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Abstract

Establishing complete and reliable coverage for a long time-span is a crucial
issue in densely surveillance wireless sensor networks (WSNs). Many scheduling
algorithms have been proposed to model the problem as a maximum disjoint set
covers (DSC) problem. The goal of DSC based algorithms is to schedule sensors
into several disjoint subsets. One subset is assigned to be active, whereas, all
remaining subsets are set to sleep. An extension to the maximum disjoint set covers
problem has also been addressed in literature to allow for more advance sensors to
adjust their sensing range. The problem, then, is extended to finding maximum
number of overlapped set covers. Unlike all related works which concern with the
disc sensing model, the contribution of this paper is to reformulate the maximum
overlapped set covers problem to handle the probabilistic sensing model. The
problem is addressed as a multi-objective optimization (MOQ) problem and the
well-known  decomposition based multi-objective  evolutionary algorithm
(MOEA/D) is adopted to solve the stated problem. A Multi-layer MOEA/D is
suggested, wherein each layer yields a distinct set cover. Performance evaluations in
terms of total number of set covers, total residual energy, and coverage reliability are
reported through extensive simulations. The main aspect of the results reveals that
the network’s lifetime (i.e. total number of set covers) can be extended by increasing
number of sensors. On the other hand, the coverage reliability can be increased by
increasing sensing ranges but at the expense of decreasing the network's lifetime.

Keywords: adjustable sensing range, multi-objective optimization, set covers,
heterogeneous wireless sensor networks.
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1. Introduction

Nowadays, many applications have technological platforms based on wireless sensor networks
(WSNs). Amongst the main features of WSNs is the dense ad-hoc deployment of sensors from an
aircraft into the target area to properly establish the required level of coverage for a long period of
time. Unfortunately, recharging sensors' batteries or replacing expired ones may limit their potential
intent. This opens the door for many researches in literature to support energy-aware WSN topologies.
Considering the two main participants of any WSN (i.e., sensor nodes and sensing data), energy
effiecient methods can be broadly classified into two main levels [1 — 5]:

1. Data-wise techniques, where different framework methodologies identify their foundations from
understanding how to gather, aggregate, and route sensing data.

2. Sensor-wise technigues, which in turn being classified into sensor scheduling techniques and
sensing range adjusting techniques.

Sensor-based energy efficient techniques lay the foundation of their frameworks from the impact of
sensor energy utilization on the network life span. Generally, these techniques can either schedule
sensor modes to alternate between active and sleep modes, or to adjust their sensing ranges, or to
combine both scheduling and adjusting techniques. The main goal of sensor scheduling techniques is
to divide sensor nodes into a maximum number of set covers (SC), each set cover being assigned with
a subset of sensors being cooperatively capable of covering the whole area of interest. Assume that the
lifetime of the WSN is divided into intervals and at each interval only the sensors belong to one SC are
set to active, while the remaining sensors are set to sleep. Then scheduling a large humber of such set
covers will eventually prolong network's life time, wherein each interval, only one SC is activated.
For homogeneous WSNs where sensors are equipped with equal sensing range, the maximum set
covers problem is turned into finding the maximum number of disjoint set covers (DSC) problem. For
heterogeneous WSNSs, however, sensor nodes have the ability to adjust their sensing ranges into
different levels extending the scheduling problem into a constrained maximum non-disjoint or
overlapped set covers problem, commonly known as adjustable range set covers (ARSC) problem.
Both DSC and its extended ARSC are proved to be Non-deterministic Polynomial-time complete (NP-
complete) problem [6], [7] that recently enjoyed a considerable interest.

Unlike existing techniques, the contribution of this paper is to address the issue of designing an
energy efficient algorithm for solving the maximum ARSC problem in WSNs while considering
probabilistic sensing ability of the sensor nodes. To the best of our knowledge, this is the first attempt
to address such issue. To this end, this paper attempts to answer the following questions. What is the
impact of complicating the sensing model from the commonly used Boolean model to the probabilistic
one into the maximum ARSC problem? What is the impact of adopting probabilistic sensing model on
the coverage reliability and network's life time? How can maximum ARSC problem be then stated,
formulated, and solved?

To answer the above questions, the following research steps are developed to provide guantitative and

qualitative arguments:

1. To open the maximum ARSC problem into a more general statement including the
characterization of the probabilistic sensing model of the sensor nodes. The introduced problem
statement is divided mainly into three sub-problems: how to schedule sensors into active and
sleep set covers? How to adjust sensing range to each sensor in the active set cover? How to
maximize coverage reliability and number of set covers?
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2. To cast the contradictory goals of the probabilistic sensing model being realized by the coverage
reliability and network’s life time on a multi-objective optimization (MOO) model.

3. To devise a multi-objective evolutionary algorithm (MOEA) and to project all its characteristic
components towards solving the proposed MOO model.

