
Jaafar Iraqi Journal of Science, 2016, Vol. 57, No.1C, pp: 742-754

*Email: qmjsalman@yahoo.com

742

X.K.N: A Proposed Method for Data Encryption Using XOR and NOT

Logical Gates with LFSR Generated Keys

Qusay Mohamed Jaafar*
Department of Computer Communication Engineering, Alrafidain University College, Baghdad, Iraq

Abstract

In this paper, a method for data encryption was proposed using two secret keys,

where the first one is a matrix of XOR's and NOT's gates (XN key), whereas the

second key is a binary matrix (KEYB) key. XN and KEYB are (m*n) matrices
where m is equal to n. Furthermore this paper proposed a strategy to generate secret

keys (KEYBs) using the concept of the LFSR method (Linear Feedback Shift

Registers) depending on a secret start point (third secret key s-key). The proposed

method will be named as X.K.N. (X.K.N) is a type of symmetric encryption and it

will deal with the data as a set of blocks in its preprocessing and then encrypt the

binary data in a case of stream cipher.

Keywords: Computer security, Encryption, LFSR, Symmetric, block and stream

cipher, Exclusive OR, NOT.

X.K.N طريقة مقترحة لتشفير البيانات باستخدام البوابات المنطقيةXOR وNOT مولد مع
 LFSR مفاتيحال

 *رــد جعفـقصي محم
 بغداد، العراقالرافدين الجامعة، ، كليةقسم هندسة اتصالات الحاسوب

 خلاصةال
تاح الاول سوف فخدام مفتاحين سريين، حيث ان المفي هذا البحث تم اقتراح طريقة لتشفير البيانات باست

(، اما المفتاح الثاني XNوسوف يتم تسميته)المفتاح NOTوبوابات XORيكون كمصفوفة من بوابات
هي مصفوفتين بحجم KEYB و XN(. KEYBسيكون كمصفوفة ثنائية وسوف يتم تسميته)المفتاح

(m*n حيث ان)m يساويn الطريقة المقترحة تم اقتراح استراتيجية لتوليد عدد من المفاتيح . ايضاً في هذه
()مسجل ازاحة التغذية المسترجعة الخطية(اعتماداً على LFSR(مستخدما مفهوم طريقة) KEYBsالسرية)

وتعتبر كنوع X.K.N(. هذه الطريقة المقترحة سوف يتم تسميتها s-keyنقطة بداية سرية)مفتاح سري ثالث
التشفير المتناظر والتي سوف تتعامل مع البيانات كمجموعة من الكتل في مراحل المعالجة الاولية ومن ثم من

 تشفير البيانات الثنائية في حالة من التشفير التدفقي.

1- Introduction
Everyone in this world need to protect his/her information from others, normally when we talk

about information protection this will lead to the encryption. Before beginning with the proposed

method, lets firstly give a simple definition to encryption. Encryption is a tactic to prevent
unauthorized persons to understand what they are getting from insecure channels. Encryption needs

strategy (algorithm) and key to work and both must be strong enough to obtain the protected

information.

ISSN: 0067-2904
GIF: 0.851

Jaafar Iraqi Journal of Science, 2016, Vol. 57, No.1C, pp: 742-754

743

To understand what X.K.N refers to: X from XOR gate, K from key, and N from NOT gate. The

proposed method is considered as symmetric encryption, in which the same keys will be used in

encryption and decryption phases. Also the proposed method depends totally on the XOR and NOT

gates to give an encrypted data. There are two main secret keys one of them as a block of binary digits
named as KEYB key, while the other will be a block of two symbols X and N named as XN key.

Besides, there is another key used for keys generation named as s-key, so that the proposed method

will need from the encrypter and the decrypter to enter three secret keys.
The objective of this research is to propose a new algorithm for data encryption using two main

matrices; the first one is XOR and NOT operations, the second one is 0's and 1's to encrypt the data,

each one of these matrices will represent a secret key, where the second key will be generated using
LFSR.

2- Theoretical Background

This section explains the theoretical background about the two main concepts: XOR, and LFSR.

