T, Where hs, represents any
_ (w7+wgmx) <0,andn, = — [(na+m)(1+ w1wzz_)zj-w1]
wegm wiwz+m(1+ wqw,2)2

non-zero real number , nz =

Also, let 93 = (@31, P32, P33)7 represents the eigenvector of J1 associated with A5, = 0.
Therefore, direct computation gives that g5 = (0, @35, 0)T, where @5, represents any non-zero
real number.

Since ;TFS = F,, = (0,—,0), hence it is obtained that F, (S3, w3) = (0,0,0)",which yields

@3 [F.,(S3,w3)] = 0. Hence, the system (2) at S3 with w; = w3 has no SNB.
Moreover, since

1914



Ismael and Abdul Satar Iragi Journal of Science, 2023, Vol. 64, No. 4, pp: 1902-1924

0 0 O
DFw3(X, (l)3) = <O -1 0) 4 DFw3(53, 0);)7’[‘3 = (0, _h32, O)T
0 0 O

Thus, it is resulted that
<p§[DFw3(S3,w§)7{3] = —hz,¢3, # 0.
Also by using Eq. (44) at (S5, w3) with H3, it is obtained:
dq1
D?F (S5, w3) (33, H3) = |d,, |, where
dax 2 2,2
A 2wiX 2Wiw5X
dyy = —203R%, + | ————5 | W3, + | m———— | N33
11 nN3hz, + <(1 n a)la)zz_)3> 32t <(1 T w1w,2)° Nah3;
20, 20,0,
2 o)t (2 o)
((1 + w,w,2)? mJMsls2 1+ wyw,2)? m s ts2
( 4w, X ) B2
1+ ww,2)3 flaf52:
dy1 = 2n3mwsh3,.
d3; = 2wgmznzh3, + 2wgmnsnah’, + 2(w,; + wgmx)n,h3,.

Therefore, it is obtained
PID?F(S3, w3)(H3, Hs) = 2nsmw h3,¢3, # 0.

Thus, the system (2) at S5 with w; = w3 undergoes a TB.

Note that, according to the discard rule of sign, the characteristic equation that is given by
Eq.(24) has no positive roots, while it has three negative roots or one negative root with two
complex conjugate roots. Therefore, there is no possibility to have any type of local bifurcations
(SNB, TB and PB).

7. Hopf bifurcation

In this section, the likelihood of the HB being observed is studied. Remember that,
according to the HB theorem [21] for a three-dimensional autonomous system states that the
dynamical system will undergo a HB at w = w™ if the Jacobian matrix at the EP has a simple
pair of complex eigenvalues, say 4,, = 9;(w) + i9,(w), such that they become purely
imaginary at w = w*, while the third eigenvalue remains real and negative. Moreover, the

transversality condition 29, (w) # 0 should behold; otherwise, there would be no such

dw |w=w*
bifurcation where w is a bifurcation parameter.

Theorem 10. If the following conditions hold
r11T12 + 113732 < 0, (46)

As(w3) > (A (@) Az(w])) (47)

where ;;; i,j = 1,2,3 represent the JM elements that are given in Eq.(23), while 4;;i =
1,2,3 are the coefficients of the characteristic Eq.(24), then as the parameter w, passes through
the positive value w, = — ——2213 (= %), the system (2) possesses a HB at the PEP.

my*(r11712+713732)
Proof. According to the Eq. (24), it is easy to verify that the formula A = A;4, — A; = 0, at
w, = wy, Where w; > 0 under the condition (46). Therefore, it is obtained A3 (w3) =
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A, (w}3)A,(w}), and hence the characteristic Eq. (24) at w, = w; can be written as:

Obviously, the above equation has three roots 4,; = —Ay, and A4, 443 = + i,/A,, with
A; > 0,and A, > 0 due to the JM elements that are given by (23).
Therefore, when w, = wjy, the first condition of the HB, which is represented by the existence
of pure imaginary complex conjugate eigenvalues, is satisfied.
Now, the complex conjugate eigenvalues in the neighborhood of w; can be represented in the
form 24343 = my(w,) * im,(w,) as the general form . Hence substituting A = m; (w,) +
ir,(w,) in EQ.(24), then calculating the derivative with respect to the bifurcation parameter
w,, and comparing the two sides of resulting equation with equating their real and imaginary
parts, gives that:
Y(wg)mi (wg) — Pp(wg)my(wg) = —@(ws)}
¢ (wg)my (wg) + P(wg)ms(wg) = —T'(wg))’
where

0(wy) = Al (wy)[m1(wy)]? — A} (w4)[m2(we)]* + A (wy) 1 (wy) + A3 (wy).
WY(wy) = 3[my(w4)]? + 241 (wa)111 (w4) =3[z (wa)]* + Az (ws).