In the remainder of this paper, preliminary concepts to the formulation of the problem are first
introduced. The problem is modeled as multi-objective optimization problem in both informal and
formal ways. The paper then continues to describe how to project the characteristic components of the
adopted multi-objective evolutionary algorithm into the formulated maximum ARSC problem.
Simulation results and discussions are also provided. Finally, concludes the whole work of this paper
is summarized and further candidate research directions are recommended.

2. Preliminaries

Hereinafter, the model being used to represent the WSN system is a two-dimensional rectangle area
A of size (XmaxsYmax), 1.6 A ={(x, VIl <x < Xpnax, 1 <y < Yax}. The sensing area A is
equipped with a set T = {t;, t;, ..., t,} Of n targets where t; vi<i<n = (x,¥) € A. Additionally, a set
S ={s1,S2,...,Sm} Of m sensors are assumed to be deployed randomly in A, i.e. s; vi<iem =
(x,y) € A. Moreover, considering sensing capability, two characteristics can feature the sensor
nodes: sensor model and sensing range.

In general, WSN model is either homogeneously modeled (where all sensor nodes have a fixed
sensing range R;), or heterogeneously modeled (where each sensor node s; is assigned with a sensing
range Rg,). In the simple uniform circular disc sensing model, a sensor s is said to cover a target ¢ if
and only if target t lies within s circle sensing range. Formally expressed as a binary detection model
in Eq. 1, which says that if a target occurs within the sensing radius of a sensor node, the probability of
covering this target is assumed to be always 1, otherwise, it is assumed to be zero.

Cover(sut)) = {1 if G %) + 0= 3)* < Ry, 0
0 otherwise
A more realistic sensing model, however, should consider the impact of both environmental and
physical arguments which in turn affects the sensing capability of the sensor nodes [8]. Adding
detection uncertainty factor R,, to the sensor results in three-levels of sensing strength (as expressed in
Eqg. 2). The coverage probability decays exponentially as the distance between the target and the
sensor increases, as expressed in Eq. 2.

( .
1 if J (i — %)% + (v~ )? < Ry, — Ry

Cover (s, t,-) = { g4af if R, — R, < \/(xi - %)+ (i —yj)? <R, + Ry (2)

(0 i Jou—x)? + 0n- ) = Ry + Ry
Where:

a= J i — 102 + ¥ — ¥)% — (Rs, — Ry) @)

Both A and 8 are probabilistic sensing parameters to measure the strength of detection when a
target point lies within the interval {R;, — Ry, Rs; + R, }. On the other hand, complete coverage and no
coverage are the cases for points positioned within R;, — R, and out of Rg, + R,, distance from the
sensor, respectively.

Likewise, sensing range, being specified by the maximum sensing radius and sensing capability of
the sensor, can be either fixed or adjustable [4, 5]. When the sensor is fixed with only one sensing
range, it can only sense data over a distance that is less than or equal to its sensing range. However,
enabling the sensor node to adjust its sensing ability after an initial set up with different sensing
ranges, the sensor can be schedule its sensing ability to large or small range according to the required
coverage and the overall energy consumption.

The general definition of ARSC problem is stated as:
Definition 1: (Maximum Adjustable Range Set Covers Problem — ARSC). Consider a WSN consisting
of a set T of n targets and a set § of m sensors. Each sensor s; € § is augmented with the 3-tuple:

757



Attea and Rashid Iraqi Journal of Science, 2016, Vol. 57, No.1C, pp: 755-767

{E, (r1,79, ., 1), (€1, €5, ..., €5)}, Where E is the initial energy, (1,75, ...,7,) is an increased option of
sensing ranges, and (ey, e, ..., e,) is the associated energy consumption for each sensing range.
ARSC problem attempts to find a family of set covers F = {83, S5, ..., Sy} and to adjust sensing range
of each sensor s; in a set cover §; (i.e. to adjust e; ; if s; € §;) such that:

(1) N is maximized,

(2) Each set cover S; covers the whole 77, and

(3) Each sensor appearing in the whole F consumes at most E'.

Shortly speaking, the maximum adjustable set covers problem can be formally expressed as:

argmax AR-SC(S,T)=F = {{§}', | VS; € F:SetCover(S;) = 1and Vs; € S:Z?’:szesi ej; < E} (4)

N
3. Multi-objective evolutionary algorithm with decomposition

Consider a vector of n parameters X = [xq, x5, ..., X,]7, @ MOP can be formulated as a vector of m
objective functions F(X) = [f; (X), f,(X), ..., f,,(X)]T. F(X) is optimized (in terms of domination)
towards finding Pareto-optimal set of solutions (or at least towards a near Pareto-optimal set of
solutions), each of which is said to be a non-dominated or a non-inferior solution, noted as X* =
[x7, 25, ..., 25]7| X* € X. To define domination, consider two vectors U and V from the solution
space Q(X), i.e. U € Xand V € X. Then, solution U is said to dominate V if and only if the following
two conditions hold [9], [10]:

1. Solution U is no worse than V in all objectives, or formally, V1 < i < m: f;(U) & f;(V). For
example in maximization, the word "no worse" means f; (U) <« f;(V).