2.1 Vernam (XOR)
"The Vernam cipher generates a cipher text bit stream C = EK(M)" [1]

ci = (mi + ki) mod 2, i = 1, 2

"The Vernam cipher is efficiently implemented in microelectronics by taking the "exclusive-or" of
each plaintext/key pair" [1]

 ci = mi ki

Let the plaintext is 10110 and the key is 10011 and by applying XOR bitwise we will get the cipher
text 00101.

Many researchers use XOR to perform the encryption process. XOR is applied on each element of

the data matrix of size 8*8 with rotation process [2].

2.2 Linear feedback shift register (LFSR)

"An elegant way of realizing long pseudorandom sequences is to use linear feedback shift registers

(LFSRs). LFSRs are easily implemented in hardware and many, but certainly not all, stream ciphers

make use of LFSRs. A prominent example is the A5/1 cipher, which is standardized for voice
encryption in GSM, combinations of LFSRs, such as A5/1 or the cipher Trivium, can make secure

stream ciphers". [3].

For example a simple LFSR [3] linear feedback shift register of degree 3 with initial values s2, s1,
s0, the output bit of the LFSR is computed as:

 S(i+3) ≡ S(i+1)+S(i) mod 2 (1)

"The maximum sequence length generated by an LFSR of degree m is 2
m

−1 "[3].
Where, S(i+3) ≡ S(i+1)+S(i) mod 2 S(i+3) = S(i+1) S(i)

There are many attempts to generate the secret keys and [4] one of them. There are two

conventional LFSR: standard and modular [5]. This research (X.K.N) used the principle of the
modular LFSR as a method to generate the KEYBs.

3- The proposed X.K.N method structure

The proposed method used XOR as a level of its strategy in the encryption/decryption and in the

key generation. Also the proposed method takes the two concepts of the encryption (stream cipher and
block cipher), the stream cipher in its low level encryption, and block cipher as results of encrypted

blocks that will be grouped to reconstruct the cipher/plain text. The proposed method for the keys

generation that depends totally on the LFSR it is stream cipher also.
The idea of X.K.N begins after some contemplation in XOR gate and how it is possible to use more

than one gate of XOR to produce a good cipher method. There are many methods used more than one

XOR in its strategy, but in this research a matrix of (XOR and NOT) gates is used as a key called XN
with another matrix of 0s and 1s as another key called (KEYB). These two matrices (XN and KEYB)

will be applied on the DATA matrix to produce an encrypted DATA matrix, from this point it is good

to deal with DATA matrix, XN (XOR and NOT) matrix, and KEYB matrix as blocks of bits or

contents. The bits refer to the DATA matrix values and KEYB matrix values, while contents refer to
the elements of the XN matrix (X,N). So XN will be represented with two elements X for XOR gate

and N for NOT gate (one bit complement). Figure-1a-c shows the three matrices of DATA, XN, and

KEYB (key as binary).

Jaafar Iraqi Journal of Science, 2016, Vol. 57, No.1C, pp: 742-754

744

0 0 1 1 . .

1 1 0 1 . .

0 1 1 0 . .

0
.

.

0
.

.

1
.

.

1
.

.

.

.

.

.

.

.

X N X N . .

N N X X . .

X N N N . .

X

.

.

X

.

.

N

.

.

X

.

.

.

.

.

.

.

.

1 1 0 1 . .

0 1 1 0 . .

0 1 0 0 . .

1

.

.

1

.

.

0

.

.

1

.

.

.

.

.

.

.

.

Figure 1- a-DATA matrix of (m*n)
 (One block)

b- XN matrix of (m*n) c- KEYB matrix of (m*n)

It is important to mention that the dimensions size of the XN and KEYB must be the same, and

applying the KEYBs on the DATA will depend totally on the XN, so that there are two secret keys

(XN and KEYB), KEYB will be generated after each iteration of encryption to get q keys of KEYB
type with one XN key. Equation (2) explains how the DATA will be encrypted, while equation (3)

explains how the Enc will be decrypted.

