

ISSN: 0067-2904

Some Results on the Generalized Cayley Graph of Complete Graphs

Suad Abdulaali Neamah ${ }^{1}$, Ahmad Erfanian ${ }^{2}$
${ }^{1}$ Department of Pure Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran
${ }^{2}$ Department of Pure Mathematics and Center of Excellence in Analysis on Algebraic Structures, Ferdowsi University of Mashhad, Mashhad, Iran.

Received: 19/6/2022
Accepted: 26/8/2022
Published: 30/7/2023

Abstract

$S^{-1} \subseteq S$. Suppose that $\operatorname{Cay}(G, S)$ is the Cayley graph whose vertices are all elements of G and two vertices x and y are adjacent if and only if $x y^{-1} \in S$. In this paper, we introduce the generalized Cayley graph denoted by $\operatorname{Cay}_{m}(G, S)$ which is a graph with a vertex set consisting of all column matrices X_{m} in which all components are in G and two vertices X_{m} and Y_{m} are adjacent if and only if $X_{m}\left[\left(Y_{m}\right)^{-1}\right]^{t} \in$ $M(S)$, where $Y_{m}{ }^{-1}$ is a column matrix that each entry is the inverse of the similar entry of Y_{m} and $M(S)$ is $m \times m$ matrix with all entries in $S,\left[Y^{-1}\right]^{t}$ is the transpose of Y^{-1} and $m \geq 1$ and $m \in N$. We aim to provide some basic properties of the new graph and determine the structure of $\operatorname{Cay}_{m}(G, S)$ when $\operatorname{Cay}(G, S)$ is a complete graph K_{n} for every $m \geq 2, \mathrm{n} \geq 3$ and $\mathrm{n}, \mathrm{m} \in N$.

Keywords: Cayley graph , Complete graph, Generalized Cayley graph, Comb product. Secondary 05C07.

1- Introduction and Basic Results

Algebraic graph theory has been considered one of the most important topics in mathematics that specially in algebra and graph theory have been interested in recent years. In algebraic graph theory, every graph is associated with a group, ring, module or any other algebraic structures. One of the oldest algebraic graph theory is the Cayley graph which is associated with a group and a subset of this group. The history of the Cayley graph comes back to many years ago. In 1878, the Cayley graph was presented by Arthur Cayley in [1]. He gave a geometrical representation of group by means of a set of generators. This translates groups into geometrical objects that can be investigated from the geometrical view. In particular, it provides a rich source of highly symmetric graphs, known as transitive graphs, which plays an important role in many graph theoretical problems and group theoretical problems. During the past ten years, some authors introduced different generalizations for the Cayley graph. For example, Marušič in [2] gave a generalization of the Cayley graph in terms of an automorphism of group G. Afterwards, Zho in [3] introduced the Cayley graph on a semigroup. Recently, the second author introduced a new generalization of the Cayley graph by replacing all elements of the group by all $m \times 1$ matrices with entries in the group, as a vertex set. He denoted it by $\operatorname{Cay}_{\mathrm{m}}(\mathrm{G}, \mathrm{S})$ for every $\mathrm{m} \geq 1$, and it is clear that if $\mathrm{m}=1$ then we will achieve the known Cayley graph Cay(G,S). In 2021, Neamah, Erfanian and others [4] established the structure of a generalized Cayley graph $\operatorname{Cay}(G, S)$, when $\operatorname{Cay}(G, S)$ is a cycle graph C_{n}, for all $n \geq 3$.

[^0]In this paper, we are going to determine the structure of the $\mathrm{Caym}_{\mathrm{m}}(\mathrm{G}, \mathrm{S})$ when the $\mathrm{Cay}(\mathrm{G}, \mathrm{S})$ is a complete graph K_{n}, for every $m \geq 1$ and $n \geq 3$.

We recall that for any group G and any nonempty set S of G such that $e \notin S$ and $S^{-1} \subseteq$ S, the Cayley graph Cay (G, S) is an undirected simple graph whose vertices are all elements of G and two vertices x and y are adjacent if and only if $x^{-1} \in S$. It is known that Cay (G, S) is connected whenever S is a generating set of G and that it is always regular and vertex transitive (see [5] for more details). Now, we are in a position to mention the generalized Cayley graph $\mathrm{Cay}_{\mathrm{m}}(\mathrm{G}, \mathrm{S})$ as follows.

Definition 1.1 [4] For every $m \geq 1$, the generalized Cayley graph, denoted by $\mathrm{Cay}_{\mathrm{m}}(\mathrm{G}, \mathrm{S})$ is an undirected simple graph with vertex set consisting all $\mathrm{m} \times 1$ matrices $\left[\begin{array}{llll}\mathrm{x}_{1} & \mathrm{x}_{2} & \cdots & \mathrm{x}_{\mathrm{m}}\end{array}\right]^{\mathrm{t}}$, where $\mathrm{x}_{\mathrm{i}} \in \mathrm{G}, 1 \leq \mathrm{i} \leq \mathrm{m}$, and two vertices $\mathrm{X}=\left[\begin{array}{llll}\mathrm{x}_{1} & \mathrm{x}_{2} & \cdots & \mathrm{x}_{\mathrm{m}}\end{array}\right]^{\mathrm{t}}$ and $\mathrm{Y}=\left[\begin{array}{llll}\mathrm{y}_{1} & \mathrm{y}_{2} & \cdots & \mathrm{y}_{\mathrm{m}}\end{array}\right]^{\mathrm{t}}$ are adjacent if and only if

$$
\begin{aligned}
& X\left(Y^{-1}\right)^{t}=\left[\begin{array}{llll}
x_{1} y_{1}-1 & x_{1} y_{2}^{-1} & \cdots & x_{1} y_{m}^{-1} \\
x_{2} y_{1}-1 & x_{2} y_{2}-1 & \cdots & x_{2} y_{m}^{-1} \\
\vdots & \vdots & \ddots & \vdots \\
x_{m} y_{1}^{-1} & x_{m} y_{2}^{-1} & \cdots & x_{m} y_{m}^{-1}
\end{array}\right] \in M_{m \times m}(S), \text { where } \\
& M_{m \times m}(S)=\left\{\begin{array}{llll}
\left.\left.\left[\begin{array}{llll}
x_{11} & x_{12} & \cdots & x_{1 m} \\
x_{21} & x_{22} & \cdots & x_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
x_{m 1} & x_{m 2} & \cdots & x_{m m}
\end{array}\right] \quad \right\rvert\, x_{i j} \in S, \quad 1 \leq i, j \leq m\right\}
\end{array} . .\right.
\end{aligned}
$$

In the following lemma from [6], we can find a necessary and sufficient condition for two arbitrary vertices in $\mathrm{Cay}_{\mathrm{m}}(\mathrm{G}, \mathrm{S})$ to be adjacent.

Lemma 1.2. [6] Let $X=\left[\begin{array}{llll}x_{1} & x_{2} & \cdots & x_{m}\end{array}\right]^{t}$ and let $Y=\left[\begin{array}{llll}y_{1} & y_{2} & \cdots & y_{m}\end{array}\right]^{t}$ be two vertices in $\mathrm{Cay}_{\mathrm{m}}(\mathrm{G}, \mathrm{S})$, where $\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{j}} \in \mathrm{G}$ for $1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{m}$. Then X and Y are adjacent in $\mathrm{Cay}_{\mathrm{m}}(\mathrm{G}, \mathrm{S})$ if and only if x_{i} is adjacent to y_{j} in $\operatorname{Cay}(G, S)$ for all $1 \leq i, j \leq m$.

The following lemma gives a formula for the degree of any vertex in the $\mathrm{Cay}_{\mathrm{m}}(\mathrm{G}, \mathrm{S})$ in terms of some right cosets of S.

Lemma 1.3. [6] Let $X=\left[\begin{array}{llll}\mathrm{x}_{1} & x_{2} & \cdots & x_{m}\end{array}\right]^{t}$ be a vertex in the $\operatorname{Cay}_{m}(G, S)$. Then $\operatorname{deg}(X)=$ $\left|\cap_{i=1}^{m} S x_{i}\right|$.

As we mentioned earlier, Cay (G, S) is connected (by assuming S as a generating set of $G)$, so there is no isolated vertex. Indeed, one can easily see that $C_{a y}(G, S)$ is not necessary to be connected, even when S is a generating set and we may have some isolated vertices [6]. The following lemma states that under some conditions, we may have an isolated vertex in $\mathrm{Cay}_{\mathrm{m}}$ (G, S).

Lemma 1.4. [4] Suppose that $X=\left[\begin{array}{llll}x_{1} & x_{2} & \cdots & x_{m}\end{array}\right]^{t}$ is a vertex in $\operatorname{Cay}_{m}(G, S)$. If $\mathrm{d}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right) \neq 2$ in $\operatorname{Cay}(\mathrm{G}, \mathrm{S})$ for some $1 \leq \mathrm{i} \neq \mathrm{j} \leq \mathrm{m}$ and the $\operatorname{Cay}(\mathrm{G}, \mathrm{S})$ is triangle free. Then X is an isolated vertex in the $\operatorname{Cay}_{m}(G, S)$ (note that $d\left(X_{i}, x_{j}\right)$ stands for the distance between x_{i} and x_{j}, which is the length of the shortest path between x_{i} and x_{j} and triangle free means that the graph must have no cycle of lenght 3).

As we mentioned at the beginning of this paper, we are going to investigate the struc6ure of the $\operatorname{Cay}_{\mathrm{m}}(\mathrm{G}, \mathrm{S})$ whenever the $\operatorname{Cay}(G, S)$ is a complete graph K_{n} for all $\mathrm{n} \geq 3$ and $\mathrm{m} \geq$ 2.. It is obvious that if $\mathrm{n}=1$ the $\operatorname{Cay}(\mathrm{G}, \mathrm{S})$ is an empty graph with one isolated vertex. Similarly, the $\mathrm{Cay}_{2}(\mathrm{G}, \mathrm{S})$ is an empty graph as well. In [7], Naeemah et. al. found the structure in the case
$\mathrm{n}=\mathrm{m}=2$ as the following.
Lemma 1.5. [4] If $\operatorname{Cay}(G, S)=K_{2}$, then $\operatorname{Cay}_{2}(G, S)=K_{2} \cup \bar{K}_{6}$.
Moreover, they determined the connectivity of the $\operatorname{Cay}_{\mathrm{m}}(\mathrm{G}, \mathrm{S})$ whenever $\operatorname{Cay}(\mathrm{G}, \mathrm{S})=$ K_{n}, for all $m \geq 1$ and $n \geq 3$.