2. The solution U is strictly better than V in at least one objective, or formally, f;(U) < f;(V) in at
least one objective ff;, i€ {1,2,...,m}. For maximization, the word "strictly better" means
ff; (U) > f;(V).

The notation (U < V) is used to denote that solution U is better than solution V regardless of the
type of the optimization problem (maximization or minimization). Also, the notation (U = V) is used
in the same way to express that solution V is better than solution U. Hence, a non-dominated set can be
defined as: among a set of solutions Q(X), the non-dominated solutions set Q(X) c Q(X) are subset
of solutions which are not dominated by any other solution in Q(X).

Among the famous multi-objective evolutionary algorithms being successfully applied to many real-
world problems is the multi-objective evolutionary algorithm with decomposition (MOEA/D) being
proposed by Zhang and Li [9]. Consider a formulated MOP with m objective functions:

Maximize F(X) = [f1(X), f2(X), ..., fm (X)]" (5)
Also, consider a reference point z* = (33, ..., ) t0 hold the best value obtained so far by MOEA/D
for each of the m objective functions, formally speaking:

Vi e{l,..,m}

z; = [i(X"): o 2AXe QX)| fi(X) > f;(X) (6)

In MOEA/D, each of the N individual solutions can stand for one scalar optimization problem,
thus, MOP is decomposed by MOEA/D into N scalar optimization sub-problems. Each individual
Pr,1 < k < N is associated with one weight vector A% of length m out of a set of N even spread
weight vectors {11, 42, ..., AV}. Recall that there are m objective functions for the MOP, then each
has weight vector A% = (A%, 2%, ..., 2K ),s.t. X7, A¥ = 1 . Moreover, in MOEA/D, each individual is
evolved using information gathered from only its T neighbor solutions. Neighbor solutions to py,
denoted by B(k), are those with the closest distance (using Euclidean distance) weight vectors to A*.
Thus, B(k) = {ky, ks, ..., kr} with By (k) = {A%1, A%z, .. AkT}),
vte{l,..,T}

2 N 2
k€ B): o AN € (aL22,.., AV m, (aF - 2f) > zm, (ak - 4)) )

The problem of approximating the Pareto Front (PF) of the MOP defined in Eq. (5) can be
decomposed into N scalar optimization sub-problems, each with its objective function:
Vk,L1<k<NandVi,1<i<m
9x(Prlak,z%) = max,<icm{Af|fi(p1) — 271} )
In terms of maximization, MOEA/D maximizes all these g, objective functions simultaneously in a
single run. MOEA/D with the Tchebycheff approach evolves a population of N solutions {p,,
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P2 -, Pn} € Q(X) where, p, is the current solution to the k" sub-problem with (p;) =
[APr) s f2(Pr) s fm(Pi)]T. Also MOEA/D maintains an external population EP, for archiving the
non-dominated solutions found during the search. At each generation, MOEA/D performs four main
operations while generating N new solutions {p,’, p,’, ..., py'}:
e First, for each individual p;,1 <k <N, a new offspring solution p;’ is generated, using

problem-specific genetic operators (e.g., crossover and mutation), from only B (k) neighbors.
e Second, if necessary it updates the reference points z* = (27, ...,3m)- Vi, 1 <i<m, if 3; <

fi(pr') , then it sets z; = f;(px).
e Third, it updates the neighbors of p,: vt, 1 < t < T, if g, (p|2%,57) = g.(p¥e|A%, 3*), then it

sets p*t = p,” and F(p*t) = F(p,).
e Finally, it updates EP by removing from it all solutions Y where F(pp,") < F(Y) and insert p;’

into EP if AY € EP - F(Y) < F(py).
The general framework of MOEA/D can then be outlined as in Algorithm 1 [9].

Algorithm 1 The general outline of MOEA/D

Input:

e Multi-objective maximization problem f(x) = (fy (), f2(X), ..., fm (X))

e Number of sub-problems to be evolved, i.e. population size, N

e Uniform spread of N weight vectors: {A1,22, ..., AV} such that 2% = (2%, 2%, ..., A%))
Neighborhood size of each weight vector, T
Maximum number of generations, max;
Probability of crossover, p,
Probability of mutation, p,,

Output: External archive of non-dominated solutions, EP.

Step 0 - Setup:

e« EP=0

e t=0

Step 1 — Initialization

« Uniformly, generate an initial population, Py = {p1, P2, ---, Pn }-

« Evaluate fitness vector for each individual, vi=12,..,N

f@d =A@, L@, ., fm (P}

« Initialize ideal vector z* = (31,25, ..., 2,) | by a problem-specific method.

. Compute Euclidean distance between weight vectors {1, A2, ..., AN} and assign the T

closest vectors = {1¥1, 1%z, .., A¥r} to each A*. vk = 1,2, ..., N.

