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Abstract

This research is concerned with the set of functions in ordered Banach algebra
values that links up between functional analysis and measure theory. We generalized
the concept of integration by using the measure space (X, ', M) and the measurable
function 8: X — W where W is an ordered Banach algebra by using the integration
of a simple measurable function with values in an ordered Banach algebra space
(represented by an indicator function that has values in an ordered Banach algebra)
and the integral of a non-negative measurable function that has values in an ordered
Banach algebra. The aim of this research is to define the integration of functions by
using the measure M in the ordered Banach algebra space. This study generalized the
definition of integration for the measurable function with values in  the ordered
Banach algebra space.

Keywords: Simple function, norm Banach algebra, absolute continuous, Integrable
functions, ordered Banach algebra.
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1. Introduction

The functional analysis and measure are two of mathematical analysis branches (in which
they are two different subjects and each one of them has its own pathway). This research is a
subject about functional analysis but the tools used are from the measure subject, and the main
concept taken from the measure subject which will be focused on, is the set function.
Many authors have studied measure like: A.N. Kolmogoroff (1933) [1], Halmos (1950) [2], G.
Choquet (1954) [3], M. Sugeno (1974) [4], L.A. Zadeh (1978) [5], Capinski and Kopp (1998)
[6], Dudley (2004) [7] and B. Liu (2007) [8]. In the classical theory of integration on R,

fabe({’) d¢ is defined as a limit of Riemann sum, which are integral of functions that

approximate 6 and are constant on subintervals of [a, b], [9-11]. Therefore, the theory has been
developed by using the measure space (X, T, M) where 8: X — R [12], [13].

* In this study, whenever we mention Banach algebra space, we mean that it is a space with
identity element e.

2. Representation of the measurable simple function by the use of indicator function
Definition 2.1
Let A be a subset of a set X. A function 1,: X — W, where W is an algebra space defined

by
PEN

e,
a(6) = {0, £¢ A
Is called the indicator (or characteristic) of A. Note that Iy = 0, Iy =e.
Theorem 2.2:
Let A and B be subsets of the set X, then:
1'A:B lffIA:IB
2- AC B iff I, < Ig.
3- Ian =Ia - IB
4- Tpug =Ia + Ig — Ipns-
5- IAC =e— IA'

Proof:

e, feAN {e , P EB 15(£) = 1,(0) =

1- Suppose A =B, IA({))_{O, cen 1o ve¢B
I[g(#) forall?eX =1, =15.

Conversely, suppose that Iy, = Ig,let €A = [,(f) = e, butly =15 = [g(#) =e=F €
B = A < B. Similarly, to prove BE A= A =B.

2-Let ACB.If£¢Athenly,(¥) =0<Ig(#) and if £ €A, then 1,(¥) =e = Iz(¥).
Conversely, suppose that 1, < Ig, hence I,(¢#) < Ig(#) forall £ € R, thus A < B.

3- Let teXR,iffeEANB = Ip\ng(#) =e, €A and £ € B=1,(¥) = eand
IB(f) =e = IA(f)I B(f) =e = IAHB('B) = IA('B)IB('B) If ¢ ¢ANB = IAﬂB('g) =

[,(£).15(£), 50 I\qg(£) = [\(O).Ig(®) forall L e R = 1 g =1y . I
4- Letf eX,if fEAUB = I, g(¥) = e, € A or £ € B, then there are three cases:
ife€Aand €B = I\(¥) =e, Ig(¥) =e, [)ng(¥) =¢ =
IA(0) + 1g()— Ihnp(¥) = e
iifeEAand £¢B = 1,(¥) =e, [g(#) =0, Hng(@®) =0=1,(&) +1g(¥) — png(¥) = e.
liifgAand PEB = I1,(#) =0, [g(®) =e, [)ng(@) =0=1,(&) + [g(¥) —[4ng(£) = e
= Iyug() =11 (£) + Ig(£)— Irnp (D).
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Now, if tEAUB=I,,g(¥)=0,f¢A,f¢€Band? &€ANB = 1,(¥) =0,
[5(#) =0, Ipns(¥) = 0 = [ () + [g(£)— Iane(¥) = 0,50 [hyp(£) = IA(£) + 1g(¥) —
IAﬁB(f) forall f e X = IAUB :IA + IB - IA(']B .

