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Abstract 

We presented in this paper a new class              containing analytic 

univalent functions defined on unit disk. We obtained many geometric properties , 

like , coefficient inequality , distortion and growth theorems, convolution property, 

convex set, arithmetic mean and radius of starlikness and convexity by using 

Gaussian hypergeometric function for the class                
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 مع الدوال الفوق هندسيةلدوال التحليلية المرتبطة لبعض الخصائص الهندسية 
 

 *قاسم عبد الحميد جاسم
 قسم الرياضيات, كلية العلوم, جامعة بغداد, بغداد, العراق

 

 الخلاصة
من الدوال التحليلية أحادية التكافؤ والمعرفة على              قدمنا في هذا البحث عائلة جديدة  

متتابعة المعاملات , نظريات النمو والتشويه, على عدة خصائص هندسية منها   قرص الوحدة . حصلنا
باستخدام الدالة  النجمية والتحدبية أقطار أنصافخاصية الضرب, المجموعة المحدبة , الوسط الحسابي و 

 .             الفوق هندسية للعائلة 
 

1. Introduction  

Let M be the class of all analytic functions of the form: 

                                                     ∑   
 
                                                                                                     

And let    denoted the subclass of M  of the form 

                                                 ∑   

 

   

                                                                                           

 In unit disk {z;|z|<1}. The convolution ( Hadamad product)     of    and    is defined by  

                                        ∑   

 

   

   
                                                                                                 

Where        ∑   
 
     .We must recall a Gaussian hypergeometric function 2            as  

       

                                         ∑
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 Where 

     
      

    
                        [   ]             the convolution                    

Which is denoted by              as follows: 

                                  ∑
            

            

 

   

   
                                                

        a,b,c    {     }   c   
 
, z            {           }   

Now, we give a new definition which is using in main theorems.                                                                                                                  

Definition (1.1): A function       in   is in the class               if it is satisfies the condition 

       |
                   (            )   

                    
|                                                      

For [2] , f  be univalent starlike of order  (0      if  

                             {
      

    
}                                                                                                          

Also,  f  be univalent convex of order           if  

                             {  
       

     
}                                                                                                            

 

Many authors were studied another classes defined on Hypergeomtric functions, like, Cho and Kim 

[3], Dziok and Raina [4], Dziok and Srivastava [5, 6] , Juma and Zirar [7], Liu and Srivastava [8], 
Raina and Srivastava [9] . 

We study many geometric properties on our class as follows:  

2. Coefficient inequality 

Theorem (2.1): Let the function    defined by (1.2) . Then                 if and only if  

   ∑
            

            

 

   

[                ]                                                                   

Where               
Proof: Assume the condition (2.1) is satisfied, then we want to show that  

|  (            )
  
               |   |     (            ) |      

By definition of              , we get 

|  ( ∑
            

            
 

 

   

           
   )       ∑

            

            
   

   

 

   

|       

|        ∑
            

            

 

   

    
    | 

 | ∑
            

            

 

   

            
    ∑

            

            
     

  

 

   

|            

 

     |  ∑
            

            

 

   

    
   | 

.  

 ∑
            

            

 

   

            ∑
            

            

 

   

                   

 

∑
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 ∑
            

            

 

   

            ∑
            

            

 

   

                   

 

∑
            

            

 

   

                  

 

∑
            

            

 

   

[                ]             

Then by Maximum modules theorem, we get the result. 

Conversely, if we have  

  {
  (            )

  
               

                    
}     

Thus  

∑
            

            

 

   

         
  ∑

            

            

 

   

   
         

 

[  ∑
            

            

 

   

    
   ]   

If we choose z on real axis and taking     - , we get 

∑
            

            

 

   

           ∑
            

            

 

   

                  

∑
            

            

 

   

                

 

∑
            

            

 

   

[                ]           

Corollary (2.1): Let  f               . Then  

   
      

            
            

[                ]
                                         

 

3. Distortion and growth property 

Theorem(3.1): Let the function               . Then  

                                                                                                     
    

                                                                                                                                                       
 

Proof: Let      be a function in              of the form (1.2).Hence 
 

          ∑
            

            

 

   

   
        ∑

            

            

 

   

   
   

. 

   
        

    
  ∑   
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∑   

 

   

 ∑
            

            

 

   

[                ]           

 

Then  

        
    

∑   

 

   

         

 

Thus 

                   

Similarly, we get 

                  

 

Corollary (3.1): Let the function               . Then 
 

                                 |     |                                                                         
And 

                                                   |     |                                                                                             
4. Convex set 

Theorem (4.1): The class              is convex set. 

Proof. Let functions          be in the class             . Then for every 0       we must 

show that   

                                                                                                                     (4.1) 

We have 

                    ∑[           ]

 

   

    

. 