« Set neighbors for each weight vector, Vk = 1,2, ..., N: B(k) = {ky, ky, ..., kr}.

Step 2 - Evolve cycle: Fori=1,2,...,N

« Randomly select two indices k, L from B(i), and generate a new solution Y from P

and IP; using crossover and mutation operators.

« Update 3%, Vj =1,..,m,if 37 > f; (Y),thensetz; = f; (V).

. Update neighboring solutions: For each index j € B() , if g*(Y|4,z*) <

g% (Pj|A;,z"), thenset P; = Yand f; = f(Y).

« Update EP: Remove from EP all vectors dominated by f(Y).

Insert £ (Y) to EP if no vector in EP dominate f(Y).

Step 3 — Stopping criteria

o Ift = ty4, then stop and output EP

else t = t + 1 and go to Step 2.
4. Multi-objective ARSC problem: Definition and formulations
In this section, a discussion illustrating an informal account of the different characteristics of the
proposed multi-objective model for solving ARSC problem in WSNs is first presented. This is
followed by casting the proposed MO-ARS model into a more formal expression.
4.1 MO-ARSC: Problem statement and formal development
The fundamental idea of the formulated multi-objective adjustable range set covers (MO-ARSC)

problem is to maximize two contradictory objective functions in an attempt to provide the WSN with a
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maximum collection of overlapped set covers, each of which can completely covers the whole target
set.

The first objective function concerns with finding the maximum number of generated set covers.
Searching for a larger number of set covers can be emphasized by scheduling sensor nodes into
complete set covers, each of which consumes as less energy as possible. Recall that each active sensor
has the ability to adjust its sensing range from p different settings (i.e. {ry, 7, ..., } Where r; <1, <
-+ <1,) corresponding to p different energy consumption {e;, ey, ...,e,} where e; < e, < <e,.
Then, the formulated objective function prefers those chromosome solutions where competitions
between the still alive sensors are allowed in the small-end ranges associated with the low energy
consumptions. Consider still alive sensor s; with residual energy E, has been encoded by a given
chromosome solution to be active at radius 7. Also, consider that target ¢; is placed inside the
coverage area of s; (i.e. Euclidean distance d; ; < ;). For Boolean sensing model, this is interpreted
as sensor s; completely covers target ¢; (i.e. Cover(s;,t;) = 1). In terms of energy consumption, E.,
this causes sensor s; to consume 100% of the energy required to adjust its sensing radius to 7y (i.e.
100% X e(ry)). In other formal words, this can be expressed as:

E (si| ry) = 100% X e(ry) ©
E.(si| 1) = E,(s) — Ec(s;|r)| 3t;: Cover (s, tj| ry) = 1 (10)
Where E.(s;), and E,.(s;) are the consumed energy and the residual energy of sensor s; at radius ry.
However, the perspective of the probabilistic sensing model as an alternative and more realistic
sensing approach (as presented in Eq. 2) opens up a different energy consumption formula. It suggests
that sensor s; at sensing radius r, has to consume at most an amount of energy equals to
Cover(si, £ rk) € [0,1] where ¢t; is the most distant target laying inside the coverage area of sensor s;
being adjusted with radius 7. Thus, the previous two equations will be re-formulated as:

E (s;| 1) = Cover(s,, ¢l 1) X e(ry) (11)
E.(si| ri) = E.(s;) — E.(s;|r)| V1 < j < n:max{Cover(s; t;|ry)} (12)

One can clearly see that the residual energy E,(s;| ) of sensor s; in Eq. 12 can be maximized by

minimizing the right-hand side operand (i.e. consumed energy E.(s;|rx)) which is totally casted by the
adjusted radius e(r;). The smaller the adjusted radius, the more energy will be reserved. Similarly, the
smaller the sensing ranges adjusted to all active sensors set, the more likely that this set can support
target area with whole coverage and with less energy consumption. The demand for prolonging
network's lifetime through increasing the total number of complete set covers, then, suggests the need
for maximizing the total residual energy of sensor nodes. To this end, the proposed MO-ARSC model,
states the problem of maximizing sensors residual energy as follows.
Definition 2: (Maximum residual energy ®;(S;)) Consider a set cover S; = {s;} of a group of active
sensors from the whole sensor set § (i.e. {s;} c &) to cover the whole target set 7. The residual energy
of §; can be maximized by minimizing the sensing range adjusted to {s;} while satisfying full target
coverage.