 Enc(i,j)= E(XN(i,j) [DATA(i,j),KEYB(i,j)]) (2)

 DATA(i,j)=D(XN(i,j) [Enc(i,j), KEYB(i,j)]) (3)
Where Enc(i,j) refers to the result of the encrypted block, E denotes the mechanism of the X.K.N

in encryption stage (the proposed method), DATA (i,j) refers to the data block before encryption and

after decryption, D denotes the mechanism of the X.K.N in decryption stage, KEYB (i,j) denotes the
binary secret keys of size m*n, XN(i,j) denotes the XN matrix of size m*n with X and N elements.

X.K.N uses the concept of the LFSR method (linear feedback shift register), to generate (q) number

of keys of size m*n as shown in section (3-2) with some modification on Eq(1).

X.K.N behaves as a block and stream cipher in encryption phase and decryption phase but as a
stream cipher when it generates (q) keys from the initial secret KEYB using LFSR.

3.1 The Mechanism of the proposed method (X.K.N):

There is no relation between LFSR and this proposed method in its essences, but LFSR is used to
generate the secret keys (KEYBs) from initial secret key (KEYB1). Figure-2 shows the block diagram

of the proposed method.

Figure 2- Block diagram of the proposed method

Reconstruct

the binary file

(Cipher text)

Receiver

Encrypted

Blocks

 Enc1

 Enc2

 Enc3

Blocks of size

m*n

 Block1

 Block2

Block3

For each
Block

 (sub matrix)

 (DATA)

 XN KEYBk
 Matrix Matrix k=1,2,....q

For each
Block

 (sub matrix)

 (Enc)

 XN KEYBk
Matrix Matrix k=1,2,....q

Encryption process

Decryption process

Big Matrix

of Binary

data of size

r*c

Blocks of size

m*n

Block 1

Block 2

Block 3

(Plain text)

Data file in

sender site

Decrypted

Blocks

Dec1

Dec2

Dec3

Big Matrix

of Binary

data of size

r*c

(Plain text)
Data file in

receiver site

Jaafar Iraqi Journal of Science, 2016, Vol. 57, No.1C, pp: 742-754

745

As shown in Figure-2 there are two secret keys one of them generated by itself by using LFSR

(according to initial secret key) to produce new matrices of keys (KEYBk), whereas the other is a

matrix of two elements, each one represents one case, X for exclusive OR, N for NOT. Now lets show

some points of the proposed method (X.K.N):
Firstly, it must to deal with the data file as a binary matrix of size r*c (r row,c column), and then

divide this matrix to form DATAs (blocks of binary data) of size m*n where m and n are the

dimensions of the DATAz, KEYBk and XN matrices whereas m equal to n. For example the string
(HELLOSIR) will be a matrix of 8*8 bits and the XN key and KEYB key are matrices of 4*4 as

shown in Fig.(1), so, there are 4 blocks of DATA each of size (4*4) and for each block the same XN

matrix but different KEYB (in this case the first four KEYBs are enough), in general for long string
the KEYB will generate until the KEYB will be repeated (KEYB1, KEYB2,…..KEYBq, q is the total

number of KEYB generated by modified LFSR) (DATA1 will be encrypted depending on XN and

KEYB1, DATA2 will be encrypted depending on XN and KEYB2, and so on for all blocks of the

original data file).
z=1,2... total number of DATA blocks (e), k=1,2 … total number of KEYBs generated by LFSR (q).

by applying Eq(2): for q=4 (total number of KEYBs)

Encz(i,j)= E(XN(i,j) [DATAz(i,j),KEYBk(i,j)])
Enc1(i,j)= E(XN(i,j) [DATA1(i,j),KEYB1(i,j)])

Enc2(i,j)= E(XN(i,j) [DATA2(i,j),KEYB2(i,j)])

Enc3(i,j)= E(XN(i,j) [DATA3(i,j),KEYB3(i,j)])
Enc4(i,j)= E(XN(i,j) [DATA4(i,j),KEYB4(i,j)])

Also apply Eq(3) to decrypt the encrypted data with the same procedure.

The number of KEYBs that will be selected to perform the encryption process depends on the total

number of data blocks, and the block size of the data (DATA) depends totally on the size of the XN
and KEYB.