Theorem 1.6. [4] Let $\operatorname{Cay}(\mathrm{G}, \mathrm{S})=\mathrm{K}_{\mathrm{n}}$, where $\mathrm{n} \geq 1$.
(i) If $\mathrm{n}>\mathrm{m}$, then $\mathrm{Cay}_{\mathrm{m}}(\mathrm{G}, \mathrm{S})$ is connected.
(ii) If $\mathrm{n} \leq \mathrm{m}$, then $\mathrm{Cay}_{\mathrm{m}}(\mathrm{G}, \mathrm{S})$ is not connected.

Throughout the paper, we assume that group G is finite, S is a nonempty subset of G, e $\notin S$, $S^{-1}=S$ and S is a geneating set for G. Moreover, all of the notations and terminologies about graphs are standard and can be found in [2].

In the next sections, we investigate the structure of $\operatorname{Cay}_{\mathrm{m}}(\mathrm{G}, \mathrm{S})$ for all values $\mathrm{m} \geq 2$, when $\operatorname{Cay}(G, S)=K_{3}, K_{4}$.

$2 \operatorname{Cay}_{\mathrm{m}}(\mathrm{G}, \mathrm{S})$ when $\operatorname{Cay}(\mathrm{G}, \mathrm{S})=\mathrm{K}_{3}$ or K_{4} for all $\mathrm{m} \geq 2$

First, let us state the definition of Comb product that we use frequently in this section.
Definition 2.1. [7] Let G and H be two connected graphs. Let o be a vertex of H. The comb product between G and H , denoted by $\mathrm{G} \triangleright \mathrm{H}$, is a graph obtained by taking one copy of G and $|\mathrm{V}(\mathrm{G})|$ copies of H and grafting the i-th copy of H at the vertex o to the i-th vertex of G . By the definition of comb product, we can say that $V(G \triangleright H)=\{(a, u) \mid a \in V(G), u \in V(H)\}$ and (a, $u)(b, v) \in E(G \triangleright H)$ whenever $a=b$ and $u v \in E(H)$, or $a b \in E(G)$ and $u=v=o$.

Example 2.2. The Comb product of graphs K_{6} and P_{2} is shown following in Figure 1. Note that vertex o can be chosen one of two initial vertices of P_{2}, but it is no difference in any case. Now, if we replace P_{2} by P_{3}, then we will two possibilities for vertex o. The first case is to choose one of the initial vertices of P_{3} and the second case chooses vertex of degree 2 of P_{3}. So, we have two different graphs for comb product $K_{6} \triangleright P_{3}$ (see Figure 2 and Figure 3).

Figure 1: $K_{6} \triangleright \mathbf{P}_{2}$

Figure 2: $\mathbf{K}_{6} \triangleright \mathbf{P}_{3}$ (with the initial vertex of \mathbf{P}_{3})

Figure 3: $\mathbf{K}_{6} \triangleright \mathbf{P}_{3}$ (with vertex of degree 2 of \mathbf{P}_{3})

Since we may have different graphs for comb product $G \triangleright H$, we give the following
definition of comb product with respect to a fix vertex "a" of graph H .
Definition 2.3. Let G and H be two connected graphs. Let "a" be a fix vertex of H . The comb product between G and H with respect to vertex a, denoted by $\mathrm{G} \triangleright_{\mathrm{a}} \mathrm{H}$, is a graph obtained by taking one copy of G and $|V(G)|$ copies of H and grafting the i-th copy of H at the vertex "a" to the i-th vertex of G . By this specific definition of comb product between G and H with respect to a fix vertex of H, we can see that $V\left(G \triangleright_{\mathbf{a}} H\right)=\{(t, u) \mid t \in V(G), u \in V(H)\}$ and $(t, u)(b, v)$ $\in E(G \triangleright H)$ whenever $t=b$ and $u v \in E(H)$, or $t b \in E(G)$ and $u=v=a$. It is obvious that the graph of comb product $\mathrm{G} \triangleright_{\mathbf{a}} \mathrm{H}$ is always unique.

In the following lemma, we give the structure of $\mathrm{Cay}_{\mathrm{m}}(\mathrm{G}, \mathrm{S})$ for $\mathrm{m}=2,3,4$ when Cay $(\mathrm{G}$, $S)=K_{3}$.

Lemma 2.4. Let $\operatorname{Cay}(G, S)=K_{3}$ then
(i) $\mathrm{Cay}_{2}(\mathrm{G}, \mathrm{S})=\mathrm{K}_{3} \triangleright_{\mathrm{a}} \mathrm{K}_{1,2}$
(ii) $\operatorname{Cay}_{3}(\mathrm{G}, \mathrm{S})=\left(\mathrm{K}_{3} \triangleright_{\mathrm{a}} \mathrm{K}_{1,6}\right) \cup \bar{K}_{6}$
(iii) $\operatorname{Cay}_{4}(\mathrm{G}, \mathrm{S}) \cong\left(\mathrm{K}_{3} \triangleright_{\mathrm{a}} \mathrm{K}_{1,14}\right) \cup \overline{\mathrm{K}}_{36}$

Proof. (i) Assume $X=\left\{x_{1}, x_{2}, X_{3}\right\}$ such that $V(\operatorname{Cay}(G, S))=X$. Then we have
$\mathrm{V}\left(\mathrm{Cay}_{2}(\mathrm{G}, \mathrm{S})\right)=\left\{\left[\mathrm{w}_{1} \mathrm{w}_{2}\right]^{\mathrm{t}} \mid \mathrm{w}_{1}, \mathrm{w}_{2} \in \mathrm{~V}(\mathrm{Cay}(\mathrm{G}, \mathrm{S}))\right\} \quad$ and so $\mid \mathrm{V}\left(\mathrm{Cay}_{2}(\mathrm{G}, \mathrm{S}) \mid=3^{2}=9\right.$.
Now, we can split vertex set $\mathrm{V}\left(\mathrm{Cay}_{2}(\mathrm{G}, \mathrm{S})\right)$ into the following two types.
Type 1: The degree of these vertices is 4 . We define
$A_{i}=\left\{\left[\begin{array}{ll}x_{i} & x_{i}\end{array}\right]^{t}: x_{i} \in X\right\}$, where $i=1,2$, 3. So, we have $A_{1}=\left\{\left[\begin{array}{l}x_{1} \\ x_{1}\end{array}\right]\right\}, A_{2}=\left\{\left[\begin{array}{l}x_{2} \\ x_{2}\end{array}\right]\right\}, A_{3}=$ $\left\{\left[\begin{array}{l}x_{3} \\ x_{3}\end{array}\right]\right\}$ and these three vertices are adjacent. Thus, the induced subgraph to the set $U_{i=1}^{3} A_{i}$ is the complete graph K_{3}.

Type 2:. Put $A_{i j}=\left\{\left.\left[\begin{array}{ll}a_{1} & a_{2}\end{array}\right]^{t} \right\rvert\, a_{1}, a_{2} \in\left\{\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right\}\right\}-\left(\mathrm{A}_{\mathrm{i}} \cup \mathrm{A}_{\mathrm{j}}\right)$, where $1 \leq \mathrm{i}<\mathrm{j} \leq 3$ and $\mathrm{i} \neq$ j. It is clear that $\left|A_{i j}\right|=2$ and we can see that A_{k} is adjacent to $A_{i j}$ for $k \neq i, j$ and the induced subgraph to the union of sets $A_{i j}$ and A_{k} is complete bipartite $\mathrm{K}_{1,2}$. So, $\operatorname{Cay}_{2}(\mathrm{G}, \mathrm{S})=$ $K_{3} \triangleright_{a} K_{1,2}$ where a is a vertex of degree 2 in $K_{1,2}$.
(ii) As (i), let $\mathrm{X}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right\}=\mathrm{V}(\operatorname{Cay}(\mathrm{G}, \mathrm{S}))$. Then

$$
\mathrm{V}\left(\operatorname{Cay}_{3}(\mathrm{G}, \mathrm{~S})=\left\{\left.\left[\begin{array}{lll}
\mathrm{w}_{1} & \mathrm{w}_{2} & \mathrm{w}_{3}
\end{array}\right]^{\mathrm{t}} \right\rvert\, \mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3} \in \mathrm{~V}(\operatorname{Cay}(\mathrm{G}, \mathrm{~S}))\right\}\right.
$$

and so $\mid \mathrm{V}\left(\mathrm{Cay}_{3}(\mathrm{G}, \mathrm{S}) \mid=3^{3}=27\right.$. We have three types of vertices as the following:
Type 1: Put $\left.\left.A_{i}=\left\{\begin{array}{lll}x_{i} & x_{i} & x_{i}\end{array}\right]^{t} \right\rvert\, x_{i} \in X\right\}$, where $i=1,2$ and 3. As similar as part (i), the induced subgraph to the set $\bigcup_{i=1}^{3} A_{i}$ is the complete graph K_{3}.
Type 2: Put $A_{i j}=\left\{\left[\mathrm{a}_{1} \mathrm{a}_{2} \mathrm{a}_{3}\right]^{\mathrm{t}} \mid \mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3} \in\left\{\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right\}\right\}-\left(\mathrm{A}_{\mathrm{i}} \cup \mathrm{A}_{\mathrm{j}}\right)$, where $1 \leq \mathrm{i}<\mathrm{j} \leq$ 3 and $i \neq j$. So, we have
$\mathbf{A}_{12}=\left\{\left[\begin{array}{l}\mathbf{x}_{1} \\ \mathbf{x}_{1} \\ \mathbf{x}_{2}\end{array}\right],\left[\begin{array}{l}\mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \mathbf{x}_{1}\end{array}\right],\left[\begin{array}{l}\mathbf{x}_{2} \\ \mathbf{x}_{1} \\ \mathbf{x}_{1}\end{array}\right],\left[\begin{array}{l}\mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \mathbf{x}_{2}\end{array}\right],\left[\begin{array}{l}\mathbf{x}_{2} \\ \mathbf{x}_{1} \\ \mathbf{x}_{2}\end{array}\right],\left[\begin{array}{l}\mathbf{x}_{2} \\ \mathbf{x}_{2} \\ \mathbf{x}_{1}\end{array}\right]\right\} \quad \mathbf{A}_{12}=\left\{\left[\begin{array}{l}\mathbf{x}_{1} \\ \mathbf{x}_{1} \\ \mathbf{x}_{2}\end{array}\right],\left[\begin{array}{l}\mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \mathbf{x}_{1}\end{array}\right],\left[\begin{array}{l}\mathbf{x}_{2} \\ \mathbf{x}_{1} \\ \mathbf{x}_{1}\end{array}\right],\left[\begin{array}{l}\mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \mathbf{x}_{2}\end{array}\right],\left[\begin{array}{l}\mathbf{x}_{2} \\ \mathbf{x}_{1} \\ \mathbf{x}_{2}\end{array}\right],\left[\begin{array}{l}\mathbf{x}_{2} \\ \mathbf{x}_{2} \\ \mathbf{x}_{1}\end{array}\right]\right\}$
$\mathbf{A}_{23}=\left\{\left[\begin{array}{l}\mathbf{x}_{2} \\ \mathbf{x}_{2} \\ \mathbf{x}_{3}\end{array}\right],\left[\begin{array}{l}\mathbf{x}_{2} \\ \mathbf{x}_{3} \\ \mathbf{x}_{2}\end{array}\right],\left[\begin{array}{l}\mathbf{x}_{3} \\ \mathbf{x}_{2} \\ \mathbf{x}_{2}\end{array}\right],\left[\begin{array}{l}\mathbf{x}_{1} \\ \mathbf{x}_{3} \\ \mathbf{x}_{3}\end{array}\right],\left[\begin{array}{l}\mathbf{x}_{3} \\ \mathbf{x}_{1} \\ \mathbf{x}_{3}\end{array}\right],\left[\begin{array}{l}\mathbf{x}_{3} \\ \mathbf{x}_{3} \\ \mathbf{x}_{1}\end{array}\right]\right\}$

