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Abstract

S~1 c S. Suppose that Cay(G,S) is the Cayley graph whose vertices are all
elements of G and two vertices x and y are adjacent if and only if xy~ € S. In this
paper,we introduce the generalized Cayley graph denoted by Cay,,(G,S) whichis a
graph with a vertex set consisting of all column matrices X,,, in which all components
are in G and two vertices X,, and Y,, are adjacent if and only if X,,[(Y;,) ]t €
M(S), where ¥,,* is a column matrix that each entry is the inverse of the similar
entry of Y,, and M(S) is m x m matrix with all entries in S , [Y™1]t is the
transpose of Y1 and m > 1 and me N. We aim to provide some basic properties of
the new graph and determine the structure of Cay,,(G,S) when Cay(G,S) is a
complete graph K,, forevery m>2, n=3andn, me N .

Keywords: Cayley graph , Complete graph, Generalized Cayley graph, Comb
product. Secondary 05CO07 .

1- Introduction and Basic Results

Algebraic graph theory has been considered one of the most important topics in
mathematics that specially in algebra and graph theory have been interested in recent years. In
algebraic graph theory, every graph is associated with a group, ring, module or any other
algebraic structures. One of the oldest algebraic graph theory is the Cayley graph which is
associated with a group and a subset of this group. The history of the Cayley graph comes back
to many years ago. In 1878, the Cayley graph was presented by Arthur Cayley in [1]. He gave
a geometrical representation of group by means of a set of generators. This translates groups
into geometrical objects that can be investigated from the geometrical view. In particular, it
provides a rich source of highly symmetric graphs, known as transitive graphs, which plays an
important role in many graph theoretical problems and group theoretical problems. During the
past ten years, some authors introduced different generalizations for the Cayley graph. For
example, Marusicin [2] gave a generalization of the Cayley graph in terms of an automorphism
of group G. Afterwards, Zho in [3] introduced the Cayley graph on a semigroup. Recently, the
second author introduced a new generalization of the Cayley graph by replacing all elements of
the group by all mx1 matrices with entries in the group, as a vertex set. He denoted it by
Caym(G,S) for every m > 1, and it is clear that if m = 1 then we will achieve the known
Cayley graph Cay(G,S). In 2021, Neamah , Erfanian and others [4] established the structure of
a generalized Cayley graph Caym(G,S), when Cay(G,S) is a cycle graph C,, forall n > 3.
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In this paper, we are going to determine the structure of the Caym(G,S) when the Cay(G,S)
is a complete graph K,,, forevery m > 1 and n > 3.

We recall that for any group G and any nonempty set S of G suchthat e € S and S~ ¢
S, the Cayley graph Cay(G,S) is an undirected simple graph whose vertices are all elements of
G and two vertices x and y are adjacent if and only if xy~! € S. It is known that Cay(G,S) is
connected whenever S is a generating set of G and that it is always regular and vertex
transitive ( see [5] for more details ). Now, we are in a position to mention the generalized
Cayley graph Cay,,(G,S) as follows.

Definition 1.1 [4] For every m > 1, the generalized Cayley graph, denoted by Cay,,(G,S) is
an undirected simple graph with vertex set consisting all mx1 matrices
[X1 X2 - Xm]',where x; €G, 1 <i<m,andtwovertices X=1[X1 Xz - Xp]'and
Y=[Y1 Y2 - V¥m]' are adjacent if and only if

Xy1 7t Xyt Xqym ! ]

_1 _1 coe _1
X(Y"Dt = ?23’1 ?2)’2 ) f(ZYm | € Mp,um(S), where
—Xm3’1_1 XmYZ_1 Xm}’m_1J

(TX11  X12  ** Xim

X21 X2 vt Xom
mem(s)=< : : . :

\[Xm1 Xm2 ° Xmm

In the following lemma from [6], we can find a necessary and sufficient condition for two
arbitrary vertices in Cay,,(G,S) to be adjacent.

Lemmal2. [6]Let X=[X1 Xz = Xm|tandletY=[y1 Y2 - ¥m]® betwo vertices
in Cayn(G,S), where x;,y; € G for 1 <i,j <m. Then X and Y are adjacent in Cayy(G,S)

if and only if x; is adjacentto y; in Cay(G,S) forall 1 <i,j <m.

The following lemma gives a formula for the degree of any vertex in the Cay,,(G,S) in
terms of some right cosets of S.

Lemma 1.3. [6] Let X =[X1 Xz - Xm]' be a vertex in the Cay,,(G,S). Then deg(X) =
| NiZ; Sxil.