X.K.N Algorithm:

Bellow the steps to show the algorithm of the encryption process:
1- Input the matrix of XN key

2- Input the KEYBs matrices (resulted from Keys generation process)

3- Detect the block size (m*n), m is the number of rows in key matrix; n is the number of columns

in key matrix.
4- Compute the total number of DATA blocks (e)

5- Detect the total number of the KEYBs (q)

6- k=0, z=1
7- Loop

 If k=q then

 k=1
 Else

 k=k+1

 End if

 For i=1 to m
 For j=1 to n

 If XN[i,j]=X then

 Encz[i,j]=KEYBk[i,j] XOR DATAz[i,j]
 Else (if XN[i,j]=N)

 Encz[i,j]=NOT (DATAz[i,j])

 End if
 Next j

 Next i

 z=z+1

Until (z=e) (stop the encryption process)
8- Group all Enc blocks in one matrix (binary file)

9- End

In decryption process the same algorithm will be used but by using Eq(3), with the same secret keys.

Jaafar Iraqi Journal of Science, 2016, Vol. 57, No.1C, pp: 742-754

746

3.2 Keys generation using LFSR

Keys generation needs two keys to begin (initial KEYB and S-key). S-key with rang between (1)

and (length-1) (length=m*n of the KEYB), m denotes the number of rows in KEYB, n denotes the

number of columns in KEYB, s-key denotes the start point key (from this point the XOR feed back
must start) in KEYB.

The proposed method supposed there are two secret keys (XN and KEYB) by default, but to

increase the complexity LFSR was used.
 To explain how the KEYBs will be generated, let the initial secret key (KEYB1) as follows: Figure-3

shows an example of using the principle of the LFSR to generate the keys of type KEYB.

Apply the same procedure in Figure-3 on KEYB2 to generate KEYB3 and so on for all KEYBs.

Figure-4 shows some of the KEYBs, each one will be reconstructed as a matrix of 4*4 (in this
example) and with XN matrix to encrypt the DATA matrix. Note that to produce KEYBs, the same

procedure in encryption and decryption is used, also the length of the secret key (KEYB) is L bits,

with the same size to XN secret key and DATA block.

KEYB1

KEYB2

KEYB3

KEYB4
 .

 .
 .
 .

KEYB1 (initial secret key) It will be
used with DATA1 according to XN

matrix

KEYB2 It will be used with

DATA2

according to XN matrix

Figure 3- The mechanism of the secret key generation using LFSR principle to produce q

number of KEYBs

Figure 4- Secret Keys of type (KEYBs) generated by

the system

Jaafar Iraqi Journal of Science, 2016, Vol. 57, No.1C, pp: 742-754

747

According to Figures-3,-4, for the initial secret key 1101100100101001 there are 255 KEYBs each

with length of 16 bits, where the start point (s-key) was 6 (first location in the array start from 0 to n-

1). For the same initial secret key, but with start point s-key= 9, it will get the same 255 KEYBs but its

sequence will differ (KEYB1, KEYB2,….. ,KEYB255), s-key also must be secret as possible to complicate
the prediction of the KEYBk+1.

The procedure of KEYBs generation will stop until the last KEYB is the same as (KEYB1) (the

initial key).

 Another example, suppose the initial secret key is the word (homeland)

Ascii for h= 104, o=111, m=109, e= 101, l=108 a=97, n=110, d=100

For this stream of bits there are 4095 possible KEYBs, each one with XN matrix will apply on each

DATAz matrix of size 8*8 (DATA block size), also XN must be a matrix of 8*8, L=64 bits (key size)

If s-key (start point= 17) then

 …………

When we select another s-key, KEYBk+1 will differ, for example, for the same KEYB1 in example
above, let the s-key is 38, KEYB2 as a stream of bits will be as follows:

1011000001001010010010011011100110110110010000011011010001000111, also there are 4095

possible KEYBs no one like the other.

According to our program and by using an initial KEYB of length 128 bits, there are 16383
KEYBs will be generated.

