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Abstract 

     𝑆−1 ⊆ 𝑆. Suppose that 𝐶𝑎𝑦(𝐺, 𝑆) is the Cayley graph whose vertices are all 

elements of 𝐺 and two vertices 𝑥 and 𝑦 are adjacent if and only if 𝑥𝑦−1 ∈ 𝑆. In this 

paper,we introduce the generalized Cayley graph denoted by 𝐶𝑎𝑦𝑚(𝐺, 𝑆) which is a 

graph with a vertex set consisting of all column matrices 𝑋𝑚 in which all components 

are in 𝐺  and two vertices 𝑋𝑚  and 𝑌𝑚  are adjacent if and only if 𝑋𝑚[(𝑌𝑚)−1]𝑡 ∈

𝑀(𝑆), where 𝑌𝑚
−1 is a column matrix that each entry is the inverse of the similar 

entry of 𝑌𝑚  and 𝑀(𝑆)  is 𝑚 × 𝑚  matrix with all entries in 𝑆  , [𝑌−1]𝑡  is the 

transpose of 𝑌−1 and 𝑚 ≥ 1 and m∈ 𝑁. We aim to provide some basic properties of 

the new graph and determine the structure of 𝐶𝑎𝑦𝑚(𝐺, 𝑆)  when 𝐶𝑎𝑦(𝐺, 𝑆)  is a 

complete graph 𝐾𝑛 for every 𝑚 ≥ 2, n ≥ 3 and n, m∈ 𝑁 . 

 

Keywords: Cayley graph , Complete graph, Generalized Cayley graph, Comb 

product. Secondary 05C07 . 

 
 

1- Introduction and Basic Results 

     Algebraic graph theory has been considered one of the most important topics in 

mathematics that specially in algebra and graph theory have been interested in recent years. In 

algebraic graph theory, every graph is associated with a group, ring, module or any other 

algebraic structures. One of the oldest algebraic graph theory is the Cayley graph which is 

associated with a group and a subset of this group. The history of the Cayley graph comes back 

to many years ago. In 1878, the Cayley graph was presented by Arthur Cayley in [1]. He gave 

a geometrical representation of group by means of a set of generators. This translates groups 

into  geometrical objects that can be investigated from the geometrical view. In particular, it 

provides a rich source of highly symmetric graphs, known as transitive graphs, which plays an 

important role in many graph theoretical problems and group theoretical problems. During the 

past ten years, some authors introduced different generalizations for the Cayley graph. For 

example, Marušič  in [2] gave a generalization of the Cayley graph in terms of an automorphism 

of group G. Afterwards, Zho in [3] introduced the Cayley graph on a semigroup. Recently, the 

second author introduced a new generalization of the Cayley graph by replacing all elements of 

the group by all m×1 matrices with entries in the group, as a vertex set. He denoted it by 

Caym(G,S) for every m ≥ 1, and it is clear that if m = 1 then we will achieve the known 

Cayley graph Cay(G,S). In 2021, Neamah , Erfanian and others [4] established the structure of 

a generalized Cayley graph Caym(G,S), when Cay(G,S) is a cycle graph Cn, for all n ≥ 3. 
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     In this paper, we are going to determine the structure of the Caym(G,S) when the Cay(G,S) 

is a complete graph Kn, for every m ≥ 1 and n ≥ 3. 

 

     We recall that for any group G and any nonempty set S of G such that e ∉ S and S−1 ⊆
S, the Cayley graph Cay(G, S) is an undirected simple graph whose vertices are all elements of 

G and two vertices x and y are adjacent if and only if xy−1 ∈ S. It is known that Cay(G, S) is 

connected whenever S  is a generating set of G  and that it is always regular and vertex 

transitive ( see [5] for more details ). Now, we are in a position to mention the generalized 

Cayley graph Caym(G, S) as follows.  

 

Definition 1.1 [4] For every m ≥ 1, the generalized Cayley graph, denoted by Caym(G, S) is 

an undirected simple graph with vertex set consisting all m × 1  matrices  
[x1 x2 ⋯ xm]t, where xi ∈ G, 1 ≤ i ≤ m, and two vertices X = [x1 x2 ⋯ xm]t and 

Y = [y1 y2 ⋯ ym]t are adjacent if and only if  

X(Y−1)t =

[
 
 
 
x1y1

−1 x1y2
−1 ⋯ x1ym

−1

x2y1
−1 x2y2

−1 ⋯ x2ym
−1

⋮ ⋮ ⋱ ⋮
xmy1

−1 xmy2
−1 ⋯ xmym

−1]
 
 
 
∈ Mm×m(S), where 

 

Mm×m(S) = {[

x11 x12 ⋯ x1m

x21 x22 ⋯ x2m

⋮ ⋮ ⋱ ⋮
xm1 xm2 ⋯ xmm

]    |  xij ∈ S  , 1 ≤ i, j ≤ m}. 

 

     In the following lemma from [6], we can find a necessary and sufficient condition for two 

arbitrary vertices in Caym(G, S) to be adjacent.  

 

Lemma 1.2. [6] Let X = [x1 x2 ⋯ xm]t and let Y = [y1 y2 ⋯ ym]t be two vertices 

in Caym(G, S), where xi, yj ∈ G for 1 ≤ i, j ≤ m. Then X and Y are adjacent in Caym(G, S) 

if and only if xi is adjacent to yj in Cay(G, S) for all 1 ≤ i, j ≤ m.  

 

     The following lemma gives a formula for the degree of any vertex in 𝑡ℎ𝑒 Caym(G, S) in 

terms of some right cosets of S.  

 

Lemma 1.3. [6] Let X = [x1 x2 ⋯ xm]t be a vertex in the Caym(G, S). Then deg(X) =
|⋂m

i=1 Sxi|.  

 

     As we mentioned earlier, Cay(G, S) is connected (by assuming S as a generating set of 

G), so there is no isolated vertex. Indeed, one can easily see that Caym(G, S) is not necessary 

to be connected, even when S is a generating set and we may have some isolated vertices [6]. 

The following lemma states that under some conditions, we may have an isolated vertex in 

Caym(G, S).  

 

Lemma 1.4. [4] Suppose that   X = [x1 x2 ⋯ xm]t  is a vertex in   Caym(G, S) . If 

     d(xi, xj) ≠ 2  in Cay(G, S)  for some 1 ≤ i ≠ j ≤ m  and the Cay(G, S)  is triangle free. 