As we mentioned earlier, Cay(G,S) is connected (by assuming S as a generating set of
G), so there is no isolated vertex. Indeed, one can easily see that Cay,,(G,S) is not necessary
to be connected, even when S is a generating set and we may have some isolated vertices [6].
The following lemma states that under some conditions, we may have an isolated vertex in
Cay,(G,S).

Lemma 1.4. [4] Suppose that X =1[X1 X2 - Xpm|' is a vertex in Cayn,(G,S). If

d(x;,x;) # 2 in Cay(G,S) for some 1 <i=#j<m and the Cay(G,S) is triangle free.
Then X is an isolated vertex in the Cayy, (G,S) (note that d(x;, x;) stands for the distance
between x; and x;, which is the length of the shortest path between x; and x; and triangle free
means that the graph must have no cycle of lenght 3).
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As we mentioned at the beginning of this paper, we are going to investigate the struc6ure
of the Cay,,(G,S) whenever the Cay(G,S) is a complete graph K, for all n >3 and m >
2.. It is obvious that if n =1 the Cay(G,S) is an empty graph with one isolated vertex.
Similarly,the Cay,(G,S) is an empty graph as well. In [ 7], Naeemah et. al. found the structure
in the case
n = m = 2 as the following.

Lemma 1.5. [4] If Cay(G,S) = K,, then Cay,(G,S) = K, UK.
Moreover, they determined the connectivity of the Cay,,(G,S) whenever Cay(G,S) =
Ky, forall m>1 andn > 3.

Theorem 1.6. [4] Let Cay(G,S) = K,,, where n > 1.
(i) If n > m, then Cay,,(G,S) is connected.
(i) If n < m, then Cay,, (G, S) is not connected.

Throughout the paper, we assume that group G is finite, S is a nonempty subset of G, e S,
S~1 =S and S is a geneating set for G. Moreover, all of the notations and terminologies about
graphs are standard and can be found in [2].

In the next sections, we investigate the structure of Cay,,(G,S) for all values m > 2, when
Cay(G, S)=Kj3,K,.

2 Cay,,(G,S) when Cay(G, S)=K3 or K, forallm> 2
First, let us state the definition of Comb product that we use frequently in this section.

Definition 2.1 . [7] Let G and H be two connected graphs. Let o be a vertex of H. The comb
product between G and H, denoted by G © H, is a graph obtained by taking one copy of G and
|[V(G)| copies of H and grafting the i-th copy of H at the vertex o to the i-th vertex of G. By the
definition of comb product, we can say that V (G = H) ={ (a,u) |a € V(G), u € V(H)} and (a,
u)(b, v) € E(G = H) whenever a =b and uve E(H), orab € E(G) andu=v = 0.

Example 2.2. The Comb product of graphs K¢ and P, is shown following in Figure 1. Note
that vertex o can be chosen one of two initial vertices of P,, but it is no difference in any case.
Now, if we replace P, by P;, then we will two possibilities for vertex 0. The first case is to
choose one of the initial vertices of P; and the second case chooses vertex of degree 2 of P;.
So, we have two different graphs for comb product K, = P; (see Figure 2 and Figure 3).

[

N

Figure 2: K¢ = P Figure 3: K¢ > P3
Figure 1: K¢ = P, (with the initial vertex of (with vertex of degree 2 of
P3) P3)

Since we may have different graphs for comb product G = H, we give the following

3426



Neamah and Erfanian Iragi Journal of Science, 2023, Vol. 64, No. 7, pp: 3424-3436

definition of comb product with respect to a fix vertex "a" of graph H.

Definition 2.3. Let G and H be two connected graphs. Let "a" be a fix vertex of H. The comb
product between G and H with respect to vertex a, denoted by G =,H, is a graph obtained by
taking one copy of G and |V(G)| copies of H and grafting the i-th copy of H at the vertex "a" to
the i-th vertex of G. By this specific definition of comb product between G and H with respect
to a fix vertex of H, we can see that V(G >,H) = { (t, u) | t € V(G), u € V(H)} and (t, u)(b, v)
€ E(G =H) whenever t = b and uve E(H), or tb € E(G) and u = v = a. It is obvious that the
graph of comb product G =,H is always unique.

In the following lemma, we give the structure of Cay,,(G,S) for m=2, 3, 4 when Cay (G,
S)=Ks.