We can observe that A_{k} is adjacent to $A_{i j}$ for all $i \neq j$ and $j>i$ and $k \neq i, j$. The induced subgraph to the union of sets $A_{i j}$ and A_{i} is complete bipartite $K_{1,6}$. Also, $A_{i j}$ is adjacent to all
$A_{t k}$ where $i, j \neq t, k$. The number of these sets is $\binom{3}{2}=3$.
Type 3: We define

$$
\begin{aligned}
& \mathrm{A}_{123}=\left\{\left\{\left.\left[\begin{array}{lll}
\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3}
\end{array}\right]^{\mathrm{t}} \right\rvert\, \mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3} \in \mathrm{X}\right\}\right\}-\left(\mathrm{A}_{1} \cup \mathrm{~A}_{2} \cup \mathrm{~A}_{3} \cup \mathrm{~A}_{12} \cup \mathrm{~A}_{13} \cup \mathrm{~A}_{23}\right) \\
& =\left\{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right],\left[\begin{array}{l}
x_{1} \\
x_{3} \\
x_{2}
\end{array}\right],\left[\begin{array}{l}
x_{2} \\
x_{3} \\
x_{1}
\end{array}\right],\left[\begin{array}{l}
x_{2} \\
x_{1} \\
x_{3}
\end{array}\right],\left[\begin{array}{l}
x_{3} \\
x_{1} \\
x_{2}
\end{array}\right],\left[\begin{array}{l}
x_{3} \\
x_{2} \\
x_{1}
\end{array}\right]\right\} \text {. Each vertex in this set is an isolated vertex. }
\end{aligned}
$$

Now, by considering the above three types of vertices and the fact that the vertex set is the union of these three types, we can find that $\left.\operatorname{Cay}_{3}(G, S)\right) \cong\left(K_{3} \triangleright_{a} K_{1,6}\right) \cup \bar{K}_{6}$, where a \in A_{i} is a vertex of degree 8.
(iii) By the same method as in parts (i) and (ii), we have the following details:
$\mathrm{V}(\operatorname{Cay}(\mathrm{G}, \mathrm{S}))=\mathrm{X}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right\} \quad=\quad \mathrm{X}, \quad \mathrm{V}\left(\operatorname{Cay}_{4}(\mathrm{G}, \mathrm{S})=\left\{\left.\left[\begin{array}{llll}\mathrm{w}_{1} & \mathrm{w}_{2} & \mathrm{w}_{3} & \mathrm{w}_{4}\end{array}\right]^{\mathrm{t}} \right\rvert\, \mathrm{w}_{\mathrm{t}} \in\right.\right.$ $\mathrm{V}(\mathrm{Cay}(\mathrm{G}, \mathrm{S}))\}, \mathrm{t}=1,2,3$ and $\mid \mathrm{V}\left(\mathrm{Cay}_{4}(\mathrm{G}, \mathrm{S}) \mid=3^{4}=81\right.$. Moreover, we can define similar sets $\mathrm{A}_{\mathrm{i}}, \mathrm{A}_{\mathrm{ij}}$ and $\mathrm{A}_{\mathrm{ijk}}$ as follows:
$A_{i}=\left\{\left[\begin{array}{lll}x_{i} & x_{i} & x_{i} \\ x_{i}\end{array}\right]^{t}: x_{i} \in X\right\}, \quad i=1,2,3,\left|A_{i}\right|=1$
$\mathrm{A}_{\mathrm{ij}}=\left\{\left[\begin{array}{llll}\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \mathrm{a}_{4}\end{array}\right]^{\mathrm{t}}: \mathrm{a}_{\mathrm{t}} \in\left\{\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right\}\right\}-\left(\mathrm{A}_{\mathrm{i}} \cup \mathrm{A}_{\mathrm{j}}\right) .1 \leq \mathrm{i}<\mathrm{j} \leq 3$ and $\mathrm{i} \neq \mathrm{j}$,
$\left|A_{i j}\right|=\sum_{i=1}^{m-1}\binom{4}{i}=\sum_{i=1}^{3}\binom{4}{i}=\binom{4}{1}+\binom{4}{2}+\binom{4}{3}=14$.
$\mathrm{A}_{\mathrm{ijk}}=\mathrm{A}_{123}=\left\{\left\{\left.\left[\begin{array}{llll}\mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} & \mathrm{a}_{4}\end{array}\right]^{\mathrm{t}} \right\rvert\, \mathrm{a}_{\mathrm{t}} \in \mathrm{X}\right\}\right\}-\left(\mathrm{A}_{1} \cup \mathrm{~A}_{2} \cup \mathrm{~A}_{3} \cup \mathrm{~A}_{12} \cup \mathrm{~A}_{13} \cup \mathrm{~A}_{23}\right)$ and we can see that $\left|A_{123}\right|=3!(6)=36$. As similar as we mentioned in the proof of (i) and (ii), a vertex in A_{i} is adjacent to a vertex in A_{j} for $j \neq i$, and the induced subgraph to the set $U_{i=1}^{3} A_{i}$ is a complete graph K_{3}. Also, a vertex in A_{k} is adjacent to all vertices in $A_{i j}$ for all $\mathrm{i} \neq \mathrm{j}, \mathrm{j}>\mathrm{i}$ and $\mathrm{k} \neq \mathrm{i}, \mathrm{j}$. Thus the induced subgraph to the sets A_{k} with A_{ij} produce a complete bipartite graph $K_{1,14}$. Since $1 \leq i \leq 3$ so there is no edge between vertices in sets A_{12}, A_{13} and A_{23}. Hence the structure of the graph except for vertices in set A_{123} will be as the form $\mathrm{K}_{3} \triangleright_{\mathrm{a}} \mathrm{K}_{1,14}$. Now, every vertex in A_{123} is not adjacent to any of the above sets and they are all isolated vertices. Combining these 36 isolated vertices in set A_{123} and the graph structure of the rest vertices will deduce that $\left.\mathrm{Cay}_{4}(\mathrm{G}, \mathrm{S})\right) \cong\left(\mathrm{K}_{3} \triangleright_{\mathrm{a}} \mathrm{K}_{1,14}\right) \cup \overline{\mathrm{K}}_{36}$, where a \in A_{i}.
Now, we are in a position to state the structure of $\mathrm{Cay}_{\mathrm{m}}(\mathrm{G}, \mathrm{S})$) for all $\mathrm{m} \geq 2$.
Theorem 2.5. Let $\operatorname{Cay}(G, S)=K_{3}$ then

$$
\left.\operatorname{Cay}_{\mathrm{m}}(\mathrm{G}, \mathrm{~S})\right) \cong\left(\mathrm{K}_{3} \triangleright_{\mathrm{a}} \mathrm{~K}_{1,2^{\mathrm{m}}-2}\right) \cup \overline{\mathrm{K}}_{3^{\mathrm{m}}-3\left(2^{\mathrm{m}}-1\right)} ; \forall \mathrm{a} \in \mathrm{~A}_{\mathrm{i}} \& \mathrm{~m} \geq 2
$$

Proof. Let $V(\operatorname{Cay}(G, S))=\left\{x_{1}, x_{2}, x_{3}\right\}$ and let $\operatorname{Cay}(G, S)$ be a complete graph $x_{1}-x_{2}-x_{3}-x_{1}$ of length 3 . We know that Cay $y_{m}(G, S)$ has 3^{m} vertices. Put three sets

$$
\begin{aligned}
& A_{1}=\left\{\left.\left[\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{m}
\end{array}\right]^{\mathrm{t}} \right\rvert\, \mathrm{a}_{\mathrm{i}} \in\left\{\mathrm{x}_{2}, \mathrm{x}_{3}\right\}, \quad 1 \leq \mathrm{i} \leq m\right\},\left|\mathrm{A}_{1}\right|=2^{\mathrm{m}} \\
& \left.\left.A_{2}=\left\{\begin{array}{llll}
a_{1} & a_{2} \ldots & a_{m}
\end{array}\right]^{\mathrm{t}} \right\rvert\, \mathrm{a}_{\mathrm{i}} \in\left\{\mathrm{x}_{1}, \mathrm{x}_{3}\right\}, \quad 1 \leq \mathrm{i} \leq m\right\},\left|A_{2}\right|=2^{\mathrm{m}} \\
& \left.\left.A_{3}=\left\{\begin{array}{lll}
a_{1} & a_{2} \ldots & a_{m}
\end{array}\right]^{\mathrm{t}} \right\rvert\, \mathrm{a}_{\mathrm{i}} \in\left\{\mathrm{x}_{1}, \mathrm{x}_{2}\right\}, \quad 1 \leq \mathrm{i} \leq m\right\},\left|\mathrm{A}_{3}\right|=2^{\mathrm{m}} \text {. }
\end{aligned}
$$