Keys generation algorithm:

Bellow the steps to show the algorithm of the key generation using LFSR
1- Input the matrix of the initial secret key (KEYB1[i,j]) i=1 to m, j=1 to n

2- Convert the matrix to stream of bits (KEYB1[0..L-1]), L=m*n

3- Detect the start point (s-key) as a secret point between 1 and (L-1), L is the length of the bits

stream, s-key≠L, k=1, k will increase by one in each iteration.
4- IF s-key=1 then

0 1 1 0 1 0 0 0

0 1 1 0 1 1 1 1

0 1 1 0 1 1 0 1

0 1 1 0 0 1 0 1

0 1 1 0 1 1 0 0

0 1 1 0 0 0 0 1

0 1 1 0 1 1 1 0

0 1 1 0 0 1 0 0

Block of 8*8 (initial secret

key (KEYB1)

 stream of bits

0110100001101111011011010110010101101100011000010110111001100100

The KEYB3

is:

10001010

11011001

00001110

11010001

00100101

00101011

10001101
00101111

The KEYB4

is:

00001100

10010001

11001011

01100001

11000110

00110010

11110110
00110101

The KEYB5

is:

00001000

11100001

01110010

01000001

01111011

11011100

10100100
00100110

The KEYB4095

is:

01101000

01101111

01101101

01100101

01101100

01100001

01101110
01100100

The KEYB2

is:

01001111

10110101

10001001

10111001

10110111

10111110

01001011
10111000

It is the same of KEYB1

 then stop KEYBs
generation

 Repeat the procedure of

LFSR to regenerate the

KEYBs

Jaafar Iraqi Journal of Science, 2016, Vol. 57, No.1C, pp: 742-754

748

 Repeat

KEYBk+1[1] = KEYBk[0] XOR KEYBk[1]

For i=1 to L-1

 KEYBk+1[i + 1]= KEYBk+1[i] XOR KEYBk[i + 1]
 Next

 KEYBk+1[0] = KEYBk+1[L-1] XOR KEYBk[0]

 Save KEYBk+1 in a matrix of m*n (KEYB_M), k=k+1
 Until (KEYBk+1 = KEYB1)

End IF

5- IF s-key≠1 then
 Repeat

 KEYBk+1 [s-key + 1] = KEYBk[s-key] XOR KEYBk[s-key + 1]

 For i = s-key + 2 To (L- 1)

 KEYBk+1 [i] = KEYBk+1 [i–1] XOR KEYBk[i]
 Next

 KEYBk+1 [0] = KEYBk+1 [L – 1] XOR KEYBk[0]

 For i = 1 To s-key
 KEYBk+1 [i]= KEYBk+1 [i-1] XOR KEYBk[i]

 Next

 Save KEYBk+1 in a matrix of m*n (KEYB_M), k=k+1
 Until (KEYBk+1 = KEYB1)

 End IF

Note that, the algorithm of the key generation will be used in encryption phase and decryption

phase with the same sequence to produce all the KEYBs

3.3 The Encryption phase

In the sender site the plain text file must be preprocessed (binary file, blocks of size m*n (DATA

matrices)) and then the encryption stage will begin, Figure-5 shows the applied of the two secret keys
(KEYB,XN) as a blocks on the DATA blocks, also the encrypter will use pre-determine (s-key) and

applying the LFSR to generate the KEYBs.

Figure 5- The Encryption stage

 DATAe DATAz+1 DATA6 DATA5 DATA4 DATA3 DATA2 DATA1

 Ence Encz+1 Enc6 Enc5 Enc4 Enc3 Enc2 Enc1

 KEYBq …..…….. KEYBk+1 KEYB3 KEYB2 KEYB1 XN

If XN[i,j]= X then

KEYBk [i,j] XOR DATAz [i,j]

Else (if XN(i,j)=N)

NOT (DATAz[i,j])

Encryption process

………..

………..

……….

Jaafar Iraqi Journal of Science, 2016, Vol. 57, No.1C, pp: 742-754

749

DATA, Enc, KEYB, and XN are blocks with the same size, Enc is the resulted blocks of the

encryption stage, by gathering them to reconstruct the encrypted file according to the same sequence,

and finally the encrypted file is ready for sending to the receiver.