Then X is an isolated vertex in the Caym(G, S) (note that  d(xi, xj) stands for the distance 

between xi and xj, which is the length of the shortest path between xi and xj and triangle free 

means that the graph must have no cycle of lenght 3). 
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     As we mentioned at the beginning of this paper, we are going to investigate the struc6ure 

of the Caym(G, S) whenever the Cay(G, S) is a complete graph Kn for all n ≥ 3 and m ≥
2 .. It is obvious that if n = 1  the Cay(G,S) is an empty graph with one isolated vertex. 

Similarly,the  Cay2(G, S) is an empty graph as well. In [ 7], Naeemah et. al. found the structure 

in the case   
n = m = 2 as the following. 

 

Lemma 1.5. [4] If Cay(G, S) = K2, then Cay2(G, S) = K2 ∪ K6.  

     Moreover, they determined the connectivity of the Caym(G, S) whenever Cay(G, S) =
Kn, for all m ≥ 1 and n ≥ 3. 

 

Theorem 1.6. [4] Let Cay(G, S) = Kn, where n ≥ 1. 

(i) If n > m, then Caym(G, S) is connected. 

(ii) If n ≤ m, then Caym(G, S) is not connected. 

 

 

Throughout the paper, we assume that group G is finite, S is a nonempty subset of G, e ∉ S, 

S−1 = S and S is a geneating set for G. Moreover, all of the notations and terminologies about 

graphs are standard and can be found in [2]. 

 

In the next sections, we investigate the structure of Caym(G, S) for all values m ≥ 2, when  

Cay(G, S)= K3, K4. 

 

2 𝐂𝐚𝐲𝐦(𝐆, 𝐒) when Cay(G, S)= 𝐊𝟑 or 𝐊𝟒 for all m ≥ 𝟐  

First, let us state the definition of Comb product that we use frequently in this section.  

 

Definition 2.1 . [7] Let G and H be two connected graphs. Let o be a vertex of H. The comb 

product between G and H, denoted by G ⊳ H, is a graph obtained by taking one copy of G and 

|V(G)| copies of H and grafting the i-th copy of H at the vertex o to the i-th vertex of G. By the 

definition of comb product, we can say that V (G ⊳ H) = { (a, u) | a ∈ V(G), u ∈ V(H)} and (a, 

u)(b, v) ∈ E(G ⊳ H) whenever a = b and uv∈ E(H), or ab ∈ E(G) and u = v = o.  

 

Example 2.2. The Comb product of graphs K6 and P2 is shown following in Figure 1. Note 

that vertex o can be chosen one of two initial vertices of P2, but it is no difference in any case. 

Now, if we replace P2 by P3, then we will two possibilities for vertex o. The first case is to 

choose one of the initial vertices of P3 and the second case chooses vertex of degree 2 of P3. 

So, we have two different graphs for comb product K6 ⊳ P3 (see Figure 2 and Figure 3). 

 

 
  

Figure 1: 𝐊𝟔 ⊳ 𝐏𝟐 

Figure 2: 𝐊𝟔 ⊳ 𝐏𝟑 

(with the initial vertex of 

𝐏𝟑) 

Figure 3: 𝐊𝟔 ⊳ 𝐏𝟑 

(with vertex of degree 2 of 

𝐏𝟑) 

                        

  Since we may have different graphs for comb product G ⊳  H, we give the following 



Neamah and Erfanian                    Iraqi Journal of Science, 2023, Vol. 64, No. 7, pp: 3424-3436 

 

3427 

definition of comb product with respect to a fix vertex "a" of graph H. 

 

Definition 2.3.  Let G and H be two connected graphs. Let "a" be a fix vertex of H. The comb 

product between G and H with respect to vertex a, denoted by G ⊳𝐚H, is a graph obtained by 

taking one copy of G and |V(G)| copies of H and grafting the i-th copy of H at the vertex "a" to 

the i-th vertex of G. By this specific definition of comb product between G and H with respect 

to a fix vertex of H, we can see that V(G ⊳𝐚H) = { (t, u) | t ∈ V(G), u ∈ V(H)} and (t, u)(b, v) 

∈ E(G ⊳H) whenever t = b and uv∈ E(H), or tb ∈ E(G) and u = v = a. It is obvious that the 

graph of comb product G ⊳𝐚H is always unique.  

 

In the following lemma, we give the structure of Caym(G, S) for m=2, 3, 4 when Cay (G, 

S)= K3. 

 

Lemma 2.4. Let Cay(G, S) = K3  then 

 (i) Cay2(G, S) = K3  ⊳a K1,2               (𝐢𝐢) Cay3(G, S) = (K3  ⊳a K1,6) ∪ K̅6     

 (iii)  Cay4(G, S) ≅ (K3  ⊳a K1,14) ∪ K̅36 

Proof.  (i) Assume  X = {x1, x2, x3} such that V(Cay(G, S)) = X. Then we have 

V(Cay2(G, S)) = {[w1  w2]
t| w1, w2 ∈ V(Cay(G, S))}   and so   |V(Cay2(G, S)| = 32 = 9 . 

Now, we can split vertex set V(Cay2(G, S)) into the following two types. 

 

Type 1: The degree of these vertices is 4. We define  

Ai = { [xi    xi]
t   ∶ xi ∈ X} , where i=1, 2, 3. So, we have A1 = {[

x1

x1
]} ,   A2 = {[

x2

x2
]},  A3 =

{[
x3

x3
]} and these three vertices are adjacent. Thus, the induced subgraph to the set ⋃ Ai

3
i=1  is 

the complete graph K3.  

   

Type 2:. Put Aij = {  [a1   a2]
t |a1, a2 ∈ {xi, xj} }  − (Ai ∪ Aj), where  1 ≤  i < j ≤ 3 and i ≠

j. It is clear that |Aij| = 2 and we can see that Ak is adjacent to Aij for k≠ i, j and the induced 

subgraph to the union of sets Aij  and Ak is complete bipartite K1,2 . So,  Cay2(G, S) =

K3  ⊳a K1,2 where a is a vertex of degree 2 in K1,2.  

(ii) As (i), let X = {x1, x2, x3}=V(Cay(G, S)). Then 

V(Cay3(G, S) = {[w1   w2   w3]
t |w1, w2, w3 ∈ V(Cay(G, S)) } 

and so |V(Cay3(G, S)| = 33 = 27. We have three types of vertices as the following:  

  

Type 1: Put Ai = { [xi    xi    xi]
t  | xi ∈ X  } , where i=1, 2 and 3. As similar as part (i), the 

induced subgraph to the set ⋃ Ai
3
i=1  is the complete graph K3. 