Maximize ®1(S;) = Xses, Er(si| T50) (13)
Such that
SetCover(S;) =1 (14)

The second objective function handles the reliability of the generated set covers. The objective is
formulated by the means of increasing the reliability of gathered coverage from the whole set covers.
For each set cover §;, the formulated objective function qualifies the reliability of each target t; € T
by the maximum strength of detection being reported by the different sensing radii adjustments r; of
the active sensors in set ;. The coverage reliability of each target t; € T, under set cover S;, can be
formally expressed as:

R(t]-| §;) = argmax{Vs € §;: Cover(s, tj| i)} (14)
Altogether, the reliability of set cover §; can be maximized by maximizing coverage reliability of each
target can be stated as:
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Definition 3: (Maximum coverage reliability @,(S;)) Consider a set cover S; = {s;} of a group of
active sensors from the whole sensor set S (i.e. {s;} € §) to cover the whole target set 7. The
coverage reliability of §; can be maximized by maximizing the sensing reliability of each target in T'.
Maximize ®,(S;) = Y-, R(t;] S;) (15)
4.2 Individual representation

In the proposed MOEA/D, each candidate solution p is represented as a vector of length equals to
the total number of sensors in the area, i.e. m. Then, a population IP of K individuals can be formally
expressed as P = {py|px = (P.1, Pr2, > Prom) }oeq- Each gene; |i € {1,2, ..., m} controls both the
active/sleep scheduling and sensing range assignment of the corresponding i*" sensor. Assuming that
each sensor is augmented with p sensing ranges (rl,rz, ...,rp), each gene; will then take an integer
value from the range {—1,0,1, ..., p} where —1 means that the corresponding sensor expires its energy,
and 0 corresponding to setting the sensor to the sleep mode. The remaining values j = {1, ..., p}
corresponding to setting the sensor to the active mode with sensing range j. Formally speaking, for a
population of K individuals, each of m genes,
vk €{l,..,K}and Vi€ {1,..,m}
Pr = (]P)k,p]pk,z, --w]P’k,m) where :

—1 if s;isdead
Pri =4 0 if s;is sleep (16)
j if siis active at sensing range j

4.3 Repair operator

Although population initialization creates a set of candidate solutions, some candidates could be
infeasible or lethal to the MO-ARSC problem. Infeasible solution p = (p4, P2, ..., P IS Stated in
terms of existence of coverage-holes where one or more targets are out of coverage of any active
sensor.
13teT|Vi 1<i<mandp; >0 = Cover(p;t)=0 (17)
0 otherwise
On the other hand, a feasible solution p = (p, P2, ---, Pm) May be over satisfied in terms of target
coverage that leads to over energy consumption (see Eq. 3.5).
1VteT|Ip; >0 = Cover(p;t) >0 (18)

i i 0 otherwise )
A repair operator, T', is formulated to make a guarantee that the constructed solutions have both hole-

free as well as enough-coverage conditions. The fundamental idea of repair operator can be simply
stated as follows. For a coverage-hole solution, it activates as less as possible of sleep sensors and
randomly adjusting their sensing ranges. On the other hand, for an over coverage solution, it
deactivates as much as possible of active sensors.
The process of the proposed repair operator I': p — p’ is presented in Algorithm 2. It takes as input

an individual p and checks whether the active sensors set S being signified by p (i.e., {p;|p; > 0}/%,
forms coverage-hole or over-coverage. In case of coverage-hole, T' will repeatedly select one random
sleep sensor, activate it, adjust its sensing range, and group it with the active sensors of p until the new
set form hole-free set cover. On the other hand, if the active sensors of p forms over coverage, I" will
repeatedly deactivate one random active sensor until it can form complete coverage with less number
of sensors or less ranges of sensing.

Algorithm 2: Repair Operator (py; Px’)

Input: pr| k € {1,2,...,K}

CoverageHole(p) = {

OverCoverage(p) = {

Output: p;’
1: I group all active sensors of pj, iNt0 S,ctive
Vj €{1,2,...,m}: Sqctive < {]P)k,jl]pk,j > 0}
2: /1 group all sleep sensors of py, into Sgjeep
vj€{12, ---'m}5Ssleep < {]P)k,jl]pk,j = 0}
3: if OverCoverage(p; 1, Piz - Pim ) !/ hole-free set cover

// repair over-coverage
4: ’7 while OverCoverage(p; 1, P2 ) Pim )
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5: select random sensor s; € Sgctive
set py,; < Pk,; — 1 // adjust its sensing range to the preceded value

7 end
/[ exit while loop with coverage-hole status

I

8: set px,; < Pk,; + 1 // return back to the last adjustment

9: else // coverage-hole set cover

10: while CoverageHole(pq, P2, -\ Pm )

11: select a random sensor s; € Sgjeep

12: set py,; < rand(1, p) // adjust its sensing to a random value from 1 to p
14: | end