Lemma 2.4. Let Cay(G,S) = K5 then

(i) Cay;(G,S) = K3 =, Ky (ii) Cay3(G,S) = (K3 =, K1) U K¢

(i) Cay,(G,S) = (K3 &, Ky,14) U Kgg

Proof. (i) Assume X = {xy,X,,x3} such that V(Cay(G,S)) = X. Then we have
V(Cay,(G,S)) = {[w; w,]*|wy, w, € V(Cay(G,S))} and so |V(Cay,(GS)|=3%2=9.
Now, we can split vertex set V(Cay,(G,S)) into the following two types.

Type 1: The degree of these vertices is 4. We define

A ={[x; xi]' :x; €X}, where i=1, 2, 3. So, we have A, = {[;(ﬂ} A, = {[Z]} A; =

{[zz]} and these three vertices are adjacent. Thus, the induced subgraph to the set U3, A; is
the complete graph K.

Type 2:. Put A;; = { [a; a,]t]ay,a, € {xi,xj}} - (Ai UA]-), where 1< i<j<3andi#
j. Itis clear that |Ai]-| = 2 and we can see that Ay is adjacentto Aj; for k= i,j and the induced
subgraph to the union of sets A;; and Ay is complete bipartite K;,. So, Cay,(G,S) =
K3 o, K;, where a is a vertex of degree 2 in K ,.
(i) As (i), let X = {x4, x5, x3}=V(Cay(G,S)). Then

V(Cay3(G,S) = {[wy w, ws]"|wy, wy,ws € V(Cay(G,9)) }
and so |V(Cay;(G, S)| = 3% = 27. We have three types of vertices as the following:

Type 1: Put A; = {[x; % x;]' |x; €X }, where i=1, 2 and 3. As similar as part (i), the
induced subgraph to the set U, A; is the complete graph K.

Type 2: Put A;={[a; a, as]'|aj,aya3 € {x;,x}}— (A;jUA)), where 1< i<j<
3andi # j. So, we have

We can observe that Ay is adjacentto A forall i #j and j > i and k # i,j. The induced
subgraph to the union of sets Aj;; and A; is complete bipartite K, . Also, Aj; is adjacent to all
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Ay Where i,j # t, k. The number of these sets is (;) = 3.

Type 3: We define
Aipz = {{ a1 2y az]'|ay,aaz € X}} (AfUA, UA3 UA;, UA;3UA)

={[X2 ,[Xsl,[ ] [ ] [ ] [ ]} Each vertex in this set is an isolated vertex.
X3] X2 X3| [X2

Now, by considering the above three types of vertices and the fact that the vertex set is the
union of these three types, we can find that Cay;(G,S)) = (K3 >, K1,6) U K¢ , where a €
A; is a vertex of degree 8.

(iii) By the same method as in parts (i) and (ii), we have the following details:

V(Cay(G,S)) = X = {xy,X3,X3} = X, V(Cay,(G,S) = {[W1 wy wi W]t w €
V(Cay(G,S))}, t=1,2,3 and |V(Cay,(G,S)| = 3* = 81. Moreover, we can define similar
sets A;, Ay and A as follows:

A; = { [x xl i ' :x;€X 1}, i=1,2,3, |A =1

Aji={la; a, az a,]' ra € {xux}}—(AjUA). 1< i<j<3andi=#]

= 32 () =5 () = ()4 () + () = 14

Ajk=Aps={{[a1 3z a3 a]'|a,eX}}—(A;UA, UA; UA;; UAj3 UAy;) and
we can see that |A;,3| = 3! (6) = 36. As similar as we mentioned in the proof of (i) and (ii),
a vertex in A; is adjacent to a vertex in A; for j # i, and the induced subgraph to the set
U3, A; is a complete graph K;. Also, a vertex in Ay is adjacent to all vertices in A;; for all
i #j, j>1and k= i,j. Thus the induced subgraph to the sets A, with A;; produce a complete
bipartite graph K; 1,. Since 1 < i < 3 so there is no edge between vertices in sets A,
A;; and A,5. Hence the structure of the graph except for vertices in set A;,5 will be as the
form K3 =, K; 14. Now, every vertex in A;,3 is not adjacent to any of the above sets and they
are all isolated vertices. Combining these 36 isolated vertices in set A;,; and the graph
structure of the rest vertices will deduce that Cay,(G,S)) = (K3 ©, Ky14) U K36, Where a €
A .

Now, we are in a position to state the structure of Cay,,(G,S)) for all m> 2.