5 Let £ER, HLEA= (D) =e, [()=0 =e—,(H)=elftgA° =
[(he(£)=0,[p,() =e =>e—1)(#)=0,50 [)c(¥) =e—I1,(¢) forall PER= [jc=e—
Ia

Theorem 2.3:

Let (X, I') be a measurable space, A c X and I, is an ordered algebra valued function, then
I, is a measurable function ifand only if A€T.
Proof:
Suppose A is a measurable function, since {e} € (W) = I;*({e}) € I, but I;'({e})) = A =
A€eT.
Conversely, letAeT,aeWwW

N, 0,e € BS(a)

{Ilp —al|| >r} =<4, e € Bf(a), thus {||ly —a|]| >r} el =1, is a measurable
o, 0,e € BE(a)

function.

Example 2.4:

Let (X,I') be a measurable space; Aq,A,,...,A, be mutually disjoint sets in X and
a4, 0y, ...,0, €W, where W is an ordered Banach algebra space, then the function
n: X— Wdefined by n(f) = XL, a.15(£) is measurable. Since {|ln—all >r}=
(Uiqy=aAi) € T = n is measurable.

Definition 2.5:

Let (¥,I") be a measurable space and W be an ordered Banach algebra with identity. A
function 8: X — W is said to be simple if it takes only many finitely distinct values, i.e. the
range of O is a finite set of distinct values {oy, a, ..., a,}.

Remark 2.6:

LetA; ={£ €R:0(¢) = oy} for i =1,2,3,...,n = A; = fH{a;} where A; N Aj = @, and

n _ , (e, LEN

Uiz, Aj = X, Since 15, (#) = {0, reh
<t aply (0) = XL, a5 [, (£), thus, a function 8: X — W is a simple function if it can be
expressed as  O(£) = XL 0415 (£),wheren > 1,0, €W for 1,2,3,..,m Aj={f €
N: 0(£) = o}, thus, a simple function is one which takes a constant value a; on the set A;,
where A; are disjoint sets, i =1,2,3, ..., n.

we can write 8(f) = oy I, (£) + az I, (£) +

Theorem 2.7:

Let (X,T") be a measurable space and W be an ordered Banach algebra, a simple function
0: X — W is measurable ifand only if A; e T foralli =1,2,3,...,n.
Proof:
0: X —> W is a simple function, if it can be expressed as 8(¢) = XiL; ; [, (£), where n >
Lag €W for i=1,2,3,..,n, Aj={f€R:0({) =0;}. Suppose A;ET = I, is a
measurable function for alli =1, 2,3, ..., n; then we have q; I, is @ measurable function for
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alli=1,2,3,..,n and oy Iy, + oz I, + -+ ayl, is a measurable function, thus 6 is a
measurable function.

Conversely, suppose that 0 is a measurable function, since {a;} € (W) and 0 is a measurable
function, then 071 ({o;}) € T, but 072 ({o;}) = Ay = Ay e T foralli=1,2,3,...,n

« It is clear to show that, if ¥ is a finite, then any ordered algebra measurable function on X is
simple.

Theorem 2.8:

Let (X,T') be a measurable space and W be an ordered Banach algebra. Then, the sum,
difference and product of two measurable simple functions is a measurable simple function.
Proof:

Let 6,n be two ordered Banach algebra valued measurable simple functions on a measurable

space (X, I), 8(¢#) = Xiz; a; [5,(¥) and n(£) = X2, B; IB]. (£), thenthe sets C;j = Aj N By, i =

1,2,3,...,n; j=1,2,3,..,m are in T form a partition of X, that is (6 +n)(¥) =
= 2121(0(1 +B;) Ipne; (£),and (6n)(#) = Xi, Zjn=l1(0(i B;) Ipinm; (0.

Theorem 2.9:

Let 6 be an ordered Banach algebra valued function defined on a set X. Then there exists a
sequence {6, } of ordered Banach algebra valued simple functions on X such that {6,} — 6
(i.e., the sequence {0,} converges to 0).

Proof:
For all n > 1, we define 0,: Xx— W by 0, = ﬁzl‘l K =I5, + 0l Where Ay =
{{’ € N: — < |6(®)|| < E} and B, = {£ € X:n < ||6(¥)]|}, it is clear to show that {6,,} is a

sequence of ordered Banach algebra valued simple functions and 6, — 0.
« If 0 is an ordered algebra measurable function on a measurable space (X, T"), then {6,} may
be chosen to be a sequence of measurable functions.

Ak = e—1<B 1 (";‘;—jj)) {eextol e [X, ) and B, = 0 (B1(0)

N+

e If 0 < 6(¥), then {6,} may be chosen to be an increasing sequence, i.e. 0 < 0; < - <
0,6,780.