Then, we can see that vertex $\left[\begin{array}{lll}\mathrm{x}_{\mathrm{j}} & \mathrm{x}_{\mathrm{j}} \ldots & \mathrm{x}_{\mathrm{j}}\end{array}\right]^{\mathrm{t}}$ is adjacent to all vertices in set A_{j} for every $\mathrm{j}=$ $1,2,3$. Define the following three sets $B_{1}=A_{1}-\left\{\left[\begin{array}{llll}\mathrm{x}_{2} & x_{2} & \ldots & x_{2}\end{array}\right]^{\mathrm{t}},\left[\begin{array}{llll}\mathrm{x}_{3} & \mathrm{x}_{3} & \ldots & \mathrm{x}_{3}\end{array}\right]^{\mathrm{t}}\right\}$,
$\mathrm{B}_{2}=\mathrm{A}_{2}-\left\{\left[\begin{array}{llll}\mathrm{x}_{1} & \mathrm{x}_{1} & \ldots & \mathrm{x}_{1}\end{array}\right]^{\mathrm{t}},\left[\begin{array}{llll}\mathrm{x}_{3} & \mathrm{x}_{3} & \ldots & \mathrm{x}_{3}\end{array}\right]^{\mathrm{t}}\right\}, \mathrm{B}_{3}=\mathrm{A}_{3}-$
$\left\{\left[\begin{array}{llll}\mathrm{x}_{1} & \mathrm{x}_{1} & \ldots & \mathrm{x}_{1}\end{array}\right]^{\mathrm{t}}\right.$, $\left.\left[\begin{array}{llll}\mathrm{x}_{2} & \mathrm{x}_{2} & \ldots & \mathrm{x}_{2}\end{array}\right]^{\mathrm{t}}\right\}$.
We have $\left|B_{j}\right|=\left|A_{j}\right|-2=2^{m}-2$ for all $1 \leq j \leq 3$. All sets B_{1}, B_{2} and B_{3} are disjoint and independent sets and the subgraph induced by $\bigcup_{j=1}^{3} A_{j}$ is the comb product of K_{3} and $K_{1,2^{m}-2}$. Hence, Cay (G, S) has a component consisting of $K_{3} \triangleright_{a} K_{1,2^{m}-2}$, where $a \in A_{i}$. The rest of the components are all isolated vertices and the number of these isolated vertices
is $\left|V\left(\operatorname{Cay}_{m}(G, S)\right)\right|-3\left(2^{m}-2\right)-3=3^{m}-3\left(2^{m}-1\right)$.
Hence $\left.\operatorname{Cay}_{\mathrm{m}}(\mathrm{G}, \mathrm{S})\right) \cong\left(\mathrm{K}_{3} \triangleright_{\mathrm{a}} \mathrm{K}_{1,2^{\mathrm{m}}-2}\right) \cup \bar{K}_{3^{\mathrm{m}}-3\left(2^{\mathrm{m}}-1\right)}$, The graphs for $\mathrm{m}=1, \mathrm{~m}=2$ and genral case m are shown in Figurs 8.

Figure 6: The graph $\mathbf{C a y}_{2}(\mathbf{G}, \mathbf{S})$ of \mathbf{K}_{3}

Figure 7: The graph
$\mathbf{C a y}_{3}(\mathbf{G}, \mathbf{S})$ of \mathbf{K}_{3}

Figure 8: The graph $\mathbf{C a y}_{\mathrm{m}}(\mathbf{G}, \mathbf{S})$ of \mathbf{K}_{3}

Note that we may prove Theorem 2.4 by using sets $\mathrm{A}_{\mathrm{i}}, \mathrm{A}_{\mathrm{ij}}, \mathrm{A}_{\mathrm{ijk}}$ as the methods as in the previous Lemma , but the proof given here is more shorten.

In the following lemmas and theorems, we are going to find the structure of the generalized Cayley graph $\operatorname{Caym}_{\mathrm{m}}(\mathrm{G}, \mathrm{S})$ when $\operatorname{Cay}(\mathrm{G}, \mathrm{S})=\mathrm{K}_{\mathrm{n}}$ for all $\mathrm{n} \geq 4$. We determine their structure in terms of comb product. We should note that all components of comb product are not disjoined , because in the union of components of comb product, we may have some intersections. So, we will not mention these facts for each of them.

Lemma 2.6. Let $\operatorname{Cay}(\mathrm{G}, \mathrm{S})=\mathrm{K}_{4}$, then

$$
\left.\operatorname{Cay}_{2}(\mathbf{G}, \mathbf{S})\right) \cong\left(\left(K_{4} \triangleright_{\mathrm{a}} K_{1,6}\right) \cup 3 K_{2,2}, \text { where } a \in A_{i}\right.
$$

Proof : Suppose that $V(\operatorname{Cay}(\mathrm{G}, \mathrm{S}))=\mathrm{X}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right\}$. Then $\mathrm{Cay}_{2}(\mathrm{G}, \mathrm{S})$ has the vertex set as follows:
$\mathrm{V}\left(\mathrm{Cay}_{2}(\mathrm{G}, \mathrm{S})\right)=\left\{\left.\left[\begin{array}{ll}\mathrm{w}_{1} & \mathrm{w}_{2}\end{array}\right]^{\mathrm{t}} \right\rvert\, \mathrm{w}_{1}, \mathrm{w}_{2} \in \mathrm{~V}(\mathrm{Cay}(\mathrm{G}, \mathrm{S}))\right\}$ and so $\mid \mathrm{V}\left(\mathrm{Cay}_{2}(\mathrm{G}, \mathrm{S}) \mid=4^{2}=16\right.$.
Now, we
define two sets A_{i} and $A_{i j}$ given by the sets $A_{i}=\left\{\left[\mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}\right]^{t}: \mathrm{x}_{\mathrm{i}} \in X\right\}$, $\mathrm{i}=1,2,3,4$ and $\mathrm{A}_{\mathrm{ij}}=$ $\left\{\left[a_{1} \quad a_{2}\right]^{t} \mid a_{1}, a_{2} \in\left\{x_{i}, x_{j}\right\}\right\}-\left(A_{i} \cup A_{j}\right)$ for $1 \leq i<j \leq 4$. One can see that $\left|A_{i}\right|=1$ and the induced subgraph to the set $U_{i=1}^{4} A_{i}$ is the complete graph K_{4}. Furthermore, $\left|A_{i j}\right|=2$ and every vertex in A_{k} is adjacent to every vertex in $A_{i j}$ for $j>i$ and $k \neq i, j$. The number of sets $A_{i j}$ is $\binom{4}{2}=\frac{4!}{2!4!}=6$ and the induced subgraph to every set $A_{k} \cup A_{i j}$ is a complete bipartite $K_{1,6}$. Also, the induced subgraph to every set $A_{t k} \cup A_{i j}, i, j \neq t, k$ is a complete bipartite $K_{2,2}$. In other words, all vertices in $A_{i j}$ are adjacent to all vertices in $A_{t k}$ for every $i, j \neq t, k$. We may divide all vertices into two cases as the following :
Case one: All vertices in $\mathbf{A}_{\mathbf{i}}$. We have $\left.\mathbf{A}_{\mathbf{1}}=\left\{\left[\begin{array}{l}\mathbf{x}_{\mathbf{1}} \\ \mathbf{x}_{1}\end{array}\right]\right\}, \mathbf{A}_{\mathbf{2}}=\left\{\begin{array}{l}\mathbf{x}_{\mathbf{2}} \\ \mathbf{x}_{\mathbf{2}}\end{array}\right]\right\}, \mathbf{A}_{\mathbf{3}}=\left\{\left[\begin{array}{l}\mathbf{x}_{\mathbf{3}} \\ \mathbf{x}_{\mathbf{3}}\end{array}\right]\right\}$ and $\mathbf{A}_{\mathbf{4}}=$ $\left\{\left[\begin{array}{l}\mathbf{x}_{4} \\ \mathbf{x}_{4}\end{array}\right]\right\}$. It is clear that, every vertex in $\mathbf{A}_{\mathbf{i}}$ is adjacent to every vertex in $\mathbf{A}_{\mathbf{j}}$ such that $\mathbf{j} \neq \mathbf{i}$. So, the induced subgraph to the set $\bigcup_{i=1}^{4} \mathbf{A}_{\mathbf{i}}$ is the complete graph \mathbf{K}_{4}. Moreover, every vertex here has degree 9 .

Case two: All vertices in $A_{i j}$. We have $A_{12}=\left\{\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right],\left[\begin{array}{l}x_{2} \\ x_{1}\end{array}\right]\right\}, A_{13}=\left\{\left[\begin{array}{l}x_{1} \\ x_{3}\end{array}\right],\left[\begin{array}{l}x_{3} \\ x_{1}\end{array}\right]\right\}, A_{14}=$ $\left\{\left[\begin{array}{l}\mathrm{x}_{1} \\ \mathrm{x}_{4}\end{array}\right],\left[\begin{array}{l}\mathrm{x}_{4} \\ \mathrm{x}_{1}\end{array}\right]\right\}, \mathrm{A}_{23}=\left\{\left[\begin{array}{l}\mathrm{x}_{2} \\ \mathrm{x}_{3}\end{array}\right],\left[\begin{array}{l}\mathrm{x}_{3} \\ \mathrm{x}_{2}\end{array}\right]\right\}, \mathrm{A}_{24}=\left\{\left[\begin{array}{l}\mathrm{x}_{2} \\ \mathrm{x}_{4}\end{array}\right],\left[\begin{array}{l}\mathrm{x}_{4} \\ \mathrm{x}_{2}\end{array}\right]\right\}$ and $\mathrm{A}_{34}=\left\{\left[\begin{array}{l}\mathrm{x}_{3} \\ \mathrm{x}_{4}\end{array}\right],\left[\begin{array}{l}\mathrm{x}_{4} \\ \mathrm{x}_{3}\end{array}\right]\right\}$. We can see that every vertex in A_{k} is adjacent to all vertices in $A_{i j}$, where $i \neq j$ and $j>i$ and $k \neq i, j$. The induced subgraph to every set $A_{k} \cup A_{i j}$ is a complete bipartite graph $K_{1,6}$. Also, $A_{i j}$ is adjacent to all A_{tk} where $\mathrm{i}, \mathrm{j} \neq \mathrm{t}, \mathrm{k}$.

