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Abstract 

     Our purpose in this paper is to introduce new operators on Hilbert space which is 

called weakly normal operators. Some basic properties of these operators are studied 

in this research. In general, weakly normal operators need not be normal operator, 𝑛-

normal operators and quasi-normal operators. 

 

Keywords: weakly normal operators, normal operators, 𝑛-normal operators, 

projection. 

 

 صف من المؤثرات القياسية الضعيفة
 

 *3انس عباس حجاب , 2ايلاف صباح عبدالواحد, 1ليث خليل شاكر

 1قسم الرياضيات، كلية علوم الحاسوب والرياضيات، جامعة تكريت، العراق 
 2قسم الرياضيات، كلية التربية للبنات، جامعة تكريت، العراق 

 3قسم الرياضيات، كلية التربية للعلوم الصرفة، جامعة تكريت، العراق 
 

  الخلاصة 
هو تقديم نوع جديد من المؤثرات على فضاء هلبرت التي اطلقنا عليها اسم المؤثرات القياسية الضعيفة.    هدفنا      

المؤثر. بصورة عامة المؤثر القياسي   وتم في هذا البحث دراسة بعض من الخواص والصفات الأساسية لهذا 
 و مؤثر شبه قياسي.، أ  n-أن يكون مؤثر قياسي، مؤثر قياسي من الصنف  ليس من الضروري الضعيف 

 

1. Introduction: 

     Normal operator was investigated by several authors [1, 2, 3]. Shqipe, Lohaj 2010  [4] and 

Sid Ahmed 2011 [5] investigated quasi-normal operators, while several writers introduced and 

investigated n-normal operators [3, 4, 6]. We assume 𝔹(ℍ) the collection of every bounded 

linear operators on Hilbert space ℍ. ℓ2 = {𝑥 = (𝓅1, 𝓅2, … ): 𝓅𝑖 ∈ ℂ  ∀𝑖 and ∑ |𝓅𝑖|2 <∞
𝑖=1

∞} and we use symbols 𝐾𝑒𝑟(𝕋) , ℝ(𝕋) and 𝕋∗, the kernel (or null space), the range and adjoint 

of  𝕋 respectively. The operator 𝕋 ∈ 𝔹 (ℍ) is isometry if 𝕋∗𝕋 = 𝕀, unitary if  𝕋∗𝕋 = 𝕋 𝕋∗ =
𝕀 and 𝕋 is self adjoint if 𝕋∗ = 𝕋 and projection if 𝕋2 = 𝕋 = 𝕋∗. The normality set of 𝔸 ∈ 𝔹(ℍ) 

is ℕ𝔸 = {𝕋 ∈ 𝔹(ℍ): 𝔸𝕋∗ = 𝕋∗𝔸}. (For more details see, [1, 7, 8, 9, 10, 11, 12]). This paper 

contains four sections. In Section two, we introduce some of the essentially properties of weakly 

 
 

              ISSN: 0067-2904 

 

mailto:anas_abass@tu.edu.iq


Shaakir et al.                                                 Iraqi Journal of Science, 2023, Vol. 64, No. 7, pp: 3531-3537 

 

3532 

normal operators. Many of the main results are presented in section three. Finally, in Section 

four, a conclusion and discussion are presented. 

 

2. Preliminaries: 

In this section we investigate and study some of the basic properties of weakly normal 

operators. 

 

Definition 2.1: 𝕋 ∈ 𝔹 (ℍ) is called weakly normal operator if 𝕋 𝕋∗ = 𝕏 𝕋∗𝕋, for some 𝕏 ∈
𝔹 (ℍ).  
Let  𝕎(𝕋)  be a set which is defined by 𝕎(𝕋) = { 𝕏 ∈ 𝔹 (ℍ): 𝕋 𝕋∗ = 𝕏 𝕋∗𝕋 }, where 𝕋 is a  

weakly normal operator. Note that, if  𝕋 ∈ 𝔹 (ℍ) is non-zero, then 0 ∉ 𝕎(𝕋), since 𝕋 𝕋∗ ≠ 0. 

Also 𝕎(0) = 𝔹 (ℍ) and 𝕎(I) = I. 
 

Remark 2.2:  It is clear that every normal operator is weakly normal. However, the converse 

is not true. For example, it well known that the unilateral shift 𝕌 on  ℓ2  is not normal operator, 

but it is weakly normal operator such that 𝕎(𝕌) = {𝕌𝕌∗}. 