As shown in the above section, each cell in XN is (XOR) or (NOT) gate. Figure-6 shows how the
two keys (XN,KEYB) will work with the DATA matrix (of the two characters AI) to get the cipher

text as binary (Enc1). Whereas the block size is 4*4 as an example, also this example will explain one

iteration of Figure-5 if the string is more than two characters.

For long string, the next block of data (DATA2), the same XN with next KEYB (KEYB2) to get
Enc2 block and so on.

3.4 The Decryption phase

To begin the decryption stage, the decrypter needs to know the XN, KEYB, and the start point (s-
key) to regenerate the KEYBs using LFSR. For the same example in section 3-2 the Enc1 was

(0011110000101110), use the same mechanism of the encryption but in reverse, Figure-7 shows how

the two keys (XN,KEYB) will work with Enc1 matrix to get the plaintext (AI) as a binary, also the

decryption stage will use KEYB2 that generated by LFSR with DATA2 if the data is more than two
characters with proposing the blocks sizes are 4*4. The DATA blocks must be suitable with size of the

secret keys (XN and KEYB matrices) to make easy of applying the procedure of encryption and

decryption. If the length (matrix size) of the secret key increase then the number of the KEYBs that
generated by the proposed LFSR will be increased and the probability of selecting the s-key also will

be increased. To solve the problem of unfitting between the last block (DATAe) and XN, KEYB

matrices it is good to use the padding (extra bits of 0) to the end of the DATAe block.

Figure 6- Example of applying the X.K.N encryption with blocks size 4*4

 DATA of the two characters (AI) XN key KEYB1 key

Enc1

for all locations

apply XOR with

KEYB or NOT on

the same location

depending on the

contents of the XN

key

Jaafar Iraqi Journal of Science, 2016, Vol. 57, No.1C, pp: 742-754

750

Fig (7) Example of applying the X.K.N decryption with blocks size 4*4

4- How X.K.N is secure

When some one try to break the encrypted data must to take two factors, cost and time [6, 7], the
first factor related to the encrypted data itself, the second factor will be brute force attack (trying all

possible keys).There is an average total time to try all the keys [6]. Now it must to compute the

average time required to break all the keys. Before beginning the times computations, lets first to
detect the following points:

1- How many bits in KEYB

2- How many cells in XN key, normally the same number of bits in KEYB.

3- What is the start point (s-key)
 To understand these three points lets take the following example

KEYB= 64 bits (block of 8*8) XN= 64 cell (of XOR and NOT gates), if the KEYB is 64 bits then

there are 63 possible start point (s-key), from these three keys one will conclude the following
equation:

Number of all possible keys= (2
64*64

)*63 =

6.5796499529028607921580420775147*10
1234

 possible keys
Note: s-key must not to be 64.

If each one possible key take a time of 1 micro second the total time to check all possible keys will be:

 1.2692225989395950602156716970515*10
1223

 years

Therefore,

Total time for Brute force =(2
No. of KEYB bits*No. of XN cells

)*No. of possible start points (4)

Where, No. of possible start points = number of KEYB bits -1

Also making the selection of the XN and KEYB dimensions as a dynamic will increase the security of
the proposed method.

For these reasons, the proposed method (X.K.N) will be very secure.

5- Experimental results
To understand the mechanism of the proposed method, the following data will be encrypted:

"Hello the meeting will be in RUC" which represent a block of 16*16 bits, whereas, XN and KEYB

are blocks of size 8*8, and the start point (s-key) is 37, sections (5.1 and 5.2) shows the encryption and

decryption phases.

5.1 Encryption phase:

This section explains how the data will be encrypted depending on the information from section (5)

in the above.