Note: The fundamental idea of integration is to measure the area between the graph of a function
and the abscissa. For a simple function 6, if 8 = }iL, o I5,, then Yi_; a; M (A;) should be the

M area enclosed by the graph and the abscissa.

Theorem 2.10:

Let (X, T, M) be a measure space and 6 be an ordered Banach algebra valued measurable
simple function on (X, T). If 8 has a different representation Yi_; o; 15, and ;24 B; Ip, , then:
1- 6 = n 12]ml }\1] IA NB; where Al] =5 = B] EW.

2- Yitg o M(A)=252 1B]M(B])

Proof:
1- Since A; e Tforalli=1,2,3,..,n and B e T'forall j=1,2,3,...,m= A;NB; €T for
all i=1,23,..,n and for all ji=123,..,m

Since AjnA, =@ foralli#randB;nB;=9 forallj#s= (A, NB;)N (A, NB) =0
it follows that the A;NBj's are pairwise disjoint, and UL U2,(A; NB;) =X.
Let £ € X, there exists a unique (i,j) such that £ € A; N By, then we have n(¢£) = o; = 6(¢), it
follows thatn = 6.
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2- Since Ai N A] = @ , U?=1 Ai = X and Bi n B] = (Z), U]ril B] = N, we have
A =UR,(ANB) , Vi=1,23,..,n and B;=UL,(ANB;),Vj=123..m =

M) = M(UR, (A nBy)) = TR, M(A; N B;) for al i=1,23..,n
Y o MA) =3k, o0 X2, M(ANB) =3k, X2 o M(A;NB;).....(1)  Similarly,

If ANB;j=9¢, then  M(A;NB;)=M(®) =0= sM(A; NB;) =B;M(A; NB;).

Or A;jNBj+@, there exists L€ ANBj, L€ A, LEB; = 0(f) =q,0(£) =B

oM (A; N B;) = B; M(A; nB;),and we conclude from (1) and (2) that YL, o M (A;) =
™, By M(B,).

3. Integral of ordered Banach algebra valued measurable simple function
We are going to explain the integral of ordered Banach algebra valued measurable simple
function and some properties of this integration:

Definition 3.1:

Let (X, I', M) be a measure space and 6 be an ordered Banach algebra valued measurable
simple function on (X, I"). We define the integral of 6 with respect to M as the sum, which is
denoted by [ 6 dM and, is defined by [, 6 dM = ¥, oM (A)).

«If A €T, we define [, 6 dM = [ 1, 6 dM .Hence [, 8 dM = XL, a; M(A; N A).
«IfM(A) = 0, then [, 8dM = 0.
When 6 is an ordered Banach algebra valued measurable simple functions on a measurable
space (8, '), If 8(#) = XL o [, (£),wheren>1,a; €W and A; € T'foralli = 1,2,3,...,n
, Ay ={£ €R:0(£) = oy} then we have (01, )(£) = XiL; a; Ipna(£), where AjNnAET,
and from theorem (2.8), we have 6 1, as an ordered algebra measurable simple function on
(8, I). Since AjnA;=0 and Ui,; A; =R, it follows that UiL;(A;NA)UAS=R.
Hence, 01y =Xl & Ipna +0 X Iye. By Definition 3.1, we have
JL0dM = XL g M(A N A) +0x M(AY) = XLy oM (A; N A).

Theorem 3.2:
Let (X, T, M) be an ordered algebra vector measure space. Then, [ A AM = M (A) for all

A€eT.

Proof:

Define 0: X — W by 6(¥) = e for all £ € R, then 0 is a simple functionandn =1,A; = X,
oy =e. Then, [, dM =¥ as MA; N A) = ay M(A; NA) = MRNA) = M(A).
Example 3.3:

LetX = R, I' = B(X), and M is the Lebesgue measure

1- If 6:[a,b] — R be a function, defined by e({’):{

a, =2, A;=QNJ[a,b], M) =0

oy = 5, A2 = an[a,b], M(Az) =b-—a

J 8dM =L, o M(A) = a; M(Ay) + 0 M(A) =2X0+5x% (b—a)=5(b—a).
2 [, dM =M@ =0.

3 [JdM =, dM=Mm(13])=3-1=2

2, Y€QN[ab]

5  ¢eqQn[ab]’ T
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Theorem 3.4:
Let (X,I, M) be a measure space, and 6, n be two ordered Banach algebra valued

measurable simple functions on (X, T).

