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ABSTRACT  

     The operator   has been introduced as an associated set-valued set function. 

Although it has importance for the study of minimal open sets as well as minimal 

 -open sets. As a result of this study, we introduce minimal   -open sets . In this 

study, several characterizations of minimal   -open sets are also investigated. This 

study also discusses the role of minimal    -open sets in the  -locally finite spaces. In 

an aspect of topological invariant, the homeomorphic images of minimal   -open set 

has been discussed here. 
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1. INTRODUCTION 

     Recently Selim and Modak [1] introduced associated set-valued set function (in short 

associated function) in literature. The operator          on an ideal topological space is an 

example of an associated function. This associated function   has the association with the 

local function [4] of the ideal topological spaces and they are related by the following relation 

              [3,5]. Interior and closure operators of a topological space are also an 

example of associated functions. On the other hand, in [6], Nakaoka and Oda have introduced 

minimal open sets in topological space. Further, they discussed its various properties in 

topological spaces and in locally finite spaces. In [7], Jiang, Xiago-long and Young-bae have 

introduced minimal  -open sets in ideal topological spaces and characterized its various 

properties in 2018. In [8], Rashid and Hussein have introduced maximal and minimal regular 

 -open sets in topological spaces and discussed its related properties. 

 

     In this paper, we have jointly studied associated functions and minimal  -open sets. As an 

extraction, we have found minimal   -open sets in the topological spaces with ideals. These 

sets were played an important role in the study of local functions and set operators  . 

Homeomorphisms in the topological spaces also play a remarkable role for the studying of 

minimal   -open sets. The above ideas will also be introduced in terms of the recent topology 

     
 introduced by Tormet, Yavina and Brown in [9]  and topologies    and    

 introduced 

by Yalaz and Kaymakci in [10]. 

 

2. Historical Background 

     The study of generalization of the limit points was introduced by Kuratowski [11] and 
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Vaidyanathswamy [12] with the assistance of local function of the topological spaces. The local 

function has been defined with the assistance of ideal: A collection   of subsets of a set   is 

called an ideal on   if   is closed under hereditary and finite unions. If   is an ideal on a 

topological space      , then it is called ideal topological space and we call it a ‘   space’ 

throughout this paper. Throughout this paper, the triplicate         is denoted as     where 

the topological space       will be denoted as    and we write ‘  space’ instead of 

topological space, i.e., we have             and         . According to the modern 

notation of local function we have,         {          for every    (p)}, where 

              , when there is no scope of misunderstanding, we will write    or 

simply     or         or   
   and call it the “local function of  ". 

 

       This local function helps to determine a new topology on  , it is called  -topology and 

member of the  -topology are called the  -open sets. One of the most useful basis of the 

 -topology is,                        [4]. One of the most important question is, when 

       and  -topology are equal?. Njåstad [13,14] has given the answer to this question with 

the help of “Compatibility". The ideal   is called compatible with  , denoted    , if the 

following is true for each    : if for all    , there exists         where         
       such that      , then    . The operator          which has been defined 

as an associated function of local function    , that is              , we will write simply 

      or   
    . In this context, for    ,              [2] and          for  

every    . For the  -topological space, we denoted ‘   ’, ‘    ’ and ‘     ’ as the closure 

operator, interior operator and collection of all  - open neighbourhoods of an element   

respectively and                   . Furthermore, in the IT space    , mathematicians 

handles two structures on  , thus the condition         is useful for the study of the same 

field. These concepts introduced by Newcomb [15] by the name of  -        . As an 

application of local function,  -open set has been defined in literature. For a     space: A 

subset   of   is called  -open if           [16]. The set of all  -open sets in a 

topological space with ideal     is denoted by         or written simply as       when 

there is no scope of misunderstanding. 

 

3. MINIMAL   -OPEN SET 

     In this part, We now have introduced minimal   -open set and many features and 

characterizations of minimal   -open sets have been studied:  

 

Definition 3.1 [7] Let     be an    space. A subset       of   is said to be a minimal 

 -open set if it is an  -open set satisfying                    or     .  

 

Definition 3.2  A  -open set   in the    space     is called minimal   -open set if and only 

if each and every  -open set contained in      is either   or     .  

The set of all minimal   -open sets in a IT space     is denoted by           or written 

simply as         when there is no scope of misunderstanding.  

 

Example 3.3  Let                                        and   {      }  

Therefore all the  -open sets are                              . Here           
              . Then   is an element of        . If we take       . Since    , then 

                        . Hence the non-empty  -open set        which is 

contained in      is     . Thus        is an element of        . 