Type 2: Put   Aij = {[a1   a2  a3]
t| a1, a2, a3 ∈ {xi, xj}} − (Ai ∪ Aj) , where  1 ≤  i < j ≤

3 and i ≠ j. So, we have      

  𝐀𝟏𝟐 = { [

𝐱𝟏

𝐱𝟏

𝐱𝟐

] , [

𝐱𝟏

𝐱𝟐

𝐱𝟏

] , [

𝐱𝟐

𝐱𝟏

𝐱𝟏

] , [

𝐱𝟏

𝐱𝟐

𝐱𝟐

] , [

𝐱𝟐

𝐱𝟏

𝐱𝟐

] , [

𝐱𝟐

𝐱𝟐

𝐱𝟏

] }   𝐀𝟏𝟐 = { [

𝐱𝟏

𝐱𝟏

𝐱𝟐

] , [

𝐱𝟏

𝐱𝟐

𝐱𝟏

] , [

𝐱𝟐

𝐱𝟏

𝐱𝟏

] , [

𝐱𝟏

𝐱𝟐

𝐱𝟐

] , [

𝐱𝟐

𝐱𝟏

𝐱𝟐

] , [

𝐱𝟐

𝐱𝟐

𝐱𝟏

] } 

𝐀𝟐𝟑 = { [

𝐱𝟐

𝐱𝟐

𝐱𝟑

] , [

𝐱𝟐

𝐱𝟑

𝐱𝟐

] , [

𝐱𝟑

𝐱𝟐

𝐱𝟐

] , [

𝐱𝟏

𝐱𝟑

𝐱𝟑

] , [

𝐱𝟑

𝐱𝟏

𝐱𝟑

] , [

𝐱𝟑

𝐱𝟑

𝐱𝟏

] } 

 

     

    We can observe that Ak is adjacent to Aij for all i ≠ j and j > i and k ≠ i, j. The induced 

subgraph to the union of sets Aij and Ai is complete bipartite K1,6. Also, Aij is adjacent to all 



Neamah and Erfanian                    Iraqi Journal of Science, 2023, Vol. 64, No. 7, pp: 3424-3436 

 

3428 

Atk where i, j ≠ t, k. The number of these sets is (
3
2
) = 3.  

Type 3: We define 

A123 = { {  [a1 a2 a3]t | a1, a2, a3 ∈ X}} − (A1 ∪ A2 ∪ A3 ∪ A12 ∪ A13 ∪ A23) 

= { [

x1

x2

x3

] , [

x1

x3

x2

] , [

x2

x3

x1

] , [

x2

x1

x3

] , [

x3

x1

x2

] , [

x3

x2

x1

]}. Each vertex in this set is an isolated vertex. 

Now, by considering the above three types of vertices and the fact that the vertex set is the 

union of these three types, we can find that   Cay3(G, S)) ≅ (K3  ⊳a K1,6) ∪ K̅6 , where a ∈

Ai is a vertex of degree 8.  

 

(iii) By the same method as in parts (i) and (ii), we have the following details: 

V(Cay(G, S)) =  X = {x1, x2, x3} = X, V(Cay4(G, S) = {[w1   w2   w3   w4]
t | wt ∈

V(Cay(G, S))}, t = 1, 2, 3 and |V(Cay4(G, S)| = 34 = 81. Moreover, we can define similar 

sets Ai, Aij and Aijk as follows: 

Ai = { [xi  xi  xi  xi]
t   ∶ xi ∈ X  },  i=1, 2, 3 , |Ai| =1 

Aij = { [a1    a2    a3  a4]
t  ∶ at ∈ {xi, xj} } − (Ai ∪ Aj). 1 ≤  i < j ≤ 3 and i ≠ j,  

|Aij| =  ∑ (
4
i
)m−1

i=1 = ∑ (
4
i
)3

i=1 = (
4
1
) + (

4
2
) + (

4
3
) = 14.   

 

      Aijk = A123 = { {  [a1 a2 a3   a4]t | at ∈ X}} − (A1 ∪ A2 ∪ A3 ∪ A12 ∪ A13 ∪ A23)  and 

we can see that |A123| = 3! ( 6) = 36. As similar as we mentioned in the proof of (i) and (ii), 

a vertex in Ai  is adjacent to a vertex in Aj  for j ≠ i, and the induced subgraph to the set 

⋃ Ai
3
i=1  is a complete graph K3. Also, a vertex in Ak is adjacent to all vertices in Aij for all 

i ≠ j, j > i and k≠ i, j. Thus the induced subgraph to the sets Ak with Aij produce a complete 

bipartite graph K1,14 . Since 1 ≤  i ≤ 3  so there is no edge between vertices in sets A12,
A13 and A23. Hence the structure of the graph except for vertices in set A123 will be as the 

form K3  ⊳a K1,14. Now, every vertex in A123 is not adjacent to any of the above sets and they 

are all isolated vertices. Combining these 36 isolated vertices in set A123  and the graph 

structure of the rest vertices will deduce that Cay4(G, S)) ≅ (K3  ⊳a K1,14) ∪ K̅36, where  a ∈

Ai .  

Now, we are in a position to state the structure of Caym(G, S)) for all m≥ 2. 

 

Theorem 2.5.  Let Cay(G, S) = K3  then    

Caym(G, S)) ≅ (K3 ⊳a K1,2m−2) ∪ K3m−3(2m−1) ; ∀ a ∈ Ai & m≥ 2 

Proof. Let V(Cay(G, S)) = {x1, x2, x3} and let Cay(G, S) be a complete graph   

x1 − x2 − x3 − x1  of length 3. We know that Caym(G, S) has 3m vertices. Put three sets 

A1 = { [a1 a2 … am]t|   ai ∈ {x2, x3},     1 ≤ i ≤ m}, |A1| = 2m 

A2 = { [a1 a2 … am]t |   ai ∈ {x1, x3},      1 ≤ i ≤ m}, |A2| = 2m 

A3 = { [a1 a2 … am]t |   ai ∈ {x1, x2},     1 ≤ i ≤ m}, |A3| = 2m. 

 Then, we can see that vertex [xj xj … xj]t is adjacent to all vertices in set Aj 
 for every j =

1,2,3. Define the following three sets   B1 = A1 − {[x2 x2  … x2]t , [x3 x3  … x3]t} , 
B2 = A2 − {[x1 x1  … x1]t , [x3 x3  … x3]t} ,  B3 = A3 −
{[x1 x1  … x1]t , [x2 x2  … x2]t}. 
We have |Bj| = |Aj| − 2 = 2m − 2 for all 1 ≤ j ≤ 3.  All sets B1, B2 and  B3 are disjoint 

and independent sets and the subgraph induced by ⋃3
j=1 Aj is the comb product of K3 and 

K1,2m−2. Hence, Caym(G, S) has a component consisting of K3 ⊳a K1,2m−2, where  a ∈ Ai. 