 

Proposition 2.3:  Let 𝕋 ∈ 𝔹 (ℍ). Then the following are equivalent 

(1) 𝕋 is weakly normal operator; 

(2) There exists 𝕐 ∈ 𝔹 (ℍ) such that 𝕋 𝕋∗ = 𝕋∗𝕋 𝕐. 

 

Proof: It is directly obtained from the fact that 𝕋 𝕋∗ and 𝕋∗𝕋 are self adjoint. □ 

Theorem 2.4: If 𝕋 is weakly normal operator, then: 

i.𝕋∗ is not necessarily weakly normal operator. 

ii.𝜆𝕋  is weakly normal operator and  𝕎(𝜆𝕋) = 𝕎(𝕋) for every complex number 𝜆. 

iii.If 𝕊 is unitary equivalent to 𝕋 that is there exists a unitary operator 𝕍 such that  𝕊 = 𝕍∗𝕋𝕍 , 

then 𝕊 is weakly normal operator and   𝕍∗𝕎(𝕋)𝕍 = 𝕎(𝕊). 

Proof: (i) We have seen that the unilateral shift operator 𝕌 on ℓ2 is weakly normal operator. 

Now, suppose that 𝕌∗ is weakly normal operator, then there exist 𝕏 ∈ 𝔹 (ℍ) such weakly 

normal operator that 𝕌∗𝕌 = 𝕏𝕌𝕌∗, so we have 𝕀 = 𝕏𝕌𝕌∗. If { 𝑒𝑛} is the standard orthonormal 

basis for ℓ2, then  𝑒1 = 𝕝(𝑒1) = 𝕏𝕌𝕌∗(𝑒1) = 0, this contradict that 𝑒1 is non-zero vector. This 

implies that  𝕌∗ is not weakly normal operator.   

(ii) Since 𝕋 is weakly normal operator, then 𝕋𝕋∗ = 𝕏 𝕋∗𝕋, for some  𝕏 ∈ 𝔹 (ℍ), so that 

(𝜆𝕋)(𝜆𝕋)∗ = 𝜆𝜆̅ 𝕋 𝕋∗ = 𝕏 (𝜆𝕋)∗(𝜆𝕋). Thus 𝜆𝕋 is weakly normal operator and 𝕎(𝜆𝕋) =
𝕎(𝕋) for every non-zero complex number 𝜆.  

(iii) Since 𝕊 is unitary equivalent to 𝕋, then 𝕊 = 𝕍∗𝕋 𝕍, for some unitary operator 𝕍, so that 

𝕊𝕊∗ = 𝕍∗𝕋 𝕍𝕍∗𝕋∗ 𝕍 = 𝕍∗𝕏𝕋∗𝕋𝕍 = 𝕍∗𝕏𝕍𝕍∗𝕋∗𝕍𝕍∗𝕋 𝕍 = (𝕍∗𝕏 𝕍)𝕊∗𝕊. Thus, 𝕊 is weakly 

normal operator and  𝕍∗ 𝕎(𝕋)𝕍 = 𝕎(𝕊). □ 

In the previous theorem, part (iii) if we replaced unitarily equivalent by similarity, then the 

result is not true, as we see in the following example. 

Example 2.5: The operators 𝕋 = (
1 0
0 0

) and 𝕏 = (
1 1
0 −1

) on two dimensional Hilbert space 

ℂ2, then 𝕋 is weakly normal operator, because 𝕋  is self adjoint operator.  

But, 𝕊 = 𝕏𝕋𝕏−1 = (
1 1
0 0

) it is not weakly normal operator. 

 

 

 

 

Proposition 2.6: Let 0 ≠ 𝕋 ∈ 𝔹 (ℍ). 
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1- If 𝕋−1 exist, then 𝕋 is weakly normal operator, where 𝕎(𝕋) = {𝕋 𝕋∗𝕋 −1𝕋∗−1} and 

𝕎(𝕋−1) = {𝕋−1𝕋∗−1𝕋 𝕋∗} = (𝕎(𝕋))∗. 

2- ∥ 𝕏 ∥ ≥ 1 for every 𝕏 ∈ 𝕎(𝕋). 
3- 𝛼𝕝 ∉ 𝕎(𝕋) for every 𝛼 ∈ ℂ ∖ {1}. 