If we take          . Then                                     . Here the 

non empty  -open sets      and      which are contained in      but not equal to     . 



MODAK et al.                         Iraqi Journal of Science, 2023, Vol. 64, No. 11, pp: 5744- 5755 

 

 

5746 

Hence           is not an element of        .  

 

 

Example 3.4 Consider that     is an    space where    , set of all natural numbers, 

                                                and          . Take      , then 

      . This shows that       is a member of        .  

 

Definition 3.5 Let     be an     space. Then     is called ideal topological space with 

minimal   -open set(s) (Simply        ), if there exists a minimal   -open set in    .  

 

Example 3.6 Consider the example                                       and 

  {                   }  Therefore all the  -open sets are:                     

                       . If we take      ,  then                         .  

This implies     is not a minimal   -open set. If we take         , then      
                   . This implies        is not a member of         . If we take 

        , then              and hence        is not a a member of        . If 

we take       , then        and hence        is not a member of        . If we  

3 

take            , then              and hence           is not a member of 

       . If we take          , then        and hence           is not a member 

of        . If we take          , then        and hence           is not a 

member of        . If we take    , then        and hence     is not a member of 

       . Therefore, there is no member in         in this IT space    .  

 

Note 3.7 In Example 3.3,   is a member of        . But in Example 3.6,   is not a member 

of        . If an ideal   is  -         on a space   , then        and hence   is 

always a member of         in this IT space. 

 

Note 3.8   itself becomes a member of         in the IT space     only when the topology 

  is indiscrete and the ideal   is trivial, otherwise   is never to be a member of         since 

always       .  

 

Note 3.9 If   is a member of         in the IT space    , then     need not be a member 

of        . Here     is either a  -open set or not. Assume that     is a  -open set. In 

Example 3.3,        is a member of         but             is not a member of 

       , since         . Also if   is an indiscrete topology and the ideal   is trivial, then 

    is always a member of         when   is a member of        . If     is not a 

 -open set, then there is no chance to be a member of        .  

By the following example, we are to show that a minimal  -open set   in     may or may not 

be a member of        .  

 

Example 3.10 [15] Consider a    space    , where                ,              
                    and           , we have,                                     
                        . Thus      and      are minimal  -open sets. The  -open sets are 

                                                   . Take          then        
       . Hence   is not a member of         but a minimal  -open set. Also if we take 

      , then          . Thus      is a member of         as well as a minimal  -open 

set. Consequently we say that there is no relation between minimal  -open set and a member of 

       .  
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Theorem 3.11  Let     be an        . If   be a member of        , then       .  

 

Proof. Let   be a member of        . Since   is a member of        , then     . This 

implies       . So            . Since   is a member of         and 

         . Therefore,       . Hence       .  

 Consequently, we say that every member of         is an open set,  -open set and  -open 

set. 

 

Corollary 3.12 Let     be an        . If   be a member of        , then    =       

 

Proof. The proof is obvious and hence omitted.  

By the following example, we are to show that any  -open set   in an IT space      with 

       does not imply    is always a member of        .        

 

Example 3.13 We consider Example 3.3 and let us take a  -open set          . Then  

      . But   is not a member of        .  

 

Note 3.14 Thus, Theorem 3.11 is a sufficient condition for the equality       .  

 

Lemma 3.15  Let     be an        . Let   be a member of         and   be a  -open 

set. Then either       or       .  

 

Proof. Let   be a member of        and   be a  -open set such that      . Since 

  is member of        and            (by Theorem 3.11), then we have 

        . This implies       .                                          

 

Corollary 3.16 Let     be an        . Let   be a member of          and   be a  -open 

set. Then either       or           .  

 

Proof. The proof is obvious by Lemma 3.15 and hence omitted.  

 

Lemma 3.17  Let     be an         and  ,   be two members of        . Then either 

      or    .  

 

Proof. If      , then        and        (by Lemma 3.15). This implies 

    and     (by Theorem 3.11). Hence                                        

 

Corollary 3.18 Let     be an        . Then finite intersection of members of         in 

    is a members of        .  

 

     By the following example, we are to show that the union of two members of         

may not be a member of        :  

 

Example 3.19 Consider the example             ,                           and 

          . Therefore all the  -open sets are                      . Take        and 

      . Then           and          . Hence   and   are members of        . 

Now             and hence               . This shows that     is not a 

member of        .  
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Theorem 3.20 Let     be an        . Then intersection of a member of         and an 

open set is a member of        .  

 

Proof. Let   be a member of         and   be an open set. Then both   and   are 

 -open sets. This implies     is a  -open set. Now           ). If      ,  

then             which is a member of        . This proves the theorem. 