The rest of the components are all isolated vertices and the number of these isolated vertices 
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is  |V(Caym(G, S))| − 3(2m − 2) − 3 = 3m − 3(2m − 1).  

Hence  Caym(G, S)) ≅ (K3 ⊳a K1,2m−2) ∪ K3m−3(2m−1), The graphs for m = 1, m = 2 and 

genral case m are shown in Figurs 8. 

 

 
 

 
Figure 6: The graph 

𝐂𝐚𝐲𝟐(𝐆, 𝐒) of  𝐊𝟑 

Figure 7: The graph 

𝐂𝐚𝐲𝟑(𝐆, 𝐒) of  𝐊𝟑 

Figure 8: The graph 

𝐂𝐚𝐲𝐦(𝐆, 𝐒) of  𝐊𝟑 

 

 

  Note that we may prove Theorem 2.4 by using sets Ai, Aij, Aijk as the methods as in the 

previous Lemma ,but the proof given here is more shorten. 

 

  In the following lemmas and theorems, we are going to find the structure of the generalized 

Cayley graph Caym(G,S) when Cay(G, S) = Kn for all n≥4. We determine their structure in 

terms of comb product. We should note that all components of comb product are not disjoined 

, because in the union of components of comb product , we may have some intersections. So, 

we will not mention these facts for each of them. 

 

Lemma 2.6. Let Cay(G, S) = K4 , then  

𝐂𝐚𝐲𝟐(𝐆, 𝐒)) ≅ ((𝐊𝟒 ⊳𝐚 𝐊𝟏,𝟔) ∪ 𝟑𝐊𝟐,𝟐,   𝐰𝐡𝐞𝐫𝐞  𝐚 ∈ 𝐀𝐢. 

Proof : Suppose that V(Cay(G, S)) = X = {x1, x2, x3, x4}. Then Cay2(G, S) has the vertex set 

as follows: 

V(Cay2(G, S)) = {[w1    w2]
t| w1, w2 ∈ V(Cay(G, S)) } and so |V(Cay2(G, S)| = 42 = 16. 

Now, we 

define two sets Ai and Aij given by the sets Ai = { [xi   xi]
t ∶ xi ∈ X }, i = 1,2,3,4 and Aij =

{  [a1    a2 ]
t | a1, a2 ∈ {xi, xj} }  − (Ai ∪ Aj) for 1 ≤ i <  j ≤ 4. One can see that |Ai| =1 and 

the induced subgraph to the set ⋃ Ai
4
i=1  is the complete graph K4. Furthermore, |Aij| = 2 and 

every vertex in Ak is adjacent to every vertex in Aij for j > i and k≠ i, j. The number of sets 

Aij is (
4
2
) =

4!

2! 4!
= 6 and the induced subgraph to every set Ak ∪ Aij is a complete bipartite 

K1,6. Also, the induced subgraph to every set Atk ∪ Aij, i, j ≠ t, k is a complete bipartite K2,2. 

In other words, all vertices in Aij are adjacent to all vertices in Atk for every i, j ≠ t, k. We 

may divide all vertices into two cases as the following :   

Case one: All vertices in 𝐀𝐢 . We have 𝐀𝟏 = {[
𝐱𝟏

𝐱𝟏
]}, 𝐀𝟐 = {[

𝐱𝟐

𝐱𝟐
]}, 𝐀𝟑 = {[

𝐱𝟑

𝐱𝟑
]} and 𝐀𝟒 =

{[
𝐱𝟒

𝐱𝟒
]}. It is clear that, every vertex in 𝐀𝐢 is adjacent to every vertex in 𝐀𝐣 such that 𝐣 ≠ 𝐢. So, 

the induced subgraph to the set ⋃ 𝐀𝐢
𝟒
𝐢=𝟏  is the complete graph 𝐊𝟒. Moreover, every vertex here 

has degree 9. 
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Case two: All vertices in Aij .  We have A12 = { [
x1

x2
] , [

x2

x1
]} , A13 = { [

x1

x3
] , [

x3

x1
]} , A14 =

{ [
x1

x4
] , [

x4

x1
]}, A23 = { [

x2

x3
] , [

x3

x2
]}, A24 = { [

x2

x4
] , [

x4

x2
]} and A34 = { [

x3

x4
] , [

x4

x3
]}.  We can see 

that every vertex in Ak is adjacent to all vertices in Aij, where i ≠ j and j > i and k≠ i, j. The 

induced subgraph to every set Ak ∪ Aij is a complete bipartite graph K1,6. Also, Aij is adjacent 

to all Atk where i, j ≠ t, k. 

 

      Hence, vertices in A1 is adjacent tovertices in  A23,  A24,  A34 . Similarly, A2 is adjacent 

to A13, A14, A34 , A3  is adjacent to A12, A24, A14 and A4  is adjacent to A23, A12, A13 . Also, 

from adjacenty A12~A34  ,  A13 ~A24  , A14~A23 , we will obtain three complete bipartite 

graphs K2,2. The vertices in the sets {A12, A34} ,{ A13 , A24} and {A14, A23} are independent 

sets. Therefore, if   a ∈ Ai  then we will have the following structure with some edges 

intersection between K1,6 and K2,2 

Cay2(G, S)) ≅ ((K4 ⊳a K1,6) ∪  3K2,2   ( see Figure 9 ) 

 

Lemma 2.7  Let Cay(G, S) = K4 , then  

Cay3(G, S) ≅ ((K4 ⊳a K1,24) ∪ 3K6,6) ,where a ∈ Ai 

Proof: Suppose that X = {x1, x2, x3, x4} so V(Cay(G, S)) = ⋃ xi
4
i=1  = X , 

V(Cay3(G, S)) = {[w1 w2 w3]t  | w1 , w2 , w3 ∈ V(Cay(G, S))} , |V(Cay3(G, S)| = 43 =

64. We have three types of vertices as the following :  

Type (1): A1 = {[

x1

x1

x1

]},    A2 = {[

x2

x2

x2

]},    A3 = {[

x3

x3

x3

]}  and A4 = {[

x4

x4

x4

]}. 