15: end

4.4 Selection and perturbation operators

Any EA lays its main operation on three commonly used evolutionary operators: parent selection,
parent recombination, and child mutation. In the proposed MOEA/D, these three evolution operators
will be formally expressed as an iterative function ¥:{P, EP} — {P’, EP'} where ¥(P;) = P, =
P;,4, i is the generation number and IP; is the population at generation i. EIP is an external population
of the generated non-dominated solutions. The population starts with an initial random population P,
and continues evolution by W for a maximum number of i,,,, generations.
To generate a new individual p’,<x<k, select two neighbors p; and p, from the neighbor set B(k) of
Pk, to be the parents to generate (by recombination and mutation) a new solution p;’ = vy from p; and
P,. A proportion p. = 0.6 of p; and [p, genes are recombined using 2-point crossover operator W,,.
Two cut points are randomly selected from the total length of the chromosome (i.e. 1,1, ~
{1, ...,m},where r; <), and the pair p, and p, are then swapped at p, ; and p2,j|r1 < P1j,P2j <
1.
vk € {1,...,K} and rand < p,
Wy: {p1~B(k), p,~B(k)} = yx
Yk = (]P)1,1. o Pt P2ri+ts - P2r2-1 P12 ) ]P’1,m) (19)
Each gene in the new child solution y, <<k is then controlled by mutation operator ¥,,, with a small
probability p,,, = 0.1. For a mutated genes corresponding to only still alive sensors, mutation operator
can change their activities and/or sensing range adjustments.
vke{l,..,K}
Wi Vi = Vi
VPkjiasjsm # —1 andrand < p,, = pi;~{ 0,1, ..., Tiax} (20)
Where 7,4 < 13, is the maximum sensing range that sensor py ; can operate with.
4.5 Handling external population EP

Working with MOEA/D can generate a number of non-dominated solutions among which the
desired solution exists. The generation of these non-dominated solutions can appear at any generation
of MOEA/D. Thus, an external repository, EP, for archiving the population of non-dominated
solutions is required. Two main operations should be provided to update the content of EP, these are
insertion and deletion.

Consider an EP = {pkonpom } 1, Of a set of non-dominated solutions, with cardinality M, i.e.
|[EP| = M. A chromosome solution p = (p4, P2, ..., Pm) With the proposed objective function vector
F = {®,(p), ®,(p)} canenter EP if and only if it is not dominated by any of EP solutions. Formally
speaking,
insert(]p), EP) — {EP u 1% lf ﬂ]P);VanDom € EPI IF(]P);\ltmDam) < IF(ED)} (21)

EP otherwise
Intuitively, if EP is empty then insert(p, {}) = {[p}. Moreover, given a new generated chromosome

solution p, the status of a non-dominated solution belongs to EP could be changed to a dominated
solution by p, and thus, should be removed from EP. Formally speaking,
V1i<i<M

3 i : i
delete(EP, ]p;VonDoml]p)) = {EP\]p)NanDom. lf IF(IP)) < IF(]P)NtmDom) (22)
EP otherwise
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4.6 MOEA/D layers

The proposed MOEA/D operates in a layer wise, where each layer i can establish a candidate i*" set
cover. Thus, the proposed multi-layer MOEA/D can be formally expressed as:

MOEA/D = MOEA/D*>MOEA/D?° ..°"MOEA/D" (23)
where [ is the maximum number of layers that MOEA/ID can generate with them a collection of
complete set covers without extinguishing sensors total energy. At each layer i, if the minimum
requirement for targets coverage can be satisfied, then MOEA/D' excludes all dead sensors and plays
only with still alive sensors to search for best set cover. Consider sensor s, belongs to set cover j
consumes in j an energy ey ;, then this sensor is dead at layer i and later on if it appears in all or some

of the previous i — 1 layers and consumes all its energy (i.e., Z};ﬁ,skesj ex,j = 0). On the other hand,
if the sensor satisfies i_ﬁ,skesj ex,; < E then it can be assigned in i and later layers. Formally

j=

speaking, if:

SetCover(Sym,) = {1 if Vj,1<j<n>= 3s;€ Salive|cover(si, tj) >0 (24)
0 otherwise

where Sujipe = {s:|E;-(s;) > 0} (25)

5. Simulation Results

This section reports the performance of the proposed multi-layer MOEA/D for solving MO-ARSC
problem. The evaluation is presented in terms of total number of set covers obtained, total residual
energy, and total coverage reliability.

5.1 Parameter settings

The results are obtained after setting WSNs and algorithm parameters into the following. The
simulation area is square-shaped with X4, = 1000m, number of targets n = {10, 15, 20, 25}, and
number of sensors m = {25, 50, 75,100,125,150}, where each sensor is augmented with four sensing
radii. Each radius has one and half times the sensing radius of the preceding one. In each group of
results, we will vary the smallest sensing range r; to two different values r; = {150,250}, Uncertainty
level R, is set to R, = 0.5 units, both 1 and 8 are set to 0.5, and ¢, is set to 0.001. Population size is
set to 100 and will be allowed to evolve 100 times. A combination of all varying parameters carries
out 24 different test instances, wherein the results of each test are average of 10 random WSNs.
Altogether, 240 different WSNs are examined in this simulation.