Theorem 2.5. Let Cay(G,S) = K3 then
Caym(G, S)) = (K3 Da Kl,zm_z) U K3m_3(2m_1) , V a E Al & mZ 2

Proof. Let V(Cay(G,S)) = {x4,X,,x3} and let Cay(G,S) be a complete graph

X1 — X, — X3 —X; Of length 3. We know that Cay,,(G,S) has 3™ vertices. Put three sets
Ar={[a1 3z am]'| aj€{x;,x3}, 1<i<m} |A]=2"

AZ = { [al az .. am]t | a; € {X1’X3}' 1<i< m}, |A2| =2m

A3 = { [al az ... am]t | aj € {Xl,XZ}, 1<i< m}, |A3| =2m
Then, we can see that vertex [Xj Xj-- Xj]*isadjacent to all vertices in set A; forevery j =
1,2,3. Define the following three sets B; = A; — {[X2 Xz .. X2]%, [X3 X3 ... X3]t},
B, =A, —{[x1 X1 . Xq]',[X3 X3 .. X3]}, By =A;—
{[x1 X1 - XY, [X2 Xz . X3]%}.

We have |Bj| = |Aj| —2=2m—2 forall 1 <j<3. Allsets By, B, and Bj are disjoint
and independent sets and the subgraph induced by U]?’=1 A is the comb product of K3 and

K, ,m_,. Hence, Cay,(G,S) has a component consisting of K3 =, K; ,m_,, where a € A;.
The rest of the components are all isolated vertices and the number of these isolated vertices
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is |[V(Cayn(G,S))|—3(2™—2)—-3=3"-3(2m-1).
Hence Cayn(G,S)) = (K3 =, Ky om_3) U K3m_3(2m_1), The graphsfor m =1, m = 2 and
genral case m are shown in Figurs 8.

I Bl \
H H /
Figure 6: The graph Figure 7: The graph Figure 8: The graph
Cay,(G,S) of Kj Cay;(G,S) of Kj Cay,(G,S) of K;

Note that we may prove Theorem 2.4 by using sets A;, Aj;, Ajjx as the methods as in the
previous Lemma ,but the proof given here is more shorten.

In the following lemmas and theorems, we are going to find the structure of the generalized
Cayley graph Caym(G,S) when Cay(G,S) = K,, for all n>4. We determine their structure in
terms of comb product. We should note that all components of comb product are not disjoined
, because in the union of components of comb product , we may have some intersections. So,
we will not mention these facts for each of them.

Lemma 2.6. Let Cay(G,S) = K,, then

Cay,(G,S)) = ((Ky >, K1) U3K;,, where a € A;.
Proof : Suppose that V(Cay(G,S)) = X = {x4,Xz, X3, X4}. Then Cay,(G,S) has the vertex set
as follows:
V(Cay,(G,S)) = {[wy w,]| wy, w, € V(Cay(G,S)) }and so |V(Cay,(G,S)| = 4% = 16.
Now, we
define two sets A; and A;; given by the sets A; = { [x; xi]":x; €X}, i=1,23,4 and A;; =
{ [a; ay]'laj,a; € {x;,x}} —(A;UA)) for 1 <i< j<4. Onecan see that |A;| =1 and
the induced subgraph to the set U7, A; is the complete graph K,. Furthermore, |Ai]-| =2 and
every vertex in Ay is adjacent to every vertex in A for j > i and k# i,j. The number of sets

A is (3) = ;_;. = 6 and the induced subgraph to every set Ay U A;; is a complete bipartite

K. Also, the induced subgraph to every set Ay U Aj;, 1,j # t,k is a complete bipartite K ,.
In other words, all vertices in A;; are adjacent to all vertices in Ay, for every i,j # t, k. We
may divide all vertices into two cases as the following :

Case one: All vertices in A;. We have A; = {[2]} A, = {[Z]} A; = {[ﬁ:]} and Ay =

X . . - :
{[Xﬂ}. It is clear that, every vertex in A; is adjacent to every vertex in A; such that j # i. So,

the induced subgraph to the set Ui, A; is the complete graph K,. Moreover, every vertex here
has degree 9.
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Case two: All vertices in Aj;;. We have A, ={[2][Z]} A ={[2][§i]} A, =

{[;(ﬂ ’ [iﬂ} Azs = { [2] ‘ [iz]} Azq = { [Z] : [Z]} and Az, = { [iz] : [Z]} We can see
that every vertex in Ay is adjacent to all vertices in Aj;, where i+ j and j > i and k= i,j. The

induced subgraph to every set Ay U A;; is a complete bipartite graph K, ¢. Also, Aj; is adjacent
to all Ay where i,j # t k.