Type 2:  

𝐀𝟏𝟐 = { [

𝐱𝟏

𝐱𝟏

𝐱𝟐

] , [

𝐱𝟏

𝐱𝟐

𝐱𝟏

] , [

𝐱𝟐

𝐱𝟏

𝐱𝟏

] , [

𝐱𝟏

𝐱𝟐

𝐱𝟐

] , [

𝐱𝟐

𝐱𝟏

𝐱𝟐

] , [

𝐱𝟐

𝐱𝟐

𝐱𝟏

]} 𝐀𝟏𝟑 = { [

𝐱𝟏

𝐱𝟏

𝐱𝟑

] , [

𝐱𝟏

𝐱𝟑

𝐱𝟏

] , [

𝐱𝟑

𝐱𝟏

𝐱𝟏

] , [

𝐱𝟏

𝐱𝟑

𝐱𝟑

] , [

𝐱𝟑

𝐱𝟏

𝐱𝟑

] , [

𝐱𝟑

𝐱𝟑

𝐱𝟏

]} 

𝐀𝟏𝟒 = { [

𝐱𝟏

𝐱𝟏

𝐱𝟒

] , [

𝐱𝟏

𝐱𝟒

𝐱𝟏

] , [

𝐱𝟒

𝐱𝟏

𝐱𝟏

] , [

𝐱𝟏

𝐱𝟒

𝐱𝟒

] , [

𝐱𝟒

𝐱𝟏

𝐱𝟒

] , [

𝐱𝟒

𝐱𝟒

𝐱𝟏

]} 𝐀𝟐𝟑 = { [

𝐱𝟐

𝐱𝟐

𝐱𝟑

] , [

𝐱𝟐

𝐱𝟑

𝐱𝟐

] , [

𝐱𝟑

𝐱𝟐

𝐱𝟐

] , [

𝐱𝟐

𝐱𝟑

𝐱𝟑

] , [

𝐱𝟑

𝐱𝟐

𝐱𝟑

] , [

𝐱𝟑

𝐱𝟑

𝐱𝟐

]} 

𝐀𝟐𝟒 = { [

𝐱𝟐

𝐱𝟐

𝐱𝟒

] , [

𝐱𝟐

𝐱𝟒

𝐱𝟐

] , [

𝐱𝟒

𝐱𝟐

𝐱𝟐

] , [

𝐱𝟐

𝐱𝟒

𝐱𝟒

] , [

𝐱𝟒

𝐱𝟐

𝐱𝟒

] , [

𝐱𝟒

𝐱𝟒

𝐱𝟐

]} 𝐀𝟑𝟒 = { [

𝐱𝟑

𝐱𝟑

𝐱𝟒

] , [

𝐱𝟑

𝐱𝟒

𝐱𝟑

] , [

𝐱𝟒

𝐱𝟑

𝐱𝟑

] , [

𝐱𝟑

𝐱𝟒

𝐱𝟒

] , [

𝐱𝟒

𝐱𝟑

𝐱𝟒

] , [

𝐱𝟒

𝐱𝟒

𝐱𝟑

]} 

 

Type 3:  

𝐀𝟏𝟐𝟑 = { [

𝐱𝟏

𝐱𝟐

𝐱𝟑

] , [

𝐱𝟏

𝐱𝟑

𝐱𝟐

] , [

𝐱𝟐

𝐱𝟑

𝐱𝟏

] , [

𝐱𝟐

𝐱𝟏

𝐱𝟑

] , [

𝐱𝟑

𝐱𝟏

𝐱𝟐

] , [

𝐱𝟑

𝐱𝟐

𝐱𝟏

]} 𝐀𝟏𝟐𝟒 = { [

𝐱𝟏

𝐱𝟐

𝐱𝟒

] , [

𝐱𝟏

𝐱𝟒

𝐱𝟐

] , [

𝐱𝟐

𝐱𝟒

𝐱𝟏

] , [

𝐱𝟐

𝐱𝟏

𝐱𝟒

] , [

𝐱𝟒

𝐱𝟏

𝐱𝟐

] , [

𝐱𝟒

𝐱𝟐

𝐱𝟏

]} 

𝐀𝟏𝟑𝟒 = {[

𝐱𝟏

𝐱𝟑

𝐱𝟒

] , [

𝐱𝟏

𝐱𝟒

𝐱𝟑

] , [

𝐱𝟑

𝐱𝟒

𝐱𝟏

] , [

𝐱𝟑

𝐱𝟏

𝐱𝟒

] , [

𝐱𝟒

𝐱𝟏

𝐱𝟑

] , [

𝐱𝟒

𝐱𝟑

𝐱𝟏

]} 𝐀𝟐𝟑𝟒 = {[

𝐱𝟐

𝐱𝟑

𝐱𝟒

] , [

𝐱𝟐

𝐱𝟒

𝐱𝟑

] , [

𝐱𝟑

𝐱𝟒

𝐱𝟐

] , [

𝐱𝟑

𝐱𝟐

𝐱𝟒

] , [

𝐱𝟒

𝐱𝟐

𝐱𝟑

] , [

𝐱𝟒

𝐱𝟑

𝐱𝟐

]} 

 

Some remarks:  

1. The degree of every vertex in 𝐀𝐢 is 27 and they are adjacent to every vertex in 𝐀𝐣 such that 

𝐣 ≠ 𝐢. 
2. The induced subgraph to the set ⋃ 𝐀𝐢

𝟒
𝐢=𝟏  is the complete graph 𝐊𝟒. 

3. The degree of these vertices in 𝐀𝐢𝐣 is 8 and every vertex in 𝐀𝐤 is adjacent to all vertices in 

𝐀𝐢𝐣, where 𝐢 ≠ 𝐣 and 𝐣 > 𝐢 and k≠ 𝐢, 𝐣 and also, 𝐀𝐢𝐣 is adjacent to all 𝐀𝐭𝐤 so that 𝐢, 𝐣 ≠ 𝐭, 𝐤. 

4. 𝐀𝟏 is adjacent to 𝐀𝟐𝟑, 𝐀𝟐𝟒, 𝐀𝟑𝟒 𝐚𝐧𝐝 𝐀𝟐𝟑𝟒, 𝐀𝟐 is adjacent to 𝐀𝟏𝟑, 𝐀𝟏𝟒, 𝐀𝟑𝟒 and 𝐀𝟏𝟑𝟒,  𝐀𝟑 

is adjacent to  𝐀𝟏𝟐, 𝐀𝟐𝟒, 𝐀𝟏𝟒 𝐚𝐧𝐝 𝐀𝟏𝟐𝟒 and 𝐀𝟒  is adjacent to 𝐀𝟐𝟑, 𝐀𝟏𝟐, 𝐀𝟏𝟑 𝐚𝐧𝐝 𝐀𝟏𝟐𝟑 . 

Also, 𝐀𝟏𝟐~𝐀𝟑𝟒  ,  𝐀𝟏𝟑~𝐀𝟐𝟒  , 𝐀𝟏𝟒~𝐀𝟐𝟑. 