Hence, vertices in A_{1} is adjacent tovertices in $\mathrm{A}_{23}, \mathrm{~A}_{24}, \mathrm{~A}_{34}$. Similarly, A_{2} is adjacent to $A_{13}, A_{14}, A_{34}, A_{3}$ is adjacent to A_{12}, A_{24}, A_{14} and A_{4} is adjacent to A_{23}, A_{12}, A_{13}. Also, from adjacenty $A_{12} \sim A_{34}, A_{13} \sim A_{24}, A_{14} \sim A_{23}$, we will obtain three complete bipartite graphs $\mathrm{K}_{2,2}$. The vertices in the sets $\left\{\mathrm{A}_{12}, \mathrm{~A}_{34}\right\},\left\{\mathrm{A}_{13}, \mathrm{~A}_{24}\right\}$ and $\left\{\mathrm{A}_{14}, \mathrm{~A}_{23}\right\}$ are independent sets. Therefore, if a $\in A_{i}$ then we will have the following structure with some edges intersection between $K_{1,6}$ and $K_{2,2}$

$$
\left.\operatorname{Cay}_{2}(\mathrm{G}, \mathrm{~S})\right) \cong\left(\left(\mathrm{K}_{4} \triangleright_{\mathrm{a}} \mathrm{~K}_{1,6}\right) \cup 3 \mathrm{~K}_{2,2} \quad(\text { see Figure } 9)\right.
$$

Lemma 2.7 Let $\operatorname{Cay}(G, S)=K_{4}$, then

$$
\operatorname{Cay}_{3}(G, S) \cong\left(\left(K_{4} \triangleright_{\mathrm{a}} \mathrm{~K}_{1,24}\right) \cup 3 \mathrm{~K}_{6,6}\right) \text {, where } a \in A_{i}
$$

Proof: Suppose that $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ so $V(\operatorname{Cay}(G, S))=U_{i=1}^{4} x_{i}=X$,
$\mathrm{V}\left(\mathrm{Cay}_{3}(\mathrm{G}, \mathrm{S})\right)=\left\{\left.\left[\begin{array}{lll}\mathrm{w}_{1} & \mathrm{w}_{2} & \mathrm{w}_{3}\end{array}\right]^{\mathrm{t}} \right\rvert\, \mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3} \in \mathrm{~V}(\operatorname{Cay}(\mathrm{G}, \mathrm{S}))\right\}, \mid \mathrm{V}\left(\mathrm{Cay}_{3}(\mathrm{G}, \mathrm{S}) \mid=4^{3}=\right.$ 64. We have three types of vertices as the following :

Type (1): $A_{1}=\left\{\left[\begin{array}{l}x_{1} \\ x_{1} \\ x_{1}\end{array}\right]\right\}, \quad A_{2}=\left\{\left[\begin{array}{l}x_{2} \\ x_{2} \\ x_{2}\end{array}\right]\right\}, \quad A_{3}=\left\{\left[\begin{array}{l}x_{3} \\ x_{3} \\ x_{3}\end{array}\right]\right\}$ and $A_{4}=\left\{\left[\begin{array}{l}x_{4} \\ x_{4} \\ x_{4}\end{array}\right]\right\}$.
Type 2:

$$
\begin{aligned}
& A_{12}=\left\{\left[\begin{array}{l}
x_{1} \\
x_{1} \\
x_{2}
\end{array}\right],\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{2} \\
x_{1}
\end{array}\right],\left[\begin{array}{l}
x_{2} \\
x_{1} \\
x_{1} \\
x_{1}
\end{array}\right],\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{2} \\
x_{2}
\end{array}\right],\left[\begin{array}{l}
x_{2} \\
x_{1} \\
x_{1} \\
x_{2}
\end{array}\right],\left[\begin{array}{l}
\mathbf{x}_{2} \\
x_{2} \\
x_{2} \\
x_{1}
\end{array}\right]\right\} \\
& A_{13}=\left\{\left[\begin{array}{l}
x_{1} \\
x_{1} \\
x_{3}
\end{array}\right],\left[\begin{array}{l}
\mathbf{x}_{1} \\
x_{3} \\
x_{1}
\end{array}\right],\left[\begin{array}{l}
x_{3} \\
x_{1} \\
x_{1} \\
x_{1}
\end{array}\right],\left[\begin{array}{l}
\mathbf{x}_{1} \\
x_{3} \\
x_{3}
\end{array}\right]\left[\begin{array}{l}
x_{3} \\
x_{1} \\
x_{1} \\
x_{3}
\end{array}\right],\left[\begin{array}{l}
x_{3} \\
x_{3} \\
x_{1}
\end{array}\right]\right\}
\end{aligned}
$$

Type 3:

Some remarks:

1. The degree of every vertex in $\mathbf{A}_{\mathbf{i}}$ is 27 and they are adjacent to every vertex in $\mathbf{A}_{\mathbf{j}}$ such that $\mathbf{j} \neq \mathbf{i}$.
2. The induced subgraph to the set $\bigcup_{i=1}^{4} \mathbf{A}_{\mathbf{i}}$ is the complete graph $\mathbf{K}_{\mathbf{4}}$.
3. The degree of these vertices in $\mathbf{A}_{\mathbf{i j}}$ is 8 and every vertex in $\mathbf{A}_{\mathbf{k}}$ is adjacent to all vertices in $\mathbf{A}_{\mathbf{i j}}$, where $\mathbf{i} \neq \mathbf{j}$ and $\mathbf{j}>\mathbf{i}$ and $k \neq \mathbf{i}, \mathbf{j}$ and also, $\mathbf{A}_{\mathbf{i j}}$ is adjacent to all $\mathbf{A}_{\mathbf{t k}}$ so that $\mathbf{i}, \mathbf{j} \neq \mathbf{t}, \mathbf{k}$. 4. $\mathbf{A}_{\mathbf{1}}$ is adjacent to $\mathbf{A}_{\mathbf{2 3}}, \mathbf{A}_{\mathbf{2 4}}, \mathbf{A}_{\mathbf{3 4}}$ and $\mathbf{A}_{\mathbf{2 3 4}}, \mathbf{A}_{\mathbf{2}}$ is adjacent to $\mathbf{A}_{\mathbf{1 3}}, \mathbf{A}_{\mathbf{1 4}}, \mathbf{A}_{\mathbf{3 4}}$ and $\mathbf{A}_{\mathbf{1 3 4}}, \mathbf{A}_{\mathbf{3}}$ is adjacent to $\mathbf{A}_{\mathbf{1 2}}, \mathbf{A}_{\mathbf{2 4}}, \mathbf{A}_{\mathbf{1 4}}$ and $\mathbf{A}_{\mathbf{1 2 4}}$ and $\mathbf{A}_{\mathbf{4}}$ is adjacent to $\mathbf{A}_{\mathbf{2 3}}, \mathbf{A}_{\mathbf{1 2}}, \mathbf{A}_{\mathbf{1 3}}$ and $\mathbf{A}_{\mathbf{1 2 3}}$. Also, $\mathbf{A}_{\mathbf{1 2}} \sim \mathbf{A}_{\mathbf{3 4}}, \mathbf{A}_{\mathbf{1 3}} \sim \mathbf{A}_{\mathbf{2 4}}, \mathbf{A}_{\mathbf{1 4}} \sim \mathbf{A}_{\mathbf{2 3}}$.
4. From adjacenty $\mathbf{A}_{\mathbf{1 2}} \sim \mathbf{A}_{\mathbf{3 4}}, \mathbf{A}_{\mathbf{1 3}} \sim \mathbf{A}_{\mathbf{2 4}}, \mathbf{A}_{\mathbf{1 4}} \sim \mathbf{A}_{\mathbf{2 3}}$, we will obtain three of Complete bipartite graph $\mathbf{K}_{\mathbf{6}, \mathbf{6}}$, since the sets of $\left\{\mathbf{A}_{\mathbf{1 2}}, \mathbf{A}_{\mathbf{3 4}}\right\},\left\{\mathbf{A}_{\mathbf{1 3}}, \mathbf{A}_{\mathbf{2 4}}\right\}$ and $\left\{\mathbf{A}_{\mathbf{1 4}}, \mathbf{A}_{\mathbf{2 3}}\right\}$ are Independent sets.
Hence, we have $\operatorname{Cay}_{3}(G, S) \cong\left(\left(K_{4} \triangleright_{a} K_{1,24}\right) \cup 3 K_{6,6}\right)$, a $\in A_{i}$ as required.
By the same method as in the proof of Lemma 2.10 and 2.11, we may state the following lemma. The proof is omitted.

Lemma 2.8 Let $\operatorname{Cay}(G, S)=K_{4}$, then
$\mathrm{Cay}_{4}(\mathrm{G}, \mathrm{S}) \cong\left(\mathrm{K}_{4} \triangleright_{\mathrm{a}} \mathrm{K}_{1,78}\right) \cup \mathrm{K}_{1,36} \cup \bar{K}_{24}$; where $\mathrm{a} \in \mathrm{A}_{\mathrm{i}}$
The structure of graphs $\mathrm{Cay}_{2}(\mathrm{G}, \mathrm{S}), \mathrm{Cay}_{3}(\mathrm{G}, \mathrm{S}), \mathrm{Cay}_{4}(\mathrm{G}, \mathrm{S})$ when $\operatorname{Cay}(\mathbf{G}, \mathbf{S})=\mathrm{K}_{4}$ is shown in Figure 9, Figure 10 and Figure 11:

Figure 9: The graph
$\mathrm{Cay}_{2}(G, S)$ when $\operatorname{Cay}(\mathrm{G}, \mathrm{S})=K_{4}$

Figure10: The graph
$\mathrm{Cay}_{3}(G, S)$ when
$\operatorname{Cay}(\mathrm{G}, \mathrm{S})=K_{4}$

Figure 11: The graph
$\mathrm{Cay}_{4}(G, S)$ when
$\operatorname{Cay}(\mathrm{G}, \mathrm{S})=K_{4}$

