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Abstract 

Establishing complete and reliable coverage for a long time-span is a crucial 
issue in densely surveillance wireless sensor networks (WSNs). Many scheduling 

algorithms have been proposed to model the problem as a maximum disjoint set 

covers (DSC) problem. The goal of DSC based algorithms is to schedule sensors 

into several disjoint subsets. One subset is assigned to be active, whereas, all 

remaining subsets are set to sleep. An extension to the maximum disjoint set covers 

problem has also been addressed in literature to allow for more advance sensors to 

adjust their sensing range. The problem, then, is extended to finding maximum 

number of overlapped set covers. Unlike all related works which concern with the 

disc sensing model, the contribution of this paper is to reformulate the maximum 

overlapped set covers problem to handle the probabilistic sensing model. The 

problem is addressed as a multi-objective optimization (MOO) problem and the 
well-known decomposition based multi-objective evolutionary algorithm 

(MOEA/D) is adopted to solve the stated problem. A Multi-layer MOEA/D is 

suggested, wherein each layer yields a distinct set cover. Performance evaluations in 

terms of total number of set covers, total residual energy, and coverage reliability are 

reported through extensive simulations. The main aspect of the results reveals that 

the network's lifetime (i.e. total number of set covers) can be extended by increasing 

number of sensors. On the other hand, the coverage reliability can be increased by 

increasing sensing ranges but at the expense of decreasing the network's lifetime. 
 

Keywords: adjustable sensing range, multi-objective optimization, set covers, 
heterogeneous wireless sensor networks. 
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 خلاصةال

ما يسمى لأمتداد  مشكلةباعتبارها  أجهزة الأستشعارجدولة تم اقتراح العديد من خوارزميات في الأدبيات 
 .جهزة الاستشعارة لأمنفصلالفرعية المجموعات ال أكبر عدد ممكن من ترتيبهو ها من الغايةو   (DSC) مشكلة

، في لأداء عملية التغطيةمن أجهزة الاستشعار لتكون نشطة  فقط واحدة فرعيةمجموعة  يتم تعيين بعد ذلك
من  قصىالعدد الأ ت هذه المشكلة هو تحديدامتداداأحد أهم  .فرعيةالمجموعات ال بقية  تسكينحين يتم 

قابلية التغطية لكل مستشعر وعلى هذا الأساس ممكن أن تتحول  المجاميع الفرعية وبنفس الوقت تضبيط
 هدف هذا البحث ع منفصلة الى مجاميع مركبة مؤدية في النهاية الى زيادة تعقيد المشكلة.المجاميع من مجامي
من المجاميع المتراكبة آخذا بنظر الأعتبار القابلية الواقعية لتحسس قصى الأ مشكلة العدد هو إعادة صياغة
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حل المشكلة في   (MOEA / D)المعروفة  الأهدافتطورية متعددة الخوارزمية المستشعرات. تم أعتماد ال
نتج كل طبقة مجموعة متميزة من ، حيث ت الخوارزمية ح تخطيط متعدد الطبقات لتصميمااقتر تم  .المذكورة

اميع من حيث العدد الإجمالي للمج النموذج المقترح من ثلاثة جوانب:أداء تقييم تم . أجهزة الاستشعار النشطة
تبين النتائج المتوفرة  .محاكاة واسعة النطاقوموثوقية التغطية من خلال المتراكبة، ومجموع الطاقة المتبقية، 

الجانب الرئيسي من  .للمستشعر ونطاق التغطيةأجهزة الاستشعار تأثير العوامل المختلفة بما في ذلك عدد 
مستشعرات د الاميع المتراكبة( يتزايد مع تزايد عدشبكة )أي العدد الإجمالي للمجمالكشف عن أن عمر النتائج ت
من ناحية أخرى، يمكن زيادة موثوقية التغطية عن طريق زيادة نطاقات الاستشعار ولكن على حساب  .المتوفرة

 .تناقص عمر الشبكة
1. Introduction 

Nowadays, many applications have technological platforms based on wireless sensor networks 
(WSNs). Amongst the main features of WSNs is the dense ad-hoc deployment of sensors from an 

aircraft into the target area to properly establish the required level of coverage for a long period of 

time. Unfortunately, recharging sensors' batteries or replacing expired ones may limit their potential 

intent. This opens the door for many researches in literature to support energy-aware WSN topologies. 
Considering the two main participants of any WSN (i.e., sensor nodes and sensing data), energy 

effiecient methods can be broadly classified into two main levels [1 – 5]: 

1. Data-wise techniques, where different framework methodologies identify their foundations from 
understanding how to gather, aggregate, and route sensing data.    