5.2 Results

Tables-1 and -2 report the performance of the proposed model in terms of total number of set
covers and total coverage reliability. The results reported in the tables reveal the following points.
Fixing all parameters to one setting and just increasing number of sensors m from 25 to 75 will
eventually lead to an increased number of set covers (i.e. prolonging network's lifetime), an increase in
total residual energy, and an increase in total coverage reliability. For example, fixing n to 10 and r; to
150 resulting in an increase from 7.2 up to 19.8, from 0.78 up to 0.9893, and from 0.2138 up to 0.3285
in average number of set covers, total residual energy, and total coverage reliability, respectively.
Again, for similar parameter settings, increasing number of sensors m from 25 (Table-1) to 150
(Table- 2) has, also, a positive impact on the total number of generated set covers, residual energy, and
coverage reliability, in average, from 7.2 up to 32.8, from 0.78 up to 14.4, and from 0.2138 up to
0.7390, respectively.

Secondly, varying only initial sensing radius r; from 150 to 250 while fixing all other parameters
(including the initial energy E) will generally leads to decreasing the total number of set covers and
total residual energy but an increase in coverage reliability. This is due that larger radii need more
energy consumption than smaller radii and that larger radii have more chance to cover more targets
with more reliability. For example, consider the case mentioned above where n is fixed to 10, m is
fixed to 75 and varying r; from 150 to 250. The results in Table 1, reports a general decrease from
19.8 down to 14.1, from 0.9893 down to 0.9849, and from 0.3285 up to 0.4706 in average number of
set covers, total residua energy, and total coverage reliability. Also, for the results in Table 2, one can
see a decrease from 21.6 down to 18.6, from 11.9 down to 0.9889, and from 0.3595 up to 0.4433 in
average number of set covers, total residual energy, and total coverage reliability.

Figures -1 - 4 quantitatively report the impact of varying number of sensors and sensing radii on
the final number of set covers. As shown in the figures, increasing number of sensors will eventually
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leads to increasing average number of set covers. Another interesting remark is that increasing total
number of targets while fixing total number of sensors to a fixed value, results in decreasing the
average number of set covers. This can be turned back to the fact that more targets needed to be
covered, means more energy required to be consumed. This in turns means less residual energy and
less number of set covers. Finally, increasing initial sensing range from 150 to 250 can cause a general
decrease in the average number of set covers.

Table 1-Performance of MO — ARSCin terms of average number of complete set covers, average residual
energy, and average reliability for 10 WSNs in each test case where number of sensors: m =
{25,50,75}, number of targets:n = {10,15,20,25}, initial energy for each sensor: E = 1000,
and r; = {150,250}.

MO — ARSC
Testt | n | m Number of set covers Residual energy Reliability
ry =150 | r{ =250 | ry =150 | r; =250 | r; =150 | r; =250
1 25 | 7.2000 4.8000 0.7800 0.8748 0.2138 0.3069
2 10 | 50 | 16.0000 11.3000 0.9862 0.9781 0.3253 0.4518
3 75 | 19.8000 14.1000 0.9893 0.9849 0.3285 0.4706
4 25 | 5.9000 4.7000 0.8645 0.9331 0.3320 0.5391
5 15 | 50 | 9.4000 8.9000 0.9658 0.9648 0.4852 0.5550
6 75 | 15.9000 12.0000 0.9771 0.9762 0.4770 0.6145
7 25 4.1000 4.1000 0.5582 0.7317 0.3170 0.9598
8 20 | 50 | 10.8000 9.3000 0.9639 0.9556 0.9160 0.9990
9 75 | 15.4000 11.0000 0.9650 0.9692 0.9654 1.0000
10 25 2.4000 4.9000 0.3669 0.9000 0.2395 0.1949
11 25 | 50 9.2000 6.5000 0.9489 0.9306 0.7334 0.9928
12 75 | 13.3000 8.1000 0.9650 0.9692 0.9416 0.9992

Table 2-Performance of MO — ARSC in terms of average number of complete set covers, average residual
energy, and average reliability for 10 WSNs in each test case where number of sensors: m =
{100,125,150} , number of targets:n = {10,15,20,25} , initial energy for each sensor: E =
1000, and r; = {150, 250}.

MO — ARSC
Testd n | m Number of set covers | Residual energy Reliability
rs = 150 rs = 250 r, = 150 r, = 250 rs = 150 rs = 250

1 100 | 21.6000 18.6000 0.9889 0.9889 0.3595 0.4433

2 10| 125 | 30.8000 20.8000 0.9912 0.9912 0.3882 0.4609

3 150 | 32.8000 20.6000 0.9937 0.9937 0.3790 0.4583
4 100 | 21.4000 15.5000 0.9828 0.9840 0.4847 0.5668
5 15 | 125 | 24.6000 19.1000 0.9851 0.9843 0.4946 0.5921
6 150 | 27.5000 20.8000 0.9858 0.9882 0.5310 0.5975
7 100 | 18.0000 14.2000 0.9733 0.9738 0.5287 0.6541
8 20 | 125 | 21.8000 18.2000 0.9815 0.9800 0.5178 0.6387
9 150 | 23.5000 20.5000 0.9822 0.9812 0.5359 0.6832
10 100 | 16.6000 11.9000 0.9669 0.9728 0.5740 0.6801
11 25 | 125 | 19.4000 13.1000 0.9734 0.9747 0.6048 0.7325
12 150 | 20.8000 14.4000 0.9761 0.9805 0.6000 0.6848