Now, we are in a position that to state the following theorem:
Theorem 2.9 Let $\operatorname{Cay}(G, S)=K_{4}$, then for all $m \geq 2$, we have
$\operatorname{Cay}_{\mathrm{m}}(\mathrm{G}, \mathrm{S}) \cong\left(\mathrm{K}_{4} \triangleright_{\mathrm{a}}\left(\mathrm{K}_{1,3\left|\mathrm{~A}_{\mathrm{ij}}\right|+\left|\mathrm{A}_{\mathrm{ijk}}\right|}\right)\right) \cup 3 \mathrm{~K}_{\left|\mathrm{A}_{\mathrm{ij}}\right|,\left|\mathrm{A}_{\mathrm{ij}}\right|} \cup \overline{\mathrm{K}}_{\left|\mathrm{A}_{\mathrm{ijk}}\right|}$, where $\mathrm{a} \in \mathrm{A}_{\mathrm{i}}$.
Proof: Suppose that $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ such that $V(\operatorname{Cay}(G, S)=X$, then
$\mid V\left(\operatorname{Cay}_{\mathrm{m}}(\mathrm{G}, \mathrm{S}) \mid=4^{\mathrm{m}}\right.$ and
$\mathrm{V}\left(\operatorname{Cay}_{\mathrm{m}}(\mathrm{G}, \mathrm{S})=\left\{\left.\left[\begin{array}{llll}\mathrm{w}_{1} & \mathrm{w}_{2} & \cdots & \mathrm{w}_{\mathrm{m}}\end{array}\right]^{\mathrm{t}} \right\rvert\, \mathrm{w}_{2}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{m}} \in \mathrm{V}(\operatorname{Cay}(\mathrm{G}, \mathrm{S}))\right\}\right.$
We have four types of vertices in terms of degrees. They are:
Type (1) of vertices: We define $A_{i}=\left\{\begin{array}{llll}x_{i} & x_{i} & \cdots & x_{i}\end{array}\right]^{t}: x_{i} \in X$ and $\left.i=1,2,3,4\right\}$. Thus $\left|A_{i}\right|=1$ and the degree of these vertices is 3^{m}. Moreover, every vertex in A_{i} is adjacent to every vertex in A_{j} such that $j \neq i$. So, the number of vertices of all these sets is $\binom{4}{1}=4$ and the induced subgraph to the set $\bigcup_{i=1}^{4} A_{i}$ is the complete graph K_{4}.

Type (2) of vertices: Put

$$
A_{i j}=\left\{\left.\left[\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{m}
\end{array}\right]^{t} \right\rvert\, a_{1}, a_{2}, \ldots, a_{m} \in\left\{x_{i}, x_{j}\right\}, 1 \leq i<j \leq 4\right\}-\left(A_{i} \cup A_{j}\right) .
$$

Then the degree of these vertices is 2^{m}. and $\left|A_{i j}\right|=\sum_{i=1}^{m-1}\binom{m}{i}$. We can see that A_{k} is adjacent to $A_{i j}$ where $i \neq j$ and $j>i$ and $k \neq i, j$. The number of these sets is $\binom{4}{2}=\frac{4!}{2!4!}=$
6. The induced subgraph to the sets $A_{i j}$ with the vertex of "a" in A_{i} is complete 2-bipartite graph $K_{1,3\left|A_{i j}\right|}$. Also, $A_{i j}$ is adjacent to all $A_{\text {tk }}$ where $i, j \neq t$, k.So, $\left|A_{12}\right|=\left|A_{13}\right|=\left|A_{14}\right|=$ $\left|\mathrm{A}_{23}\right|=\left|\mathrm{A}_{24}\right|=\left|\mathrm{A}_{34}\right|=2^{\mathrm{m}}-2$.

Type (3) of vertices: We define

$$
\begin{gathered}
\left.A_{i j k}=\left\{\left.\left\{\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{m}
\end{array}\right]^{t} \right\rvert\, a_{1}, a_{2}, \ldots, a_{m} \in\left\{x_{i}, x_{j}, x_{k}\right\}, 1 \leq i<j<k \leq 4\right\}\right\} \\
-\left(A_{i} \cup A_{j} \cup A_{k} \cup A_{i j} \cup A_{j k} \cup A_{i k}\right)
\end{gathered}
$$

Then the degree of any of these vertices is

$$
(\mathrm{n}-3)^{\mathrm{m}}=(4-3)^{\mathrm{m}}=1^{\mathrm{m}}=1 \text { and }\left|\mathrm{A}_{\mathrm{ijk}}\right|=3 *\left(\frac{\mathrm{~m}!}{3!1!1!}+\frac{\mathrm{m}!}{2!2!1!}\right)=3\left(3^{\mathrm{m}-1}-2^{\mathrm{m}}+1\right)
$$

It is easy to see that A_{i} is adjacent to $A_{j k l}$ where $i \neq j, k, l$, and $j>i$ and $k \neq i, j$. The number of these sets is $\binom{4}{3}=\frac{4!}{3!1!}=4$. So, $\left|A_{123}\right|=\left|A_{124}\right|=\left|A_{134}\right|=\left|A_{234}\right|=3\left(\frac{m!}{n!1!1!}+\frac{m!}{2!2!1!}\right)$. The number of these vertices of Type III is $3\binom{4}{3}\left(3^{m-1}-2^{m}+1\right)$.
The induced subgraph to the sets $A_{i j}$ and $A_{i j k}$ with the vertex of "a" in A_{i} is complete bipartite graph $K_{1,3\left|A_{i j}\right|+\left|A_{i j k}\right|}$. Since, A_{i} is adjacent to all $A_{\text {tk }}$ where $i, j \neq t, k$ and $j>i$, also A_{i} is adjacent to all $A_{j k l}$ where $\mathrm{i} \neq \mathrm{j}, \mathrm{k}, \mathrm{l}$ and $1 \leq \mathrm{j}<\mathrm{K}<\mathrm{l} \leq 4$.
Type (IV) of vertices: By continuing this method we can see that the set $\mathrm{A}_{\mathrm{ijkl}}$ has isolated vertices where

$$
A_{i j k l}=\left\{\begin{array}{cccc}
{\left.\left[\begin{array}{lll}
a_{1} & a_{2} & \ldots \\
& a_{m}
\end{array}\right]^{t} \right\rvert\, a_{1}, a_{2}, \ldots, a_{m} \in\left\{x_{i}, x_{j}, x_{k}, x_{1}\right\}} \\
1 \leq i
\end{array}\right\}
$$

$-\left(A_{i} \cup A_{j} \cup A_{k} \cup A_{l} \cup A_{i j} \cup A_{i k} \cup A_{i l} \cup A_{j k} \cup A_{j l} \cup A_{k l} \cup A_{i j k} \cup A_{i j l} \cup A_{j k l}\right)$.
The number of these Isolated vertices in generalized Cayley graph Cay $\mathrm{Ca}_{\mathrm{m}}(\mathrm{G}, \mathrm{S})$ is $\left|A_{\mathrm{ijkl}}\right|=$ $\left|A_{1234}\right|=4^{m}-4-6\left|A_{i j}\right|-4\left|A_{i j k}\right|$. So, the graph $\operatorname{Cay}_{m}(G, S)$ is not connected, since A_{1234} isnot adjacent to $\mathrm{A}_{\mathrm{i}}, \mathrm{A}_{\mathrm{ij}}, \mathrm{A}_{\mathrm{ijk}}$ such that $1 \leq \mathrm{i}<\mathrm{j}<\mathrm{k} \leq 4$. It is obvious that, A_{1} is adjacent to $\mathrm{A}_{23}, \mathrm{~A}_{24}, \mathrm{~A}_{34}$ and $\mathrm{A}_{234}, \mathrm{~A}_{2}$ is adjacent to $\mathrm{A}_{13}, \mathrm{~A}_{14}, \mathrm{~A}_{34}$ and A_{134}, A_{3} is adjacent to $\mathrm{A}_{12}, \mathrm{~A}_{24}, \mathrm{~A}_{14}$ and $\mathrm{A}_{124}, \mathrm{~A}_{4}$ is adjacent to $\mathrm{A}_{23}, \mathrm{~A}_{12}, \mathrm{~A}_{13}$ and A_{123}.

These vertices in the generalized Cayley graph is Isolated vertices, since the set A_{1234} isnot adjacent to $\mathrm{A}_{\mathrm{i}}, \mathrm{A}_{\mathrm{ij}}, \mathrm{A}_{\mathrm{ijk}}$ such that $1 \leq \mathrm{i}<\mathrm{j}<\mathrm{k} \leq 4$. Hence, the graph $\mathrm{Cay}_{4}(\mathrm{G}, \mathrm{S})$ is not connected. Also, from adjacenty $\mathrm{A}_{12} \sim \mathrm{~A}_{34}, \mathrm{~A}_{13} \sim \mathrm{~A}_{24}, \mathrm{~A}_{14} \sim \mathrm{~A}_{23}$, we obtain three of the Complete 2-bipartite graph $\mathrm{K}_{\left|\mathrm{A}_{\mathrm{ij}}\right|,\left|\mathrm{A}_{\mathrm{ij}}\right|}$. The sets of $\left\{\mathrm{A}_{12}, \mathrm{~A}_{34}\right\},\left\{\mathrm{A}_{13}, \mathrm{~A}_{24}\right\}$ and $\left\{A_{14}, A_{23}\right\}$ are Independent sets. So, we see $A_{i j}$ is adjacent to all $A_{\text {tk }}$ where $i, j \neq$ t, k and $\mathrm{j}>\mathrm{i}, \mathrm{k}>\mathrm{t}$. Therefore,
$\operatorname{Cay}_{\mathrm{m}}(\mathrm{G}, \mathrm{S}) \cong\left(\mathrm{K}_{4} \triangleright_{\mathrm{a}}\left(\mathrm{K}_{1,3\left|A_{\mathrm{ij}}\right|+\left|\mathrm{A}_{\mathrm{ijk}}\right|} \mid\right)\right) \cup 3 \mathrm{~K}_{\left|\mathrm{A}_{\mathrm{ij}}\right|,\left|A_{\mathrm{ij}}\right|} \cup \overline{\mathrm{K}}_{\left|\mathrm{A}_{\mathrm{ijk}}\right|} ; 1 \leq \mathrm{i}<\mathrm{j}<\mathrm{k}<1 \leq 4$, where $a \in A_{i}$. The graph $\mathrm{Cay}_{4}(G, S)$ of K_{4} is shown in Figure.