Hence, vertices in A, is adjacent tovertices in A,s3, A,4, Az, . Similarly, A, is adjacent
to Ai3,Aq4,A3,, As isadjacentto Ay, Ayy, Ay and A, is adjacentto Ays, Aqy, Agz . AlSO,
from adjacenty A;,~As, , Ai3 ~Ays ,A14~A,3, We will obtain three complete bipartite
graphs K ,. The vertices in the sets {A;,, Az} {A13,A24} and {A4, Ay3} are independent
sets. Therefore, if a € A; then we will have the following structure with some edges
intersection between K, ¢ and K, ,

Cay,(G,S)) = ((K4 =, Ki6) U 3K,,  (see Figure 9)

Lemma 2.7 Let Cay(G,S) = K,, then
Cay;(G,S) = ((K4 >, Kig4) U 3K6,6),where a €A
Proof: Suppose that X = {x;,X5,X3,X4} S0 V(Cay(G,S)) = UL, x =X,
V(Cay3(G,S)) = {[Ww1 W2 W3]* |wy,w,, w3 € V(Cay(G,S))} , |V(Cay3(G,S)| =4° =
64. We have three types of vertices as the following :

[X1 X2 ] X3 [X4
Type (1): Ay =|X1|, Az =1[X2|t Az =4{[Xs|; and Ay = {|Xa];.
| X1 X2 X3 | X4
Type 2:
X1] [X1] [X2] [X1] [X2] [X2 X171 [X1] [X3] [X1] [X3] [X3
A =9 1X1], | X2], | X1 ], [X2], [X1], [ X2 Az =4 |X1],|X3],|X1],|X3],[X1],[X3
X2l [Xq] [X1] [Xa2] [X2] [Xq [ X3] [X1] [X1] [X3] [X3] [Xq
X171 X1] [X4] [X1] [X4] [X4 X271 [X2] [X3] [X2] [X3] [X3
A14 = Xl ) X4 ) X1 ) X4 ) X1 ) X4_ A23 = XZ ) X3 ) XZ ) X3 , XZ , X3
Xal 1Xq1] [X1] 1Xq] 1X4] [Xq] [ X3] X2 1X2] [X3] |X3] [X3
X271 [X2] [X4] [X2] [X4] [Xa X371 [X3] [X4] [X3] [X4] [Xa
Ayy =1 X2, [Xa], X2, |Xa], [X2], | X4 Az, =9 |X3], [Xa], [X3], |Xa]|, [X3], | X4
Xal 1X2] X2 [X4] [X4] [X2 [X4] 1X3] [X3] [X4] 1X4] 1X3
Type 3:
[X1] [X1] [X2] [X2] [X3] [X3] [X1] [X1] [X2] [X2] [X4] [X4]
Aia3 =9 [X2],[X3], [X3], | X1]|, [X1], [X2 Ay =3 [X2|, |Xa], [Xa], | X1|, [X1], [X2
[X3] |Xo]| |X4] [X3] |[Xo] [Xq] [Xg] 1Xo] 1Xq] [X4g] [X5] |Xq]
[X1] [X1] [X3] [X3] [X4] [X4] [X27 [X2] [X3] [X3] [X4] [X4]
Aqzq = |X3|, | Xa|, | Xa|, [X1], [X1], [X3 Ajzy = §[X3], [Xa|, [Xa], [X2], [X2],[X3
[Xg] |X3] |Xq] [X4] |X3] |Xq] Xgl 1X3] |Xo] [X4] |X3] [Xo]

Some remarks:

1. The degree of every vertex in A; is 27 and they are adjacent to every vertex in A; such that
j #i.

2. The induced subgraph to the set Ui, A; is the complete graph K,.

3. The degree of these vertices in Ajy; is 8 and every vertex in Ay is adjacent to all vertices in
Aj;, where i #j and j > i and k+# i,j and also, Ay; is adjacentto all Ay, so that i,j # t, k.
4. A; is adjacent to Ay3, Azy, Agy and Aysy, A, IS adjacent to Aqz, Aqy, Azy and Aqzs, Az
is adjacent to A4z, Azy,Ajpsand Ay, and A, is adjacent to Az, Aqz, Az and Aqys .
Also, A1z~Azy , A1z3~Azq ,A14~Az3.
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5. From adjacenty A;;~A3zs, A1z ~Az4 ,A14~A,3, We will obtain three of Complete
bipartite graph Kge, since the sets of {A;;, Azs} { Agz,Az4} and {Aq4,Ap3} are
Independent sets.

Hence, we have Cay;(G,S) = ((K4 >, K1’24) U 3K6,6), a € A; asrequired.