2. Sensor-wise techniques, which in turn being classified into sensor scheduling techniques and 

sensing range adjusting techniques. 
Sensor-based energy efficient techniques lay the foundation of their frameworks from the impact of 

sensor energy utilization on the network life span. Generally, these techniques can either schedule 

sensor modes to alternate between active and sleep modes, or to adjust their sensing ranges, or to 

combine both scheduling and adjusting techniques. The main goal of sensor scheduling techniques is 
to divide sensor nodes into a maximum number of set covers (SC), each set cover being assigned with 

a subset of sensors being cooperatively capable of covering the whole area of interest. Assume that the 

lifetime of the WSN is divided into intervals and at each interval only the sensors belong to one SC are 
set to active, while the remaining sensors are set to sleep. Then scheduling a large number of such set 

covers will eventually prolong network's life time, wherein each interval, only one SC is activated.  

For homogeneous WSNs where sensors are equipped with equal sensing range, the maximum set 
covers problem is turned into finding the maximum number of disjoint set covers (DSC) problem. For 

heterogeneous WSNs, however, sensor nodes have the ability to adjust their sensing ranges into 

different levels extending the scheduling problem into a constrained maximum non-disjoint or 

overlapped set covers problem, commonly known as adjustable range set covers (ARSC) problem. 
Both DSC and its extended ARSC are proved to be Non-deterministic Polynomial-time complete (NP-

complete) problem [6], [7] that recently enjoyed a considerable interest.  

Unlike existing techniques, the contribution of this paper is to address the issue of designing an 
energy efficient algorithm for solving the maximum ARSC problem in WSNs while considering 

probabilistic sensing ability of the sensor nodes. To the best of our knowledge, this is the first attempt 

to address such issue. To this end, this paper attempts to answer the following questions. What is the 

impact of complicating the sensing model from the commonly used Boolean model to the probabilistic 
one into the maximum ARSC problem? What is the impact of adopting probabilistic sensing model on 

the coverage reliability and network's life time? How can maximum ARSC problem be then stated, 

formulated, and solved?  
To answer the above questions, the following research steps are developed to provide quantitative and 

qualitative arguments: 

1. To open the maximum ARSC problem into a more general statement including the 
characterization of the probabilistic sensing model of the sensor nodes. The introduced problem 

statement is divided mainly into three sub-problems: how to schedule sensors into active and 

sleep set covers? How to adjust sensing range to each sensor in the active set cover? How to 

maximize coverage reliability and number of set covers?       
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2. To cast the contradictory goals of the probabilistic sensing model being realized by the coverage 

reliability and network's life time on a multi-objective optimization (MOO) model. 

3. To devise a multi-objective evolutionary algorithm (MOEA) and to project all its characteristic 

components towards solving the proposed MOO model.  
In the remainder of this paper, preliminary concepts to the formulation of the problem are first 

introduced. The problem is modeled as multi-objective optimization problem in both informal and 

formal ways. The paper then continues to describe how to project the characteristic components of the 
adopted multi-objective evolutionary algorithm into the formulated maximum ARSC problem. 

Simulation results and discussions are also provided. Finally, concludes the whole work of this paper 

is summarized and further candidate research directions are recommended. 

2. Preliminaries 

Hereinafter, the model being used to represent the WSN system is a two-dimensional rectangle area 

  of size (         ) , i.e.   {(   )|                  . The sensing area   is 

equipped with a set   {            of   targets where              (   )   . Additionally, a set 

  {             of   sensors are assumed to be deployed randomly in  , i.e.              
(   )   . Moreover, considering sensing capability, two characteristics can feature the sensor 

nodes: sensor model and sensing range. 

In general, WSN model is either homogeneously modeled (where all sensor nodes have a fixed 

sensing range   ), or heterogeneously modeled (where each sensor node    is assigned with a sensing 

range    
).  In the simple uniform circular disc sensing model, a sensor   is said to cover a target   if 

and only if target   lies within   circle sensing range. Formally expressed as a binary detection model 

in Eq. 1, which says that if a target occurs within the sensing radius of a sensor node, the probability of 

covering this target is assumed to be always 1, otherwise, it is assumed to be zero. 