1- (@@ +bn)dM =a [ 6dM +b [ ndM foralla,b € R. In special cases
ilfa=1,b=1,then [ (6+n)dM = [ 6dM + [ ndM.
ii.lif b= 0, then fx ab dM = afN 0 dM.

2- [,(@@+bn)dM =af, 6dM +b [ ndM forall A€T andforall a,b € R.

-IfabeWsothatAnB—(Dthenf g 0dM = [ 6dM + [, 6dM.
- If 83> 0,then [, 8dM > 0 forall A EF

5 Ifo<n, theanedM <[yndMforallA €T.

6- Ifa< b, wherea,b € W, then aM'(A) < f, 6 dM < b M (A).

Proof:

1- Since 6 and n are two simple functions on a measurable space (X,T),0(¢) =

i oI5 () and n(f) = X2, By I, (¥) where Ay ={£ eR:0(f) =0y } = 07 ({a}),i=

1,2,3,..,n; and B = {f € R:n(£) = B } = 6_1({Bj}) ,j=1,2,3,...,m. AN A=

®,UL;A; =X andB;nB;=0,U2,;Bj=X Take C;=A;nB;,i=123,..,n; j=

1,2,3,..,m

Cij N Cse = (A N B;) N (A nBt)_(A NA)N(BiNB)=0N@=0

U™ Cyj = UL UL, Gy = U}“l(A NB;)=UL, A NURB; =RNX =X Then the
sets Ci]-=A NnB;i=12, 3 ;J=1,2,3,...,m form a partition of X. That is (ab +

bn) () = Xit1 X2, (aal+bB]) Ipin;, () f(a6+bn)dM YTy (aq; + bB;) M(Cy) =

Lyn, (aa1+bB])J\/[(A N B; )_az L2 o M(ANB))+bYL, X2, B M(AN
B ) =aYiL, a(X2, M (AN B; )) +by 131(2“ M (A;nBy)).
Since m M(ANB) =M NB )+ M NBy) + -+ M(A; NBy) = Jvr(Ai n
U;“lB-) = M N R) =M and 3L, M(A; N B;) = M(B;), then [, (a6 +
bn)dM = aXi, o; M(A) +bX2, By M(B)) =af, 6 dM +b [ ndM.
2- Since 0 and n are simple and measurable functions on (X, T"), then 6 1, and n I, are simple
and measurable functions on (X, ).
J, (@@ +bn)dM = [ (a8 +bn) I, dM = [( (@81, +bnly)dM

=afxelA dM+benIA dM=afAedM+bfAndM.
3-Since Ai,n(AUB) =(A;NnA)UA;NB) andANnB =0, then (A;NA)N(A;NB)=0
Therefore M(A; N (AUB)) =M ((A;NA) U (A NB)) =M(A; NA) +M(A; NB)
0dM =30, o M(A; N (AUB)) =L, o;(M(A; N A) + M (A; N B))
=¥ s M(ANA)+ T 1a1M((AinB)) =[,0dM + [, 6dM.

4- Since 6 is a simple function, then 8(£) = YL ;05 I5,, and 6 >0 = a; > 0 for i =
1,2,3,...,n and MA;NA) =0 fori=1,2,3,..,n =>a,MA;NA) >0 fori=
1,2,3,. n:leal M(A;NA) = O=>deM>O
5- Let h=n-6, since 6<n=h>0, by using (4) we have fhdM 0=
[,(—0)dM > 0= [ ndM — [, 6dM > 0= [, 6dM < [, ndM.
6- Since a<®<b, by using (5) we have [, adM <[, 6dM <[ bdM =
af dM <[,6dM <b[, dM = aM(A) < [, 6dM < bM(A).

fAUB
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Theorem 3.5:

Let (X, I, M) be a measure space, A €' and 6 be an ordered Banach algebra valued
measurable simple function on (X,T"). Define :: X — W by A(A) = fAe dMm forall A€T,
then
1- A s a signed measure.

- If 8 > 0, then A is a measure.

3 If Ay T A, where A,A, €T, n 3> 1,and 8 > 0, then f, GdMTf 0dM .

Proof:

1- Let {A,} be a sequence of disjoint sets in T = A(US1An) =/ o A 0dM =
n=14n

> 1f 0dM = Y2 A(A, ) = Aisasigned measure.

ZSlncee 0 =0,0>0= [([,6dM >0 = [, 6dM >0 = AA) > = Ais

a measure.
3-Since A, TA and A isameasure on T, then A(A,,) T A(A), and since A(A) = fA 6 dM for

allA€T, then [, 6dM T [ 6dM.