By the same method as in the proof of Lemma 2.10 and 2.11, we may state the following
lemma. The proof is omitted.

Lemma 2.8 Let Cay(G,S) = K,, then
Cay,(G,S) = (K4 >, Ky 78) UKy 36 U Kpy; where a€ A;

The structure of graphs Cay,(G,S), Cays(G,S), Cay,(G,S) when Cay( G, S )= K, is
shown in Figure 9, Figure 10 and Figure 11:

N /
& ratl i
, % ol b . ¥ ;
< I 1’ = />‘~~ & ’\5? X
g / 7 l
. L 4
Figure 9: The graph Figurel0: The graph Figure 11: The graph
Cay,(G,S) when Cays(G,S) when Cay,(G,S) when
Cay(G,S)= K, Cay(G,S)= K, Cay(G,S)= K,

Now, we are in a position that to state the following theorem:

Theorem 2.9 Let Cay(G,S) = K,, then for all m > 2, we have
Caym(G,S) = (K4 Za (K1’3|Aij|+|Aijk|)> v 31<|Aij|»|Aij| v K|Aijk1|’ where a€ A;.

Proof: Suppose that X = {x;, X,,X3,%,} such that V(Cay(G,S) =X, then
|[V(Cay,(G,S)| = 4™ and

V(Caym(G,S) ={[w1 W2 - wWp]'|wywy, ..., wy € V(Cay(G,S)) }

We have four types of vertices in terms of degrees .They are:

Type (1) of vertices: We define A; = {[x; Xi - x]' :x;€Xandi=1,2,3,4}. Thus
|A;| =1 and the degree of these vertices is 3™. Moreover, every vertex in A; is adjacent to every
vertex in A; such that j # i. So, the number of vertices of all these sets is (;L) = 4 and the
induced subgraph to the set Uf_, A; is the complete graph K,.

Type (2) of vertices: Put

Aj={lar 32 - apl'lajay .., am €{x,x},1 < 1<j<4} — (A UA).
Then the degree of these vertices is 2™ and |A;| = {gzl(rin)_ We can see that Ay is
adjacent to A;; where i # j and j > i and k= i,j. The number of these sets is (g) = ;—;' =
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6. The induced subgraph to the sets A;; with the vertex of "a" in  A; is complete 2-bipartite
graph K1,3|Aij|. Also, Aj; is adjacent to all Agwhere i,j # t,k.So, |Aj;| = [Agz] = [Aul =
|Azs| = Azl = |Agy| = 2™ — 2.

Type (3) of vertices: We define
Aijk = {{ [a1 az; .. am]t | dq,dp, ..., Ay € {Xi,Xj,Xk},l i< ] <k< 4‘}}
— (AjUAj U AL UA;j UAj UAy)
Then the degree of any of these vertices is
(n-3)"=(4-3)"=1"=1 and|Ai]-k| =3 x (L' TR ) =3(3m"1 _2m 4 1).

311! 2! 211!
It is easy to see that A; is adjacentto A, where i # j,k,I,and j > i and k= i,j. The number

. (4 4! ! !
Of these SetS IS (3) - = 4‘ SO, |A123| = |A124| = |A134| - |A234| = 3 (n m + m )

T3 11 20 201
g) (3m-1 _2m 4 1),

The induced subgraph to the sets A;; and Ay with the vertex of "a" in A; is complete
bipartite graph K Since, A; is adjacent to all Ay where i,j # t,kandj>1i ,

The number of these vertices of Type Il is 3 (

1,3| A |+ Ag|
also A; is adjacentto all Ay, where i #j,kland1 <j<K<I<4.
Type (1V) of vertices: By continuing this method we can see that the set Ajjq has isolated
vertices where
{ [a; a2 - ap]'|aag..,an € {xi,xj,xk,xl},}
1<i<j<k<l<4
—(Aj UAj UAKUA UA;UAj UAj UAj UAj UAQ U A U A UAj).

Ajja =

The number of these Isolated vertices in generalized Cayley graph Cay,,(G,S) is |Aijk1| =
|Aj234] = 4™ — 4 — 6 |A;j| — 4 |Ajji|- So, the graph Cay.,(G,S) is not connected, since
A1234 isnotadjacent to A;, Ay, Ajje such that 1< i<j<k<4. It is obvious that,
A; is adjacentto A,3, Ay, Agy and Ays,, A, IS adjacent to Aqj,Aqs, Az, and Ajg,
A5 isadjacentto Aq,, Agy, Ajyand Ay, A, isadjacentto Ayz, Ajp, Aqz and Aqys.