     (     )  {      √(     )  (     )     

                                                       

               (1) 

A more realistic sensing model, however, should consider the impact of both environmental and 
physical arguments which in turn affects the sensing capability of the sensor nodes [8]. Adding 

detection uncertainty factor    to the sensor results in three-levels of sensing strength (as expressed in 

Eq. 2).  The coverage probability decays exponentially as the distance between the target and the 
sensor increases, as expressed in Eq. 2. 

     (     )  

{
  
 

  
      √(     )

  (     )
     

    

     
      

    √(     )  (     ) 

        √(     )  (     )     
   

    
          (2) 

Where:  

  √(     )  (     )  (   
   )           (3)  

Both   and   are probabilistic sensing parameters to measure the strength of detection when a 

target point lies within the interval {   
       

    . On the other hand, complete coverage and no 

coverage are the cases for points positioned within    
    and out of    

    distance from the 

sensor, respectively. 

Likewise, sensing range, being specified by the maximum sensing radius and sensing capability of 

the sensor, can be either fixed or adjustable [4, 5]. When the sensor is fixed with only one sensing 
range, it can only sense data over a distance that is less than or equal to its sensing range. However, 

enabling the sensor node to adjust its sensing ability after an initial set up with different sensing 

ranges, the sensor can be schedule its sensing ability to large or small range according to the required 
coverage and the overall energy consumption. 

The general definition of ARSC problem is stated as: 

Definition 1: (Maximum Adjustable Range Set Covers Problem – ARSC). Consider a WSN consisting 

of a set   of   targets and a set   of   sensors. Each sensor      is augmented with the 3-tuple: 
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{  (          ) (          ) , where   is the initial energy, (          ) is an increased option of 

sensing ranges, and (          )  is the associated energy consumption for each sensing range. 

ARSC problem attempts to find a family of set covers   {            and to adjust sensing range 

of each sensor    in a set cover    (i.e. to adjust      if      ) such that:  

(1)   is maximized,  

(2) Each set cover    covers the whole  , and  

(3) Each sensor appearing in the whole   consumes at most  . 

Shortly speaking, the maximum adjustable set covers problem can be formally expressed as: 

           (   )    {{      
 |               (  )              ∑     

 
         

  }                      

     
(4)  

3. Multi-objective evolutionary algorithm with decomposition 

Consider a vector of   parameters                , a MOP can be formulated as a vector of   

objective functions  ( )     ( )   ( )     ( )  .  ( ) is optimized (in terms of domination)  

towards finding Pareto-optimal set of solutions (or at least towards a near Pareto-optimal set of 

solutions), each of which is said to be a non-dominated or a non-inferior solution, noted as    
   

    
      

   |     . To define domination, consider two vectors   and    from the solution 

space  ( ), i.e.     and    . Then, solution   is said to dominate   if and only if the following 
two conditions hold [9], [10]:  

1. Solution   is no worse than   in all objectives, or formally,           ( )    ( ). For 

example in maximization, the word "no worse" means   ( )    ( ). 

2. The solution   is strictly better than   in at least one objective, or formally,   ( )    ( ) in at 

least one objective   ,    {        . For maximization, the word "strictly better" means 

  ( )    ( ). 

The notation (   ) is used to denote that solution   is better than solution   regardless of the 

type of the optimization problem (maximization or minimization). Also, the notation (   ) is used 

in the same way to express that solution   is better than solution  . Hence, a non-dominated set can be 

defined as: among a set of solutions  ( ), the non-dominated solutions set  ̅( )   ( ) are subset 

of solutions which are not dominated by any other solution in  ( ). 
Among the famous multi-objective evolutionary algorithms being successfully applied to many real-

world problems is the multi-objective evolutionary algorithm with decomposition   (MOEA/D) being 

proposed by Zhang and Li [9]. Consider a formulated MOP with   objective functions: 

          ( )     ( )   ( )     ( )                                                             (5) 

Also, consider a reference point    (  
      

 ) to hold the best value obtained so far by MOEA/D 

for each of the   objective functions, formally speaking: 

   {        
  

    ( 
 )        ( )|   ( )    ( 

 )                         (6) 

In MOEA/D, each of the   individual solutions can stand for one scalar optimization problem, 

thus, MOP is decomposed by MOEA/D into   scalar optimization sub-problems. Each individual 

         is associated with one weight vector    of length   out of a set of   even spread 

weight vectors {           . Recall that there are   objective functions for the MOP, then each    

has weight vector     (  
    

      
 )     ∑   

    
     . Moreover, in MOEA/D, each individual is 

evolved using information gathered from only its   neighbor solutions. Neighbor solutions to   , 

denoted by  ( ), are those with the closest distance (using Euclidean distance) weight vectors to   . 