['(ws) = 241 (W) T4 (Wa) T2 (w4) + Az (W4) T2 (w4).

D(wy) = 611 (W4)T2(W4) + 241 (w4) T2 (w4).

Solving the liner system (49) then it gives that

’ _ 9wy P(wy)+T(w4)P(w4) ’ _
T(04) = = yopprwap 0 T2(@a) =

Hence, the transversality condition is satisfied if
0(w)y(wg) + I'(wy)P(wz) # 0.

(49)

_ TNwg) ¥ (wg)—0(wa)P(w4)
[P (wa)]?+[P(w4)]?

Notices that 7, (ws) = 0 and 7, (wy) = /A2 (wy), then at w, = w, the coefficients of system
(49) are written as:
Y(wy) = —24;(wl),

¢(wz) = 24; (wi)V Az (wl),

0(wy) = Az(wi) — A1 (wy)Az(wy),

[wy) = Ay (w)V Az (w)).

Therefore, it is obtained that:

8(wP(w;) + T(wd(;) = —24,(w3) [ (3) — (A (W) Ay (@) |

Consequently, 71 (wz) > 0 under the condition (47), and then the system (2) undergoes HB at
Wy = Wy .

8. Numerical Simulation

In this section, system (2) is numerically solved using the Runge-Kutta method with the help
of the Mathlab program. The global dynamics of the system (2) are studied numerically under
the implication of varying their parameters using different sets of initial conditions. It is
observed that, for the following set of hypothetical parameter values, the system's (2) trajectory
approaches asymptotically to the PEP, starting from different initial conditions as shown in
Figure (1).

w, =0.75w, =1, w3 =0.1,w, = 0.7, w5 = 0.2,

we = 0.6, w; = 0.2, wg = 0.01,m = 0.4. (50)
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Figure 1: The trajectories of system (2) approach asymptotically to the PEP starting from
different initial points (IP) using a data set (50). (a) GAS of the PEP. (b) Time series for
trajectories in (a).

The influence of fear rate w, is studied in the Figure (2) below using different values
@ ‘ _®

—

1~ 08F
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Figure 2: The trajectories of system (2) approach asymptotically to the different EPs for
different values of w, = 0.25,0.5,0.75,1,1.25, with data set (50). (a) 3D phase portirat. (b)
Time series for trajectories of x. (c) Time series for trajectories of y. (d) Time series for
trajectories of z.
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As it is shown in Figure (2), an increasing the value of w, leads to decreasing in z gradually
up to disappearing. A similar observation had been obtained by raising the value of the w,, like
that of w,; with a slower approach of z to vanishing.

The influence of varying ws is studied numerically on the dynamic of the system (2), and
it is observed that for w5 € (0,0.03) the system approaches asymptotically to a stable limit
cycle, see Figure (3), for w; € [0.03,0.23] the PEP of the system (2) is a GAS, however, for
w3 € (0.23,1) the system approaches asymptotically to the PFEP, see Figure (4).
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Figure 3: The trajectories of system (2) approach asymptotically to a limit cycle using a data
set (50) with w5 = 0.01. (a) 3D limit cycle of system (2). (b) Time series for trajectories in (a).
(b)
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Figure 4: The trajectories of system (2) approach asymptotically to a PFEP using a data set
(50) with w5 = 0.25. (a) PFEP of system (2) is a GAS. (b) Time series for trajectories in (a).

The impact of varying the parameters w, on the dynamic of the system (2) is numerically
investigated using data (50), it is obtained that as decreasing the value of this parameter from 1
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to 0.01 the system (2) transfers from the PEP to PFEP when the parameter passes through the
value 0.3, see Figure (5).
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h 02 wff
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v 00 . 0 50 100 150 200 250 300
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= 04 [
03p
03p
02k “‘;:0'4 02
01 01
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0 50 100 150 200 250 300 0 50 100 150 200 250 300
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Figure 5: The trajectories of system (2) approach asymptotically to the different EPs for
different values of w, = 0.2,0.4,0.6,0.8, 1, with data set (50). (a) 3D phase portirat. (b) Time
series for trajectories of x. (c) Time series for trajectories of y. (d) Time series for trajectories
of z.