4. Integral of non-negative ordered Banach algebra valued measurable function
In this section, we will explain and show some properties of the integral of non-negative
ordered Banach algebra valued measurable function:

Definition 4.1:
Let (X, I, M) be a measure space and 6: X — W be a non-negative ordered Banach
algebra valued measurable function (8(€) > 0forall? € X), we define f 0dM =

sup{[,h dM : 0 < h < 6, h is a measurable simple function on (X, I)}.

Remark 4.2:
If A €T, wedefine [, 6dM = [ 81, dM.

Hence, fA 0dM = sup{fA hdM :0 < h < 0,his ameasurable simple function on (X, F)}.

Theorem 4.3:

Let (X, I, M) be a measure space, and 6,n be two non-negative ordered Banach algebra
valued measurable functions on (X, I').
1- [,8dM > 0forall A€T.

2-1f6<m on A€T,then [, 6dM < [, ndM.

3-IfA,BEeTsothat AC B, then [, 6dM < [, 6 dM.

4- 1f A > Ois an element in R, then [, A6 dM = A [, 6 dM forall A€T.
5-1fA,B€Tsuchthat ANB =@, then [, . 6dM = [, 6dM + [, 6dM.

6- If a < 6 < b, wherea,b € W, thenaM (A) < [, 6 dM < bM(A) forall A€T.

Proof:

1- Since [, 6 dM = sup{f, hdM : 0 < h < 6, h is a measurable simple function on (X, I)}.
= [, 8dM > [, hdMm for every measurable simple function h such that 0 < h < 8. Since 0
is a measurable simple functionand 0 < 6, then [, 6 dM > [ 0dM = [, 6 dM 3> 0.

2- Let h be a simple function on (X,T') sothat 0 < h <8, since®<n = 0<h<n,since
Jyndm = sup{fAh dM :0<h<mn, his a measurable simple function on (X,I)}, =
JyhdM < [, ndM, hence [, mdM is an upper bound of all [, h dM, for simple function
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on (X,T') with 0 < h < 6. The integral M being the smallest of such upper bound, we have
Jy8dM < [, ndm.

3- Let h be a simple function on (X,T) so that 0 < h < 6, h(#) = XiL; ail, (£) where A; =
ffeX:0(f)=0o}, a;0,i=12,..,n. Since ASB = A, NASA; NB = M((A; n
N<WNB) =L oMM NA) KTLoMA; NB)= [(hdM < [[hdM =
sup{[,h dM : 0 < h < 6, his a measurable simple function on (X, [} < sup{[;hdM : 0 <
h < 6, his a measurable simple function on (8, 1)} = [, 6 dM < [, 6 dM.

4- If we have
i. A> 0and h isasimple functionon (X,T") sothat 0 < h < 6, then 0 < Ah < A8. Sincehisa
simple function on (X,I), so Ah= [ (Ah)dM < [, A8)dM. Since [, (Ah)dM =

Af[,hdM =A[ hdM A [, (A6)dM. Since A >0, we have [, hdM < %fA()\e)dM,
hence %fA (A0) dM is an upper bound of all fA h dM, for h simple function on (X, I") with
0 < h < 6. The integral fA 0 dM being the smallest of such upper bound. We have fA 0dM <
%fA (A8)dM, multiplying both sides by A, we obtain thatA [, 6 dM < [, (A8) dM .
Similarly, since % > 0, we have %fA ae)dm < |, %(Ae)dM, ie [,(A8)dM <A [, 6dM,
we conclude that f, (A8)dM =2 [, 6 dM

ii. A =0, then AfA 6 dM = 0. Since 0 is an ordered algebra measurable simple function on

(X,T), we have [, 0dM = 0, it follows that the equality [, (A8)dM = A [, 8 dM is still true

in the case when A = 0.
e The prove of 5 and 6 of this theorem is the same as 3 and 6 of the Theorem 3.4.

Theorem 4.4: Monotone Convergence Theorem on ordered Banach algebra
Let (X,I', M) a measure space and {6,} be a sequence of non-negative ordered Banach
algebra valued measurable functions on (X, T") such that 6, T 6. Then fN 0, dM 1T fx 0 dM.