4- If  𝕏 ∈ 𝕎(𝕋), then  𝛼 𝕏 ∉ 𝕎(𝕋) for every 𝛼 ∈ ℂ ∖ {1}.  

 

Proof: (1) The proof is straightforward.  

(2) Since ∥ 𝕋 𝕋∗ ∥=∥ 𝕋∗𝕋 ∥=∥ 𝕋 ∥2 and ∥ 𝕋 𝕋∗ ∥=∥ 𝕏 𝕋∗𝕋 ∥≤∥ 𝕏 ∥∥ 𝕋∗𝕋 ∥,  

then ∥ 𝕏 ∥ ≥ 1, for every  𝕏 ∈ 𝕎(𝕋).  

(3) If 𝛼 𝕝 ∈ 𝕎(𝕋), then 𝕋 𝕋∗ = 𝛼 𝕋∗𝕋.  

So that, ∥ 𝕋∗(𝑥) ∥2=< 𝕋 𝕋∗(𝑥), 𝑥 >= < 𝛼𝕋∗𝕋(𝑥), 𝑥 > = 𝛼 ∥ 𝕋(𝑥) ∥2 for every 𝑥 ∈ ℍ. 

Hence,  ∥ 𝕋∗ ∥2= 𝛼 ∥ 𝕋 ∥2. This implies that  𝛼 = 1. 
(4) Suppose that   𝛼 𝕏 ∈ 𝕎(𝕋), where  𝕏 ∈ 𝕎(𝕋). Hence,𝕋 𝕋∗ = 𝕏 𝕋∗𝕋. Multiplies both side 

by 𝛼, we get 𝛼 𝕋 𝕋∗ = 𝛼 𝕏 𝕋∗𝕋. So that 𝛼 𝕋 𝕋∗ =  𝕋 𝕋∗. Therefore, 

(𝛼 − 1)𝕋 𝕋∗ = 0 ⟹  𝛼 = 1. □ 

The converse of Proposition 2.6 (1) is not necessary true, as we see in the following example. 

 

Example 2.7: The operator 𝕋 = (
  1 −1
−1    1

) on Hilbert space ℂ2 is weakly normal operator, in 

fact normal, but it is not invertible. 

 

3. Main Results: 

In this section, we introduce new results in this subject through some basic theorems and 

propositions. 

 

Proposition 3.1: If  𝕋∗ is isometry operator, then 𝕋 is weakly normal operator if and only if 𝕋 

is unitary.  

 

Proof: Let 𝕋 be weakly normal operator. Then 𝕋𝕋∗ = 𝕏 𝕋∗𝕋, for some 𝕏 ∈ 𝔹 (ℍ). Since  𝕋∗ 

is isometry, then  𝕀 = 𝕋 𝕋∗ = 𝕏 𝕋∗𝕋. Therefore, 𝕋 is invertible operator and 𝕋−1 =  𝕋∗. Thus 

𝕋 is unitary. 

Conversely, if 𝕋 is unitary operator, then 𝕋 𝕋∗ =  𝕋∗𝕋 = 𝕀, so that 𝕋 isweakly normal operator, 

where 𝕎(𝕋) = {𝕀}. □ 

 

Theorem 3.2: Let 𝕋 ∈ 𝔹 (ℍ) 

(1) If  {𝑋1, 𝑋2, … … , 𝑋𝑛} ⊆ 𝕎(𝕋), then  
1

𝑛
∑  𝑋𝑖  ∈ 𝕎(𝕋).𝑛

𝑖=1  

(2) 𝕎(𝕋)  is closed convex set. 

(3) If  𝕋, 𝕋∗ are weakly normal operators, then 𝕎(𝕋)𝕎(𝕋∗)𝕎(𝕋) ⊆ 𝕎(𝕋). 
 

Proof: (1) The proof is straightforward. 

(2) Let  {𝑋𝑛} be a sequence in 𝕎(𝕋) converge to 𝑋. Then the sequence {𝑋𝑛𝕋∗𝕋} = {𝕋 𝕋∗} is 

converge to 𝕏 𝕋∗𝕋 so that 𝕋 𝕋∗ = 𝕏𝕋∗𝕋. Therefore,  𝕏 ∈ 𝕎(𝕋). Thus 𝕎(𝕋) is closed set.  