Figure 12: The graph $\boldsymbol{C a y}_{\boldsymbol{m}}(\boldsymbol{G}, \boldsymbol{S})$ when $\operatorname{Cay}(\mathrm{G}, \mathrm{S})=\boldsymbol{K}_{\mathbf{4}}$

3. $\operatorname{Cay}_{\mathrm{m}}(\mathbf{G}, \mathrm{S})$ when $\operatorname{Cay}(\mathbf{G}, \mathbf{S})=K_{\mathrm{n}}$ for all $\mathbf{m}, \mathbf{n} \geq 2$

In this section, we determine the relevant structure of $\operatorname{Cay}_{m}(G, S)$ where $\operatorname{Cay}(G, S)=K_{n}$ for all $m, n \geq 2$. We start with the case $n>m$.

Theorem 3.1: Let $\operatorname{Cay}(G, S)=K_{n}$ when $n>m$, then

$$
\left.\left.\begin{array}{rl}
\operatorname{Cay}_{m}(G, S) \cong & \left(K _ { n } \triangleright _ { a } \left(K_{1, \sum_{q=2}}^{m}\left[\binom{n}{q}-\binom{n-1}{q-1}\right]\left|A_{i_{1} i_{2} \ldots i_{q}}\right|\right.\right.
\end{array}\right)\right) .
$$

Proof. Suppose that $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ such that $V(\operatorname{Cay}(G, S))=U_{i=1}^{n} x_{i}=X$, $\mathrm{V}\left(\operatorname{Cay}_{\mathrm{m}}(\mathrm{G}, \mathrm{S})\right)=\left\{\left.\left[\begin{array}{lll}\mathrm{w}_{1} & \mathrm{w}_{2} \ldots & \mathrm{w}_{\mathrm{m}}\end{array}\right]^{\mathrm{t}} \right\rvert\, \mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{m}} \in \mathrm{V}(\operatorname{Cay}(\mathrm{G}, \mathrm{S}))\right\}$ and

$$
\mid \mathrm{V}\left(\operatorname{Cay}_{\mathrm{m}}(\mathrm{G}, \mathrm{~S}) \mid=\mathrm{n}^{\mathrm{m}}\right.
$$

We have m-types of vertices in terms of degrees. They are:
Type (1) of vertices: The degree of these vertices is $(\mathrm{n}-1)^{\mathrm{m}}$ and the number of these vertices is $\binom{\mathrm{n}}{1}=\mathrm{n}$.

Define $\left.A_{i}=\left\{\begin{array}{llll}x_{i} & x_{i} & \ldots & x_{i}\end{array}\right]^{t} \right\rvert\, x_{i} \in X$ and $\left.i=1,2, \ldots, n\right\}$. So, $\left|A_{i}\right|=1$. So A_{i} is the set that has one element. It is clear that, every vertex in A_{i} is adjacent to every vertex in A_{j} such that $j \neq i$. So, the induced subgraph to the set $\bigcup_{i=1}^{n} A_{i}$ is the complete graph K_{n}. So,
$A_{1}=\left\{\left[\begin{array}{l}x_{1} \\ x_{1} \\ x_{1}\end{array}\right]\right\}, A_{2}=\left\{\left[\begin{array}{l}x_{2} \\ x_{2} \\ x_{2}\end{array}\right]\right\}, \ldots, A_{n}=\left\{\left[\begin{array}{l}x_{n} \\ x_{n} \\ x_{n}\end{array}\right]\right\}$.
Type (2) of vertices: The degree of these vertices is $(\mathrm{n}-2)^{\mathrm{m}}$.
Now, put

$$
A_{i j}=\left\{\left.\left[\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{m}
\end{array}\right]^{t} \right\rvert\, a_{1}, a_{2}, \ldots, a_{m} \in\left\{x_{i}, x_{j}\right\} \text { and } i, j=1,2, \ldots, n, i \neq j\right\}-\left(A_{i} \cup A_{j}\right) .
$$

and the order of $A_{i j}$ is $\left|A_{i j}\right|=2^{m}-2$ or $\left|A_{i j}\right|=\sum_{i=1}^{m-1}\binom{m}{i}$. We can see that A_{k} is adjacent to $A_{i j}$ where $i \neq j$ and $j>i$ and $k \neq i, j$, also, $A_{i j}$ is adjacent to all $A_{t k}$ where $i, j \neq t, k$.
The number of these sets is $\binom{n}{2}=\frac{n!}{2!(n-2)!}=\frac{n(n-1)}{2}$ and the number of these vertices is $\binom{n}{2}$ * $\left|\mathrm{A}_{\mathrm{ij}}\right|=\frac{\mathrm{n}(\mathrm{n}-1)}{2} * 6=3 \mathrm{n}(\mathrm{n}-1)$.

Type (3) of vertices: The degree of these vertices is $(n-3)^{m}$.
We define
$A_{i_{1} i_{2} i_{3}}=\left\{\left.\left\{\begin{array}{llll}a_{1} & a_{2} & \ldots & a_{m}\end{array}\right]^{t} \right\rvert\, a_{1}, a_{2}, \ldots, a_{m} \in\left\{x_{i_{1}}, x_{i_{2}}, x_{i_{3}}\right\}\right.$ and $\left.\left.1 \leq i_{1}<i_{2}<i_{3} \leq n\right\}\right\}$
$-\left(A_{i_{1}} \cup A_{i_{1}} \cup A_{i_{1}} \cup A_{i_{1} i_{2}} \cup A_{i_{1} i_{3}} \cup A_{i_{2} i_{3}}\right)$
Hence, $\left|A_{\mathrm{i}_{1} \mathrm{i}_{2} \mathrm{i}_{3}}\right|=3^{\mathrm{m}}-3\left(2^{\mathrm{m}}\right)+3=3\left(3^{\mathrm{m}-1}-2^{\mathrm{m}}+1\right)$.
It is easy to see that A_{i} is adjacent to $A_{j_{1} j_{2} j_{3}}$ where $i \neq j_{1} j_{2} j_{3}$ and $1 \leq j_{1}<j_{2}<j_{3} \leq n$. The number of these sets is $\binom{n}{3}=\frac{n!}{3!(n-3)!}=\frac{n(n-1)(n-2)}{6}$ and the number of these vertices is

$$
\binom{n}{3}\left|A_{i_{1} i_{2} i_{3}}\right|=\frac{3 n(n-1)(n-2)}{6} \cdot\left(3^{m-1}-2^{m}+1\right)=\frac{n(n-1)(n-2)\left(3^{m-1}-2^{m}+1\right)}{2} .
$$

Type q of vertices: The degree of these vertices is $(n-q)^{m}$ and $q<m$.
We define $A_{i_{1} i_{2} \ldots i_{q}}=\left\{\left.\left\{\begin{array}{llll}a_{1} & a_{2} & \ldots & a_{m}\end{array}\right]^{t} \right\rvert\, a_{1}, a_{2}, \ldots, a_{m} \in\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{q}}\right\}\right.$ and $1 \leq i_{1}<$

Hence, $\left|A_{i_{1} i_{2} \ldots i_{q}}\right|$. It is easy to see that $A_{j_{1}}$ is adjacent to $A_{i_{1} i_{2} \ldots i_{r}}$ where $j_{1} \neq i_{1}, i_{2}, \ldots, i_{r}$, and $1 \leq i_{1}<i_{2}<\cdots<i_{r} \leq n$ Such that $r<m-1 . A_{j_{1} j_{2}}$ is adjacent to $A_{i_{1} i_{2} \ldots} i_{q}$ where $j_{1} j_{2} \neq$ $\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{\mathrm{q}}$ and $1 \leq \mathrm{i}_{1}<\mathrm{i}_{2}<\cdots<\mathrm{i}_{\mathrm{q}} \leq \mathrm{n}$ Such that $\mathrm{r} \leq \mathrm{m}-2$.
By countinuing this issue inductively, we will have
$A_{\mathrm{j}_{1} \mathrm{j}_{2} \ldots \mathrm{j}_{\mathrm{t}}}$ is adjacent to $\mathrm{A}_{\mathrm{i}_{1} \mathrm{i}_{2} \ldots \mathrm{i}_{\mathrm{q}}}$ where $\mathrm{j}_{1} \mathrm{j}_{2} \ldots \mathrm{j}_{\mathrm{t}} \neq \mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{\mathrm{q}}, \quad 1 \leq \mathrm{i}_{1}<\mathrm{i}_{2}<\ldots<\mathrm{i}_{\mathrm{q}} \leq$ n and $1 \leq \mathrm{j}_{1}<\mathrm{j}_{2}<\cdots<\mathrm{j}_{\mathrm{t}} \leq \mathrm{n}$ Such that $\mathrm{t}+\mathrm{q}<\mathrm{m}$.

The number of these sets is $\binom{\mathrm{n}}{\mathrm{q}}=\frac{\mathrm{n}!}{\mathrm{q}!(\mathrm{n}-\mathrm{q})!}$ and the number of these vertices is

$$
\binom{n}{q}\left|A_{i_{1} i_{2} \ldots i_{q}}\right|=\frac{n!}{q!(n-q)!} \cdot q\left(q^{m-1}-(q-1)^{m-1}+q-2\right) .
$$

It is clear that, We can see that so that in it A_{j} 's are adjacent to $\binom{n}{2}-n+1$ of $A_{i_{1} i_{2}}$ such that $j \neq i_{1} i_{2}$ and $i_{1}<i_{2}, A_{j}$'s are adjacent to $\left[\binom{n}{3}-\binom{n-1}{2}\right]$ of $A_{i_{1} i_{2} i_{3}}$ such that $j \neq$ i_{1}, i_{2}, i_{3} and $1 \leq i_{1}<i_{2}<i_{3} \leq n$ and A_{j}, s are adjacent to $\left[\binom{n}{q}-\binom{n-1}{q-1}\right]$ of $A_{i_{1} i_{2}} \ldots i_{q}$ such that $\mathrm{j} \neq \mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{\mathrm{q}}$ and $1 \leq \mathrm{i}_{1}<\mathrm{i}_{2}<\cdots<\mathrm{i}_{\mathrm{q}} \leq \mathrm{n}$. It is clear that, we will have complete 2-bipartite graph $K_{1, \sum \mathrm{q}=2}^{\mathrm{m}}\left[\binom{\mathrm{n}}{\mathrm{q}}-\binom{\mathrm{n}-1}{\mathrm{q}-1}\right]\left|A_{\mathrm{A}_{1} \mathrm{i}_{2} . . . \mathrm{i}_{\mathrm{q}}}\right|$ that is appended to a complete graph of K_{n} is obtained.