DATA of the two characters (AI)

XN key KEYB1 Enc1

Jaafar Iraqi Journal of Science, 2016, Vol. 57, No.1C, pp: 742-754

751

From the KEYB and by applying the LFSR procedure (key generation) there are 4095 keys

(KEYBk), and from these 4095 keys only the first four keys will be enough for our DATA

KEYB1= 1000110110101011001110000101010110110111010011011100011010111011 (initial

secret key)
KEYB2= 0000100100110010001011111001100100100101100010010111101100101101

KEYB3= 1111000111011100001101010001000111000110111100011010110111001001

KEYB4= 1010000101101000001001100001111010000100101000010011011010001110
Now by applying each one of these four keys as a matrix of 8*8 with XN key on the DATA matrix

(4 blocks of 8*8) to get the following encrypted data (Enc matrix)

X X N N N X X N

N N X X N N X X

N N X N X X N X

N X X N X X N X

X X X N N X N N

X X N X N X X N

N N X X X N X N

X N X N X N N X

1 0 0 0 1 1 0 1

1 0 1 0 1 0 1 1

0 0 1 1 1 0 0 0

0 1 0 1 0 1 0 1

1 0 1 1 0 1 1 1

0 1 0 0 1 1 0 1

1 1 0 0 0 1 1 0

1 0 1 1 1 0 1 1

 XN key KEYB key

 0100100001100101
 0110110001101100
 0110111100100000
 0111010001101000
 0110010100100000
 0110110101100101
 0110010101110100

 0110100101101110
 0110011100100000
 0111011101101001
 0110110001101100
 0010000001100010
 0110010100100000
 0110100101101110
 0010000001010010
 0101010101000011

DATA matrix of 16*16 bits (Binary plain text)

Jaafar Iraqi Journal of Science, 2016, Vol. 57, No.1C, pp: 742-754

752

5.2 Decryption phase:

With the same mechanism of the encryption in section 5.1, this section tries to decrypt the

encrypted data that resulted from the encryption phase using the same XN key and KEYB. Also apply

the LFSR to generate the KEYBi that shown in encryption phase, the start point was 37 (s-key), also
the decryption phase will use only the first four KEYBs.

Note 1: the procedure of the proposed strategy to generate KEYBs that derived from LFSR is the

same in encryption and decryption using the same initial KEYB and start point.
Note 2: to overcome the problem of intruders or hackers the XN key, KEYB, and s-key (three secret

keys) must be sent using a secure channel.

Jaafar Iraqi Journal of Science, 2016, Vol. 57, No.1C, pp: 742-754

753

After decoding the decrypted data matrix and by using the ASCII code for each eight bits, the

original plain text is ("Hello the meeting will be in RUC").

6- Conclusions

Everyone knows any transaction between any two nodes it already will be compelling to encryption

strategies. And from this proposed method (X.K.N) it is possible to conclude the following

conclusions:

X X N N N X X N

N N X X N N X X

N N X N X X N X

N X X N X X N X

X X X N N X N N

X X N X N X X N

N N X X X N X N

X N X N X N N X

1 0 0 0 1 1 0 1

1 0 1 0 1 0 1 1

0 0 1 1 1 0 0 0

0 1 0 1 0 1 0 1

1 0 1 1 0 1 1 1

0 1 0 0 1 1 0 1

1 1 0 0 0 1 1 0

1 0 1 1 1 0 1 1

1111010101011100
1000001110010010
1001010111011111
1010001111110011
1101101000011111
0000000011001100
1010001010001011

1001011000010001
1001111010011001
1010101110000101
1001101110011010
1011001111111100
1011101010111111
1001000011000111
1100110110100101