If 𝕏, 𝕐 ∈ 𝕎(𝕋) and 0 ≤  𝜂 ≤ 1, then  

(𝜂𝕏 + (1 − 𝜂)𝕐) 𝕋∗𝕋 = 𝜂 𝕏 𝕋∗𝕋 + (1 − 𝜂) 𝕐 𝕋∗𝕋 = 𝜂 𝕋 𝕋∗ + (1 − 𝜂) 𝕋 𝕋∗ =  𝕋 𝕋∗, 

so that 𝕎(𝕋)is convex set.   

(3) If  𝕏, 𝕐 ∈ 𝕎(𝕋), ℤ ∈ 𝕎(𝕋∗),  then 𝕏 ℤ 𝕐 𝕋∗𝕋 = 𝕏 ℤ 𝕋 𝕋∗ =  𝕏 𝕋∗𝕋 = 𝕋𝕋∗ 

so that  𝕏 ℤ 𝕐 ∈ 𝕎(𝕋). □ 
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Theorem 3.3: If 𝕋 is non-zero bounded linear operator on ℓ2, then 𝕌𝑛 ∉ 𝕎(𝕋) for every 

positive integer 𝑛, where  𝕌 is the unilateral shift operator. 

 

Proof: We prove  𝕌𝑛 ∉ 𝕎(𝕋) for  𝑛 = 1 and similarly we can prove for 𝑛 > 1. Suppose for 

the contrary that 𝕋 𝕋∗ = 𝕌𝕋∗𝕋, so that  𝕋 𝕋∗ = 𝕋∗𝕋 𝕌∗. Let {𝑒𝑖} be the standard orthonormal 

basis for ℓ2. 

We show now by induction that for every positive integer 𝑖, we have  𝕋∗𝕋(𝑒𝑖) = 0.  

Base case: 𝑖 = 1: 𝕋 𝕋∗(𝑒1) = 𝕋∗𝕋 𝕌∗(𝑒1) = 0. Therefore, 𝕌 𝕋∗𝕋 (𝑒1) = 0, and hence 

 𝕋∗𝕋 (𝑒1) = 0. 

Inductive step: Suppose the result is true for  𝑖 = 𝑘. 𝕋 𝕋∗(𝑒𝑘+1) = 𝕋∗𝕋 𝕌∗(𝑒𝑘+1) =
𝕋∗𝕋 (𝑒𝑘) = 0, which implies 𝕌 𝕋∗𝕋 (𝑒𝑘+1) = 𝕋 𝕋∗(𝑒𝑘+1) = 0, and hence 𝕋∗𝕋 (𝑒𝑘+1) = 0. 

Therefore,  𝕋∗𝕋 (𝑒𝑖) = 0 for every 𝑖. This contradict that  𝕋∗𝕋 is non-zero operator. □ 

 

Corollary 3.4: If 𝕋 is non-zero bounded linear operator on ℓ2, then 𝕌∗ ∉ 𝕎(𝕋 𝕌∗), where 𝕌∗ 

is the adjoint of the unilateral shift. 

 

Proof: If 𝕌∗ ∈ 𝕎(𝕋 𝕌∗), then 𝕋 𝕌∗𝕌𝕋∗ = 𝕌∗𝕌𝕋∗𝕋 𝕌∗ which means 𝕋𝕋∗ = 𝕋∗𝕋 𝕌∗, so that 

𝕋𝕋∗ = 𝕌 𝕋∗𝕋 . By Theorem 3.3, we get contradiction. □ 

 

Theorem 3.5: If 𝕋 is a weakly normal operator, then 𝕋 is injective if and only if there exists a 

unique operator 𝕏 that satisfies  𝕋 𝕋∗ = 𝕏 𝕋∗𝕋.  

 

Proof: Let 𝕋 be injective operator and 𝕋𝕋∗ = 𝕏1 𝕋∗𝕋 ; 𝕋 𝕋∗ = 𝕏2 𝕋∗𝕋. 

Therefore, ( 𝕏1 − 𝕏2)𝕋∗𝕋 = 0, that is, 𝕋∗𝕋 ( 𝕏1 − 𝕏2)∗ = 0. 