Neamah and Erfanian                    Iraqi Journal of Science, 2023, Vol. 64, No. 7, pp: 3424-3436 

 

3431 

5. From adjacenty 𝐀𝟏𝟐~𝐀𝟑𝟒  ,  𝐀𝟏𝟑 ~𝐀𝟐𝟒  , 𝐀𝟏𝟒~𝐀𝟐𝟑 , we will obtain three of Complete 

bipartite graph 𝐊𝟔,𝟔 , since the sets of {𝐀𝟏𝟐,  𝐀𝟑𝟒}  ,{  𝐀𝟏𝟑 , 𝐀𝟐𝟒 } and { 𝐀𝟏𝟒, 𝐀𝟐𝟑 } are 

Independent sets.  

Hence, we have  Cay3(G, S) ≅ ((K4 ⊳a K1,24) ∪ 3K6,6), a ∈ Ai as required. 

 

     By the same method as in the proof of Lemma 2.10 and 2.11, we may state the following 

lemma. The proof is omitted. 

  

Lemma 2.8  Let Cay(G, S) = K4 , then  

Cay4(G, S) ≅ (K4 ⊳a K1,78) ∪ K1,36 ⋃  K̅24; where  a∈ Ai  

  The structure of graphs Cay2(G, S) , Cay3(G, S) , Cay4(G, S)  when Cay( G, S )= K4  is 

shown in Figure 9, Figure 10 and Figure 11:  

 

   

Figure 9: The graph 

𝐶𝑎𝑦2(𝐺, 𝑆) when 

Cay(G,S)= 𝐾4 

Figure10: The graph 

𝐶𝑎𝑦3(𝐺, 𝑆) when 

Cay(G,S)= 𝐾4 

Figure 11: The graph 

𝐶𝑎𝑦4(𝐺, 𝑆) when 

Cay(G,S)= 𝐾4 

 

Now, we are in a position that to state the following theorem: 

 

Theorem 2.9 Let Cay(G, S) = K4, then for all m ≥ 2, we have  

Caym(G, S) ≅ (K4 ⊳a (K1,3|Aij|+|Aijk|)) ∪ 3K|Aij|,|Aij|  
∪ K̅|Aijkl|

, where  a∈ Ai. 

 

Proof: Suppose that X = {x1, x2, x3, x4} such that V(Cay(G, S) =X , then  

|V(Caym(G, S)| = 4m   and 

  V(Caym(G, S) = {[w1 w2 …  wm]t | w2, w2, … ,wm ∈ V(Cay(G, S)) }  

We have four types of vertices in terms of degrees .They are: 

 

Type (1) of vertices: We define Ai = { [xi xi … xi]t   ∶ xi ∈ X and i = 1,2,3,4 }. Thus  
|Ai| =1 and the degree of these vertices is 3m. Moreover, every vertex in Ai is adjacent to every 

vertex in Aj such that j ≠ i. So, the number of vertices of all these sets is  (
4
1
) = 4 and the 

induced subgraph to the set ⋃ Ai
4
i=1  is the complete graph K4. 

 

Type (2) of vertices: Put  

Aij = {[a1 a2 … am]t | a1, a2, … ,  am ∈ {xi, xj} ,1 ≤  i < j ≤ 4}  − (Ai ∪ Aj). 

Then the degree of these vertices is 2m. and |Aij| =  ∑ (
m
i
)m−1

i=1 .  We can see that Ak  is 

adjacent to Aij where i ≠ j and j > i and k≠ i, j. The number of these sets is (
4
2
) =

4!

2! 4!
=
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6. The induced subgraph to the sets Aij with the vertex of "a" in  Ai   is complete 2-bipartite 

graph  K1,3|Aij|
. Also, Aij  is adjacent to all Atkwhere i, j ≠ t, k.So, |A12| = |A13| = |A14| =

|A23| = |A24| = |A34| = 2m − 2. 

 

Type (3) of vertices:  We  define 

Aijk = { {  [a1 a2 … am]t | a1, a2, … , am ∈ {xi, xj, xk},1 ≤  i < j < k ≤ 4}}

− (Ai ∪ Aj ∪ Ak ∪ Aij ∪ Ajk ∪ Aik) 

Then the degree of any of these vertices is  

(n-3)m=(4-3)m=1m=1 and|Aijk| = 3 ∗ (
m!

3!  1! 1!
+

m!

2!  2! 1!
) = 3(3m−1 − 2m + 1). 

It is easy to see that Ai is adjacent to Ajkl where i ≠ j, k, l, and j > i and k≠ i, j.  The number 

of these sets is (
4
3
) =

4!

3!  1!
= 4. So, |A123| = |A124| = |A134| = |A234| = 3 (

m!

n!  1! 1!
+

m!

2!  2! 1!
). 

The number of these vertices of Type III is 3 (
4
3
) (3m−1 − 2m + 1). 

The induced subgraph to the sets  Aij  and Aijkwith the vertex of "a" in  Ai   is complete 

bipartite graph K
1,3ቚAijቚ+ቚAijkቚ

. Since, Ai  is adjacent to all Atk  where i, j ≠ t, k and j > i  , 

also Ai is adjacent to all Ajkl where i ≠ j, k, l and 1 ≤ j < K < l ≤ 4.  

Type (IV) of vertices: By continuing this method we can see that the set Aijkl has isolated 

vertices where 

Aijkl = {
  [a1 a2 … am]t  | a1, a2, … , am ∈ {xi, xj, xk, xl},

1 ≤  i < j < k < l ≤ 4 
} 

−(Ai ∪ Aj ∪ Ak ∪ Al ∪ Aij ∪ Aik ∪ Ail ∪ Ajk ∪ Ajl ∪ Akl ∪ Aijk ∪ Aijl ∪ Ajkl). 

 

  The number of these Isolated vertices in generalized Cayley graph Caym(G, S) is |Aijkl| =

|A1234| = 4m − 4 − 6 |Aij| − 4 |Aijk|.  So, the graph Caym(G, S)  is not connected, since 

A1234  isnot adjacent to Ai, Aij, Aijk such that 1 ≤  i < j < k ≤ 4. It is obvious that, 

A1  is adjacent to A23, A24, A34 and A234, A2  is adjacent to A13, A14, A34  and A134 , 

A3  is adjacent to  A12, A24, A14 and A124,   A4  is adjacent to  A23, A12, A13  and A123. 