 

Proposition 3.21  Let     be an         and let   be a non trivial member of        . If 

  be an element of  , then     for any         .  

 

Proof. Let   be any member of       such that    . Then     is a non-empty proper 

 -open subset of        (by Theorem 3.11 and since         . This contradicts our 

assumption that   is a member of        . Hence the result.           

 

Proposition 3.22 Let     be an         and let   be a non trivial member of 

       .Then                for any element   of  .  

 

Proof. By Proposition 3.21 and the fact that         , we have    { :         

}  . Then    {         }.                                                         

 

Theorem 3.23  Let     be an         and       be a  -open set. Then the three criteria 

listed below are equivalent: 

1.   is a member of        ; 

2.             for any subset       of     ; 

3.                  for any subset       of     .  

 

Proof.          Let       be any subset of     . Since   is a member of        , 

then        (By Theorem 3.11). Then by Lemma 3.15, for any element   of        
and any        , we have             . Then we have,  

      and hence   is an element of       , since   is any  -open set. It follows that 

           . 

         For any subset       of     , we have                 . Also      
      , this implies                             . This implies                 . 

Thus                  for any  subset       of     . 
         Let                  is satisfied for any subset       of     . Suppose 

that   is not a member of        . Then there is a non-empty  -open set   such that 

      , as a result, there is a member        such that    . Then we have 

            , it follows that                    which contradicts the given condition. 

Hence   is a member of        .  

                                            

Corollary 3.24 Let     be an         and       be a   -open set. Then the three criteria 

listed below are equivalent: 

1.   is a member of        ; 5 

2.                for any subset       of     ; 
3.                      for any subset       of     .  

 

Proof. The proof is obvious and hence omitted.                                        

Theorem 3.25 Let     be an         with         in which every member of         
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is contained in  . If   is a member of        , then          for any    .  

Proof. Let   be a member of         and let   be a subset of  . Suppose that      
   . Then there exists an element         , i.e.,        and    . Since every 

member of         is contained in  , then     and so         , by heredity. This 

implies that          , by Corollary 3.4 in [2]. Since        and         then 

            . This implies       . This contradicts the fact that       . Therefore 

        .                                                             

 

Corollary 3.26 Let     be an         with          in which every member of 

        is contained in  . If   is a member of         of  , then          for any 

   .  

A subset   of a T space       is called a pre-open set if              [17]. For an IT 

space    , the collection of all pre-open sets in           is denoted as             . 

By the following example, we are to show that every subset of a pre-open set need not be a 

pre-open set. 

 

Example 3.27 Consider a topological space   , where                ,              
                                . Therefore, the  -closed sets are:                 
                               . Take           . Then                  and hence 

                  . Thus             . So   is a pre-open set. But if we take     

    . Then               and so               . Hence    is not a pre-open set. Thus 

any subset of a pre-open set may not be again a pre-open set.  

We know that every  -open set is a pre-open set [18] and hence every pre-open set is also a 

pre-open set in the  -topology. Also any subset of a pre-open set is not again a pre-open set. In 

this respect following theorem is interesting.  

 

Theorem 3.28 Let   be a member of         of an    space    . Then for any subset 

      of  ,               .  

Proof. Let   be a member of         and       be any subset of  . We have to prove 

that               . Since   is a member of         and       is any  subset of  . 

Then        (By Theorem 3.11) and             (by Theorem 3.23). This implies 

         and hence                     . Since   is a  -open set, we have     
                  . This shows that                .             

 

Theorem 3.29  Let     be an    space with minimal   -open sets and let   be a non trivial 

member of          and       be a subset of  . If there exists a         such that 

          , then                  for any subset       of   where       

denotes collection of all  -open sets containing  .  

Proof. Since   is a member of        . Then        (By Theorem 3.11). Also, by 

Theorem 3.23,               since       is a subset of  . Thus we have          
                                    . Since           , then   
        . Then                     . Since        , then   is a  -open set such 

that     and hence we have                          by assumption. Also 

since                                        , then                   
  . Again as   is a  -open set, we have                                    
  . Thus                 . This proves that                  .                                            

 

Corollary 3.30  Let     be an         and let   be a non trivial member of         and  

6 
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      be a subset of  . If   a         such that         , then     is a pre-open  

set in           for any subset       of  .  

 

Proof. By the given condition,                                . So by  

Theorem 3.29,     is a pre-open set in          .  

 By the following example, we are to show that the condition of Theorem 3.29, does not 

necessarily imply the condition of Corollary 3.30.                                  