As ker( 𝕋∗𝕋) = ker( 𝕋) = 0,  then we have ( 𝕏1 − 𝕏2)∗ = 0, and hence  𝕏1 = 𝕏2. 

Conversely, suppose that there exists a unique operator  𝕏 satisfies 𝕋 𝕋∗ = 𝕏 𝕋∗𝕋.  By putting  

𝕐 = 𝕏 + ℙ, where ℙ is the projection onto ker (𝕋). Since ker⊥(𝕋) = ker⊥( 𝕋∗𝕋) =  ℝ(𝕋∗𝕋)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅; 

where  ℝ(𝕋∗𝕋) is the rang of  (𝕋∗𝕋). Then (𝕏 + ℙ) 𝕋∗𝕋 = 𝕏 𝕋∗𝕋 +  ℙ 𝕋∗𝕋 = 𝕏 𝕋∗𝕋 =
𝕋 𝕋∗, from the uniqueness, we have 𝕏 = 𝕏 + ℙ, hence ℙ = 0. This shows that ker(𝕋) = 0, 

which means 𝕋  is  an injective. □ 

 

Proposition 3.6: If 𝕏 ∈ 𝕎(𝕋), then 

(1) ker(𝕏∗) ⊆ ker(𝕋∗).  
(2) ker(𝕋) ⊆  ker(𝕋∗). 

 

Proof: (1) Since 𝕋 𝕋∗ = 𝕋∗𝕋 𝕏∗, then  ker(𝕏∗) ⊆ ker(𝕋 𝕋∗) = ker(𝕋∗). 
(2) Since 𝕋 𝕋∗ =  𝕏 𝕋∗𝕋 , then ker(𝕋) = ker( 𝕋∗𝕋) ⊆ ker(𝕋 𝕋∗) =  ker(𝕋∗). □ 

 

Theorem 3.7: If 𝕋 is an injective weakly normal operator on ℍ,  this means, there exists a 

unique operator  𝕏 satisfies 𝕋 𝕋∗ =  𝕏 𝕋∗𝕋, then  ker 𝕏∗ and ker𝕋∗ are equal. 

Proof: We prove  ker(𝕋∗) ⊆ ker(𝕏∗) and the converse follows from Proposition 3.6. 

Let 𝕋∗(𝓂) = 0 . Since  ℝ( 𝕋∗𝕋)⊥ = ker(𝕋∗𝕋) = ker(𝕋) = 0. Then ℝ( 𝕋∗𝕋) is dense in ℍ, 

so that there exists a sequence {𝓂𝑛} in ℍ such that  𝕋∗𝕋(𝓂𝑛) converge  to  𝕏∗(𝓂); hence <
𝕏∗(𝓂),  𝕋∗𝕋(𝓂𝑛) >  converge to∥ 𝕏∗(𝓂) ∥2. 

But, < 𝕏∗(𝓂),  𝕋∗𝕋(𝓂𝑛) > =< 𝕋∗𝕋 𝕏∗(𝓂), 𝓂𝑛 > =< 𝕋𝕋∗(𝓂), 𝓂𝑛 > = 0. Therefore, ∥
𝕏∗(𝓂) ∥2= 0 , this implies that 𝓂 ∈  ker(𝕏∗). □ 
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If  𝕋 and 𝕊 are weakly normal operators, then (𝕋𝕊) is not necessarily weakly normal operator 

for example, if we take 𝕋 = (
1 1
0 1

) , 𝕊 = (
  1 −1
−1    1

), then 𝕋 and  𝕊 are weakly normal 

operator, but  𝕋𝕊 = (
0 0

−1 1
) is not weakly normal operator.  

 

Proposition 3.8: If 𝕋 is weakly normal operator and 𝕊 is normal operator commute with 𝕋, 

then  𝕋𝕊 and 𝕊𝕋 are weakly normal operators. In fact 𝕎(𝕋) ⊆ 𝕎(𝕋𝕊) and 𝕎(𝕋𝕊) = 𝕎(𝕊𝕋). 

 

Proof: Since 𝕊 is normal operator that commute with 𝕋 then by Fuglede's Theorem 𝕋𝕊∗ = 𝕊∗𝕋.  

Let   𝕏 ∈ 𝕎(𝕋).  Then, 𝕋𝕊𝕊∗𝕋∗ = 𝕋𝕊𝕋∗𝕊∗ = 𝕋𝕋∗𝕊𝕊∗ = 𝕏𝕋∗𝕋𝕊𝕊∗ = 𝕏𝕊∗𝕋∗𝕋𝕊. 