  These vertices in the generalized Cayley graph is Isolated vertices, since the set 

A1234  isnot adjacent to Ai, Aij, Aijk  such that  1 ≤  i < j < k ≤ 4.  Hence, the graph 

Cay4(G, S)  is not connected. Also,  from adjacenty A12~A34  ,  A13~A24  , A14~A23 , we 

obtain three of the Complete 2-bipartite graph K|Aij|,|Aij|
. The sets of {A12, A34} ,{ A13 , A24} 

and{ A14, A23 }are Independent sets. So, we see Aij  is adjacent to all Atk where i, j ≠

t, k and j > i , k > t.  Therefore,  

Caym(G, S) ≅ (K4 ⊳a (K1,3|Aij|+|Aijk|)) ∪ 3K|Aij|,|Aij| 
∪ K̅|Aijkl|

 ; 1 ≤  i < j < k < l ≤ 4,   

where a∈ Ai.   The graph Cay4(G, S) of K4 is shown in Figure  . 
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Figure 12: The graph 𝑪𝒂𝒚𝒎(𝑮, 𝑺) when Cay(G,S)=𝑲𝟒 

 

3.  𝐂𝐚𝐲𝐦(𝐆, 𝐒) when Cay(G, S)= 𝐊𝐧 for all m, 𝐧 ≥ 𝟐  

In this section, we determine the relevant structure of Caym(G, S) where Cay(G, S) = Kn for 

all m, n ≥ 2. We start with the case n >m. 

  

Theorem 3.1:  Let Cay(G, S) = Kn when n >m, then  

Caym(G, S) ≅ (Kn ⊳a (K
1,∑ [(

n
q)−(

n−1
q−1)]ቚAi1i2… iqቚm

q=2
))

∪ ⋃ (n − r + 1)K
|Ai1i2… ir|,∑ [(

n−q−1
q )−(

n−q
q−1)]ቚAi1i2… iqቚm−r+2

q=2

r+q=n

r=2
,r≤m

 ; a ∈ Ai 

  

Proof. Suppose that X = {x1, x2, … , xn} such that V(Cay(G, S)) = ⋃ xi
n
i=1  = X , 

V(Caym(G, S)) = {[w1 w2 … wm]t  | w1 , w2, … ,wm ∈ V(Cay(G, S))} and 

|V(Caym(G, S)| = nm. 

   

We have m-types of vertices in terms of degrees. They are:   

 

Type (1) of vertices: The degree of these vertices is (n-1)m and the number of these vertices is  

(
n
1
) = n. 

  Define Ai = { [xi xi   … xi]t  | xi ∈ X and i = 1,2, … , n }.  So,  |Ai| =1. So Ai is the set 

that has one element. It is clear that, every vertex in Ai is adjacent to every vertex in Aj such 

that j ≠ i. So, the induced subgraph to the set ⋃ Ai
n
i=1  is the complete graph Kn. So, 

A1 = {[

x1

x1

x1

]}, A2 = {[

x2

x2

x2

]}, …, An = {[

xn

xn

xn

]}. 

 

Type (2) of vertices: The degree of these vertices is (n-2)m. 

Now, put  

Aij = {  [a1 a2   … am]t  | a1, a2, … , am ∈ {xi, xj} and i, j = 1,2, … , n , i ≠ j}  − (Ai ∪ Aj). 

and the order of Aij is |Aij| = 2m-2 or |Aij| = ∑ (
m
i
)m−1

i=1 . We can see that Ak is adjacent to 

Aij where i ≠ j and j > i and k ≠ i, j, also, Aij is adjacent to all Atk where i, j ≠ t, k. 

The number of these sets is (
n
2
) =

n!

2!(n−2)!
=

n(n−1)

2
 and the number of these vertices is (

n
2
) ∗

|Aij| =
n(n−1)

2
∗ 6 = 3n(n − 1).  
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Type (3) of vertices: The degree of these vertices is (n-3)m. 

We define 

Ai1i2i3 = { {  [a1 a2   … am]t | a1, a2, … , am ∈ {xi1 , xi2 , xi3} and 1 ≤ i1 < i2 < i3 ≤ n}}

− (Ai1 ∪ Ai1 ∪ Ai1 ∪ Ai1i2 ∪ Ai1i3 ∪ Ai2i3) 

Hence,  |Ai1i2i3| = 3m − 3(2m) + 3 = 3(3m−1 − 2m + 1).  

It is easy to see that Ai is adjacent to Aj1j2 j3 where i ≠ j1j2 j3 and 1 ≤ j1 < j2 < j3 ≤ n. The 

number of these sets is (
n
3
) =

n!

3!(n−3)!
=

n(n−1)(n−2)

6
 and the number of these vertices is 

(
n
3
) |Ai1i2i3| =

3n(n − 1)(n − 2)

6
. (3m−1 − 2m + 1) =

n(n − 1)(n − 2)(3m−1 − 2m + 1)

2
. 

 

Type q of vertices: The degree of these vertices is (n-q)m  and  q < m. 

 We define Ai1i2… iq = { { [a1 a2   … am]t| a1, a2, … , am ∈ {xi1 , xi2 , … , xiq} and 1 ≤ i1 <

i2< … < iq ≤ n}} − (⋃ Ai
n
i=1 ⋃ Ai1i2

n
i1,i2=1 ,
i1<i2

   …⋃ Ai1i2… iq−1

n
i1 ,i2,…,ir−1=1 ,

1≤i1<i2<…<iq−1≤n

) 

Hence,ቚAi1i2… iqቚ. It is easy to see that Aj1  is adjacent to Ai1i2… irwhere j1 ≠ i1 ,i2, … , ir, and 

1 ≤ i1 < i2 < ⋯ < ir ≤ n Such that r  < m-1. Aj1j2  is adjacent to Ai1i2… iq where  j1j2 ≠

i1 ,i2, … , iq and 1 ≤ i1 < i2 < ⋯ < iq ≤ n  Such that r ≤ m − 2.  

By countinuing this issue inductively, we will have 

…. 
Aj1j2…jt  is adjacent to Ai1i2… iq where  j1j2 … jt ≠ i1 ,i2, … , iq , 1 ≤ i1 < i2 < ⋯ < iq ≤

n and 1 ≤ j1 < j2 < ⋯ < jt ≤ n  Such that t+q < m . 

   The number of these sets is (
n
q) =

n!

q!(n−q)!
 and  the number of these vertices is 

(
n
q) ቚAi1i2… iqቚ =

n!

q! (n − q)!
. q(qm−1 − (q − 1)m−1 + q − 2). 

      It is clear that, We can see that so that in it Aj
,s are adjacent to (

n
2
)-n+1 of Ai1i2 such 

that j≠ i1i2 and  i1 < i2 ,  Aj
,s are adjacent to [(

n
3
) − (

n − 1
2

)]   of Ai1i2i3  such that j  ≠

i1, i2, i3 and  1 ≤ i1 < i2 < i3 ≤ n  and Aj
,s are adjacent to [(

n
q) − (

n − 1
q − 1

)]   of Ai1i2… iq 

such that j ≠ i1, i2, . . , iq and  1 ≤ i1 < i2 < ⋯ < iq ≤ n. It is clear that,we will have complete 

2-bipartite graph K
1,∑ [(

n
q)−(

n−1
q−1)]ቚAi1i2… iqቚm

q=2
 that is appended to a complete graph ofKn  is 

obtained. 