These vertices in the generalized Cayley graph is Isolated vertices, since the set
A1234 isnotadjacent to A;, Ay, Ay such that 1< i<j<k<4. Hence, the graph
Cay,(G,S) is not connected. Also, from adjacenty A;;~As, , Aj3~Ays ,A1u~Ays, WE
obtain three of the Complete 2-bipartite graph K|A1j|:|Aij|' The sets of {A,, Ass} {A3,A}
and{ A4, A,3 }are Independent sets. So, we see A; is adjacent to all Ay where i,j #
t,kandj>i,k >t Therefore,

Cayn(G,S) = (K4 = (K1.3|Aij|+|Aijk|)) V) 3K|Ai]_|'|Ai]_| V) K|Aijkl| ;1< i<j<k<]l<4,
where a€ A;. The graph Cay,(G,S) of K, is shown in Figure
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+ Aj234

Figure 12: The graph Cay,,(G,S) when Cay(G,S)=K,

3. Cay,(G,S)when Cay(G, S)=K, forallm,n > 2
In this section, we determine the relevant structure of Cay,, (G, S) where Cay(G,S) = K,, for
allm,n > 2. We start with the case n >m.

Theorem 3.1: Let Cay(G,S) = K, when n >m, then
= (K K -
Com (@) = (n =0 (g -Gl

q
r+q=n
U L:JZ (n —-r+ 1)K|Ai112m ir|,zan=—2r+z[(n—g—l)_(g:cll)]‘Ailizm 1 ;a € Ai
,r<m

Proof. Suppose that X = {x4, X5, ..., X,} such that V(Cay(G,S)) = Ui, x; =X,
V(Caym(G,S)) = {[W1 Wz2.. Wm]® |wy,wy,...,wy, € V(Cay(G,S))}and
[V(Caym(G,S)| = n™.

We have m-types of vertices in terms of degrees. They are:

Type (1) of vertices: The degree of these vertices is (n-1)" and the number of these vertices is

n
(1) -

Define A; = {[Xi Xi - Xi]' |x;€Xandi=12,..,n}. So, |A;] =1.S0 A, is the set
that has one element. It is clear that, every vertex in A; is adjacent to every vertex in A; such
that j # i. So, the induced subgraph to the set UjL, A; is the complete graph K,,. So,

R

Type (2) of vertices: The degree of these vertices is (n-2)™.

X
X3

X1

Now, put
Aij = { [al az .. am]t | dq,dp, ..., Ay € {Xi,X]‘} and l,] = 1,2, A | ,i * ]} - (Al U A])
and the order of A;; is |A;] =2™-2 or |A;] = Xyt (I:l) We can see that A is adjacent to

A;j; where i #j and j >1i and k # i,j, also, Aj; is adjacentto all Ay where i,j # t, k.
n! __n(n—-1)

The number of these sets is (rzl) = 22— 2

and the number of these vertices is (rzl) *

n(n-1)

Ay ==

*6=3n(n—1).
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Type (3) of vertices: The degree of these vertices is (n-3)™.
We define

Ailizis = {{ [al dz .. am]t I aq,dy, ..., dym € {Xil’XiZ’Xis} and 1 < il < i2 < i3 < n}}
—(Aj, UA;, UA; UA;;, UA;;, UA;;,

Hence, |Ajii,|=3™—-3(@2™)+3=3(3™"1-2m+1).

It is easy to see that A; is adjacent to A; where i # jij,j; and 1 <j; <j, <jz3 <n.The

1j2 j3
number of these sets is (g) = 3'(:13), = "("_16)("_2) and the number of these vertices is
n 3n(n—1)(n—2) ~ nn—1Mm-2)(3™1-2m+1)
(3) 1A, = - L(3Mlo2m 1) = > .

Type q of vertices: The degree of these vertices is (n-q)™ and q < m.
We define Ai1i2---iq = {{ [al az .. am]tl aq,ay, ..., dy € {Xil'xizl ""Xiq} and1 < il <

<. <lig < n}} - < s A Ui =1, Aiy, UM i ieog=1, Ailiz...iq_1>
i <is 15i;<iz<..<ig-1%n

Hence,|Ailiz_,_iq|. It is easy to see that A;, is adjacent to A ;, ; where j; # iy iy, ..., I, and

1<i; <i; <--<i.<n Such that r < m-1. A;;, is adjacent to Aiji, . iq where j;j, #

iy iz, wn,ig and 1 <1y <ip <+ <ig<n Suchthatr<m—2.