6. Conclusion

This paper introduces a new set covers optimization problem to solve two main design issues in
WSNs. Both network's lifetime and coverage reliability are the main parameters that reflect the design
of the proposed adjustable range set covers (ARSC) optimization model. The proposed model adds to
the existing ARSC models an additional parameter: the sensing model of the sensors. While all of the
existing ARSC models assume the traditional Boolean sensing model, the proposed model concerns
with more realistic sensing model. The proposed model is formulated as a multi-objective optimization
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problem (MO-ARSC) and solved using one of the well known multi-objective evolutionary algorithms
(MOEA/D). Moreover, the general layout of MOEA/D is suggested to operate in multi-wise layers.
The quality of set covers generated from the proposed multi-layer MOEA/D are quantified in terms of
their cardinality, residual energy, and coverage reliability. Moreover, the evaluations consider the
impact of varying total number of sensors, and varying their sensing abilities. The results report that
the behavior of the proposed MO-ARSC model matches expectation by means of increasing total
number of sensors and/or increasing sensing ranges.
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Figure 1- Average number of set covers when number of targets n = {10, 15,20, 25}, number of sensors
m = {25,50,75}, and , =150.
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Figure 2-Average number of set covers when number of targets n = {10, 15,20,25}, number of sensors
m = {25,50, 75}, and ; =250.
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Figure 3-Average number of set covers when number of targets n = {10, 15, 20,25}, number of sensors
m = {100, 125,150}, and r; =150.
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Figure 4- Average number of set covers when number of targets n = {10, 15,20, 25}, number of sensors
m = {100,125, 150}, and r; =250.

References

1. Heinzelman, W., Kulik, J. and Balakrishnan, H. 1999. Adaptive Protocols for Information
Dissemination in Wireless Sensor Networks, Proc. 5" ACM/IEEE Mobicom Conference
(MobiCom '99), Seattle, WA, August, pp: 174-85.

2. Tian D. and Georganas, N. D. 2002. A coverage-preserving node scheduling scheme for large
wireless sensor networks, in Proc. 1% Assoc. Comput. Machinery Int. Workshop Wireless Sensor
Netw. Appl., pp: 32-41.

3. Lu, M., Wu, J. Cardei, M. and Li, M. 2005. Energy Efficient Connected Coverage of Discrete
Targets in Wireless Sensor Networks, Intl. Conference on Computer Networks and Mobile
Computing (ICCNMC'05).

766


http://www.cse.fau.edu/~mihaela/HTML/PAPERS/iccnmc_2005.pdf
http://www.cse.fau.edu/~mihaela/HTML/PAPERS/iccnmc_2005.pdf

Attea and Rashid Iraqi Journal of Science, 2016, Vol. 57, No.1C, pp: 755-767

10.

Cardei, M., Wu, J., Lu, M. and Pervaiz, M.O. 2005. Maximum Network Lifetime in Wireless
Sensor Networks with Adjustable Sensing Ranges, IEEE Intl. Conf. on Wireless and Mobile
Computing, Networking and Communications (WiMob'05).

Jia, J., Chen, J.,, Chang, G., Wen, Y., and Song, J. 2009. Multi-objective optimization for
coverage control in wireless sensor network with adjustable sensing radius. Computers &
Mathematics with Applications, 57(11), pp: 1767-1775.

Slijepcevic, S. and Potkonjak, M. 2001. Power efficient organization of wireless sensor networks,
in Proc. IEEE Int. Conf. Commun., Finland, 2, pp: 472-476.

Cardei, M., Thai, M., Li, Y. and Wu, W. 2005. Energy-Efficient Target Coverage in Wireless
Sensor Networks, IEEE INFOCOM 2005, pp: 1976-1984.

Elfes, A. 1987. Sonar-based real-world mapping and navigation. IEEE Journal of Robotics and
Automation, RA-3(3), pp: 249-265.

Zhang,Q. and Li, H. 2007. MOEA/D: A multi-objective evolutionary algorithm based on
decomposition, IEEE Transactions on Evolutionary Computation, 11(6), pp:712—731.

Coello Coello, C.A., Van Veldhuizen D.A., and Lamont G.B. 2002. Evolutionary Algorithms for
Solving Multi-Objective Problems. Kluwer, New York.

767


http://www.cse.fau.edu/~mihaela/HTML/PAPERS/WIMOB_2005.pdf
http://www.cse.fau.edu/~mihaela/HTML/PAPERS/WIMOB_2005.pdf