Thus,  ( )  {             with    ( )  {              . 
    {        

    ( )       {           | ∑ (  
    

  )
 

 
    ∑ (  

    
 )

 
 
                          (7) 

The problem of approximating the Pareto Front (PF) of the MOP defined in Eq. (5) can be 

decomposed into   scalar optimization sub-problems, each with its objective function:  

                       

   (  | 
    )          {  

 |  (  )    
 |}                       (8) 

In terms of maximization, MOEA/D maximizes all these    objective functions simultaneously in a 

single run. MOEA/D with the Tchebycheff approach evolves a population of   solutions {   
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          ( ) where,    is the current solution to the     sub-problem with (  )  
   (  )     (  )     (  ) 

 . Also MOEA/D maintains an external population   , for archiving the 

non-dominated solutions found during the search. At each generation, MOEA/D performs four main 

operations while generating   new solutions {              : 
 First, for each individual         , a new offspring solution     is generated, using 

problem-specific genetic operators (e.g., crossover and mutation), from only  ( ) neighbors.  

 Second, if necessary it updates the reference points    (  
      

 ).          , if   
  

  (    ) , then it sets   
    (   ).  

 Third, it updates the neighbors of   :         , if   (   | 
    )    ( 

  |      ), then it 

sets         and  (   )   (   ).  

 Finally, it updates     by removing from it all solutions   where  (   )   ( ) and insert      
into    if        ( )    (   ). 

The general framework of MOEA/D can then be outlined as in Algorithm 1 [9]. 

Algorithm 1 The general outline of MOEA/D 

Input:   

 Multi-objective maximization problem  ( )  (  ( )   ( )     ( )) 
 Number of sub-problems to be evolved, i.e. population size,   

 Uniform spread of    weight vectors: {            such that    (  
    

      
 ) 

 Neighborhood size of each weight vector,   

 Maximum number of generations,      

 Probability of crossover,    

 Probability of mutation,      

Output: External archive of non-dominated solutions,   . 

Step 0 - Setup:  

        

     

Step 1 – Initialization 

 Uniformly, generate an initial population,    {           .  
 Evaluate fitness vector for each individual,           : 

 (  )  {  (  )    (  )     (  ) . 
 Initialize ideal vector     (  

    
      

 )   by a problem-specific method. 

 Compute Euclidean distance between weight vectors {            and assign the   

closest vectors  {               to each   .           . 

 Set neighbors for each weight vector,           :  ( )  {           . 

Step 2 – Evolve cycle: For            
 Randomly select two indices     from  ( ), and generate a new solution   from    

and    using crossover and mutation operators. 

 Update   ,         , if    
    ( ), then set   

    ( ). 

 Update neighboring solutions: For each index    ( ) , if    ( |    
 )  

   (  |    
 ), then set      and     ( ). 

 Update EP: Remove from EP all vectors dominated by  ( ).  

Insert  ( ) to EP if no vector in EP dominate  ( ). 

Step 3 – Stopping criteria 

 If       , then  stop and output EP 

       else         and go to Step 2. 

4. Multi-objective ARSC problem: Definition and formulations 

In this section, a discussion illustrating an informal account of the different characteristics of the 
proposed multi-objective model for solving ARSC problem in WSNs is first presented. This is 

followed by casting the proposed MO-ARS model into a more formal expression.  

4.1 MO-ARSC: Problem statement and formal development 
The fundamental idea of the formulated multi-objective adjustable range set covers (MO-ARSC) 

problem is to maximize two contradictory objective functions in an attempt to provide the WSN with a 
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maximum collection of overlapped set covers, each of which can completely covers the whole target 

set. 

The first objective function concerns with finding the maximum number of generated set covers. 