Also, we will obtain (n-r+1) complete 2-bipartite graph

$\mathrm{A}_{\mathrm{j}_{1} \mathrm{j}_{2}}$'s are adjacent to $\left[\binom{n-1}{2}-\binom{n-2}{1}\right]$ of $\mathrm{A}_{\mathrm{i}_{1} \mathrm{i}_{2}}$ such that $\left(\mathrm{j}_{1}, \mathrm{j}_{2} \neq \mathrm{i}_{1}, \mathrm{i}_{2}, \mathrm{j}_{1}<\mathrm{j}_{2}\right.$, $1 \leq \mathrm{i}_{1}<\mathrm{i}_{2} \leq \mathrm{n}$,
$A_{j_{1} j_{2}}$'s are adjacent to $\left[\binom{n-2}{3}-\binom{n-3}{2}\right]$ of $A_{i_{1} i_{2} i_{3}}$ such that $\left(j_{1}, j_{2} \neq i_{1}, i_{2}, i_{3}\right), j_{1}<j_{2}$ $, 1 \leq \mathrm{i}_{1}<\mathrm{i}_{2}<\mathrm{i}_{3} \leq \mathrm{n}, \ldots$, and
$A_{j_{1} j_{2}}$,s are adjacent to $\left[\binom{n-q+1}{q}-\binom{n-q}{q-1}\right]$ of $A_{i_{1} i_{2}} \ldots i_{q}$ such that $\left(j_{1}, j_{2} \neq i_{1}, i_{2}, \ldots, i_{q}\right)$ $, \mathrm{j}_{1}<\mathrm{j}_{2}, 1 \leq \mathrm{i}_{1}<\mathrm{i}_{2}<\cdots<\mathrm{i}_{\mathrm{q}} \leq \mathrm{n}$. The sets of $\left\{\mathrm{A}_{\mathrm{j}_{1} \mathrm{j}_{2} \ldots \mathrm{j}_{\mathrm{q}}}, \mathrm{A}_{\mathrm{i}_{1} \mathrm{i}_{2} \ldots \mathrm{i}_{\mathrm{r}}}\right\}$ where $\mathrm{j}_{1}, \mathrm{j}_{2} \ldots, \mathrm{j}_{\mathrm{q}}=$
$\mathrm{i}_{1} \mathrm{i}_{2} \ldots \mathrm{i}_{\mathrm{r}}$ such that $1 \leq \mathrm{j}_{1}<\mathrm{j}_{2}<\cdots<\mathrm{j}_{\mathrm{q}} \leq \mathrm{n}$ and $1 \leq \mathrm{i}_{1}<\mathrm{i}_{2}<\cdots<\mathrm{i}_{\mathrm{r}} \leq \mathrm{n}$ are independent sets.
So we must cancel the edges between $A_{j_{1} j_{2} \ldots j_{q}} \sim A_{i_{1} i_{2} \ldots i_{r}}$ where $j_{1}, j_{2} \ldots, j_{q}=i_{1} i_{2} \ldots i_{r}$.
Type \mathbf{m} of vertices: The degree of these vertices is $(\mathrm{n}-\mathrm{m})^{\mathrm{m}}$ where $\mathrm{q}=\mathrm{m}$.
We define

$$
\begin{aligned}
& A_{i_{1} i_{2} \ldots i_{q}}=\left\{\left\{\left[\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{m}
\end{array}\right]^{t}: a_{1}, a_{2}, \ldots, a_{m} \in\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{q}}\right\} \text { and } 1 \leq i_{1}<i_{2<\ldots}<i_{q}\right.\right. \\
& \leq n\}\}-\left(\bigcup_{i=1}^{n} A_{i} \bigcup_{\substack{i_{1}, i_{2}=1, i_{1}<i_{2}}}^{n} A_{i_{1} i_{2}} \quad \cdots \quad \bigcup_{\substack{i_{1} i_{2}, \ldots, i_{r-1}=1, 1 \leq i_{1}<i_{2}<\ldots<i_{q-1} \leq n}}^{n} A_{i_{1} i_{2} \ldots i_{q-1}}\right)
\end{aligned}
$$

We know that if $\mathrm{n}>\mathrm{m}$, then the generalized Cayley graph will be connected (by theorem 1.6). It is clear that $\operatorname{Cay}_{\mathrm{m}}(\mathrm{G}, \mathrm{S})$ hasnot an isolated vertces. The smallest degree at the vertices of $\mathrm{Cay}_{\mathrm{m}}(\mathrm{G}, \mathrm{S})$ will be at the vertices below:

$$
\begin{aligned}
A_{i_{1} i_{2} \ldots} \ldots i_{n-m}= & \left\{\left.\left[\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{m}
\end{array}\right]^{t} \right\rvert\, a_{1}, a_{2}, \ldots, a_{m} \in\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n-m}}\right\}, 1 \leq i_{1}<i_{2}<\cdots\right. \\
& \left.<i_{n-m} \leq n\right\}
\end{aligned}
$$

So, $\operatorname{deg}\left(A_{i_{1} i_{2} \ldots i_{n-m}}\right)=(n-m)^{m}$, since we want to put ($n-m$) distinct objects in m distinct boxes so that it repeats.Thus, we have $\delta\left(\operatorname{Cay}_{m}(G, S)\right)=(n-m)^{m}, \forall a \in A_{i}$;

$$
\begin{aligned}
& \underset{\substack{\mathbf{r}=2 \\
\mathbf{r} \leq \mathbf{m}}}{\mathbf{r}+\mathbf{q}=\mathbf{n}}(\mathbf{n}-\mathbf{r}+\mathbf{1}) \mathbf{K}_{\left|\mathbf{A}_{\mathbf{i}_{1} \mathbf{i}_{2} \ldots \mathbf{i}_{\mathbf{r}}}\right|, \Sigma_{\mathbf{q}=2}^{\mathbf{m}-\mathbf{r}+2}\left[\binom{\mathbf{n - q}-\mathbf{q}-\mathbf{1}}{\mathbf{q}}-\binom{\mathbf{n - q} \mathbf{q}}{\mathbf{q}-\mathbf{1}}\right]\left|A_{\mathbf{i}_{\mathbf{1}} \mathbf{i}_{2} \ldots \mathbf{i}_{\mathbf{q}}}\right|} ; \mathbf{a} \in \mathbf{A}_{\mathbf{i}}
\end{aligned}
$$

The following theorem concern the case $\mathrm{n} \leq \mathrm{m}$.
Theorem 3.2: Let $\operatorname{Cay}(G, S)=K_{n}$ when $\mathbf{n} \leq \mathbf{m}$, then
Proof: Similar to the proof of the Theorem 3.1 but in this theorem, we know that if $n \leq m$, then the generalized Cayley graph will not be connected (by Theorem 1.6) and it is clear that $\left[\begin{array}{lllllll}x_{1} & x_{2} & \ldots & x_{n} & x_{1} & \ldots & x_{m-n}\end{array}\right]^{t}$ is an isolated vertex. So, the degree of these vertices is zero. Thus the number of these isolated vertices is $\left|A_{i_{1} i_{2} \ldots i_{q}}\right|=n^{m}-n-$

Therefore, for all a $\in A_{i}$, we have

$$
\begin{aligned}
& \operatorname{Cay}_{\mathrm{m}}(\mathbf{G}, \mathbf{S}) \cong\left(\mathbf{K}_{\mathbf{n}} \triangleright_{\mathbf{a}}\left(\mathbf{K}_{1, \Sigma_{\mathbf{q}=2}^{\mathrm{m}} 2}\left[\binom{\mathbf{n}}{\mathbf{q}}-\binom{\mathbf{n}-\mathbf{1}}{\mathbf{q}-\mathbf{1}}\right]\left|A_{\mathbf{i}_{\mathbf{i}} \mathbf{i}_{2} \ldots \mathbf{i}_{\mathbf{q}}}\right|\right)\right) \\
& \cup \bigcup_{\substack{r=2 \\
r \leq m}}^{\mathbf{r}+\mathbf{q}=\mathbf{n}}(\mathbf{n}-\mathbf{r}
\end{aligned}
$$

as required.

4-Conclusions:

The aim of this paper is to introduce a generalization of the Cayley graph denoted by $\boldsymbol{C a y}_{\boldsymbol{m}}(\boldsymbol{G}, \boldsymbol{S})$. Some basic properties of the new graph are given and investigated. Furthermore, the structure of $\boldsymbol{C a \boldsymbol { y } _ { \boldsymbol { m } }}(\boldsymbol{G}, \boldsymbol{S})$ when $\boldsymbol{C a y}(\boldsymbol{G}, \boldsymbol{S})$ is equal to n-cube graph $\boldsymbol{Q}_{\boldsymbol{n}}$ and complete rpartite graph $K_{\boldsymbol{n}, \boldsymbol{n}, \ldots, \boldsymbol{n}}$ for every $\boldsymbol{n}, \boldsymbol{m} \geq \mathbf{2}$ has been also assigned. Many important results have been also obtained and provided in this work

References

[1] P. Cayley, "Desiderata and suggestions, the theory of groups: graphical representation". American Journal of Mathematics 1, vol.2, pp. 174-176, 1878.
[2] D. Marušič, R. Scapellato, and N. Z. Salvi, "Generalized Cayley graphs". Discrete Mathematics vol.102, no.3, pp. 279-285, 1992.
[3] Y. Zhu, "Generalized Cayley graphs of semigroups" In Semigroup Forum, vol. 84, pp. 131-143, 2012.
[4] A. A. Neamah, A. Erfanian, A. H. Majeed, "On a generalized Cayley graph of column matrices of elements of a finite group", Journal of Mathematica, vol. 64 (87), no 2, pp. 247-254, 2022.
[5] C. Godsil, and G. F. Royle, Algebraic Graph Theory, Springer Science \& Business Media, vol. 207, 2001.
[6] S. Mohammadi, Some generalizations of Cayley graph and Intersection graph, Ph.D Thesis, Ferdowsi University of Mashhad, Mashhad, Iran (March 2020).
[7] S. W. Saputro, N. Mardiana, and I.A. Purwasi, , "The metric dimension of comb product graph", Matematicki Vesnik, vol.69, no.4, pp.248-258, 2017.

[^0]: *Email: suada.alshabib@kufa.edu.iq