So, by theorem (2.1) we get 
 

∑
            

            

 

   

[                ][           ] 

 

      ∑
            

            
[                ]

 

   

      ∑
            

            

 

   

  

 

[                ]   

 

                             
 

 

5. Arithmetic mean 

Theorem (5.1): Let                     defined by  

                                                       

                                                                             ∑     

 

   

                                                                       

                                                        

Where (         i=1,2,…,r) be in the class              . Then arithmetic mean of                

                 defined by  
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∑                                                                                   

 

   

 

Is also in the class             . 
Proof. By equations (5.1) and (5.2), we can write  

     
 

 
∑ 

 

   

  ∑     

 

   

      ∑ 
 

 
∑    

 

   

   

 

   

 

Since                 for every (i=1,2,…,r) then by using Theorem (2.1), we get  

∑
            

            

 

   

[                ]  
 

 
∑    

 

   

  

 

  
 

 
∑ 

 

   

 ∑
            

            

 

   

[                ]      
 

 
∑              

 

   

 

6. Convolution Property 

Theorem (6.1):Let        ∑   
 
      and        ∑   

 
      are in the class 

              then the hadamard product     is in the class               where 

   
       

            
            [ 

       ]

(
            

            )
 

[                ]    
            

            
       

                 

 

Proof: We must find a smallest    such that 

   ∑

            
            

[                ]

      

 

   

        

For functions   and   in the class               , we get  

∑

            
            

[                ]

      

 

   

      

and 

 ∑

            
            

[                ]

      

 

   

      

by using theorem (2.1) .By Cauchy – Schwartz inequality, we get 

                                    ∑

            
            

[                ]

      

 

   

√                                     

                                                                    

To prove our theorem, we have to show that  
            

            
[                ]

      
     

            

            
[                ]

      
√     

 
So, this inequality to have be shown  

√     
 

            
            

[                ] 

 
            
            

[                ] 
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From (6.2) , we get 

√     
      

            
            

[                ] 
 

It is sufficient to show   

     
      

            

            
[                ] 

 
 

            

            
[                ] 

 
            

            
[                ] 

            

 
Therefore, from (6.3) we get  

  
       

            
            [ 

       ]

(
            

            
)
 

[                ]    
            

            
       

 

So, the proof is done. 

Theorem (6.2): Let the functions fj (j=1,2) defined by (1.2) be in the class              Then the 

function h defined by 

                                                            ∑ 

 

   

      
        

                                                              

Belong to the class            , where  

  
        

            
            [ 

       ]

            
            

[
            
            

[                ]            ]
 

Proof: We must find a smallest   such that 

∑

            
            

[                ]

      

 

   

       
        

      

 Since                                

∑ (

            
            

[                ]

      
)

 
 

   

      
  

 (∑

            
            

[                ]

      

 

   

      )

 

                                                         

And  

∑ (

            
            

[                ]

      
)

 
 

   

      
  

 (∑

            
            

[                ]

      

 

   

      )

 

                                                         

Combining the inequalities (6.5) and (6.6), gives 

∑
 

 
(

            
            

[                ]

      
)

 
 

   

(      
        

 )                                  
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But                 if and only if  

                 ∑

            
            

[                ]

      

 

   

       
        

                                

The inequality (6.8) will be satisfied if 

            
            

[                ]

      
 

 

 
(

            
            

[                ]

      
)

 

     

 
                                                                                                                                                                     
So that, 

  
        

            
            

[        ]

            
            

[
            
            

[                ]            ]
 

This completes the proof. 

7. Radii of starlikeness and convexity 
 

The following results giving the radii of starlikeness and convexity of the functions  

                 . 
Theorem (7.1): If                , then   is univalent starlike function of order          in 

the disk |z|<  , where  

             (

            
            

[                ]     

           
)

 
 

                                       

Proof: It is sufficient to show that 

|
      

    
  |                          

For |z|<         . 
Therefore, 

|
      

    
  |  |

           

    
|  |

∑    
 
      ∑    

  
   

  ∑      
   

|  
 ∑        

 
      

   ∑      
    

 

 

 
∑          

   
   

  ∑   
 
       

  

 

The last expression must bounded by      if 
∑        

 
       

   
    

The last inequality will be true if  

     

   
     

            
            

[                ]

      
 

Hence, 

    (

            
            

[                ]     

           
)

 
 

 

Putting |z|=  , we get the result. 
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Theorem (7.2): If               , then   is univalent convex function of order          in 

the disk |z|<  , where  

             (

            
            

[                ]     

            
)

 
   

                                  

Proof: It is sufficient to show that 

|
       

     
|                          

For |z|<         . 
Therefore, 

|
       

     
|  |

       

     
|  |

∑         
 
       

  ∑    
 
       

|  
 ∑         

 
        

   ∑    
 
        

 

 

 
∑            

    
   

  ∑       
    

   

 

The last expression must bounded by      if 
∑                

 
         

   
                    

∑         
 
         

   
    

The last inequality will be true if  
 

      

   
       

            
            

[                ]

      
 

Hence, 

    (

            
            

[                ]     

            
)

 
   

 

Putting |z|=  , we get the result. 
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