Therefore, 𝕏 ∈ 𝕎(𝕋𝕊). This proves that  𝕋𝕊 is a weakly normal operator and 𝕎(𝕋) ⊆
𝕎(𝕋𝕊). 
The proof of  𝕊𝕋 weakly normal is similar. 

ℚ ∈ 𝕎(𝕋𝕊) ⟺ 𝕋𝕊𝕊∗𝕋∗ = ℚ 𝕊∗𝕋∗𝕋𝕊 ⟺ 𝕊𝕋𝕋∗𝕊∗ = ℚ𝕋∗𝕊∗𝕊𝕋 ⟺ ℚ ∈ 𝕎(𝕊𝕋). 

Thus, 𝕎(𝕋𝕊) = 𝕎(𝕊𝕋). □ 

 

Theorem 3.9: If 𝕋 ∈ 𝔹 (ℍ), then 𝕋 ∈ 𝕎(𝕋) if and only if  𝕋 is projection onto (ker(𝕋∗))⊥.  

Proof: If 𝕋 ∈ 𝕎(𝕋), then 𝕋𝕋∗ = 𝕋𝕋∗𝕋, so that, 𝕋𝕋∗(𝕀 − 𝕋) = 0. 

As   ker(𝕋𝕋∗) =  ker(𝕋∗), then we have 𝕋∗(𝕀 − 𝕋) = 0 , that means (𝕀 − 𝕋)ℍ ⊆ ker( 𝕋∗). 

If ℚ is the orthogonal projection onto ker( 𝕋∗), then  ℚ(𝕀 − 𝕋)𝑥 = (𝕀 − 𝕋)𝑥, for every  𝑥 ∈
ℍ. Therefore, ℚ(𝑥) − ℚ 𝕋(𝑥) = 𝑥 − 𝕋(𝑥). 

Since 𝕋(𝑥) ∈ ℝ(𝕋) ⊆ (ker(𝕋∗))⊥, we obtain  ℚ 𝕋(𝑥) = 0, and hence ℚ(𝑥) = 𝑥 − 𝕋(𝑥), for 

every 𝑥 ∈ ℍ,  which means,  ℚ = (𝕀 − 𝕋). Thus 𝕋 is a projection onto (ker(𝕋∗))⊥. 

Conversely, if 𝕋 is an orthogonal projection onto  (ker(𝕋∗))⊥, then 𝕋 = 𝕋∗ = 𝕋2. 

Therefore, 𝕋𝕋∗ = 𝕋𝕋∗𝕋, that means, 𝕋 ∈ 𝕎(𝕋). □  

 

Corollary 3.10:  If 𝕋2 = 𝕋, then 𝕋 is w.n.oper. if and only if 𝕋 is orthogonal projection onto 

(ker(𝕋∗))⊥. 

 

Proof: If 𝕋 is w.n.oper., then 𝕋 𝕋∗ = 𝕏 𝕋∗𝕋, for some  𝕏 ∈ 𝔹 (ℍ). Multiplying to the right by 

𝕋, we obtain   𝕋𝕋∗𝕋 = 𝕏 𝕋∗𝕋2, so that 𝕋𝕋∗𝕋 = 𝕏 𝕋∗𝕋 = 𝕋 𝕋∗; that is, 𝕋 ∈ 𝕎(𝕋).  

It is follows by Theorem 3.9 that 𝕋 is an orthogonal projection onto (ker(𝕋∗))⊥. 

Conversely, if 𝕋 is an orthogonal projection onto (ker(𝕋∗))⊥, then 𝕋 = 𝕋∗ = 𝕋2, implies, 

𝕋𝕋∗ = 𝕋𝕋∗𝕋, that means, 𝕋 is a weakly normal operator and 𝕋 ∈ 𝕎(𝕋). □ 

 

Theorem 3.11: Every quasi-normal operator is weakly normal operator.  