Searching for a larger number of set covers can be emphasized by scheduling sensor nodes into 
complete set covers, each of which consumes as less energy as possible. Recall that each active sensor 

has the ability to adjust its sensing range from   different settings (i.e. {            where       

    ) corresponding to   different energy consumption {            where           . 

Then, the formulated objective function prefers those chromosome solutions where competitions 

between the still alive sensors are allowed in the small-end ranges associated with the low energy 

consumptions. Consider still alive sensor    with residual energy    has been encoded by a given 

chromosome solution to be active at radius   . Also, consider that target    is placed inside the 

coverage area of    (i.e. Euclidean distance        ). For Boolean sensing model, this is interpreted 

as sensor    completely covers target    (i.e.      (     )   ).  In terms of energy consumption,   , 

this causes sensor    to consume      of the energy required to adjust its sensing radius to     (i.e. 

      (  )). In other formal words, this can be expressed as: 

  (  |   )        (  )                                (9) 

  (  |   )    (  )     (  |  )|           (     |   )              (10) 

Where   (  ), and   (  ) are the consumed energy and the residual energy of sensor     at radius   .   

However, the perspective of the probabilistic sensing model as an alternative and more realistic 
sensing approach (as presented in Eq. 2) opens up a different energy consumption formula.  It suggests 

that sensor    at sensing radius    has to consume at most an amount of energy equals to 

     (     |   )        where    is the most distant target laying inside the coverage area of sensor    

being adjusted with radius   . Thus, the previous two equations will be re-formulated as: 

  (  |   )       (     |   )   (  )                         (11) 

  (  |   )    (  )     (  |  )|            {     (     |  )                       (12) 

One can clearly see that the residual energy   (  |   ) of sensor    in Eq. 12 can be maximized by 

minimizing the right-hand side operand (i.e. consumed energy   (  |  )) which is totally casted by the 

adjusted radius  (  ). The smaller the adjusted radius, the more energy will be reserved. Similarly, the 
smaller the sensing ranges adjusted to all active sensors set, the more likely that this set can support 

target area with whole coverage and with less energy consumption.  The demand for prolonging 

network's lifetime through increasing the total number of complete set covers, then, suggests the need 

for maximizing the total residual energy of sensor nodes. To this end, the proposed MO-ARSC model, 
states the problem of maximizing sensors residual energy as follows. 

Definition 2: (Maximum residual energy   (  )) Consider a set cover    {    of a group of active 

sensors from the whole sensor set   (i.e. {      ) to cover the whole target set  .The residual energy 

of    can be maximized by minimizing the sensing range adjusted to {    while satisfying full target 

coverage.   

           (  )  ∑   (  |   )     
                     (13) 

Such that 

        (  )                                          (14) 

The second objective function handles the reliability of the generated set covers. The objective is 

formulated by the means of increasing the reliability of gathered coverage from the whole set covers. 

For each set cover   , the formulated objective function qualifies the reliability of each target      

by the maximum strength of detection being reported by the different sensing radii adjustments    of 

the active sensors in set    . The coverage reliability of each target     , under set cover   , can be 

formally expressed as:  

 (  |   )        {            (    |   )                         (14) 

Altogether, the reliability of set cover    can be maximized by maximizing coverage reliability of each 
target can be stated as: 
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Definition 3: (Maximum coverage reliability   (  )) Consider a set cover    {    of a group of 

active sensors from the whole sensor set   (i.e. {      ) to cover the whole target set  .  The 

coverage reliability of    can be maximized by maximizing the sensing reliability of each target in   . 

            (  )  ∑  (  |   )
 
                           (15) 

4.2 Individual representation  

In the proposed MOEA/D, each candidate solution   is represented as a vector of length equals to 

the total number of sensors in the area, i.e.  . Then, a population   of   individuals can be formally 

expressed as   {  |   (                )    
 . Each       |  {         controls both the 

active/sleep scheduling and sensing range assignment of the corresponding     sensor. Assuming that 

each sensor is augmented with   sensing ranges (          ), each        will then take an integer 

value from the range {            where    means that the corresponding sensor expires its energy,  

and   corresponding to setting the sensor to the sleep mode. The remaining values   {       
corresponding to setting the sensor to the active mode with sensing range  .  Formally speaking, for a 

population of   individuals, each of   genes, 

   {              {         

   (                )         

     {

                                                            
                                                            
                                       

                                         (16) 

4.3 Repair operator 

Although population initialization creates a set of candidate solutions, some candidates could be 

infeasible or lethal to the MO-ARSC problem. Infeasible solution   (          ) is stated in 

terms of existence of coverage-holes where one or more targets are out of coverage of any active 
sensor.  