The influence of varying ws is numerically studied on the dynamic of the system (2), and
it is observed that for ws € (0,0.09) the system es asymptotically approaches to a PFEP, see
Figure (6), for ws € [0.09,0.23] the PEP of the system (2) is a GAS, however, for ws €
[0.24,1] the system approaches asymptotically to the SFEP, see Figure (7).
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Figure 6: The trajectories of system (2) approach asymptotically to the PFEP starting from
different IP using a data set (50) with ws = 0.07. (a) GAS of the PFEP. (b) Time series for
trajectories in (a).
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Figure 7: The trajectories of system (2) approach asymptotically to the SFEP starting from

different IP using a data set (50) with ws = 0.25. (a) GAS of the SFEP. (b) Time series for
trajectories in (a).

The impact of varying the parameters w¢ on the dynamic of the system (2) is investigated
numerically using data (50), it is obtained that as decreasing the value of this parameter from 1
to 0.01 the system (2) transfers from the PEP to SFEP when the parameter passes through the
value 0.38, see Figure (8).
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Figure 8: The trajectories of system (2) approach asymptotically to the different EPs for
different values of wg = 0.2,0.4, 0.6, 0.8, 1, with data set (50). (a) 3D phase portirat. (b) Time
series for trajectories of x. (c) Time series for trajectories of y. (d) Time series for trajectories

of z.

The influence of varying w- is studied numerically on the dynamic of the system (2), and
it is observed that for w, € (0,0.16) the system approaches asymptotically to an SFEP, see
Figure (9), otherwise, the system (2) remains at the PEP. However, varying the parameter wg
has a quantitative impact on the position of PEP.
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Figure 9: The trajectories of system (2) approach asymptotically to the SFEP starting from

different IP using a data set (50) with w, = 0.1. (2) GAS of the SFEP. (b) Time series for
trajectories in (a).

The influence of varying m is studied numerically on the dynamic of the system (2), and it
is observed that for m € (0.13,0.25] the system approaches asymptotically to a SFEP, see
Figure (10), for m € (0,0.13] the system approaches asymptotically to the AEP, see Figure
(11). Otherwise, the PEP of the system (2) is a GAS.

(@) (b
08 T r r
07
0.8+ %
206
0.6+ 2
§05
g
w04 ¥
IP(03,05.04) 3 4]
@
0.2 =
: IP(0.2,0.4,03) j 0.3
0 g
SFEP:(0.71,0.36.0) T 02
08 3
: %01
0 ; , \ ,
0 50 100 150 200 250 300
Time

Figure 10: The trajectories of system (2) approach asymptotically to the SFEP starting from
different IP using a data set (50) with m = 0.2. (a) GAS of the SFEP. (b) Time series for
trajectories in (a).
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Figure 11: The trajectories of system (2) approach asymptotically to the AEP starting from
different IP using a data set (50) with m = 0.1. (a) GAS of the AEP. (b) Time series for
trajectories in (a).

Conclusion

In this paper, an ecological model including a prey-predator-scavenger system with the
influence of fear and refuge is formulated and then studied. All the properties of the solution
are discussed. It is observed that the model contains at most five equilibrium points. The
stability analyses of them are carried out. The possibility of bifurcation around these points is
studied. Finally, the model is solved numerically to understand the global dynamics of the
model and confirm the obtained findings.

The obtained results showed that the fear of prey from the predator has a stronger effect than

the fear of prey from a scavenger. In fact, the increase of fear stabilizes the system up to a
specific value, and then the system losses its persistence. The predator death rate has a direct
effect on the existence of the predator above a specific value, however, it works as a destabilize
the system for lower values and the system goes to a limit cycle.
The decreasing conversion rate of a predator from their prey below a specific value leads to
extinction in predator species. However, the death rate of scavengers has a clear effect on the
system, so that decreasing it causes extinction in predators while increasing it causes extinction
in scavengers themselves. Moreover, decreasing the conversion rate of scavengers from the
prey or the scavenger benefit from their scavenges on predators leads to the extinction of
scavenger species. Finally, the non-refuged prey rate has a clear impact on the persistence of
the system, so decreasing this rate (that is mean increasing the prey's refuge) blow a specific
value leads to extinction in scavengers, however, decreasing this parameter further, leads to
extinction in predator species too.
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