 

Proof: Let 𝕋 be a quasi-normal operator, so (𝕋∗𝕋)𝕋 = 𝕋(𝕋∗𝕋).  Every 𝒽 ∈ ℍ, 

𝒽 = 𝑥 + 𝑦, where 𝑥 ∈ 𝑘𝑒𝑟(𝕋∗) and 𝑦 ∈ (ker(𝕋∗))⊥ = ℝ(𝕋)̅̅ ̅̅ ̅̅ ̅. Therefore, 𝕋𝕋∗(𝒽) = 𝕋𝕋∗(𝑦). 

As 𝑦 ∈ ℝ(𝕋)̅̅ ̅̅ ̅̅ ̅, then there exists a sequence {𝕋(𝑡𝑛)} that converge to 𝑦, so that 𝕋(𝕋∗𝕋)(𝑡𝑛) is 

converge to 𝕋𝕋∗(𝑦) and (𝕋∗𝕋)𝕋(𝑡𝑛) is converge to 𝕋∗𝕋(𝑦), and since 𝕋 is quasi- normal we 

have 𝕋𝕋∗(𝑦) = 𝕋∗𝕋(𝑦), which  implies  𝕋𝕋∗(𝒽) = 𝕋∗𝕋ℚ(𝒽) for every𝒽 ∈ ℍ; where ℚ is 

the projection onto (ker(𝕋∗))⊥. Thus 𝕋 is weakly normal operator, where ℚ∗ = ℚ ∈ 𝕎(𝕋).  
     

      The reverse of Theorem 3.11 it is not necessarily true, for example, take the operator 𝕋 =

(
 1 1
0 1

) on ℂ2, then 𝕋 is weakly normal operator, but it is not quasi-normal operator. 

The following two examples show that the classes of weakly normal operators and 

𝑛-normal operators are independent. 
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Example 3.12:  If 𝛼 is non-zero complex number, then the operator 𝕋 = (
 0 𝛼
0 0

) on ℂ2 is 𝑛-

normal operator, but not weakly normal operator.  

 

Example 3.13: The operator 𝕋 = (
 1 1
 0 1

) on ℂ2 is weakly normal operator, where 𝕎(𝕋) =

{(
3 −1
1 0

)}, but  𝕋 is not  𝑛-normal operator. 

 

Theorem 3.14: Suppose that 𝕋 is injective weakly normal operator, that means, there exist a 

unique operator 𝕏 ∈ 𝕎(𝕋) such that, 𝕋𝕋∗ = 𝕏 𝕋∗𝕋. Then, 𝕋 is 𝑛-normal operator if and only 

if 𝕋𝑛−1 = 𝕏∗(𝕋𝕏∗)𝑛−1. 

 

Proof: Let 𝕋 be an 𝑛-normal operator, 𝕋𝑛 𝕋∗ = 𝕋𝑛−1(𝕋𝕋∗) = 𝕋𝑛−1 𝕋∗𝕋𝕏∗ =
𝕋𝑛−2(𝕋𝕋∗)𝕋𝕏∗ = 𝕋𝑛−2( 𝕋∗𝕋𝕏∗)𝕋𝕏∗ = 𝕋𝑛−2 𝕋∗(𝕋𝕏∗)2 = ⋯ =  𝕋∗(𝕋𝕏∗)𝑛. 

As  𝕋𝑛 𝕋∗ =  𝕋∗ 𝕋𝑛, then 𝕋∗ 𝕋𝑛 =  𝕋∗(𝕋𝕏∗)𝑛, so that  

 𝕋∗𝕋 (𝕋𝑛−1 − 𝕏∗(𝕋𝕏∗)𝑛−1) = 0. Since ker( 𝕋∗𝕋) = ker ( 𝕋) = 0; then we have 

(𝕋𝑛−1 − 𝕏∗(𝕋𝕏∗)𝑛−1) = 0, and hence 𝕋𝑛−1 = 𝕏∗(𝕋𝕏∗)𝑛−1. 

Conversely, we have 

𝕋∗ 𝕋𝑛 =  𝕋∗𝕋 𝕋𝑛−1 =  𝕋∗𝕋𝕏∗(𝕋𝕏∗)𝑛−1 =  𝕋 𝕋∗(𝕋𝕏∗)𝑛−1 =  𝕋 𝕋∗𝕋𝕏∗(𝕋𝕏∗)𝑛−2 

=  𝕋2 𝕋∗(𝕋𝕏∗)𝑛−2 = ⋯ = 𝕋𝑛 𝕋∗. Thus 𝕋 is 𝑛-normal operator. □ 

 

Proposition 3.15:  Let  𝔸 ∈ 𝔹(ℍ), 𝕏 ∈ ℕ𝔸⋂ℕ𝔸∗ . 