            (  )  {
        |                          (    )   
                                                                                                  

               (17) 

On the other hand, a feasible solution    (          ) may be over satisfied in terms of target 
coverage that leads to over energy consumption (see Eq. 3.5).   

            (  )  {        |              (    )   
                                                                

                                              (18) 

A repair operator,  , is formulated to make a guarantee that the constructed solutions have both hole-
free as well as enough-coverage conditions.  The fundamental idea of repair operator can be simply 

stated as follows. For a coverage-hole solution, it activates as less as possible of sleep sensors and 

randomly adjusting their sensing ranges. On the other hand, for an over coverage solution, it 

deactivates as much as possible of active sensors.  

The process of the proposed repair operator        is presented in Algorithm 2. It takes as input 

an individual   and checks whether the active sensors set   being signified by   (i.e., {  |        
 ) 

forms coverage-hole or over-coverage. In case of coverage-hole,   will repeatedly select one random 

sleep sensor, activate it, adjust its sensing range, and group it with the active sensors of   until the new 

set form hole-free set cover. On the other hand, if  the active sensors of   forms over coverage,   will 
repeatedly deactivate one random active sensor until it can form complete coverage with less number 

of sensors or less ranges of sensing.  

Algorithm 2: Repair Operator (  ;    ) 
Input:   |   {         
Output:     
1: // group all active sensors of    into          

   {                 {    |         

2: // group all sleep sensors of    into         

   {                {    |         

3: if             (                 ) //  hole-free set cover 

// repair over-coverage  

4:  while              (                 )   
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5:   select random sensor             

6:   set             // adjust its sensing range to the preceded value 

7:  end 

// exit while loop with coverage-hole status 

8:  set             // return back to the last adjustment  

9: else // coverage-hole set cover  

10:  while              (           )   

11:   select a random sensor           

12:   set          (   ) // adjust its sensing to a random value from 1 to    

14:  end  

15: end  

4.4 Selection and perturbation operators 

Any EA lays its main operation on three commonly used evolutionary operators: parent selection, 

parent recombination, and child mutation. In the proposed MOEA/D, these three evolution operators 

will be formally expressed as an iterative function    {      {        where  (  )    
  

    ,   is the generation number and     is the population at generation  .    is an external population 

of the generated non-dominated solutions. The population starts with an initial random population    

and continues evolution by   for a maximum number of      generations.  

To generate a new individual        , select two neighbors    and    from the neighbor set   ( ) of 

  , to be the parents to generate (by recombination and mutation) a new solution       from    and 

  . A proportion        of    and    genes are recombined using 2-point crossover operator   . 

Two cut points are randomly selected from the total length of the chromosome (i.e.       
{                  ), and the pair    and    are then swapped at              |              

  .  

   {                    

   {    ( )     ( )          

   (                                           )                             (19)  

Each gene in the new child solution        is then controlled by mutation operator    with a small 

probability       . For a mutated genes corresponding to only still alive sensors, mutation operator 

can change their activities and/or sensing range adjustments. 

   {                             
            
                                 {                                               (20) 

Where         is the maximum sensing range that sensor      can operate with.   

4.5 Handling external population     

Working with MOEA/D can generate a number of non-dominated solutions among which the 
desired solution exists. The generation of these non-dominated solutions can appear at any generation 

of MOEA/D. Thus, an external repository,   , for archiving the population of non-dominated 

solutions is required. Two main operations should be provided to update the content of   , these are 
insertion and deletion.  