Proof:
Since6, 16 =06,—06and 6, < 06,,, forall n (in other word sup 6, =96) =

n>1

Jy 8n dM < [ 8,41 dM for all n, then {f 6, dM} is a non-decreasing sequence and it
converges to  [.6 dM €W, ie sup [(6,dM =[6dM. Now, to prove

nx1
J On AM — [ 6 dM, || [ 6, dM — [ 6 dM|| = || [ (8, — 6 )dM || < [ 16, — B]|dM=0
asn—o = [0, dM — [ 6 dM .Then [, 6,dM T [ 6dM.

Theorem 4.5:

Let (X, I, M) be a measure space and let 6, be two non-negative ordered Banach algebra
valued measurable functions on (X,T’)
1- 1If {6, } and {n, } are two sequences of non-negative ordered algebra measurable functions
on (X,I')suchthat 6, T6 andn, Tn,then 6, +1n, T6+n.
2- fx(e+n) dersz 0 dM+an dm.
3- (@@ +bn)dM =af 6 dM +b [ 1 dm forallabeR.
Proof:
1- Since the sequence {6, + 1, }is an increasing and U;-,(0, +n,) = 6 + 1, then 6, +
M T6+m.
2- Since 6 and n be non-negative measurable functions, then there exist two sequences {6,}
and {n,} of ordered algebra simple functions on (X, I') such that 8, T 6 andn, Tn. Thus 6, +
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Ma TO4+n, 6, +n, IS a non-negative ordered algebra measurable simple function. From
monotone convergence theorem, we have fx(en +1Mn )dJ\/[TfN (6 +n )dM, hence
fx(e +1n)dM = r{i_r,?ofx(en + 1, )dM = rlli_r&(fx On d]vl”+fN Ny dM) = fx 0 dM +
Jyn dm.

3- This is an immediate application of (2) and part (4) of Theorem 4.3.

Theorem 4.6:

Let (N, T, M) be a measure space and {6,,} be a sequence of non-negative ordered Banach
algebra valued measurable functions. Then [ (X5, 6, )M = Y2,( [, 6, dM).
Proof:
Take 6 = Y0216, , Nn = Xg=q 0k - Since n, T 6, from the monotone convergence theorem,
we have [ 1, dM T [ 8dM. However, from Theorem 4.5, [ m, dM = ¥R_(f, Ok dM ).

Hence, we see that the sequence 2‘,ﬂ=1(fN By dM ) converges to fx 6 dM. In other words, we
have fx( Yin=10p )AM = Z?:l(fx On dM).

5. Generalization of the integral of ordered Banach algebra valued measurable function

We can extend the integral to general ordered Banach algebra valued measurable functions,
using the positive part 8"and the negative part 8~ of any function 8: 8 — W. We will use the
non-negative valued measurable function [0] .

Definition 5.1:
A norm Banach algebra on

e ={",
[£] having the following properties:
1- [¢] = Oforall £ € W.
2- [l =0 if £=0.
3-[£+pl <[]+ [p] forallt, p € W.
4- [A£] = |A|[£] forall £ € W and for all A € F.
5- [p] < [4] [p] forall £,p € W.

W is a function [.J:W — W, where
=0 _ _
r<0 = max{f,—¢}.

Proof:

1- [#] = max{f,—¢€} >0,VL{EW.

2- Itisclear.

[+ pl=max{f+ p,—(£+ p)}

If [¢+p]l=¢+p=1[¢+p] <[]+ ]

flt+pl=-(C+p)=+pl=—t+(p) <M+ pl=1+p]<[£]+[2].

4- [tp] = max{fp, —(£p)}

If [p] = ¢p = [¢p] < [£][2]
If [¢p] = —(¢p) = Lyl = (—Op < Ullp] = 421 < [£lp].

5- By the same way for 4.

e The Banach algebra W over a field F together with [.] is called a normed Banach algebra
space and is denoted by (W, [.1]).

e Every closed subalgebra of Banach algebra is also a Banach algebra.

Definition 5.2:
Let (X,I, M) be a measure space and 8: X — W be a measurable function. We say that
0 is M -integrable (or simply integrable if M is understood) if fx[[e]] dM exists,
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0(¢) 06(f) =0
where [0(£)] = {_9(3) 8(f) < 0

e The set of all M -integrable functions denoted by L'(X,T, M). Note that L1(X, [, M) is a
subspace of the space of all measurable functions on (X,T), i.e. if 6, € L}(X,T, M) and «,
B € R, then < 8 + Bn € L1(X, T, M), indeed:

Since [oc 8 + Bn]l < |«|[6] + [BIIn], we have [ [e< 6+ BnldM < || [[6] dM +
B JIn] dM . We conclude that o« 8 + Bn € L'(X, T, M).