   Also, we will obtain (n-r+1) complete 2-bipartite graph 

 K
|Ai1i2… ir|,∑ [(

n−q+1
q )−(

n−q
q−1)]ቚAi1i2… iqቚm−r+2

q=2
 . In this way that:  

  Aj1j2
,s are adjacent to [(

n − 1
2

) − (
n − 2

1
)]  of Ai1i2   such that  (j1, j2 ≠ i1, i2  , j1 < j2  , 

1 ≤ i1 < i2 ≤ n, 

  Aj1j2
,s are adjacent to [(

n − 2
3

) − (
n − 3

2
)] of Ai1i2i3  such that  (j1, j2 ≠ i1, i2, i3) , j1 < j2  

, 1 ≤ i1 < i2 < i3 ≤ n,… , and  

  Aj1j2
,s are adjacent to [(

n − q + 1
q

) − (
n − q
q − 1)] of Ai1i2… iq   such that (j1, j2 ≠ i1, i2, … , iq) 

, j1 < j2  , 1 ≤ i1 < i2 < ⋯ < iq ≤ n.  The sets of {Aj1j2… jq , Ai1i2… ir} where j1, j2 … , jq =
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i1i2 … ir  such that1 ≤ j1 < j2 < ⋯ < jq ≤  n and 1 ≤ i1 < i2 < ⋯ < ir ≤  n  are 

independent sets. 

So we must cancel the edges between Aj1j2… jq~ Ai1i2… ir  where j1, j2 … , jq = i1i2 … ir  . 

 

Type m of vertices: The degree of these vertices is (n-m)m where q = m. 

 We  define 

Ai1i2… iq = { { [a1 a2   … am]t  ∶ a1, a2, … , am ∈ {xi1 , xi2 , … , xiq} and 1 ≤ i1 < i2< … < iq

≤ n}} −

(

 
 

⋃Ai

n

i=1

⋃ Ai1i2

n

i1,i2=1 ,
i1<i2

   … ⋃ Ai1i2… iq−1

n

i1 ,i2,…,ir−1=1 ,

1≤i1<i2<…<iq−1≤n )

 
 

 

   

      We know that if  n  > m, then the generalized Cayley graph will be connected (by 

theorem 1.6).  It is clear that Caym(G, S) hasnot  an isolated vertces. The smallest degree at 

the vertices of Caym(G, S)  will be at the vertices below: 

Ai1i2…in−m
= { [a1 a2 … am]t   |  a1, a2, … , am ∈ {xi1 , xi2 , … , xin−m

}, 1 ≤  i1 < i2 < ⋯

< in−m ≤ n} 

So, deg(Ai1i2…in−m
)= (n − m)m, since we want to put (n-m) distinct objects in m distinct boxes 

so that it repeats.Thus, we have   δ(Caym(G, S)) = (n − m)m, ∀a ∈ Ai; 
 

𝐂𝐚𝐲𝐦(𝐆, 𝐒)) ≅ (𝐊𝐧 ⊳𝐚 (𝐊
𝟏,∑ [(

𝐧
𝐪)−(

𝐧−𝟏
𝐪−𝟏)]ቚ𝐀𝐢𝟏𝐢𝟐… 𝐢𝐪ቚ𝐦

𝐪=𝟐
)) ∪ 

⋃ (𝐧 − 𝐫 + 𝟏) 𝐊
ቚ𝐀𝐢𝟏𝐢𝟐… 𝐢𝐫ቚ,∑ [(

𝐧−𝐪−𝟏
𝐪 )−(

𝐧−𝐪
𝐪−𝟏)]ቚ𝐀𝐢𝟏𝐢𝟐… 𝐢𝐪ቚ𝐦−𝐫+𝟐

𝐪=𝟐

𝐫+𝐪=𝐧
𝐫=𝟐
,𝐫≤𝐦

 ; 𝐚 ∈ 𝐀𝐢 

 

The following theorem concern the case n ≤  m. 

 

Theorem 3.2:  Let Cay(G, S) = Kn when 𝐧 ≤  𝐦, then  

 

Proof: Similar to the proof of the Theorem 3.1 but in this theorem, we know that if n ≤ m, 

then the generalized Cayley graph will not be connected (by Theorem 1.6) and it is clear 

that [x1 x2   … xn  x1  … xm−n ]t is an isolated vertex. So, the degree of these vertices is 

zero. Thus the number of these isolated vertices is ቚAi1i2… iqቚ = nm − n −

∑ (
n
q)m

q=3 ቚAi1i2… iq−1
ቚ such that q = m ≥ n. 

 Therefore , for all a ∈ Ai, we have 

𝐂𝐚𝐲𝐦(𝐆, 𝐒) ≅ (𝐊𝐧 ⊳𝐚 (𝐊
𝟏,∑ [(

𝐧
𝐪)−(

𝐧−𝟏
𝐪−𝟏)]ቚ𝐀𝐢𝟏𝐢𝟐… 𝐢𝐪ቚ𝐦

𝐪=𝟐
))

∪ ⋃ (𝐧 − 𝐫

𝐫+𝐪=𝐧

𝐫=𝟐
,𝐫≤𝐦

+ 𝟏)     𝐊
ቚ𝐀𝐢𝟏𝐢𝟐… 𝐢𝐫ቚ,∑ [(

𝐧−𝐪−𝟏
𝐪 )−(

𝐧−𝐪
𝐪−𝟏)]ቚ𝐀𝐢𝟏𝐢𝟐… 𝐢𝐪ቚ𝐦−𝐫+𝟐

𝐪=𝟐
 ⋃ 𝐊̅

ቚ𝐀𝐢𝟏𝐢𝟐… 𝐢𝐪ቚ

𝐦

𝐪=𝐦−𝐧

 

as required. 

 

 



Neamah and Erfanian                    Iraqi Journal of Science, 2023, Vol. 64, No. 7, pp: 3424-3436 

 

3436 

 

4-Conclusions: 

     The aim of this paper is to introduce a generalization of the Cayley graph denoted by 

𝑪𝒂𝒚𝒎(𝑮, 𝑺). Some basic properties of the new graph are given and investigated. Furthermore, 

the structure of 𝑪𝒂𝒚𝒎(𝑮, 𝑺) when 𝑪𝒂𝒚(𝑮, 𝑺) is equal to n-cube graph 𝑸𝒏 and complete r-

partite graph 𝑲𝒏,𝒏,…,𝒏 for every 𝒏,𝒎 ≥ 𝟐 has been also assigned. Many important results have 

been also obtained and provided in this work 
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