 Consider an    {       
      

  of a set of non-dominated solutions, with cardinality  , i.e. 
|  |   . A chromosome solution   (          ) with the proposed objective function vector 

  {  ( )   ( )   can enter    if and only if it is not dominated by any of    solutions. Formally 

speaking, 

      (    )  {                  
    |  (       

 )    ( )

                                                                               
}                     (21) 

Intuitively, if    is empty then       (  { )  {  . Moreover, given a new generated chromosome 

solution  , the status of a non-dominated solution belongs to    could be changed to a dominated 

solution by  , and thus, should be removed from   . Formally speaking, 

         

      (          
 | )  {          

       ( )   (       
 ) 

                                                        
           (22)  
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4.6 MOEA/D layers 

The proposed MOEA/D operates in a layer wise, where each layer   can establish a candidate     set 

cover. Thus, the proposed multi-layer MOEA/D can be formally expressed as: 

                                                        (23) 

where   is the maximum number of layers that        can generate with them a collection of 

complete set covers  without extinguishing sensors total energy. At each layer  , if the minimum 

requirement for targets coverage can be satisfied, then         excludes all dead sensors and plays 

only with still alive sensors to search for best set cover. Consider sensor    belongs to set cover   
consumes in   an energy     , then this sensor is dead at layer   and later on if it appears in all or some 

of the previous     layers and consumes all its energy  (i.e., ∑     
   
         

  ). On the other hand, 

if the sensor satisfies ∑     
   
         

   then it can be assigned in   and later layers. Formally 

speaking, if: 

        (      )  {
                          |     (     )    

                                                                                     
                   (24) 

where        {  |  (  )                                (25)    

5. Simulation Results 

This section reports the performance of the proposed multi-layer MOEA/D for solving MO-ARSC 

problem. The evaluation is presented in terms of total number of set covers obtained, total residual 

energy, and total coverage reliability.  

5.1 Parameter settings 

The results are obtained after setting WSNs and algorithm parameters into the following.  The 

simulation area is square-shaped with           , number of targets   {            , and 

number of sensors   {                     , where each sensor is augmented with four sensing 

radii. Each radius has one and half times the sensing radius of the preceding one. In each group of 

results, we will vary the smallest sensing range    to two different values    {        , Uncertainty 

level    is set to        units, both   and   are set to    , and     is set to      . Population size is 

set to     and will be allowed to evolve     times. A combination of all varying parameters carries 

out 24 different test instances, wherein the results of each test are average of 10 random WSNs. 

Altogether, 240 different WSNs are examined in this simulation. 

5.2 Results  
Tables-1 and -2 report the performance of the proposed model in terms of total number of set 

covers and total coverage reliability. The results reported in the tables reveal the following points. 

Fixing all parameters to one setting and just increasing number of sensors   from 25 to 75 will 
eventually lead to an increased number of set covers (i.e. prolonging network's lifetime), an increase in 

total residual energy, and an increase in total coverage reliability. For example, fixing   to 10 and    to 

150 resulting in an increase from 7.2 up to 19.8, from 0.78 up to 0.9893, and from 0.2138 up to 0.3285 

in average number of set covers, total residual energy, and total coverage reliability, respectively. 

Again, for similar parameter settings, increasing number of sensors   from 25 (Table-1) to 150 

(Table- 2) has, also, a positive impact on the total number of generated set covers, residual energy, and 

coverage reliability, in average, from 7.2 up to 32.8, from 0.78 up to 14.4, and from 0.2138 up to 
0.7390, respectively. 

Secondly, varying only initial sensing radius    from 150 to 250 while fixing all other parameters 

(including the initial energy  ) will generally leads to decreasing the total number of set covers and 

total residual energy but an increase in coverage reliability. This is due that larger radii need more 
energy consumption than smaller radii and that larger radii have more chance to cover more targets 

with more reliability. For example, consider the case mentioned above where   is fixed to 10,   is 

fixed to 75 and varying    from 150 to 250. The results in Table 1, reports a general decrease from 

19.8 down to 14.1, from 0.9893 down to 0.9849, and from 0.3285 up to 0.4706 in average number of 
set covers, total residua energy, and total coverage reliability. Also, for the results in Table 2, one can 

see a decrease from 21.6 down to 18.6, from 11.9 down to 0.9889, and from 0.3595 up to 0.4433 in 

average number of set covers, total residual energy, and total coverage reliability. 
Figures -1 - 4 quantitatively report the impact of varying number of sensors and sensing radii on 

the final number of set covers. As shown in the figures, increasing number of sensors will eventually 
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leads to increasing average number of set covers. Another interesting remark is that increasing total 

number of targets while fixing total number of sensors to a fixed value, results in decreasing the 

average number of set covers. This can be turned back to the fact that more targets needed to be 

covered, means more energy required to be consumed. This in turns means less residual energy and 
less number of set covers. Finally, increasing initial sensing range from 150 to 250 can cause a general 

decrease in the average number of set covers.  
 