Definition 5.3:
Let X be any set and 8: X — W be an ordered Banach algebra valued function, we define
the positive and negative parts, 8* and 067, by
0" = max{0,0} and 6~ = —min{H, 0} = max{—6, 0}
. 0(¢) 0() =0 _ {—e({’) 0(#) <0
+ — —
ie (e)_{o oy 2o M 0°O={] N

It follows that 8 and 8~ are non-negative.

Theorem 5.4:
Let X be any set and 6: X — W be an ordered Banach algebra valued function
1-0=06*—0"and [6] =67+ 6".
2- 0% = ~([6] + ) and 6~ =~ ([6] — 6).
3-(-0)*=06"and (—6)" = 6.
4- If A > 0, then (AB)* = A6 and (A6)™ = A6~

Proof:

1- 6*— 06~ = max{0,0} — max{—6,0} = max{0,0} + min{6,0} =0+0=10

Let L EN. If 0(¥) =0, then 0t () =0(¥) and 0-(®) =0
If 0(¥) <0, then 0*(¢) =0 and 0= (¢) = —-0(¥)

In any case, 67 (¢) + 0~ (¢) = [6](¥).So [0] = 6+ + 6~

2- From (1), we find that 8 = 6* —0~and [6] = 6* + 6~ ,then 0 + [8] = 20*, therefore
0* =~ ([6] +6).

3- Since® = 6% — 07, hence —6 = -7 + 0™
4-0=0*—0",thuscO0=c(O®*—0")=cO" —coO".

Theorem 5.5:
Let (X, I, M) be a measure space and 8: X — W be an ordered Banach algebra valued
function. Then
1- [6] is a measurable function.
2- 0 is a measurable function if and only if 6 and 6~ are measurable functions.
3- If 0 € LI(X, T, M), then 8*,07,[0] € LL(X, T, M).
Proof:
1- [6] = 67+ 6~ = max{6, 0} + max{—06, 0}, then [0] is a measurable function.
2- Suppose that 0 IS measurable, then (el is measurable.

It follows that % ([e] + 6) and %([[9]] — 0) are measurable functions, but 6% = %([[6]] + 6) and

0~ = %([[6]] —0), then ot and 0~ are measurable functions.

Conversely suppose that 6* and 6~ are measurable functions, then 8% — 6~ is a measurable
function, but 8 = 6* — 67, then 0 is a measurable function.
3-  [6]=6*+6", then 67 <[6] and 6~ < [6], we have [ 6%dM < [ [6]dM
and [, 6~ dM < [ [6]dM = 6%,67,[6] € L'(X, I, M).
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Definition 5.6:
Let (X,T, M) be a measure space and 6 € L1(X, ', M"). We define the integral of 8 with
respect to M, denoted by [, 8 dM, as [(8dM = [(6* dM — [ 67 dM

o The function 8 is M-integrable if [ 6 dM exists, i.e. if [ 6" dM and [ 6~ dM both exists.

Remarks

1- If A€ T, we define [, 6dM = [ 61, dM. Hence [, 6dM = [, 6* dM — [, 6~ dM. The
function 6 is said to be integrable over A if [, 8 dM exists, that is if f, 8% dM and [, 8~ dM
are both exists.

2- The set of all integrable functions over A denoted by L (X, T, M).

3-0 e LI(R, I, M) if 8 € Ly(R, I, M) for all A€T, indeed (B1,)* = 08%1, < 6%, (BI,)” =
071, < 0.

4- 0 € LRI, M) iff [, [6]dM = [, 67 dM + [, 6~ dM.

The properties of the integral of non-negative functions extend to any, not necessarily non-
negative, integrable functions.

Theorem 5.7:

Let (X, T, M) be a measure space and let 8,1 € L1(X, T, M). Then
- [(0+m)*TdM + [(67dM + [(n~dM = [(6 +1)"dM + [ 67 dM + [ n*dM.
2- [((®@+M)dM = [ 6dM + [.ndM.
3- [((=8)dM = — [ 6 dM.
4- [((A8)dM=) [0 dM forall A € R.
5- If 8 < n, then [, 6 dM < [ ndM.
Proof:
1- Take h=06+n,fromh=h*—h",86=6"—-06"and n =n* —n~, we obtain that
h* +67+ 1~ =h" +6* + 1%, we have [((h* + 8~ +n7)dM = [((h™ + 6% +n*)dM, by
Theorem 45, we have [ h*dM + [ 67 dM + [(n~dM = [(h™dM + [ 6+ dM +
Jyn* dM, we conclude that [ (6 +n)*dM + [(87dM + [(n~dM = [(6+1)”dM +
Js 8 dM + [in*dM.
2- Since 0,1,8 +n € LY(X, I, M), then all six integrals in part (1) of this theorem exist.
It follows that [.(6+m)*dM — [(B+n)"dM = [(6"dM — [(67dM + [(n*dM -
Jyn™ dM. We conclude that [(6 +n)dM = [6dM + [ ndM.
3- Since (=)t =67 and (—0)” =