By countinuing this issue inductively, we will have

Ay, ;. Is adjacent to A, iq where jijp . je # i i, eyl y 150 <ip <o <lig <
nand1 <j; <j, <+ <j.<n Suchthatt+q < m.
n!

Y and the number of these vertices is

) n
The number of these sets is (q) =

(g) |Ai1iz---iq| = q|(nn—'_q)| q(qm—l —(q-— 1)m—1 +q-—2).
n
2

that j# i;i and i; <i,, A;s are adjacent to [(2) - (n ; 1)] of A

It is clear that, We can see that so that in it Ajs are adjacent to ( )-n+1 of A; ;, such

such that j #

11213

.. . . . . n n—1

iy,izi3and 1 <i; <i, <iz<n and A;'s are adjacent to (q) ~{q- 1) of Aijiy .. i

such that j # iy, i5,..,igand 1 <i; <i, < -+ <ig < n. Itis clear that,we will have complete

2-bipartite graph K_ ., /mn /-1 that is appended to a complete graph ofK, is

L q=2[(Q)_(q—1)]|Aili2---iq|

obtained.

Also, we will obtain (n-r+1) complete 2-bipartite graph
mer —g+1 n—q . In this way that:

gty i ZR 2 () (22 [Aigiig y

- n—1 n—2
A j,'s are adjacent to [( ) )—( 1 )] of A
1<i; <i, <n,
A; ;s are adjacent to [(n 3 2) — (n N 3)] of A;
, 1<i; <i, <iz <n,..,and
— n—
A; ; s are adjacent to [(n g + 1) — ( _ (11)] of Aiji,...iq such that (jy,j, # iy, 1z, .. ,1g)

q

K

such that (ji,j, # i1 4 j1 <j2

112

such that (ji,j, # i, 12,13) , j1 <j2

11213

j1j2

i1z iqr Bigip..ip} WHere ji,jz .., jq
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i1i2 en ir Such thatl S jl < jz < b < ]q S n and 1 S i1 < i2 < b < ir S n al’e
independent sets.

So we must cancel the edges between A; Aii,.. i, wherejq,j; ..., jq = i1ip . ip .

j1jz Jq

Type m of vertices: The degree of these vertices is (n-m)™ where q = m.
We define

. t . . . .
Aijiy..ig = {{ [a1 3z - Am]' :aj,ay,..,ay € {X;,Xi,, ...,xiq} and 1 <i; <izc..<lig
n
} U A U Alllz - U Ailiz...iq_l
11 12 1, il,iZ""'iI‘—1=1 )
11<12 1Si1<i2<...<iq_15n

We know that if n > m, then the generalized Cayley graph will be connected (by
theorem 1.6). Itis clear that Cay,,(G,S) hasnot an isolated vertces. The smallest degree at
the vertices of Cay,,(G,S) will be at the vertices below:

Ay i = { [a; Az - ap]t | ay,az ., am € {Xi,, Xi,, ...,xin_m},l < i <ip <
<lip-m < n}
So, deg(A; i, .i,_,)= (n —m)™, since we want to put (n-m) distinct objects in m distinct boxes
so that it repeats. Thus, we have S(Caym(G, S)) =(n—m)™ Vva €A;;

™ (e

l'+qll _ +1K . ; EA
TN o G M )| L A

r<m

The following theorem concern the case n < m.
Theorem 3.2: Let Cay(G,S) = K, whenn < m, then

Proof: Similar to the proof of the Theorem 3.1 but in this theorem, we know that if n < m,
then the generalized Cayley graph will not be connected (by Theorem 1.6) and it is clear
that [X1 X2 - Xn X1 .. Xm-n |' is an isolated vertex. So, the degree of these vertices is

zero. Thus the number of these isolated wvertices is |A

s (g) [Aueci

Therefore foralla € A;, we have
Cm(G8) = (K =0 Wy ga )Gl

r+q=n

U U (n—r
r=2
,r<m

+1) K et - - U K
T v - )| PO U Ka,

—_ ym __ —
1112 lq| n n

suchthatg=m > n.

as required.
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4-Conclusions:

The aim of this paper is to introduce a generalization of the Cayley graph denoted by
Cay,,(G,S). Some basic properties of the new graph are given and investigated. Furthermore,
the structure of Cay,,(G,S) when Cay(G,S) is equal to n-cube graph Q,, and complete r-
partite graph K,,, ., forevery n,m > 2 has been also assigned. Many important results have
been also obtained and provided in this work
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