 

Example 3.31 We consider Example 3.3 and take        and            . Then 

               and               . Therefore                    . Hence 

          . Also      and hence                 . Thus            

            .  

 

Corollary 3.32 Let     be an         and let   be a non trivial member of         and   

be an element of  . Define                . Then        or     .  

Proof. If     for any        , then              }. This implies     . 

Otherwise, there exists         such that      . Hence       .                                  

  

4. FINITE  -OPEN SETS 

     In this part, we have studied certain features of members of         in finite  -open sets 

and  -locally finite spaces.  

 

Theorem 4.1  Let     be an    space satisfying     and let       be a finite  -open 

set. Then there exists at least one (finite) non trivial member     of         such that 

      .  

 

Proof. If   is a member of        , we may write         . If   is not a member of 

       , then there exists a finite  -open set    such that          . If    is member 

of        , we may write     . If    is not a member of        , then there exists a 

finite  -open set    such that           . This implies                , 

since    . We have a sequence of  -open sets satisfying                     
         . if we continue this approach. Since   is a finite set, then      is finite and 

therefore the aforementioned process occurs only finitely. Finally, we get a member   of 

             for some      .                                             

 

Corollary 4.2 Let     be an    space satisfying     and let       be a finite  -open set. 

Then there exists at least one (finite) non trivial member   of         such that        
   .  

 

Definition 4.3 Let     be an    space. If each element of       is contained in a finite 

 -open set, then           is called a  -locally finite space.  

 

Corollary 4.4  Let   be a  -locally finite space satisfying     and       be a  -open 

set. Then   at least one (finite) non trivial member   of         such that       .  

 

Proof. Since    , then there exists an element   (say) of  . Since   is a  -locally finite 

space, then there exists a finite  -open set    such that     . Since           is a 

finite  -open set and    , then we get a member    of         such that       
        .                                                     
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Corollary 4.5 Let   be a  -locally finite space satisfying     and       be a  -open set. 

Then   at least one (finite) non trivial member   of         such that           .  

 

Application: Let     be an    space satisfying     and let       be a finite  -open set. 

Then by Lemma 3.15 and  Theorem 4.1, we see that there exists      such that 

                  is the set of all members of         in     . Then it meets the next two 

conditions:- 

(i)         for any     with         and    . 

 

7 

(ii) If    is a member of         in     , then there exists   with       such that  

     .  

 

Theorem 4.6  Let     be an    space satisfying     and let       be a finite  

 -open set and          . Let                   be the set of all members of  

           and p be an element of                       .  

In this case, define                . Then        of               such that 

        .  

 

Proof. If possible, let          for any      of              . Since       is a 

 -open set, then we have            for any member    of            by Lemma 

3.15. Since        is a finite  -open set and    , then there exists a member    of 

           such that          by Theorem 4.1. Since              , then    

is a member of           . By assumption, we have                  for any 

member     of           . Then       for any      of              . This 

contradicts our assumption. Hence the result is got.                                   

 

Corollary 4.7 Let     be an    space satisfying     and let       be a finite  -open set 

and          . Let                   be the set of all members of            and   

be an element of                         Define                . Then, 

there exists       of               such that       
      .  

 

Proposition 4.8  Let     be an    space satisfying     and let       be a finite  -open 

set and          . Let                   be the set of all members of            

and   be an element of                       . Then, there exists       of 

              such that          for any         .  

 

Proof. Since                 then by Theorem 4.6 we have the required result.  

Corollary 4.9 Let     be an    space satisfying     and let       be a finite  -open set 

and          . Let                   be the set of all members of  

           and   be an element of                       . Then, there 

exists      of               such that       
       for any         .  

 

Note 4.10  Let     be an    space satisfying     and let       be a finite  -open set 

and          . Let                   be the set of all members of            and p 

be an element of                       . Then there does not always exist a      

of               such that          .  
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We are now giving an example in support of the Note 4.10:  

Example 4.11 Consider the example          ,                   and           . 

Therefore all the  -open sets are              .Then                            , 
                                       ,                             
     ,                . Then we see that              ,              
             ,                            and               . So, 

   . If we take       , then                               . This implies 

  is not a member of          Take          , then                       . 
This implies    is a member of        . Now member of            is        . 

Hence              and                        . So           . Hence the 

result is obtained.  

  

5. IMAGE OF MINIMAL   -OPEN SETS 

     In this part, we have studied homeomorphic images of members of         in the 

topological spaces with an ideal.  

 

Lemma 5.1 [15]  Let       be a function. If   is an ideal on  , then                    

8 

is also an ideal on  .  