Table 1-Performance of        in terms of         number of complete set covers, average residual 

energy, and average reliability for    WSNs in each test case where                  :   
{         ,                     {            ,                                       , 

and    {        . 

        

          
Number of set covers Residual energy Reliability 

                                          

  

   

   7.2000 4.8000 0.7800 0.8748 0.2138 0.3069 

     16.0000 11.3000 0.9862 0.9781 0.3253 0.4518 

     19.8000 14.1000 0.9893 0.9849 0.3285 0.4706 

4 

15 

   5.9000 

9.4000 

15.9000 

4.7000 

8.9000 

12.0000 

0.8645 

0.9658 

0.9771 

0.9331 

0.9648 

0.9762 

0.3320 

0.4852 

0.4770 

0.5391 

0.5550 

0.6145 
5    

6    

7 

20 

25 4.1000 4.1000 0.5582 0.7317 0.3170 0.9598 

8 50 10.8000 9 .3000 0.9639 0.9556 0.9160 0.9990 

9 75 15.4000 11.0000 0.9650 0.9692 0.9654 1.0000 

10 

25 

25 2.4000 4.9000 0.3669 0.9000 0.2395 0.1949 

11 50 9.2000 6.5000 0.9489 0.9306 0.7334 0.9928 

12 75 13.3000 8.1000 0.9650 0.9692 0.9416 0.9992 
 

Table 2-Performance of         in terms of         number of complete set covers, average residual 

energy, and average reliability for    WSNs in each test case where                  :   
{            ,                     {            ,                                   
    , and    {        . 

        

          
Number of set covers Residual energy Reliability 

                                          

  

   

    21.6000 18.6000 0.9889 0.9889 0.3595 0.4433 

      30.8000 20.8000 0.9912 0.9912 0.3882 0.4609 

      32.8000 20.6000 0.9937 0.9937 0.3790 0.4583 

4 

15 

    21.4000 15.5000 0.9828 0.9840 0.4847 0.5668 

5     24.6000 19.1000 0.9851 0.9843 0.4946 0.5921 

6     27.5000 20.8000 0.9858 0.9882 0.5310 0.5975 

7 

20 

100 18.0000 14.2000 0.9733 0.9738 0.5287 0.6541 

8 125 21.8000 18.2000 0.9815 0.9800 0.5178 0.6387 

9 150 23.5000 20.5000 0.9822 0.9812 0.5359 0.6832 

10 

25 

100 16.6000 11.9000 0.9669 0.9728 0.5740 0.6801 

11 125 19.4000 13.1000 0.9734 0.9747 0.6048 0.7325 

12 150 20.8000 14.4000 0.9761 0.9805 0.6000 0.6848 
 

6. Conclusion 

This paper introduces a new set covers optimization problem to solve two main design issues in 

WSNs. Both network's lifetime and coverage reliability are the main parameters that reflect the design 
of the proposed adjustable range set covers (ARSC) optimization model. The proposed model adds to 

the existing ARSC models an additional parameter: the sensing model of the sensors. While all of the 

existing ARSC models assume the traditional Boolean sensing model, the proposed model concerns 
with more realistic sensing model. The proposed model is formulated as a multi-objective optimization 
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problem (MO-ARSC) and solved using one of the well known multi-objective evolutionary algorithms 

(MOEA/D). Moreover, the general layout of MOEA/D is suggested to operate in multi-wise layers. 

The quality of set covers generated from the proposed multi-layer MOEA/D are quantified in terms of 

their cardinality, residual energy, and coverage reliability. Moreover, the evaluations consider the 
impact of varying total number of sensors, and varying their sensing abilities. The results report that 

the behavior of the proposed MO-ARSC model matches expectation by means of increasing total 

number of sensors and/or increasing sensing ranges.  

 
Figure 1- Average number of set covers when number of targets   {            , number of sensors 

  {         , and    150.  

 
Figure 2-Average number of set covers when number of targets   {            , number of sensors 

  {         , and    250. 
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Figure 3-Average number of set covers when number of targets   {            , number of sensors 

  {            , and    150. 

 
 
Figure 4- Average number of set covers when number of targets   {            , number of sensors 

  {            , and    250. 
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