(1) 𝕏 ∈ 𝕎(𝔸) if and only if  𝕏∗ ∈ 𝕎(𝔸). 

(2) 𝕎(𝔸𝕏) = 𝕎(𝕏𝔸). 

(3) If 𝕏 ∈ 𝕎(𝔸), then 𝕏 ∈ 𝕎(𝔸𝕏). 

 

Proof: (1) If  𝕏 ∈ 𝕎(𝔸), then 𝔸𝔸∗ = 𝕏𝔸∗𝔸 by taking adjoint for both sides, we have 𝔸𝔸∗ =
𝔸∗𝔸𝕏∗. Since 𝕏 ∈ ℕ𝔸⋂ℕ𝔸∗, we have  𝔸 𝕏∗ = 𝕏∗𝔸 and  𝔸∗𝕏∗ = 𝕏∗𝔸∗. So that 𝔸𝔸∗ =
𝔸∗𝕏∗𝔸 = 𝕏∗𝔸∗𝔸. Thus  𝕏∗ ∈ 𝕎(𝔸). Similarly, we can prove the converse. 

(2) 𝕊 ∈ 𝕎(𝔸𝕏) ⟺ 𝔸 𝕏 𝕏∗𝔸∗ = 𝕊 𝕏∗𝔸∗𝔸 𝕏 ⟺ 𝕏𝔸 𝔸∗𝕏∗ = 𝕊 𝔸∗𝕏∗𝕏 𝔸 ⟺ 𝕊 ∈ 𝕎(𝕏𝔸). 

(3) If 𝕏 ∈ 𝕎(𝔸), then  𝕏∗ ∈ 𝕎(𝔸), that is 𝔸𝔸∗ = 𝕏∗𝔸∗𝔸 by taking the adjoint of two sides, 

we have 𝔸𝔸∗ = 𝔸∗𝔸𝕏, multiple from the left by 𝕏 𝕏∗ and use 𝕏 ∈ ℕ𝔸⋂ℕ𝔸∗, we have 

𝔸 𝕏 𝕏∗𝔸∗ = 𝕏 𝕏∗𝔸∗𝔸 𝕏, so that  𝕏 ∈ 𝕎(𝔸 𝕏). □ 

 

Conclusion: 

This work discusses the fundamental properties of a new operator, namely weakly 

normal operator. We also investigate some basic properties of these operators. Also, a set 𝕎(𝕋)  

has been defined which contains an operator  𝕏 such that 𝕋 𝕋∗ = 𝕏 𝕋∗𝕋, where  𝕋 is a weakly 

normal operator. In addition, we prove that if 𝕋 is nonzero bounded linear operator on ℓ2, then 

𝕌𝑛 ∉ 𝕎(𝕋) for every positive integer 𝑛, where  𝕌 is the unilateral shift operator as well as we 

show that every quasi-normal operator is weakly normal operator.  Furthermore, the following 

results that relates with in this concept are given:  

1- 𝕋 is weakly normal operator if and only if  𝕋 is a unitary operator when 𝕋∗ is isometry 

operator. 

2- If 𝕋 is weakly normal operator, then 𝕋 is an injective if and only if there exists a unique 

operator 𝕏 satisfy 𝕋 𝕋∗ = 𝕏 𝕋∗𝕋. In this case we have ker(𝕏∗) = ker(𝕋∗). 
3- If 𝕋 is bounded linear operator on H, then 𝕋 ∈ 𝕎(𝕋) if and only if 𝕋 is an orthogonal 

projection onto (ker(𝕋∗))⊥. 
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4- If 𝕋 is a weakly normal operator and 𝕊 is normal operator commute with 𝕋, then  𝕋𝕊 and 

𝕊𝕋  are weakly normal operators and  𝕎(𝕋) ⊆ 𝕎(𝕋𝕊) = 𝕎(𝕊𝕋). 

5- If 𝕋 is an injective weakly normal operator such that 𝕋𝕋∗ = 𝕏 𝕋∗𝕋, then 𝕋 is 𝑛-normal 

operator if and only if 𝕋𝑛−1 = 𝕏∗(𝕋𝕏∗)𝑛−1. 
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