1000101010011101

 XN key KEYB key
Encrypted data matrix of 16*16 in receiver site

=

=

=

=

10001101

10101011

00111000

01010101

10110111

01001101

11000110

10111011

 01001000

 01101100

 01101111

 01110100

 01100101

 01101101

 01100101

 01101001

XXNNNXXN

NNXXNNXX

NNXNXXNX

NXXNXXNX

XXXNNXNN

XXNXNXXN

NNXXXNXN

XNXNXNNX

11110101

10000011

10010101

10100011

11011010

00000000

10100010

10010110

Enc1 XN matrix KEYB1 DATA1

 01100101

 01101100

 00100000

 01101000

 00100000

 01100101

 01110100

 01101110

XXNNNXXN

NNXXNNXX

NNXNXXNX

NXXNXXNX

XXXNNXNN

XXNXNXXN

NNXXXNXN

XNXNXNNX

00001001

00110010

00101111

10011001

00100101

10001001

01111011

00101101

01011100

10010010

11011111

11110011

00011111

11001100

10001011

00010001

 Enc2 XN matrix KEYB2 DATA2

01100111

01110111

01101100

00100000

01100101

01101001

00100000

01010101

XXNNNXXN

NNXXNNXX

NNXNXXNX

NXXNXXNX

XXXNNXNN

XXNXNXXN

NNXXXNXN

XNXNXNNX

11110001

11011100

00110101

00010001

11000110

11110001

10101101

11001001

10011110

10101011

10011011

10110011

10111010

10010000

11001101

10001010

 Enc3 XN matrix KEYB3 DATA3

 00100000

 01101001

 01101100

 01100010

 00100000

 01101110

 01010010

 01000011

XXNNNXXN

NNXXNNXX

NNXNXXNX

NXXNXXNX

XXXNNXNN

XXNXNXXN

NNXXXNXN
XNXNXNNX

10100001

01101000

00100110

00011110

10000100

10100001

00110110
10001110

10011001

10000101

10011010

11111100

10111111

11000111

10100101
10011101

 Enc4 XN matrix KEYB4 DATA4

Decrypted data matrix of 16*16

 0100100001100101

 0110110001101100

 0110111100100000

 0111010001101000

 0110010100100000

 0110110101100101

 0110010101110100

 0110100101101110

 0110011100100000

 0111011101101001

 0110110001101100

 0010000001100010

 0110010100100000

 0110100101101110

 0010000001010010

 0101010101000011

Jaafar Iraqi Journal of Science, 2016, Vol. 57, No.1C, pp: 742-754

754

1. Using X.K.N, there is no limitation in the size of the XN, KEYB,S-key, and data size.

2. S-key was used in X.K.N to increase the security because it increases the probabilities and

variations of the KEYBs.

3. The proposed method is new strategy in data encryption.
4. LFSR (linear feedback shift register) is good method to generate q number of KEYBs, also the

key generation algorithm adopted in this paper may be itself as a simple proposed method for

keys generating using the start point.
5. The proposed method behaves as a stream cipher in some phases and as block cipher in other

phases.

6. According to the proposed key generation strategy that depends totally on LFSR, there is no
standard to the number of generating keys, with the same number of bits and for each group of

bits string there are q numbers of KEYBs.

7. If the number of the data file blocks less than the number of KEYBs then the proposed method

will correspond to be as a one time pad method (one KEYB for each block with the same XN).
8. The time required for encryption and decryption is the same, and the file size before and after

encryption is the same.

9. There are no complex mathematical computations that may require long time to execute, X.K.N
depends on conditional states to determine XOR or NOT and then applying the determine

operation, and this logically will be very fast.

10. It is good to recommend to make the dimensions of the two secret keys (XN and KEYB) as
dynamic matrices (m*n) (m not equal to n), and this will increase the security of the proposed

method.

Acknowledgment

I would like to thank and express my gratitude to Prof. Dr. Hussein Kettan Alkafaji for his help and
support throughout preparing this paper.

References:

1. Denning, D., E. 1982. Cryptography and Data Security, Addison-Wesley.
2. Sravan D. Kumar, Suneetha, C.H. and Chandrasekhar. A. 2011. A Block Cipher Using Rotation

and Logical XOR Operations, IJCSI International Journal of Computer Science, 8(6).

3. Christof, P. and Jan, P. 2010. Understanding Cryptography, Springer-Verlag Berlin Heidelberg.

4. Al-Suffar, A., M., M. 2015. Implementing a New Serial Control As Nonlinear Function For Key
Stream Pseudo-Random Number Generator, Journal of Al-Rafidain University College, 35.

5. Hathwalia, S., Yadav, M. 2014. Design and Analysis of 32 Bit Linear Feedback Shift Register

Using VHDL, Journal of Engineering Research and Applications, 4(6), (version 6).
6. Stallings, W. 2006. Cryptography and Network Security, Fourth Edition, Prentice Hall.

7. Pfleeger, C., P. 1989. Security in Computing, Prentice Hall.