e+
J(—8)dM = [(=0)F dM — [ (=6)~dM = [ (6)~dM — [(6)* dM = — [ 6dM.
4- If A= 0, then Ae)* =2A0" and (A8)” =2A0".

J0)dM = [ (A6)* dM — [(A6)"dM = [(A(B)* dM — [ A(6)"dM = A(f, 6" dM —
) 87dM) =1 [ 6dM. If A< 0, then —1 > 0, we have [ (-A8)dM = —A [ 6 dM but by
using (3), we have [ (-=28)dM = — [ (A8)dM we conclude that [ (A8)dM =2 [, 6 dM.
5- Since 6 <mn, then 8t <n* and 6~ =" =67 +n" <6~ +n*. By linearity for
non—negative  function, we obtain [(8*dM + [(n~dM < [(67dM + [(ntdM =
8 dM — [ 67dM < + [(n*TdM — [, n~ dM. We conclude that [ 6 dM < [,ndM.
Corollary 5.8:
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Let (R,[,M) be a measure space, 6,n € L'(X,[,M)ando,f € R. Then [ (ab+
Bn) dM = a [ 6 dM + B [,ndM.

Theorem 5.9:

Let (X, ', M) be a measure space and 8,1 € L1(X, T, M). Then [[fxedM]] < fx[[e]] dM.
Proof:
Since —[0] < 6 < [0] so by theorem (5.7), we have —fx[[e]] dM < fxedM < fx[[e]] dMm,
hence [ [, 6 dM ] < [ [6] dM.
Theorem 5.10:

Let (X,T', M) be a measure space and 6 be a measurable function. If A, B € T" such that A n
B = @, then fAUBedM = fAed]v[+fBed]v[.
Proof:
Since ANB =0 = Iy = Ip +1g, then [, 6dM = [([15,g0 dM = [((Ip +1g) 6 dM =
fN(IAe +[50)dM = fxlAedM+ fNIBGdM = fAedM+fBedM.

Corollary 5.11:
Let (X, T, M) be a measure space and 6 be a measurable function. If {A,} is a sequence of
disjoints setin T, then [, , 8dM =X (f, 6dM).
n=14n n

Theorem 5.12:

Let (X, I, M) be a measure space and 68, be measurable functions
1- If 8 = 0 almost everywhere, then [ 6 dM = 0.
2- If 8 € L'(X,T, M) and 6 =1 almost everywhere, then n € L'(X,[,M) and [ 6dM =
JyndM.
3-1f8 > 0and [ 6dM = 0, then 8 = 0 almost everywhere.
Proof:
1- If 8 is a simple function, 8(¢) = XL, o;15,(£) where n > 1, o € W, and A; €T for i =
1,2,..,n.Since ® = 6% — 0~ and if 6 = 0 almost everywhere, then 67 = 0 almost everywhere
and® = 0 almost everywhere. Hence [ 6*dM =0 and [(6dM =0, so [ 6dM =
J 6% dM — 67 dM = 0.
2- Let A={£ € X:0(£) =n(¥)}, B=AS, then 8 =01, + 0I5 and n =1l +nlg = 61, +
01g. Since 81 = nlg = 0 almost everywhere (because Iz = 0, this M'(B) = 0), by part (1), we
have [, 8lg dM = [ nlgdM = 0, then [ 6 dM = [ 81, dM + [ 6lz dM = [ 61, dM and
JyndM = [ 01, dM + [ nlgdM = [, 61, dM. Hence, [ 6dM = [ ndM.

3- LetB = {£ € X:0(¢) > 0}, B, = {£ € X:0(¢) > =} = Ui, B, = Band B, € B, forall

n= B, 1 B.M(B,) =M ({£ € x:0(2) >%}) <nf8dM =nx0=0. Since B, 1B =
M (B,) — M (B) = M (B) = 0.
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