 

Lemma 5.2 [15] Let       be an injective function. If   is an ideal on  , then the set 

                      is also an ideal on  .  

We shall consider the following four results which will help us for discussing the image of  

members of        . Although these four results have been considered in [19], but their  

proofs have been made with the help of filters. Here we shall prove these results with the help of 

ideals. 

 

Result 5.3  Let        and        be two   spaces and   be an ideal on  . If       is a 

homeomorphism, then for any       ,                   .  

 

Proof. Let              . Then             for every        . Since   is a 

homeomorphism, then there exists     such that       . Since     is continuous for any 

       , there exists          such that          . Thus for any        , there 

exists          such that        . This implies                for every        . 

Thus             for every        , since   is an injective. Then by definition of     , 

      for every        . Hence,         and consequently              . Thus 

          . Since   is an arbitrary member of            , then                     . 

Conversely let           . Then there exists         such that       . Since        , 

then       for every        . This implies             for every         and 

hence                for every        . Since   is continuous, then for every   
      there exists          such that        . Thus             for every   
     . Consequently              . Since   is an arbitrary member of         , then 

                    . Combining, we get the required result.           

 

Result 5.4  Let        and        be two   spaces and   be an ideal on  . If  

      is a homeomorphism, then for any       ,    

    
            

     .  

 

Proof. We have,    

                    . This implies    
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                             , since   is bijective. By Result 5.3,    

    
       

                and hence    

    
                         

     . Hence the result.  

 

Result 5.5  Let        and        be two   spaces and   be an ideal on  . If       is a 

homeomorphism, then for any       ,                         .  

 

Proof.  Follows from Result      
Result 5.6  Let        and        be two   spaces and   be an ideal on  . If       is a 

homeomorphism, then for any       ,    

      
                

     .  

 

Proof.  Follows from Result                      

Theorem 5.7 Let        and        be two   spaces and   be an ideal on  . If       is a 

homeomorphism, then for any member   of        ,      is a member of             .  

Proof. If possible, let      is not a member of           , then there exists       
        

such that      

    
      . This implies        

      (by Result 5.4). Since   is 

homeomorphism,           
       (by Theorem 3.11) and hence           . 

Since   is a homeomorphism and     
       , then          

     and hence   
         leads a contradiction as   is a member of         . Hence the result.       

 

Theorem 5.8 Let        and        be two   spaces and   be an ideal on  . If       is a 

homeomorphism, then for any member    of        ,        is a member of 

M             . 

 

Proof.  It follows from Result                            

Note 5.9  Let        and        be two   spaces and   be an ideal on  . If       is a  

9 

function, then for any member   of        ,      is not always a member of  

            .  

We are now giving an example in support of the Note 5.10:  

 

Example 5.10 Consider          be a   space with an ideal where          ,  

                       and          . Clearly       is a member of        .  

Again consider        be another topological space where         and             . 
Let us define a function       defined by       ,        and       . Then 

                          is an ideal on Y. Thus   
                     . Now  

                   . Therefore    

    
                                . 

This implies      is not a member of             .  

 

Note 5.11 [20] Let       be a function. If   is an ideal on  , then  ⃖                 
        is also an ideal on  .  

Note 5.12  Let        and        be two topological spaces and   be an ideal on  . If 

      is a function, then for any member   of        ,        is not always a member 

   ⃖         .  

 We are now giving an example in support of the Note 5.12:  

 

Example 5.13 Consider          be an    space where             ,               
              and           . Clearly        is a membe of        . Again consider 
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       be another   space where         and                 . 
Let us define a function       defined by         and        . Then        

                         and hence  ⃖                      is an ideal on   by Note 

5.13. Thus   
   ⃖                  . Now             . Therefore    

 ⃖   
         

               ⃖             . This implies        is not a member of    ⃖         .  

  

CONCLUSION 

     In this writeup, we have added a new kind of open set called minimal   -open set in IT 

spaces and discussed its various properties. Using this idea, we have discussed relationship of 

pre-open sets, minimal open sets, minimal  -open sets and minimal   -open sets. Also we have 

studied minimal   - open sets in locally finite and finite spaces. Furthermore, images of 

minimal   -open sets under homoemorphisms have been discussed here. One can study on the 

continuity in topological spaces using minimal   -open set.The other properties of these type of 

sets can be found and one can introduce some other relations on these type of sets to develop the 

skills of learning mathematics. This research work can be extended to compactness, 

paracompactness, connectedness etc. In future, one may be interested for working on minimal 

  -closed sets, separation axioms of minimal   -open set and connectedness in IT spaces using 

these sets. 
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